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Based on regularities in the intrinsic microcircuitry of cortical areas, variants of a
“canonical” cortical microcircuit have been proposed and widely adopted, particularly in
computational neuroscience and neuroinformatics. However, this circuit is founded on
striate cortex, which manifests perhaps the most extreme instance of cortical organization,
in terms of a very high density of cells in highly differentiated cortical layers. Most other
cortical regions have a less well differentiated architecture, stretching in gradients from
the very dense eulaminate primary cortical areas to the other extreme of dysgranular
and agranular areas of low density and poor laminar differentiation. It is unlikely for
the patterns of inter- and intra-laminar connections to be uniform in spite of strong
variations of their structural substrate. This assumption is corroborated by reports of
divergence in intrinsic circuitry across the cortex. Consequently, it remains an important
goal to define local microcircuits for a variety of cortical types, in particular, agranular
cortical regions. As a counterpoint to the striate microcircuit, which may be anchored
in an exceptional cytoarchitecture, we here outline a tentative microcircuit for agranular
cortex. The circuit is based on a synthesis of the available literature on the local
microcircuitry in agranular cortical areas of the rodent brain, investigated by anatomical
and electrophysiological approaches. A central observation of these investigations is a
weakening of interlaminar inhibition as cortical cytoarchitecture becomes less distinctive.
Thus, our study of agranular microcircuitry revealed deviations from the well-known
“canonical” microcircuit established for striate cortex, suggesting variations in the intrinsic
circuitry across the cortex that may be functionally relevant.
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INTRODUCTION
The cerebral cortex is arguably one of the most complex physical
systems. Untangling the intricate relations of the myriad elements
of the gray matter is one of the formidable challenges of science,
as already pronounced by Santiago Ramon y Cajal:

“Devotion to the cerebral hemispheres, enigma of enigmas, was
old in me. . .the supreme cunning of the structure of the gray
matter is so intricate that it defies and will continue to defy
for many centuries the obstinate curiosity of investigators. That
apparent disorder of the cerebral jungle, so different from the
regularity and symmetry of the spinal cord and of the cerebellum,
conceals a profound organization of the utmost subtlety which is
at present inaccessible.” (Cajal, 1937)

Decades later, the picture has become more refined, but a
comprehensive understanding of the cortical microarchitecture
still remains a fundamental scientific challenge. A crucial step
was the recognition that the cerebral cortex is locally structured
into horizontal compartments (“layers”) as well as vertical units
(“columns”) which both may be of functional relevance. Tradi-
tionally, the isocortex has been characterized in the context of a
six-layered scheme (Brodmann, 1909; Vogt, 1910; von Economo,
2009), as opposed to three-layered allocortex. This scheme is,

however, subject to substantial variation in the relative promi-
nence of layers and disrupted in a considerable number of cortical
areas. Nonetheless, and in spite of his acknowledgment that “the
distinction of six layers can be both arbitrary and conventional”
(von Economo, 2009), already von Economo himself asserted
that “on practical grounds, we retain the six-layer division” (von
Economo, 2009). Indeed, the simplified concept of a uniformly
six-layered isocortex has prevailed (Zilles and Amunts, 2012) and
become generally accepted.

The radial organization of the cortex became a subject of
interest when vertical columns spanning all cortical layers were
proposed to exist (Lorente de Nó, 1949; Mountcastle, 1957),
with uniform columns repeating across the cortex to form an
intermediate-level neural substrate for information processing.
Within these columns, connectivity across cortical layers appeared
stereotypical (Szentagothai, 1978; Gilbert and Wiesel, 1983).
While there is still considerable debate about the existence, precise
definition and the extent of heterogeneity in the cellular composi-
tion of cortical columns (Rakic, 2008; da Costa and Martin, 2010;
Rockland, 2010; Smith, 2010a,b,c,d; Carlo and Stevens, 2013;
Herculano-Houzel et al., 2013), the concept of radial cortical
organization was later extended to the notion of a “canonical”
microcircuit (Douglas et al., 1989; Douglas and Martin, 1991,
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FIGURE 1 | (A) Cytoarchitectonic differentiation varies across the
cortex. This lateral view of the human brain shows broad variations in
granule cell presence as described by von Economo (2009). (B) Laminar
origin and termination patterns of extrinsic cortico-cortical connections
vary according to the relative architectonic differentiation of the
connected areas. Projection origins (terminations) shift from

infragranular to supragranular layers, as the source (target) area
becomes more strongly differentiated. This rule results in unilaminar
profiles for projections between areas that are unequal in their
differentiation, and multilaminar profiles for areas with more similar
differentiation. (A) adapted from von Economo (2009), (B) adapted from
Barbas and Rempel-Clower (1997).

2004), as a generic template of intrinsic cortical circuitry. The
computations performed by such a fundamental neuronal circuit
are thought to be prescribed by the intrinsic circuitry within a
cortical column, with functional specificity added by patterns of
axonal inputs and outputs to and from the column. Substan-
tial work has been devoted to the computational performance
and theoretical properties of the “canonical” microcircuit (e.g.,
Douglas et al., 1989, 1995; Haeusler and Maass, 2007; George
and Hawkins, 2009; Haeusler et al., 2009; Wagatsuma et al., 2011;
Bastos et al., 2012; Habenschuss et al., 2013). In the primate
prefrontal cortex, the “canonical” microcircuit was shown to be
subject to modifications from the striate circuit (Heinzle et al.,
2007; Godlove et al., 2014). More generally, abundant data is
available on variants of intrinsic connectivity in cortical regions
such as prefrontal cortex (Melchitzky et al., 2001), somatosen-
sory cortex (Lübke and Feldmeyer, 2007; Petersen, 2007; Lefort
et al., 2009; Feldmeyer et al., 2013) or auditory cortex (Barbour
and Callaway, 2008; Oviedo et al., 2010; Watkins et al., 2014).
Nonetheless, the notion of a “canonical” microcircuit, which has
gained popularity especially in the computational neuroscience
community and has also inspired neuroengineering solutions
(e.g., Merolla et al., 2014), is still largely based on work in
one particular cortical area, striate cortex. Moreover, much of
this work has concentrated on the cat and non-human primate
brain (Douglas and Martin, 2007a). Striate cortex is not only
special in the amount of probing it has undergone, but is also
exceptional in its cytoarchitectonic differentiation. Striate cortex
is the cortical region with the highest neuron density, sporting
numbers substantially higher than the remainder of the cortex
(Schüz and Palm, 1989; Collins et al., 2010; Cahalane et al.,
2012; Herculano-Houzel et al., 2013). The number of (sub)layers
that can be identified is also higher in striate cortex than in
other regions of the cortex. Instead of all parts of the cortex
being uniformly differentiated, cytoarchitectonic differentiation

changes gradually across the cortex (Sanides, 1970; von Economo,
2009; Zilles and Amunts, 2012), as illustrated in Figure 1A for
the human brain. The spectrum of differentiation ranges from
striate cortex, the most clearly eulaminate area, to agranular areas
that lack the inner granular layer (L4), and have few identifi-
able sublayers as well as very low neuron density. In between
these two extremes, one can find areas that are still eulaminate,
but without the remarkable clarity of differentiation or dense
packing of neurons found in striate cortex, such as prestriate
cortex, as well as dysgranular areas with a lower density of
neurons, a dissolving inner granular layer and fewer identifi-
able sublayers. Quantitative differences in many aspects of the
structural organization of cortical tissue have been extensively
demonstrated (e.g., Beaulieu and Colonnier, 1989; Defelipe et al.,
1999; Dombrowski et al., 2001; Yáñez et al., 2005; Collins et al.,
2010).

The variation in local cortical structure needs to be taken
into account when describing a “canonical” microcircuit, because
it is unlikely for the patterns of inter- and intra-laminar con-
nections to be uniform in spite of strong variations of their
structural substrate. Indeed, experimental results, for example
from rodent barrel cortex, demonstrate that intrinsic connec-
tivity is not uniform across the cortex (Sato et al., 2008;
Meyer et al., 2013; Reyes-Puerta et al., 2014). Heterogeneity in
cytoarchitectonic differentiation has been shown to have con-
sequences for other aspects of structural connectivity in the
brain. The laminar patterns of extrinsic connections which link
brain regions along white matter pathways are strongly asso-
ciated with the relative cytoarchitectonic differentiation of the
connected areas (Barbas, 1986; Barbas and Rempel-Clower, 1997;
Medalla and Barbas, 2006; Hilgetag and Grant, 2010; Beul et al.,
2014). The stereotypic laminar patterns that have been found
in non-human primate and cat cortex (Figure 1B) show dis-
tinctly infra- and supragranular origins and terminations for
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projections between areas of weak differentiation and areas of
strong differentiation, while these patterns change gradually
towards multilaminar origin and termination profiles as the dif-
ference in differentiation between the connected areas becomes
less pronounced.

Since the variation of cytoarchitectonic differentiation is an
aspect of cortical organization that is insufficiently considered in
discussions of intrinsic circuitry, we here want to raise awareness
of the importance of architectonic differences, by providing a
first approximation of general features of intrinsic circuitry in
agranular regions of the cerebral cortex. We do this by assimilating
information from the available literature on inter- and intralam-
inar connectivity in the agranular frontal cortex of the rodent
brain, in order to present a tentative model of intrinsic circuitry
in cortical regions on the opposite end of the differentiation
spectrum than has previously been predominantly considered for
such models. This variation is crucial for applying insights gained
from such model circuits in a realistic way, for example in the
biological grounding of in silico experiments (e.g., Merolla et al.,
2014).

In the following review, we briefly introduce current accounts
of the “canonical” microcircuit, and then highlight a report of
experimental results that reveal variation in interlaminar inhi-
bition across cortical regions of distinct cytoarchitecture (Kätzel
et al., 2011). Subsequently, we present the result of the literature
survey we performed regarding data that can shed light on the
intrinsic microcircuitry in agranular cortex. We chose to concen-
trate on the rodent brain, capitalizing on the relative abundance
of experimental data available for this popular animal model. In
comparison, fewer studies report on intrinsic circuitry in non-
human primates, and only a small proportion of those considered
agranular cortical regions, which are relatively infrequent in the
primate brain. By focusing on the rodent brain, we can therefore
provide a more detailed sketch of the intrinsic circuitry in agranu-
lar cortex without having to incorporate data across a wide range
of species, which would have been a more uncertain approach.

INTRINSIC CIRCUITRY IN GRANULAR CORTEX
Over the last decades, general features of intrinsic circuitry in
striate cortex have emerged from studies in the cat and non-
human primate. Connections are proposed to form a process-
ing loop across cortical layers, where recurrent excitation and
inhibition are interlinked, which leads to amplification of inputs
into the cortical column and appropriate modulation of the
ensuing activity (Markram et al., 2004; Douglas and Martin,
2004, 2007a; Bannister, 2005; Lübke and Feldmeyer, 2007). To
probe the local microcircuitry, diverse experimental methods with
different degrees of sensitivity and reliability have been used. Two
investigations that supplied the most comprehensive data on cat
striate cortex employed electrophysiological and morphological
approaches, respectively. Thomson et al. (2002) used dual intra-
cellular recordings to characterize synaptic connections across
cortical layers. Binzegger et al. (2004) reconstructed the morphol-
ogy of neurons in striate cortex in three dimensions and estimated
the number of synaptic contacts between different cell types. Both
data sets have been adapted and used in various studies, for exam-
ple, in the construction of computational models (e.g., Haeusler

and Maass, 2007; Haeusler et al., 2009; Bastos et al., 2012; Du et al.,
2012; Potjans and Diesmann, 2014). But even though the same
model system, cat striate cortex, was considered across these stud-
ies, there currently exists no definite scheme of this area’s intrinsic
circuitry. There are, for example, diverging data on whether
recurrent excitation occurs between L3 and L5 or between L4 and
L3 (cf. Thomson et al., 2002; Thomson and Bannister, 2003 and
Binzegger et al., 2004; Douglas and Martin, 2004).

Such discrepancies may be reconciled by future experimen-
tal findings. In contrast, reports of differences in interlami-
nar activation patterns across cortical regions point towards
the existence of genuine variations in intrinsic circuitry across
the brain. Kätzel et al. (2011) used genetically targeted pho-
tostimulation to comprehensively map inhibitory-to-excitatory
connectivity in three distinct regions of mouse cortex. They
assessed intra- and interlaminar connectivity in striate cor-
tex, primary somatosensory and primary motor cortex. As
mentioned before, striate cortex is by far the most differen-
tiated cortical region, even in the rodent brain (Herculano-
Houzel et al., 2013), where it is less well differentiated than
for example in the primate. Primary somatosensory cortex,
although still clearly eulaminate, is already much less dense
and comprises fewer distinguishable sublayers, while primary
motor cortex is even less cytoarchitectonically differentiated
(Collins et al., 2010; Herculano-Houzel et al., 2013). Primary
motor cortex thus ranges in the lower end of the differenti-
ation spectrum with dysgranular cortical regions, although it
is sometimes classified as agranular (lacking an inner granu-
lar layer, L4): see Shipp (2005) and García-Cabezas and Bar-
bas (2014) for an extensive discussion of this issue. Other
than probing connectivity in three cortical regions process-
ing different modalities, this study can, therefore, be used to
demonstrate potential differences regarding intrinsic circuitry
in three areas occupying different positions in the differen-
tiation spectrum. While Kätzel et al. (2011) report relatively
uniform patterns of intralaminar inhibition across these three
cortical regions, interlaminar inhibitory-to-excitatory connectiv-
ity differed substantially (Figure 2). In striate cortex, consid-
erable interlaminar inhibition was observed between all layers
(L2/3, L4, L5/6). In primary somatosensory cortex, a similar
pattern of interlaminar inhibition was reported, but without
inhibition between L2/3 and L5/6. In primary motor cortex,
in contrast, no substantial inhibition between L2/3, L4, and
L5/6 was evident. Thus, across the three sampled regions, inter-
laminar inhibitory-to-excitatory connectivity was progressively
weaker in less cytoarchitectonically differentiated areas. Inter-
preting the results this way, we assume that they reflect gen-
uine variation in the presence of interlaminar inhibition, and
not the impact of other aspects of structural variation across
the studied areas. For example, systematic differences in cellu-
lar morphology across the sampled areas could lead to skewed
results from applying the same measurement approach to all
areas. Nonetheless, these observations support the notion that
intrinsic circuitry cannot be uniform in the face of considerable
variation of the structural substrate, as is the case in regions of
the cerebral cortex with profoundly differing cytoarchitectonic
differentiation.
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FIGURE 2 | Interlaminar inhibition varies across mouse cortex.
As cytoarchitectonic differentiation becomes weaker, the abundance
of interlaminar inhibitory-to-excitatory connectivity decreases. By
contrast, intralaminar connectivity, including intralaminar inhibition,
appears relatively unchanged (Intra-laminar connections, which are

all-to-all, are not shown). Column colors follow the color coding of
cytoarchitectonic differentiation in Figure 1: yellow-weakly
differentiated cortex to dark green-strongly differentiated cortex.
Adapted by permission from Macmillan Publishers Ltd: Kätzel
et al. (2011).

TENTATIVE INTRINSIC CIRCUITRY OF THE AGRANULAR
CORTEX
Figure 3 summarizes our review of the available literature on
intrinsic interlaminar circuitry in the agranular frontal cortex
of the rodent brain and puts it in comparison to a recent
rendering of the intrinsic circuitry in striate cortex. Excitatory-
to-excitatory connections from L2/3 to L5 have clearly been
demonstrated in rat agranular frontal cortex by measuring exci-
tatory postsynaptic currents (EPSC) in monosynaptically cou-
pled pyramidal neurons in L5, induced by stimulation in L2/3
(Kang, 1995; Otsuka and Kawaguchi, 2008, 2009, 2011; Hirai
et al., 2012). One of these paired recording studies (Otsuka
and Kawaguchi, 2009) additionally demonstrated the existence
of excitatory-to-inhibitory connections from L2/3 to L5, a find-
ing also reported by Apicella et al. (2012) in mouse motor
cortex. The experiments of Hirai et al. (2012) showed that
reciprocal connections to the excitatory-to-excitatory connec-
tions from L2/3 to L5 exist from L5 pyramidal cells to L2/3
pyramidal cells. This observation is confirmed in medial entorhi-
nal cortex of the rat (van Haeften et al., 2003), which can
be considered agranular since its layer IV (“lamina dissecans”)
is mainly acellular (Andersen et al., 2007). The microscopy
study of van Haeften et al. (2003) traced the processes of
pyramidal cells in the deep layers ramifying in superficial lay-
ers, and identified the synaptic contacts made by those neu-
rons. The analysis revealed excitatory-to-excitatory, as well as
excitatory-to-inhibitory, connections from deep to superficial
layers.

Considering the trend of weakening inhibitory-to-excitatory
connectivity in cytoarchitectonically less differentiated areas
(Kätzel et al., 2011, see above), we consider it likely that there
exists no substantial interlaminar inhibition of excitatory neu-
rons in rodent agranular frontal cortex, which is reflected in
our tentative circuit diagram. The study by van Haeften et al.

(2003) in medial entorhinal cortex, which reports an absence of
inhibitory-to-excitatory synapses from deep to superficial layers,
supports the same conclusion. Van Haeften et al. furthermore
report that only a small percentage of the observed synapses
could potentially be classified as inhibitory-to-inhibitory, thus
giving little evidence for such a connection from deep to super-
ficial layers. Considering the reciprocal inhibitory-to-inhibitory
connection from superficial to deep layers, we could find no
studies reporting either on the absence or presence of such a
connection. In the circuit diagram (Figure 3), we did not include
connections which could only be inferred from exclusively mor-
phological results (e.g., Kawaguchi, 1993, 1995; Kawaguchi and
Kubota, 1997; Kubota et al., 2011), since we did not consider data
on the spatial spread of axon collaterals sufficiently reliable to
demonstrate a functional connection, given that synapse forma-
tion has been shown to be highly specific (e.g., Kozloski et al.,
2001; Brown and Hestrin, 2009). For these reasons, Figure 3B
indicates no inhibitory interlaminar connections, although the
validity of this assessment of course remains contingent upon
further experimental data.

By contrast, there is abundant evidence for rich intralaminar
connectivity including excitatory-to-inhibitory and inhibitory-
to-excitatory connections (Kang, 1995; Somogyi et al., 1998;
Kawaguchi and Kondo, 2002; Barthó et al., 2004; Otsuka
and Kawaguchi, 2009; Fino and Yuste, 2011; Kätzel et al.,
2011). Therefore, we assumed a stereotypical pattern of con-
nectivity within deep and superficial layers as illustrated in
Figure 3B.

The intrinsic circuitry we have sketched here thus com-
prises interlaminar excitatory connections that connect neuronal
populations from both upper and lower layers to excitatory
as well as inhibitory neuron populations in the complemen-
tary cortical layers. Within upper and lower layers, intralami-
nar connections reciprocally connect excitatory and inhibitory
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FIGURE 3 | (A) Intrinsic circuitry in granular cat striate cortex. Adapted
from Potjans and Diesmann (2014) who largely based their diagram on
Binzegger et al. (2004). (B) Tentative scheme of intrinsic circuitry in
agranular rodent frontal cortex. Intralaminar connectivity in agranular

cortex is similar to that in granular cortex, but interlaminar connectivity
differs. Column colors follow the color coding of cytoarchitectonic
differentiation in Figure 1: yellow-weakly differentiated cortex to dark
green-strongly differentiated cortex.

neuron populations. This intrinsic interlaminar circuitry is strik-
ingly similar to the simplified original circuit diagram for the
striate cortex of Douglas et al. (1989), and allows for recur-
rent excitation and inhibition. These physiological interactions
were inferred to underlie essential computational mechanisms
in striate cortex (Douglas et al., 1995; Douglas and Martin,
2007b, 2009). The microcircuitry as we sketch it here should
accordingly be able to support elemental neural functions, such
as the amplification of weak inputs through positive feed-
back or gain control and signal normalization through negative
feedback.

DISCUSSION
The starting question of this review was whether there exists a
generic template of intrinsic microcircuitry in the cortex, despite
pronounced regional differences in cytoarchitectonic organiza-
tion. The answer depends strongly on how broadly the concept of
stereotypy is framed (Silberberg et al., 2002), but even for the cor-
tical region studied most intensely in this context, striate cortex,
there exists as yet no consensus on a detailed “canonical” micro-
circuit. Moreover, differences in circuitry have been reported
across the cortex, which are consistent with the changes in the
structural substrate in which intrinsic connectivity is embedded.
In order to account for these structural differences, we propose
a tentative circuit diagram for the agranular frontal cortex of the
rodent brain, an agranular region which is strikingly opposed to
striate cortex in its cytoarchitectonic organization. Our review of
the existing literature points to an intrinsic circuit that features
excitatory-to-excitatory and excitatory-to-inhibitory connections
from upper layers to lower layers, as well as from lower layers to
upper layers (Figure 3B), but shows no interlaminar inhibitory-
to-inhibitory or inhibitory-to-excitatory connections. This circuit

is based on multiple approaches for structural and functional
circuit investigation (such as electrophysiological paired record-
ings using microstimulation, anatomical tracing experiments, or
examination of morphological features using light and electron
microscopy), with different caveats and varying levels of reli-
ability. Importantly, the information was drawn from studies
whose primary goal was not necessarily the characterization of
interlaminar circuitry. Our circuit diagram is therefore subject to
debate and should be modified in the light of future information.
In compiling the circuit diagram, we engaged in some common
simplifications regarding the anatomical substrate in which the
connections are placed. In studying intrinsic circuitry, distinct
sublayers are often collapsed, as for example when layers 5A,
5B and 6 are considered collectively as “infragranular” layers.
This treatment may be misleading, since different (sub)layers
have been shown to be involved in distinct processing circuits
(for example, Lübke and Feldmeyer, 2007). The same caveat
holds for the merging of diverse neuron types into the two main
classes of inhibitory and excitatory neurons. It discards a wealth
of functionally relevant information about morphological and
physiological differences between neuron types, as well as about
cell type specific connectivity (Kozloski et al., 2001; Silberberg
et al., 2002; Thomson and Bannister, 2003; Kampa et al., 2006;
Otsuka and Kawaguchi, 2008, 2009, 2011; Brown and Hestrin,
2009; Xu and Callaway, 2009; Apicella et al., 2012; Hirai et al.,
2012). Not to disambiguate such significant anatomical features
introduces additional uncertainty about the validity of any intrin-
sic circuit diagram. Moreover, note that a description of general
layer-to-layer connectivity within a column, as we propose here,
does not necessarily reflect synaptic circuits formed by individual
neurons across layers, as, for example, Binzegger et al. (2004) have
estimated. Thus, there may exist functionally relevant differences
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between the average laminar interconnections described here
and the specific laminar microcircuits formed within these aver-
age patterns. A further dimension that is missing from many
descriptions of local microcircuitry is an estimation of connection
strength. However, with current technology, structural measures
of strength, such as the frequency of connections from one cell
type onto another or the number of involved synapses and their
morphology, can only be obtained by arduous manual labor.
Moreover, the translation of structural into functional strength,
as expressed by the amplitude of evoked postsynaptic currents, is
opaque: number, size, morphology and position of synapses mat-
ter, as do numerous molecular mechanisms regulating synaptic
function at both the pre- and postsynaptic site. In addition, the
impact of evoked currents on postsynaptic cell function depends
on many further factors. All these aspects are not static, but
can potentially change on short time scales (Squire et al., 2008;
Buonomano and Maass, 2009; Dityatev et al., 2010; Eroglu and
Barres, 2010; Silver, 2010; Ribrault et al., 2011; Arnsten et al.,
2012; Camiré and Topolnik, 2012; Caroni et al., 2012; Cortés-
Mendoza et al., 2013; Dallérac et al., 2013; Vitureira and Goda,
2013; Chevaleyre and Piskorowski, 2014).

Although the proposed intrinsic circuitry for agranular cortex
is still speculative, the issue we address remains crucial (Marcus
et al., 2014). There has to be variation in intrinsic circuitry across
the cerebral cortex, because the composition of the cortex is
not uniform, but highly variable on a number of dimensions.
We are convinced that a better understanding of the intrinsic
cortical circuitry is essential for an improved comprehension of
its physiology, and has to take into account differences in the
cortical structural substrate. We hope that we have provided a
starting point for discussion which will lead to the synthetization
of new insights from available data or further experimental efforts
to elucidate circuitry outside of striate cortex, taking structural
variation into consideration.
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