
Towards a Catalog of Aspect-Oriented Refactorings
Miguel P. Monteiro

Escola Superior de Tecnologia
Instit. Politécnico de Castelo Branco

Avenida do Empresário
6000-767 Castelo Branco PORTUGAL

João M. Fernandes
Departamento de Informática

Universidade do Minho
Campus de Gualtar

4710-057 Braga PORTUGAL

ABSTRACT
In this paper, we present a collection of aspect-oriented
refactorings covering both the extraction of aspects from object-
oriented legacy code and the subsequent tidying up of the
resulting aspects. In some cases, this tidying up entails the
replacement of the original implementation with a different,
centralized design, made possible by modularization. The
collection of refactorings includes the extraction of common
code in various aspects into abstract superaspects. We review
the traditional object-oriented code smells in the light of aspect-
orientation and propose some new smells for the detection of
crosscutting concerns. In addition, we propose a new code smell
that is specific to aspects.

Keywords
Aspect-oriented programming, object-oriented programming,
refactoring, code smells, programming style.

1. INTRODUCTION
Refactoring [11][24] and Aspect-oriented programming (AOP)
[17] are two techniques that contribute to deal with the problems
of permanent evolution of software. Refactoring facilitates the
continuous change of source code, enabling it to evolve in line
with changes in environments and requirements. AOP provides
stronger modularization and software composition mechanisms
than those provided by previous technologies, thus diminishing
the potential impact that changes to the code related to a given
concern have on code unrelated to that concern.

AOP’s steady progress from “bleeding edge” research field to
mainstream technology [25] brings forward the problem of how
to deal with large number of object-oriented (OO) legacy code
bases. Experience with refactoring of OO software in the last
half-decade suggests that refactoring techniques have the
potential to bring the concepts and mechanisms of aspect-
orientation to existing OO frameworks and applications.

In this paper, we review some of the traditional OO code smells

[11] in the light of AOP and we propose several new AOP-
specific smells. We present a collection of AOP refactorings
aiming to remove those smells from legacy code (including
updated versions of 4 of the refactorings presented in [23]). The
subject language we use is AspectJ [19], whose backward
compatibility with Java opens the way for refactoring existing
Java applications by introducing AOP constructs. Space
constraints prevent us from providing the complete descriptions
of the refactorings in this paper: these can be found in [21].

We do not claim these collections are complete or
comprehensive, but we believe they extend the existing
proposals [18][14][15], thus contributing to further mature AOP.
Though the refactorings presented in this paper derive from
studies of design patterns [12], they aim to be general-purpose,
rather than case specific or pattern specific.

The rest of this paper is structured as follows. In section 2, we
provide the motivation for our work. In section 3, we describe
the approach we took to develop the collection of refactorings.
In section 4, we review some of the traditional smells in the
light of AOP, provide the motivation for new code smells,
specific to AOP, and propose several such smells. These smells
require new refactorings targeting AOP specific constructs,
which we present in section 5. In section 6, we survey related
work and in section 7 we consider future directions. In section 8,
we summarize the paper.

2. MOTIVATION
We believe there are three main hurdles in need to be addressed
so that refactoring techniques can be used in AOP software in an
effective and widespread way.

The first hurdle is the present lack of a fully developed idea of
“good” AOP style. This is an important issue, for a clear notion
of style is a fundamental prerequisite for the use of refactoring,
enabling programmers to see where they are heading when
refactoring their code. Fowler et al. [11] advocated a specific
notion of style for OO code through a catalog of 22 code smells,
compounded by a catalog of 72 refactorings through which
those smells can be removed from existing code. These catalogs
proved very useful in bringing the concepts of refactoring and
good OO style to a wider audience and in providing
programmers with guidelines on when to refactor and how best
to refactor. Refactoring and a notion of good style are key
concepts of Extreme Programming [1], which regards a
system’s source code as primarily a communication mechanism
between people, rather than computers.

A second hurdle – both a cause and a consequence of the first –
is the present lack of an AOP equivalent of such catalogs. Our
work is based on the assumption that AOP would equally
benefit from AOP specific catalogs of smells and refactorings,
helping programmers to detect situations in the source code that
could be improved with aspects and guiding them through the
corresponding transformation processes.

A third hurdle is the absence of tool support for AOP constructs
in current integrated development environments. The catalogs
presented by Fowler et al. [11] provided a basis on which
developers could rely to build tool support for OO refactoring:
similar catalogs for AOP are likely to bring similar benefits to
tool developers. Tool developers will not be able to provide
adequate support to refactoring operations unless they first have
a clear idea of AOP style, and consequently of exactly which
refactorings are worthy of their development efforts. Though we
developed the refactorings presented in this paper to be
performed manually, we believe they can be helpful to
developers of tool support in identifying useful material on
which they can focus their work.

3. THE APPROACH
We took the approach of using refactoring experiments based on
case studies, as a vehicle for gaining the necessary insights. The
case studies we used are code bases in Java and AspectJ with the
appropriate structural characteristics. We approached the Java
code bases as bad-style or “smelly” AspectJ code, and searched
for the kinds of refactorings that would be effective in removing
those smells.

The first case study comprised the extraction of one crosscutting
concern from a workflow framework, whose results are
presented in [23]. Our second case study was the collection of
implementations (version 1.1) in both Java and AspectJ of the
23 Gang-of-Four (GoF) design patterns [12], presented by
Hannemann and Kiczales [13].

The 23 GoF patterns illustrate a variety of design and structural
issues that would be hard to find in a single code base (except in
very large and complex systems). The GoF patterns effectively
comprise a microcosm of many possible systems. They provided
us with a rich source of insights, without the need to analyze
large code bases or learn domain-specific concepts.

The implementations presented by Hannemann and Kiczales
[13] are currently one of the nearest things to examples of good
AOP style and design, presenting a clear notion of the desirable
internal structure for aspects. Many of the findings presented in
this paper stem from our study of these examples, compounded
with studies of Java implementations of the same patterns by
various authors [9][6], which further enriched the patterns’
potential as providers of insights.

Our approach was to pinpoint the refactorings that would be
needed to transform the Java implementations into the AspectJ
implementations. We then tested and refined the refactorings
thus obtained on other Java implementations of the same
patterns [9][6]. The refactoring process described in [22] derived
from one of our test sessions.

4. CODE SMELLS
Code smells are the way proposed by Beck and Fowler (chap.3
of [11]) to diagnose problems in existing code that could be
removed through refactorings. Code smells do not aim to
provide precise criteria for when refactorings are overdue.
Instead, code smells suggest symptoms that may be indicative of
something wrong in the code. Programmers are required to
develop their own sense of when a symptom indeed warrants a
change. Decisions also depend on the specific aims of the
programmer and the specific state and structure of the code on
which he is working.

4.1 On the Need for AOP Specific Smells
The notion of style in a programming language expresses the
coding practices that yield code easier to maintain and evolve.
Whenever a programming language provides alternative ways to
achieve some result, the way that causes the least problems to
present and future programmers is the one considered in the best
style. Throughout the various stages of development of
programming languages, many ideas of style appeared due to
the advent of new, superior mechanisms. We briefly mention
three examples:

1. Dijkstra’s famous dictum that the “Go-to statement
[should be] considered harmful” [8] stemmed from the
availability of control structures, namely loops.

2. Fowler et al. [11] considered the use of the switch
statement to be a code smell, due to the availability of
polymorphism and dynamic binding.

3. Orleans suggested in [20] that the ‘if’ statement be
considered harmful in the context of languages using
elaborate forms of predicate dispatch.

All these considerations suggest that the appropriate notion of
style for a given language strongly depends on what can be
achieved with that language. In this light, the suitable style of
AspectJ can not be the same as for Java. AspectJ enables
programmers to perform compositions that are impossible with
Java and avoid negative qualities such as code scattering and
code tangling. This suggests that many of traditional OO
solutions resulting in those negative qualities should now be
considered bad style, including the OO implementations of
some design patterns [13].

The very compositional power of AspectJ can be cause for
problems. AspectJ offers multiple ways to achieve various
effects and compositions. For instance, the implementation of
mixins [2] can be achieved both through marker interfaces and
through inner static aspects placed within interfaces. Likewise,
non-singleton aspect associations provide alternatives to
solutions obtained with the default singleton aspects. AspectJ
programmers are sometimes faced with so many choices that it
becomes hard to decide on the design most appropriate to a
particular situation. There is a need to further study the
consequences and implications of each solution in order to make
choices clear. We believe that catalogs of code smells and
refactorings are an effective way to present this knowledge to
programmers.

4.2 OO Smells in the Light of AOP
We analyzed the code smells presented in [11], [30] and [16],
and believe some can be used by AOP programmers as
symptoms of the presence of crosscutting concerns. This
particularly applies to Divergent Change ([11], p.79) and
Shotgun Surgery ([11], p.80). According to Fowler et al.,
“Shotgun Surgery is one change that alters many classes” (i.e. a
symptom of code scattering) and “Divergent Change is one class
that suffers many kinds of changes” (i.e. a symptom of code
tangling). We think it is useful to extend these definitions to
cover methods as well as classes. Wake [30] mentions
configuration information, logging and persistence as possible
causes to the Shotgun Surgery smell, all of which can be
counted among the favorite examples for the use of AOP.

Kerievsky [16] proposes a variant of Shotgun Surgery that he
calls Solution Sprawl. Kerievsky states ([16], p.43) that “you
become aware of this smell when adding or updating a system
feature causes you to make changes to many different pieces of
code”. The difference between the two smells is the way they
are sensed – “we become aware of Solution Sprawl by observing
it, while we detect Shogun Surgery by doing it”. Both variants
are equally promising as indicators of crosscutting concerns.

We propose the Extract Feature into Aspect refactoring ([21],
p.5; see also Table 1 and section 5.2) as a general framework for
the modularization of concerns detected through these smells.

4.3 The Double Personality Code Smell
The Double Personality smell can be found in classes that play
multiple roles. Ideally, each class should play a single role,
meaning that it contains only one, coherent, set of
responsibilities. This often is not possible in OO frameworks
and applications.

Examples of Double Personality can be found in the OO
implementations of design patterns [12] that include what
Hannemann and Kiczales call superimposed roles – roles
assigned by the pattern to classes that have functionality and
responsibility outside the pattern [13]. Examples are the Chain
of Responsibility ([12], p.223) pattern, which superimposes the
Handler role to some of the participant classes, and the Observer
pattern ([12], p.293), which superimposes the Subject and
Observer roles.

One symptom that can help to detect Double Personality in Java
source code is implementation of interfaces. Interfaces are a
popular way to model roles in Java – e.g. the motivation for
Extract Interface ([11], p.341). When a class implements an
interface modeling a role that does not relate to the class’
primary concern, the class smells of Double Personality.

When Double Personality is detected in one class, we suggest
that developers analyze the code base to see if it applies to just
that class. Again, looking to the interfaces may help: if multiple
classes implement the interface, this means the secondary
concern is crosscutting (it cuts across multiple classes).

If only one class is affected, or if the code of the secondary role
is restricted to the implementation of the interface, the solution
is to extract the secondary role to a mixin [2]. There are several
ways to do this. Laddad’s Extract Interface Implementation [18]
suggests placing the secondary concern inside an inner aspect

enclosed within the interface modeling the superimposed role. If
the programmer strives for total obliviousness [10] of the
secondary role, she can use Replace Implements with Declare
Parents ([21], p.21; Table 1). As an alternative to Extract
Interface Implementation [18], we propose Split Abstract Class
into Aspect and Interface ([21], p.21; Table 1), which
completely encapsulates the secondary concern into an aspect,
which introduces the extra state and behavior to the interface.

When the related code is more complex than a simple
implementation of an interface, we suggest using Extract
Feature into Aspect ([21], p.5; Table 1) to move all the related
code to an aspect (see section 5.2).

4.4 Abstract Classes as a Code Smell
The AspectJ composition mechanisms enabling the emulation of
mixins [2] also enable the separation of definitions (i.e.
implementation code) from declarations in abstract classes, so
that these can be turned into interfaces. Hannemann and
Kiczales take this approach in implementing five of the GoF
design patterns in AspectJ [13]. This separation has the
advantage that classes become free to inherit from some other
class and interfaces can still be provided with a default
implementation. This suggests that abstract classes should now
be considered a code smell. Two of the refactorings presented
here (see Table 1) remove that smell by moving implementation
code to an aspect and turning abstract classes into interfaces. We
use Split Abstract Class into Aspect and Interface ([21], p.21) to
extract the concrete members of an abstract class into an aspect,
and we turn the resulting pure abstract class into an interface
using Change Abstract Class to Interface ([21], p.4).

4.5 The Aspect Laziness Code Smell
The Aspect Laziness smell applies to aspects that do not carry
the full weight of their responsibilities and instead pass the
burden to classes, in the form of inter-type declarations. We
detect this smell in aspects that resort to the mechanism of inter-
type declarations to add state and behavior to a class when
something more dynamic and/of flexible would be desirable.
AspectJ inter-type declarations are a static mechanism, applying
to all instances of the target class, throughout their entire life
cycles. We detect the Aspect Laziness smell in uses of inter-type
declarations for solving problems whose requirements have one
or several of the following characteristics:

• The additional state and/or behavior are needed by only a
subset of the instances of the target classes.

• The additional state and/or behavior are needed only during
certain specific phases in the execution of the program.

• Instances of the target classes (may) require multiple
instances of that state and behavior simultaneously.

In such cases, the mechanism of inter-type declarations is not
dynamic or flexible enough. It is preferable for the aspect itself
to hold the additional state and behavior and manage a map
between the additional state and the specific target instances.

We propose Replace Inter-type Field with Aspect Map ([21],
p.28) and Replace Inter-type Method with Aspect Method ([21],
p.33) to replace the existing design with a mapping logic that
provides the same functionality more flexibly.

4.6 Evil Demons
Fowler et al. [11] also make brief references to evil demons,
symbolizing wrong ways of thinking that negatively impact on
the code. One is Procedural Thinking, representing approaches
to OO programming stemming from procedural programming.
We detect a similar problem with AOP – Object-Oriented
Thinking, or Decentralized Thinking – an OO-style approach to
the use of aspect-specific constructs. This thinking translates in
not appreciating that aspects can hold state of their own, and in
designs that excessively rely on inter-type declarations, in fact
recreating within an aspect the decentralized designs typical of
OO. Such designs lead to the Aspect Laziness smell.

4.7 Illustrative Example
In this section, we present a code example that is used in various
sections of this paper to illustrate several smells and effects of
some of the refactorings. The example is based on Eckel’s
implementation [9] of the Observer pattern [12]. We describe a
refactoring process targeting this example in [22].

The intent of Observer is to “define a one-to-many dependency
between objects so that when one object changes state, all its
dependents are notified and updated automatically” [12]. The
example includes two observers, one of which is shown in
Figure 1, with the primary concern shaded (the other observer,
class Hummingbird, is similar). Figure 2 shows the class playing
the role of Subject: Flower (shaded code relates to the primary
concern). Each of Flower’s two operations, open and close the
petals, gives rise to one observing relationship.
01 public class Bee {
02 private String name;
03 private OObserver oObserver = new OObserver();
04 private CObserver cObserver = new CObserver();
05
06 public Bee(String nm) { name = nm; }
07 private class OObserver implements Observer {
08 public void update(Observable o, Object a){
09 System.out.println(
10 "Bee " + name + "'s breakfast time!");
11 }
12 }
13 private class CObserver implements Observer {
14 public void update(Observable o, Object a){
15 System.out.println(
16 "Bee " + name + "'s bed time!");
17 }
18 }
19 public Observer openObs() {
20 return oObserver;
21 }
22 public Observer closeObs() {
23 return cObserver;
24 }
25 }

Figure 1. Bee class as Observer in the implementation of the
Observer pattern from [9].

Eckel’s implementation uses the Observer/Observable protocol
from Java’s standard java.util API, which requires the Subject
participant to inherit from java.util.Observable. Eckel’s design
manages to separate the two observing relationships by defining
inside each participant an inner class for each relationship. Thus,
Flower defines 2 inner classes (Figure 2, lines 27-39 and 40-51
respectively) that inherit from java.util.Observable. Flower uses
2 inherited methods: (1) setChanged (lines 31 and 44), used to
mark a subject as having been changed, and (2) notifyObservers,
which notifies all its observers if the subject was changed.

Though notifyObservers is overridden (lines 29-35 and 42-48),
its functionality is reused (lines 32 and 45).
01 public class Flower {
02 private boolean isOpen;
03 private ONotifier oNotify = new ONotifier();
04 private ClNotifier cNotify = new ClNotifier();
05
06 public Flower() {
07 isOpen = false;
08 }
09 public void open() { // Opens its petals
10 System.out.println("Flower open.");
11 isOpen = true;
12 oNotify.notifyObservers();
13 cNotify.open();
14 }
15 public void close() { // Closes its petals
16 System.out.println("Flower close.");
17 isOpen = false;
18 cNotify.notifyObservers();
19 oNotify.close();
20 }
21 public Observable opening() {
22 return oNotify;
23 }
24 public Observable closing() {
25 return cNotify;
26 }
27 private class ONotifier extends Observable {
28 private boolean alreadyOpen = false;
29 public void notifyObservers() {
30 if(isOpen && !alreadyOpen) {
31 setChanged();
32 super.notifyObservers();
33 alreadyOpen = true;
34 }
35 }
36 public void close() {
37 alreadyOpen = false;
38 }
39 }
40 private class ClNotifier extends Observable {
41 private boolean alreadyOpen = false;
42 public void notifyObservers() {
43 if(isOpen && !alreadyOpen) {
44 setChanged();
45 super.notifyObservers();
46 alreadyOpen = true;
47 }
48 }
49 public void close() {
50 alreadyOpen = false;
51 }
52 }

Figure 2. Flower class as Subject in the implementation of
the Observer pattern from [9].

Each observer likewise encloses one inner class implementing
java.util.Observer for each observing relationship (Figure 1,
lines 07-12 and 13-18 respectively). As prescribed by the
interface, each inner class defines an update method (lines 08-11
and 14-17). Because of this design, all participants betray strong
doses of Double Personality.

As is plain from the example, OO does not cope well with
concerns affecting multiple objects and classes, forcing
programmers to produce decentralized designs for crosscutting
concerns, when they would like to centralize the concern’s
implementation within some module. Such designs lead to
duplicated code in every class playing some role in the concern.

Programmers trying to cope with code scattering and tangling
often resort to interfaces and/or inner classes to ameliorate the
effects. These constructs improve both the interface and internal

structure of classes: interface types help to better organize the
interactions of a class with other classes, and inner classes help
to better structure the internals of a class, namely to separate the
code related to the class’ primary concern from unrelated code.
We believe the limitations in the compositions achievable with
OO provide one of the motivations to use inner classes and
interfaces. Independent authors reached the same conclusion
regarding interfaces [28].

5. THE REFACTORINGS
This section presents an overview of our refactorings. These are
fully documented in [21], using a format and level of detail
similar to the one used by Fowler et al. [11] (Kerievsky took the
same approach in [16]). The format includes (1) name, (2)
typical situation, (3) recommended action, (4) motivation stating
the situations when applying the refactoring is desirable, (5) a
detailed Mechanics section, and (6) code examples. Tables 1-3
present the refactorings, mentioning the first three elements of
the format.

The refactorings do not attempt to cover all possible situations
that can potentially arise in source code. For instance, they do
not cover uses of reflection. Likewise, they do not deal with
what we call the fragile base code problem [23][22], also known
as the fragile pointcut problem [26] – caused by the fact that
almost all refactorings can potentially break existing aspects,
particularly pointcuts. We believe human programmers will only
be able to deal thoroughly with this problem when provided
with a new generation of tools, specifically designed to account
for the presence of aspects. However, we also believe it is
possible to keep this problem under control, provided adequate
practices are followed, including programming AspectJ’s
constructs with a prudent and appropriate style, such as that
proposed by Laddad [18]. This is particularly important with
pointcuts, which should be made in a style stressing intent rather
than a specific case (e.g. expressions using wildcards). This way
pointcuts can express a general policy and may be robust
enough not to be affected by minor modifications in the target
code, such as the removal or addition of a new class or method.
Another good practice is to place the aspects close to the code
they affect whenever possible, to increase the likelihood that all
team members are aware of the aspects potentially affected by
refactorings. This often entails placing the aspect in the same
package, or even within the same source file as the target class
(as inner or peer aspects).

The traditional OO refactorings can be used in AspectJ code as
well. We did not detect any refactoring from [11] targeting an
OO construct that could not be applied to that construct within
aspects. For instance, in the mechanics of Extend Marker
Interface with Signature ([21], p.24) we prescribe the use of
Extract Method ([11], p.110) inside aspects.

5.1 Grouping the Refactorings
The collection is structured in groups of refactorings with
similar purposes, as is done in [11]. The adopted grouping also
reflects a strategy likely to be followed in many refactoring
processes. This establishes that prior to anything else, all
elements related to a crosscutting concern should be moved to a
single module (following Extract Feature into Aspect [21], p.5).
Only afterwards should we start improving the underlying

structure of the resulting aspects (following Tidy Up Internal
Aspect Structure [21], p.36), because such tasks are
considerably easier to perform after the associated
implementation is modularized. In case duplication is detected
among different but related aspects, we extract the
commonalities to a (possibly reusable) superaspect (using
Extract Superaspect [21], p.37). This strategy leads to the
following grouping: (1) extraction of crosscutting concerns, (2)
improving of the internal structure of an aspect, and (3)
generalization of aspects. The sequence of code transformations
described in [22] also fits naturally with this grouping.

The three refactorings mentioned above are composite
refactorings. Rather than prescribe specific actions on the source
code, as is the case of those documented in [11], they provide a
framework for the other refactorings from the same group,
specifying the situations when they should be used and when
they should not. For this reason they also provide suitable entry
points to someone approaching the catalog.

The use of a composite refactoring is useful to provide a broader
view of a refactoring process. For instance, most extraction
processes as prescribed by Extract Feature into Aspect ([21],
p.5) entail a relaxation of the access qualifier of fields (usually
private), for a period spanning several refactorings (while there
is code accessing the field both inside and outside the aspect).
The above composite refactoring enables us to specify exactly
when the access to the field should be relaxed, and when it can
again be turned private to the aspect.

5.2 Refactorings for Extracting Features to
Aspects
We expect the refactorings from this group will comprise the
starting point for the majority of the refactoring processes
targeting OO legacy code.

Extract Feature into Aspect ([21], p.5) pinpoints the procedures
for extracting the scattered elements of a crosscutting concern
into a single module. Four of the refactorings from this group
are updated versions of those presented in [23]. Extract
Fragment into Advice ([21], p.9) is an updated version of
Extract Advice from [23][22]).

We suggest using Move Field From Class to Inter-type ([21],
p.17) to move state to the aspect. Behavior can be moved using
Move Method From Class to Inter-type ([21], p.19) and Extract
Fragment into Advice ([21], p.9).

Moving an inner class to an aspect is done in two stages: first
using Extract Inner Class to Standalone ([21], p.13), to obtain a
standalone class from the inner class, and next using Inline
Class within Aspect ([21], p.15) to turn the resulting class into
an inner class within the aspect. We did not see a justification
for defining a refactoring equivalent to Extract Inner Class to
Standalone ([21], p.13) for interfaces, as interfaces are not
generally used within classes. Interfaces are inlined into aspects
using Inline Interface within Aspect ([21], p.16), after which
they can be turned into marker interfaces.

We propose Replace Implements with Declare Parents ([21],
p.21) for inlining the implements clause of classes implementing
the interfaces.

Table 1 – Refactorings for Extraction of Crosscutting Concerns

Name of the refactoring Typical situation Recommended action

Change Abstract Class to
Interface

An abstract class prevents their subclasses from
inheriting from another class

Turn the abstract class into an interface and change
its relationship with the subclasses from inheritance
to implementation

Extract Feature into
Aspect

Code related to a feature is scattered across several
methods and classes, tangled with unrelated code

Extract all the implementation elements related to
the feature to an aspect

Extract Fragment into
Advice

Part of a method is related to a concern whose code
is being moved to an aspect

Create a pointcut capturing the required joinpoint
and context and move the code fragment to an
appropriate advice based on the pointcut

Extract Inner Class to
Standalone

An inner class relates to a concern being extracted
into an aspect

Eliminate dependencies from the enclosing class and
turn the inner class into a standalone class

Inline Class within Aspect A small standalone class is used only by code within
an aspect

Move the class to within the aspect

Inline Interface within
Aspect

One or several interfaces are used only by an aspect Move the interfaces to inside the aspect

Move Field from Class to
Inter-type

A field relates to a concern other than the primary
concern of its enclosing class

Move the field from the class to the aspect as an
inter-type declaration

Move Method from Class
to Inter-type

A method belongs to a concern other than the
primary concern of its owner class

Move the method into the aspect encapsulating the
secondary concern as an inter-type declaration

Replace Implements with
Declare Parents

Classes implement interface related to a secondary
concern. Implementation of the interface is used only
when the related concern is present in the system

Replace the implements in the class with a declare
parents in the aspect

Split Abstract Class into
Aspect and Interface

Classes are prevented from using inheritance because
they already inherit from an abstract class defining
some concrete members

Move all concrete members from the abstract class to
an aspect. You can then turn the abstract class into
an interface

Table 2 – Refactorings for Restructuring the Internals of Aspects

Name of the refactoring Typical situation Recommended action

Extend Marker Interface
with Signature

An inner interface represents a role used only within
the aspect. You would like the aspect to call a
method specific to one implementing type, not
declared by the interface

Add an inter-type abstract declaration of the specific
signature to the interface

Generalize Target Type
with Marker Interface

An aspect refers to specific concrete types,
preventing it from being reused

Replace the references to specific types with a
marker interface and make the specific types
implement the marker interface

Introduce Aspect
Protection

You would like a inter-type member to be visible in
an aspect al all its subaspects, but not outside the
aspect inheritance chain

Declare the inter-type member as public and place a
declare error preventing its use outside the aspect
inheritance chain

Replace Inter-type Field
with Aspect Map

An aspect statically introduces additional state to a
set of classes, when a more dynamic or flexible link
between state and targets would be desirable

Replace the inter-type declarations with a structure
owned by the aspect performing a map between the
additional state and target objects

Replace Inter-type
Method with Aspect
Method

An aspect introduces additional methods to a class or
interface, when a more dynamic and flexible
composition would be desirable

Replace the inter-type method with a aspect method
getting the target object as parameter

Tidy Up Internal Aspect
Structure

The internal structure of an aspect resulting from the
extraction of a crosscutting concern is sub-optimal

Tidy up the internal structure of the aspect by
removing duplication and dependencies on case
specific target types

Table 3 – Refactorings to deal with Generalization

Name of the refactoring Typical situation Recommended action

Extract Superaspect Two or more aspects contain similar code and functionality Move the common features to a superaspect

Pull Up Advice All subaspects use the same advice acting on a pointcut
declared in the superaspect

Move the advice to the superaspect

Pull Up Declare Parents All subaspects use the same declare parents Move the declare parents to the superaspect

Pull Up Inter-type
Declaration

An inter-type declaration would be best placed in the
superaspect

Move the inter-type declaration to the
superaspect

Pull Up Marker Interface All subaspects use a marker interface to model the same
role

Move the marker interfaces to the superaspect

Pull Up Pointcut All subaspects declare identical pointcuts Move the pointcuts to the superaspect

Push Down Advice A piece of advice is used by only some subaspects, or each
subaspect requires a different advice

Move the advice to the subaspects that use it

Push Down Declare
Parents

A declare parents in a superaspect is not relevant for all the
subaspects

Move the declare parents to the subaspects
where it is relevant

Push Down Inter-type
Declaration

An inter-type declaration would be best placed in a
subaspect

Move the inter-type declaration to the
subaspect where it is relevant

Push Down Marker
Interface

A marker interface declared within a superaspect models a
role used only in some subaspects

Move the marker interface to those subaspects

Push Down Pointcut A pointcut in the superaspect is not used by some
subaspects inheriting it

Move the pointcut to those subaspects that use
it

Figure 3 shows the participants from Figures 1-2, after each of the
two observing relationships was extracted to its own aspect, using
the refactorings presented in this section. During the extraction of
both observing relationships [22] the isOpen field (line 4) was
encapsulated, yielding two new methods for the Flower class:
isOpen (lines 6-8) and setIsOpen (lines 9-11). The code for the
reaction of the observers when they are notified of open and close
events was likewise extracted to methods breakfastTime (lines 26-
29) and bedtimeSleep (lines 30-33) respectively. Figure 4 shows
part of the aspect related to observing the open operation. The
other aspect (not shown), related to the observation of close, is
similar.

5.3 Restructuring the Internals of Aspects
We can see from Figures 3 and 4 that the code for implementing
the Observer pattern is no longer spread across the participant
classes, but the structure of the aspect resulting from the
extraction still hardly resembles the one presented in [13], as it
ideally would be the case (Figure 5 shows a refactored structure
closer to that presented in [13]). The aspect’s internal structure
still relates to the original, decentralized, design. The aspect
betrays Duplicated Code ([11], p.76), as it introduces identical
fields (Figure 4, lines 10-11 and 12-13) and methods (lines 18-20
and 21-23) to the two observer participants. The duplication has
always been present, but now that the code is modularized, it is
clearly exposed. After modularization, the original design is no
longer justified and the inner classes comprise a needlessly
complicated structure.

The code also betrays Aspect Laziness, because in this example it
is desirable to select the individual objects participating in the

observing relationships and the moments when these become
effective, but the present structure does not enable this.
01 public class Flower {
02 private boolean isOpen;
03 public Flower() {
04 isOpen = false;
05 }
06 boolean isOpen() {
07 return isOpen;
08 }
09 private void setIsOpen(boolean newValue) {
10 isOpen = newValue;
11 }
12 public void open() { // Opens its petals
13 System.out.println("Flower open.");
14 setIsOpen(true);
15 }
16 public void close() { // Closes its petals
17 System.out.println("Flower close.");
18 setIsOpen(false);
19 }
20 }
21 public class Bee {
22 private String name;
23 public Bee(String nm) {
24 name = nm;
25 }
26 public void breakfastTime() {
27 System.out.println(
28 "Bee " + name + "'s breakfast time!");
29 }
30 public void bedtimeSleep() {
31 System.out.println(
32 "Bee " + name + "'s bed time!");
33 }
34 }

Figure 3. Code of Flower and Bee after extracting the
observing relationships to an aspect.

Hannemann and Kiczales [13] mention four modularity properties
for their implementation of the Observer pattern: locality,
reusability, composition transparency and (un)pluggability. Just
after the extraction, the aspect (Figure 4) has only the first and
last of these properties.
01 public aspect ObservingOpen {
02 static class ONotifier extends Observable {
03 //...
04 }
05 static class OObserver implements Observer {
06 //...
07 }
08 private ONotifier Flower.oNotify =
09 new ONotifier(this);
10 private OObserver Hummingbird.oObserver =
11 new OObserver(this);
12 private OObserver Bee.oObserver =
13 new OObserver(this);
14
15 public Observable Flower.opening() {
16 return oNotify;
17 }
18 public Observer Bee.openObs() {
19 return oObserver;
20 }
21 public Observer Hummingbird.openObs(){
22 return oObserver;
23 }
24
25 pointcut flowerOpen(Flower flower):
26 execution(void open()) && this(flower);
27 after(Flower flower) returning :
28 flowerOpen(flower) {
29 flower.oNotify.notifyObservers();
30 }
31 pointcut flowerClose(Flower flower):
32 execution(void close()) && this(flower);
33 after(Flower flower): flowerClose(flower) {
34 flower.oNotify.close();
35 }
36 }

Figure 4. Part of the extracted aspect ObservingOpen
modularizing observations of Flower’s open operation.

Inter-type declarations are one of the reasons why the structure of
aspects resulting from extraction processes is often unsuitable.
Inter-type declarations are usually transparent to client code (to
our knowledge, only code using AspectJ’s within pointcut
designator can be affected by extraction refactorings based on
inter-type declarations) and therefore make it simple to move
members from classes to aspects. However, only the source code
is modularized: the inter-type members still belong to their
respective target classes at the binary and runtime levels. Their
static nature can lead to the Aspect Laziness smell. At the very
least, the extracted aspect will need a tidying up. In some cases,
including this one, it will require a complete redesign.

The Tidy Up Internal Aspect Structure ([21], p.36) refactoring
provides the general framework for improving the internal
structure of extracted aspects. The refactorings it prescribes can
transform the ObservingOpen aspect from Figure 4 to the one
shown in Figure 5. The mechanics prescribe at the start the use of
Generalise Target Type with Marker Interface ([21], p.25). Using
the refactoring we replace references to concrete types (Flower,
Bee and Hummingbird in the example) with marker interfaces
representing the roles played by the participants (Subject and
Observer in the example). This refactoring removes the
duplication caused by multiple inter-type declarations of the same
member. In simpler cases, it is enough to attain (un)pluggability.

When using Generalise Target Type with Marker Interface ([21],
p.25) we may sometimes find that a single call to a case specific
method prevents a code fragment to be reusable. For such cases,
we propose Extend Marker Interface with Signature ([21], p.24),
which separates the generically applicable code from case-
specific code, by extending marker interface with the method’s
signature. This way we avoid the use of downcasts and eliminate
dependencies to specific types (i.e. the module no longer needs to
import those types). The abstract declarations of methods isOpen
and breakfastTime (Figure 5) result from using this refactoring.
public aspect ObservingOpen {
 private interface Subject {}
 private interface Observer {}

 public abstract boolean Subject.isOpen();
 public abstract void Observer.breakfastTime();
 private boolean Subject.alreadyOpen = false;

 private WeakHashMap subject2ObserversMap =
 new WeakHashMap();
 private List getObservers(Subject subject) {
 List observers =
 (List)subject2ObserversMap.get(subject);
 if(observers == null) {
 observers = new ArrayList();
 subject2ObserversMap.put(subject, observers);
 }
 return observers;
 }
 public void addObserver(Subject subject,
 Observer observer) {
 List observers = getObservers(subject);
 if(!observers.contains(observer))
 observers.add(observer);
 subject2ObserversMap.put(subject, observers);
 }
 public void removeObserver
 (Subject subject, Observer observer) {
 getObservers(subject).remove(observer);
 }
 public void clearObservers(Subject subject) {
 getObservers(subject).clear();
 }
 private void notifyObservers(Subject subject) {
 if(subject.isOpen()&& !subject.alreadyOpen) {
 subject.alreadyOpen = true;
 List observers = getObservers(subject);
 for(ListIterator it =
 observers.listIterator();
 it.hasNext();) {
 ((Observer)it.next()).breakfastTime();
 }
 }
 }
 pointcut flowerOpen(Subject subject):
 execution(void open()) && this(subject);
 after(Subject subject) returning:
 flowerOpen(subject) {
 notifyObservers(subject);
 }
 pointcut flowerClose(Subject subject):
 execution(void close()) && this(subject);
 after(Subject subject): flowerClose(subject) {
 subject.alreadyOpen = false;
 }
 declare parents: Flower implements Subject;
 declare parents:
 (Bee || Hummingbird) implements Observer;
}

Figure 5. Aspect ObservingOpen after being tidied up.
The motivation to both Replace Inter-type Field with Aspect Map
([21], p.28) and Replace Inter-type Method with Aspect Method
([21], p.33) is twofold. One is to remove the Aspect Laziness
smell. Another is to deal with hurdles arising with the movement

of duplicated inter-type declarations along aspect hierarchies (see
section 5.4). These two refactorings prescribe how to replace
inter-type state and behavior with a mapping structure providing
the same functionality in a more dynamic way, and amenable to
be controlled by client objects. In this example we used the same
implementation, based on a weak hash map, as in the reusable
aspect for the Observer pattern, presented in [13].

The motivation for Introduce Aspect Protection ([21], p.27) stems
from the impossibility of using the protected access in inter-type
members. This refactoring prescribes how to preserve this access
through declare error clauses.

5.4 Dealing with Generalization
The refactorings from this group deal with the extraction of
commonalities to superaspects, with Extract Superaspect ([21],
p.37) providing the general framework. All the other refactorings
in this group deal with moving members up and down the
inheritance hierarchies of aspects. Refactorings for moving
traditional OO members such as fields and methods are not
included, as the issues and mechanics are similar to those
documented in [11]. In [22] we show how the reusable aspect
presented in [13] can be extracted from the one illustrated in
Figure 5.

Pull Up Inter-type Declaration ([21], p.39) and Push Down Inter-
type Declaration ([21], p.42) have a very restricted scope of
applicability, only to simple cases not involving duplication. They
are almost anti-refactorings: one motivation for including them in
the collection is to better document the related problems and warn
against attempts to treat inter-type declarations as if they were
like the other kinds of members. The hurdles arise because
duplicated inter-type declarations of fields can not generally be
moved between superaspects and subaspects. Such movements
change the number of instances of inter-type fields and their
relation to aspect instances. It is important to keep in mind that
(1) the visibility scopes of multiple inter-types declarations of the
same member can not overlap and that (2) target objects (i.e.
instances of classes affected by the inter-type declaration) have
one separate instance of the inter-type member for each
subaspect. If the various inter-type declarations are factored out to
a single declaration in a superaspect, target objects will have just
one instance of the introduced member. This situation is
somewhat similar to changing a class member from instance to
static. In most cases, dealing with duplicated inter-type
declarations entails the prior replacement of the introduced fields
with some mapping logic, establishing the links between target
objects and the additional state and behavior. Such replacements
happen to be exactly what is accomplished by Replace Inter-type
Field with Aspect Map ([21], p.28) and Replace Inter-type Method
with Aspect Method ([21], p.33).

The remaining refactorings from this group deal with pulling up
and pushing down aspect-specific constructs, including pointcuts,
advice and declare parents clauses. Inner interfaces are also
included due to their widespread use as marker interfaces.

6. RELATED WORK
Deursen et al. [7] give a brief overview of the state of art in the
area of aspect mining and refactoring. Though their main concern
seems to be tools for the automatic detection of aspects, they also
mention several open questions about refactoring to aspects,

including “how can existing code smells be used to identify
candidate refactorings?” and “how can the introduction of aspects
be described in terms of a catalog of new refactorings?”. In this
paper, we contribute to answering these two questions.

Iwamoto and Zhao announced in [15] their intention to build a
catalog of AOP refactorings. They present a catalog of 24
refactorings, but the information provided about them is limited to
the names of the refactorings. The refactorings we present in this
paper and document in [21] include a description of the situations
where the refactoring applies, mention of preconditions, detailed
mechanics and code examples.

Several authors [15][14][29][31] call into attention the fragile
base code problem (though they do not use this name), in some
cases illustrating it with some code examples. These authors
conclude that existing OO refactorings [11] can not be applied to
code bases with aspects. We believe these problems can be
ameliorated if adequate procedures are followed [18], including
adoption of an appropriate style for programming and evolving
aspect constructs, particularly pointcuts. Hanenberg et al. [14]
propose aspect-aware refactorings – refactorings that take into
account the presence of aspects and preserve behavior by
updating any pointcuts that may be affected by the transformation
– and propose a set of enabling conditions to preserve the
observable behavior. By the author’s admission, these conditions
must be automatically verified by an aspect-aware tool, as the
manual verification is an exhausting task, even in small systems.
Hanenberg et al. announce a tool providing a subset of the
functionality they deem desirable.

Hanenberg et al. [14] also propose three AOP refactorings –
Extract Advice, Extract Introduction and Separate Pointcut. Their
Extract Advice corresponds to our Extract Fragment into Advice
refactoring ([21], p.9). Our collection of refactorings [21] goes
deeper in exploring the refactoring space, providing more detail
and tackling issues such as the tidying up of the internal structure
of aspects resulting from extraction processes. We do not
subscribe the recommendation, in their Extract Advice
refactoring, to use ‘around‘ advice in the general case. We think
that in cases where either ‘before’ or ‘after’ advice can be used,
these should be used in preference to ‘around’, because it makes
the scope of the advice easier to perceive at a first look at the
code. In addition, the ‘around’ advice is also more powerful than
is often needed. In the case of code using it without a strict need
for it, we envision refactorings such as Change Around Advice to
Before and Change Around Advice to After Returning. Their
proposed Extract Introduction refactoring corresponds to our
Move Field from Class to Inter-type ([21], p.17) and Move
Method from Class to Inter-type ([21], p.19) refactorings, which
provide more detail. Separate Pointcut relates to evolution of
pointcuts and has no correspondence in our collection. This
refactoring argues that, just as it is beneficial to organize our
systems using small methods with meaningful names, we should
do the same with pointcuts. Hanenberg et al. do not elaborate on
code smells, but we can infer from Separate Pointcut that
anonymous pointcuts could be a code smell.

In [18] Laddad prescribes several guidelines to ensure AOP
refactorings for concern extraction are applied in a safe way.
These involve the creation of a first version of the pointcut, based
on a case-by-case enumeration of the interesting joinpoints,
followed by its replacement with a semantically more meaningful

pointcut, based on wildcards. Laddad also proposes a mechanism
based on AspectJ’s declare error mechanism to verify whether
two different pointcut expressions capture exactly the same set of
joinpoints. In addition, Laddad recommends that aspects start
being developed with a restricted scope, often affecting the
methods of a single class, in order to make it simpler to test their
impact on the base code. Only afterwards should the scope of the
aspect widen, when its functionality is already tested with the
restricted case. Considering that at present there is no adequate
tool support for AOP refactorings, and that aspects can potentially
impact a large number of joinpoints across an entire system,
procedures such as these are essential to any refactoring process
targeting non-trivial systems.

In addition, Laddad presents a collection of refactorings [18] with
a significant utility value, particularly to developers of J2EE
applications. The refactorings vary widely in both level and scope
of applicability, including generally applicable refactorings like
Extract Interface Implementation, Extract Method Calls, and
Replace Override with Advice, but also concern-specific
refactorings such as Extract Concurrency Control and Extract
Contract Enforcemement. In addition, some refactorings belong to
the category of “refactoring to patterns” as presented by
Kerievsky [16] – Extract Worker Object Creation and Replace
Argument Trickle by Wormhole. These two refactorings are based
on two of the design patterns presented by Laddad in [19] –
Worker Object Creation ([19], p.247) and Wormhole ([19], p.256)
respectively. The Extract Exception Handling refactoring as
presented in [18] goes towards a variant implementation of the
Exception Introduction pattern ([19], p.260).

We believe programmers would benefit if Laddad’s refactorings
were presented in the same format as used by Fowler et al. [11]
and Kerievsky [16], and which we use as well [21][23] (some
refactorings are presented with only a mention of its name and a
brief motivating paragraph). A mechanics section would be
particularly beneficial, having proved very useful as a checklist
and to lead developers through the safest sequences of steps, in
preference to riskier or less convenient ones. The important step-
by-step guidelines proposed by Laddad for creating a new aspect
and subsequently evolving it are included in the code example
illustrating the use of Extract Method Calls, but not in several
other refactorings to which they also apply (Laddad places some
reminders). A mechanics section would make that part process
clearer, and would clarify the relations between refactorings.

We noticed that several of Laddad’s refactorings, namely the
problem-specific ones, can be decomposed into simpler, lower
level steps – always an important thing with refactoring. During
our work on the mechanics of the refactorings documented
in [21], we focused on the minute details of the refactoring
process, enabling us to improve their characterization. In some
cases, this led us to decompose the refactoring under study into
several smaller steps. For instance, Split Abstract Class into
Aspect and Interface ([21], p.21) and Change Abstract Class to
Interface ([21], p.4) were initially conceived as a single
refactoring. We believe similar benefits can be obtained by
similarly approaching Laddad’s refactorings – some of the
resulting lower level steps would correspond to existing steps,
while others would possibly yield new refactorings.

Laddad does not pinpoint the code smells that his refactorings are
supposed to remove. We think that the material presented by

Laddad has the potential to throw new light on existing OO code
smells or to yield new ones. For instance, his Extract Method
Calls and Replace Argument Trickle by Wormhole refactorings
respectively suggest the Scattered Method Calls and Argument
Trickle smells. Further research is required to discover latent
smells and assess their feasibility and applicability.

Tonella and Ceccato [28] base their work on the assumption that
interfaces are often (not always) related to concerns other than the
one pertaining to the system’s main decomposition. This is an
Interface Implementation smell, though the authors do not name it
this way. They provide specific guidelines for when an interface
implementation is a symptom of a latent aspect and present a tool
for mining and extracting aspects based on these criteria, and
report on experimental results. These extractions are also covered
by the refactorings we present here and document in [21]. The
authors also point out various issues that can arise in a typical
extraction of an interface implementation into an aspect. Our
refactorings prescribe procedures to deal with all these issues.

In [3] and [4] Cole and Borba propose programming laws from
which refactorings for AspectJ can be derived. The authors focus
on the use of their laws to derive existing refactorings such as
those proposed in [18], [14] and [15], and describe two case
studies in which the laws were tested, comprising the extraction
of concurrency control and distribution respectively. Many,
though not all, of the laws relate to the extraction of crosscutting
concerns to aspects, and therefore there is some overlap between
the refactorings they derive and our own extraction refactorings
(section 5.2). However, their main emphasis is to provide proofs
that the transformations are behavior preserving, while we focus
on covering new ground in the refactoring space. Nevertheless,
the authors remark that extraction procedure for the second case
study is generalizable, because its implementation of distribution
is commonly used, and claim that it is possible to derive a
concern-specific Extract Distribution refactoring.

To our knowledge, no work besides ours deals with the
potentially bad internal structure of aspects resulting from
extraction processes. With the exception of the work by Tonella
and Ceccato [28], we do not have knowledge of any other work
covering the issue of AOP code smells.

7. FUTURE WORK
7.1 Other Code Smells
In addition to the traditional OO smells we mentioned in section
4.2, there are a few others we believe can be useful in detecting
crosscutting concerns, but which we did not sufficiently explore
to pinpoint suitable refactorings to remove them. We’re
considering the possibility that Parallel Inheritance Hierarchies
([11], p.83) and Combinatorial Explosion ([30], p.109) may be
indicative of the presence of crosscutting concerns in some cases
(the latter is a variant of the former, proposed by Wake [30]).
We’re presently considering whether these smells could be
considered symptoms of the “tyranny of the dominant
decomposition” [27] in some cases.

Besides existing OO smells, there are many latent AOP specific
smells waiting to be discovered. For instance, privileged aspects:
the rationale for avoiding them is the same as for avoiding the use
of public data. As Colyer and Clement remark in [5], aspect
privilege confers the general privilege to see any private state

anywhere, while one often wishes to express privilege with
respect to a single class or a restricted set of classes. Presently,
this is not possible with AspectJ. Unfortunately, privileged aspect
may be unavoidable in cases affecting multiple packages and in
which the aspect needs access to non-public (e.g. protected and
package-protected) data. Refactoring the affected code bases to
expose the non-public data is one alternative. We need to study
use cases of privileged aspects to assess whether common patterns
can be found, and pinpoint refactorings that tackle this issue.

7.2 Maturing the Refactorings
There is scope for maturing the refactorings presented here. It is
important to test the refactorings with more case studies,
particularly larger and more complex ones. In addition, we
consider the possibility that the composite refactorings (section
5.1) will evolve to give origin to various refactorings in the
conventional sense, or to be turned into an introductory text to a
group of related refactorings.

7.3 Other Refactoring Ideas
We detected more latent refactorings in the material from our case
studies. Next, we present some promising ideas for refactorings
that were not yet fully explored:

• Replace Throws with Declare Error – many existing
instances of Java code throw an exception upon detection of
illegal situations. Some of these situations can be specified
by statically determinable pointcuts, in which case it is more
effective to replace them with a declare error clause.

• Remove Signatures from Inner Interface – As a rule, marker
interfaces do not declare operations, so it is worth exploring
a refactoring to remove the operations declared by an inlined
interface.

• Replace Downcast with Interface Extension – We proposed
Extend Marker Interface with Signature ([21], p.24) to
resolve dependencies to concrete types caused by calls to
type-specific methods. This idea can be taken further by
completely removing dependencies on a type, namely type
casts, to the point of removing the import of the type.

In addition, there are many possible variants to the refactorings
documented in [21]. One example is to extract common code
from multiple, similar aspects through an Extract Subaspect
refactoring instead of an Extract Superaspect ([21], p.37).

7.4 Covering Other Language Characteristics
The refactorings we present here are the result from the two
specific case studies, and do not use every possible aspect
construct. New research should cover the remaining aspect
constructs, as well as the interactions between them and with
existing Java constructs. We next mention two subjects.

7.4.1 Non Singleton Aspect Association
Our work so far concentrated on singleton aspects. In future, we
expect to cover other kinds of aspect association in order to obtain
a clearer idea of the advantages and disadvantages of non-
singleton aspects, e.g., when should they be preferred and what
refactorings should be used to transform singleton aspects.

7.4.2 Pointcuts
At present, refactorings and code smells specifically targeting
pointcuts are still a largely unexplored area. AspectJ’s pointcut
protocol comprises a rich language for quantification [10] and is
likely to yield an equally rich pattern language for refactoring
pointcut expressions, as well as their interaction with advice.
Further research is needed on the adequate use of pointcut
designators (e.g. pointcut smells), and how best to evolve pointcut
expressions.

7.5 Restructuring the Remaining Base Code
In this paper, we cover the restructuring of aspect code resulting
from the extraction of crosscutting concerns, taking advantage of
the newfound modularization. It is also worth to study the impact
of such extractions on the remaining code base and what actions
would be desirable (e.g. post-extraction refactorings).

7.6 Dealing with Published Interfaces
Refactoring legacy code entails dealing with published interfaces,
i.e. interfaces used by clients that developers could not change.
Occasionally the tangling resulting from the presence of
crosscutting concerns is present in the signatures, in which case it
can not be readily removed. In such cases, developers have the
option to refactor towards rather than to a goal, while a
deprecation policy is pursued. We partially dealt with that issue in
[23], having devised the Partition Constructor Signature
refactoring ([21], p.44). We did not continue our work in that
direction, but deem it worthy of further research.

7.7 Opposite Refactorings
We do not provide opposites for the presented refactorings,
preferring to focus on extending the reach of the existing
collection of refactorings. However, opposites are important to
enable developers to backtrack, whenever they find out they took
a wrong turn, and because opposites are often useful in their own
right (e.g. pull up vs. push down refactorings).

8. SUMMARY
In this paper, we review existing OO code smells in the light of
AOP. Divergent Change can be a sign of code tangling and both
Shotgun Surgery and Solution Sprawl can be signs of code
scattering. We propose AOP specific code smells, both for
detecting crosscutting concerns in existing OO code and for
improving the structure of extracted aspects – Double Personality,
Abstract Classes and Aspect Laziness.

Simply moving the members relating to a crosscutting concern
does not yield a well-formed aspect. Extracted aspects expose
problems caused by crosscutting, including Duplicated Code
([11], p.76). Aspect Laziness relates to the static nature of inter-
type declarations. We can take advantage of the new-found
modularity to tidy up the aspect’s internal structure with further
refactorings. We present a collection of 27 AOP refactorings,
documented in [21], which can remove these smells from source
code, comprising the following groups:

• 10 refactorings to remove the smells related to crosscutting
concerns from existing OO code. Besides covering common
members such as fields and methods, these refactorings also
deal with inner classes and interfaces.

• 6 refactorings to remove problems found in extracted
aspects, including Duplicated Code and Aspect Laziness.

• 11 refactorings to deal with the generalization of aspects (i.e.
the extraction of common code to superaspects).

We discuss some of the many future directions in the hunt for new
AOP refactorings and code smells, taking the contributions of this
paper and related work as the starting point.

Acknowledgements
Miguel Monteiro is supported by PRODEP III (Medida 5 – Acção
5.3 – Eixo 3 – Formação Avançada de Docentes do Ensino
Superior) and by project PPC-VM (POSI/CHS/47158/2002). João
M. Fernandes is supported by project METHODES
(POPI/CHS/37334/2001). Four anonymous referees made
valuable suggestions which helped to improve this paper.

9. REFERENCES
[1] Beck, K., Extreme Programming Explained: Embrace

Change, Addison-Wesley 2000.

[2] Bracha, G., Cook, W., Mixin-Based Inheritance, ECOOP/
OOPSLA 1990.

[3] Cole, L., Borba, P., Deriving Refactorings for AspectJ,
presented in AOSD'2005, Chicago, USA, March 2005.

[4] Cole, L., Borba, P., Using Programming Laws to Modularize
Concurrency in a Replicated Database Application, 1st
Brasilian Workshop on Aspect-Oriented Software
Development - WBSOA'04 - SBES'04, Brazil, October 2004.

[5] Colyer, A., Clement, A., Large-scale AOSD for Middleware,
AOSD 2004, Lancaster, UK, March 2004.

[6] Cooper, J., Java Design Patterns: A Tutorial, Addison-
Wesley 2000. Also availabe at www.patterndepot.com/put/8/
DesignJava.PDF.

[7] Deursen, A., Marin, M., Moonen, L., Aspect Mining and
Refactoring, workshop on REFactoring: Achievements,
Challenges, Effects (REFACE03), Waterloo, Canada,
November 2003.

[8] Dijkstra, E., Go-to Statement Considered Harmful,
Communications of the ACM, 11 (3), March 1968.

[9] Eckel, B., Thinking in Patterns, revision 0.9. book in
progress, May 20, 2003. Available at http://64.78.49.204/
IPatterns-0.9.zip

[10] Filman, R. E., Friedman, D. P., Aspect-Oriented
Programming is Quantification and Obliviousness,
workshop on Advanced Separation of Concerns, OOPSLA
2000, Minneapolis, October 2000.

[11] Fowler, M. (with contributions by K. Beck, W. Opdyke and
D. Roberts), Refactoring – Improving the Design of Existing
Code, Addison Wesley 2000.

[12] Gamma, E., Helm, R., Johnson, R., Vlissides, J., Design
Patterns – Elements of Reusable Object-Oriented Software,
Addison-Wesley, 1994.

[13] Hannemann, J., Kiczales, G., Design Pattern Implementation
in Java and AspectJ, OOPSLA 2002, November 2002.

[14] Hanenberg, S., Oberschulte, C., Unland, R., Refactoring of
Aspect-Oriented Software, Net.ObjectDays 2003, Erfurt,
Germany, September 2003.

[15] Iwamoto, M., Zhao, J., Refactoring Aspect-Oriented
Programs, 4th AOSD Modeling With UML Workshop,
UML'2003, San Francisco, USA, October 2003.

[16] Kerievsky, J., Refactoring to Patterns, Addison-Wesley,
2004.

[17] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes,
C., Loingtier, J., Irwin, J., Aspect-Oriented Programming,
ECOOP'97, Finland, June 1997.

[18] Laddad, R., Aspect-Oriented Refactoring, parts 1 and 2, The
Server Side, 2003. www.theserverside.com/

[19] Laddad, R., AspectJ in Action – Practical Aspect-Oriented
Programming, Manning 2003.

[20] Orleans, D., Separating behavioral concerns with predicate
dispatch, or, if statement considered harmful, workshop on
Advanced Separation of Concerns in Object-Oriented
Systems at OOPSLA ’01, Tampa Bay, USA, October 2001.

[21] Monteiro, M. P., Catalogue of Refactorings for AspectJ,
Technical Report UM-DI-GECSD-200402, Universidade do
Minho, December 2004. Available at
www.di.uminho.pt/~jmf/ PUBLI/papers/2004-TR-02.pdf

[22] Monteiro, M. P., Refactoring a Java Code Base to AspectJ –
An Ilustrative Example, Technical Report UM-DI-GECSD-
200403, Universidade do Minho, December 2004. Available
at www.di.uminho.pt/~jmf/PUBLI/papers/2004-TR-03.pdf

[23] Monteiro, M. P., Fernandes, J. M., Object-to-Aspect
Refactorings for Feature Extraction, industry paper
presented at AOSD'2004, UK, Lancaster, March 2004.
Available at http://aosd.net/ 2004/archive/Monteiro.pdf

[24] Opdyke, W., Refactoring Object-Oriented Frameworks,
Ph.D. Thesis, University of Illinois at Urbana-Champaign,
1992.

[25] Sabbah, D., Aspects – from Promise to Reality, AOSD 2004,
Lancaster, UK, March 2004.

[26] Störzer, M., Koppen, C., PCDiff: Attacking the Fragile
Pointcut Problem, Interactive Workshop on Aspects in
Software (EIWAS) 2004, Berlin, Germany, September 2004.

[27] Tarr, P., Ossher, H., Harrison, W., Sutton Jr., S.M., N
Degrees of Separation: Multi-Dimensional Separation of
Concerns, ICSE'99, May, 1999.

[28] Tonella, P., Ceccato, M., Migrating Interface
Implementation to Aspects, ICSM'04, Chicago, USA,
September 2004.

[29] Tourwé, T., Brichau, J., Gybels, K., On the Existence of the
AOSD-Evolution Paradox, AOSD 2003 Workshop on
Software-engineering Properties of Languages for Aspect
Technologies, Boston, USA, 2003.

[30] Wake, W., Refactoring Workbook, Addison Wesley, 2004.

[31] Wloka, J., Refactoring in the Presence of Aspects,
ECOOP2003 PhD workshop, July 2003.

