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Abstract

This paper analyzes implementable social choice functions (in dominant strategies)

over restricted domains of preferences, the leading example being combinatorial auc-

tions. Our work generalizes the characterization of Roberts (1979) who showed that

truthful mechanisms over unrestricted domains with at least 3 possible outcomes must

be “affine maximizers”. We show that truthful mechanisms for combinatorial auc-

tions (and related restricted domains) must be “almost affine maximizers” if they also

satisfy an additional requirement of “independence of irrelevant alternatives”. This re-

quirement is without loss of generality for unrestricted domains as well as for auctions

between two players where all goods must be allocated. This implies unconditional

results for these cases, including a new proof of Roberts’ theorem. The computational

implications of this characterization are severe, as reasonable “almost affine maximiz-

ers” are shown to be as computationally hard as exact optimization.
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1 Introduction

The classic Gibbard-Satterthwaite theorem [15, 38] states that, under several assumptions,

every social choice function that can be implemented in dominant strategies must be a

dictatorship. This theorem, intimately connected to Arrow’s seminal impossibility theo-

rem [4], implies that some of the assumptions must be relaxed in order to achieve positive

results. Restricting the attention to the arguably reasonable assumption of quasi-linear util-

ities (allowing side payments and transferable currency) leads to a celebrated positive result

of mechanism design theory: the class of Vickrey-Clarke-Groves mechanisms [39, 12, 17].

These mechanisms have the desired property that truth-telling is a dominant strategy.

The VCG mechanisms implement the social choice function that maximizes the (weighted)

social welfare. A fundamental question is what other social choice functions can be imple-

mented in dominant strategies? A beautiful impossibility result by Roberts [34] shows that

if the domain of players’ valuations is unrestricted then nothing more besides the VCG class

is possible. On the other hand, for single dimensional domains of players’ valuations many

implementable non-weigthed social welfare maximizers are known. Such mechanisms include

e.g. scheduling to minimize the makespan [2], revenue maximization (for digital and other

types of goods) [14, 35], auctioning with bounded communication [9], as well as combinatorial

auctions with very restrictive bidders [23].

However, most interesting domains lie somewhere between these two extremes of un-

restricted and single dimensional domains. This intermediate range of multi-dimensional

domains includes most auction types: combinatorial auctions, multi-unit (homogeneous)

auctions, unit-demand auctions (matching), and more. It also includes most examples of

other combinatorial optimization problems such as various variants of scheduling and rout-

ing problems. Almost nothing is known about this intermediate range.

Our work generalizes the characterization of Roberts to a large family of multi-dimensional

restricted domains. We first give a complete characterization of all dominant-strategies im-

plementable social choice functions in terms of a simple monotonicity condition (W-MON).

This characterization holds for a large family of restricted domains, including all the auction

types mentioned above. The proof is constructive, and shows how to obtain payments that

induce truthfulness for any given social choice function that satisfies W-MON. We then study

the implications of this condition. We demonstrate that it can be used to directly rule out

the implementability of some social choice functions. For example, Rawls’ max-min fairness

condition does not satisfy W-MON in a unit-demand auction setting, and hence cannot be

implemented in this domain.
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But are there any “useful” social choice functions, besides weighted welfare maximizers,

that do satisfy this condition, or, differently put, can we use it to show that any implemetable

social choice function must be a weighted welfare maximizer? Indeed, for an unrestricted

domain, Roberts’ result implicitly implies the latter statement. We observe that this is not

true for the case of restricted domains, and give several examples of functions that are not

welfare maximizers, yet satisfy W-MON (and hence are implementable). However, these are

purely technical, economically non-interesting examples.

Our main contribution is the identification of an additional condition, with a strong

economic meaning, that, together with W-MON, does imply this impossibility. We term

this condition IIA, as it parallels Arrow’s IIA condition, in quasi-linear environements. We

show that, for a wide family of restricted domains, any social choice function that satisfies

W-MON and IIA (plus two more technical requirements) must be a weighted welfare maxi-

mizer. We also show that this IIA condition holds without loss of generality in some special

cases. These include the case of an unrestricted domain (hence we obtain a different proof

for Roberts’ theorem), as well as the case of combinatorial auctions and multi-unit (homo-

geneous) auctions among two players, where all items must always be allocated. Thus we

get unconditional results for these cases. Interestingly, impossibility results with a similar

additional condition appear also for the model of pure walrasian exchange, where Barbera

and Jackson [6] have shown that, for two players, the only implementable exchange rules are

“fixed price” rules, while for three or more players, this holds when the extra condition of

“no bossiness” is added. The intriguing open question that stems from all this is whether

“useful” social choice functions that violate IIA but satisfy W-MON do exist.

The rest of the paper is organized as follows. Section 2 gives a more detailed motivation,

a technical background and a technical (but high level) exposition of results. In section 3

we describe our model. In section 4 we discuss the connection between truthfulness and

monotonicity. Section 5 gives our main theorem and its proof. Section 6 discusses the

implications to computationally efficient combinatorial auctions. In appendix A we show

how to use our tools to obtain an alternative proof of Roberts’ theorem.

2 Background and Exposition of Results

2.1 Motivation

In recent years we have seen much research aimed at designing decision making procedures

(“algorithms”) that are intended to function in environments that require both economic
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and computational considerations. Such environments become increasingly common on the

Internet, in communication networks, and in many electronic commerce situations. The al-

gorithms designed for these settings must induce sufficient motivation for the participants

(“players”) to cooperate, in addition to the computational considerations. In the most com-

monly studied setting, taken from the economic field of mechanism design, each player has a

private valuation function that assigns real values to each possible outcome of the algorithm,

and the players are assumed to be rational in the sense of attempting to maximize their

net utilities. Assuming quasi-linear utilities, the algorithm is allowed to charge payments

from the players in order to motivate them to cooperate. Put in the mechanism design

terminology, such an algorithm with attached payment functions is termed a mechanism.

Most of the recent literature on this subject studies dominant-strategies implementa-

tions (truthful mechanisms), i.e. mechanisms with the strong solution concept of dominant

strategies. A variety of problems that admit truthfulness was explored. These include e.g.

scheduling with a min-max criteria [30, 2], approximate revenue maximization without a

prior [14], auctioning with bounded communication [9], cost sharing methods [13], as well as

combinatorial auctions with very restrictive bidders (see below). The remarkable common

property of all these is the fact that they present positive results for the most strongest

solution concept: implementation in dominant strategies (truthfulness). On the other hand,

the weak point is that they are all specific mechanisms tailored for specific problems.

This paper is concerned with the general search for truthful mechanisms: To what extent

the above mentioned variety of truthful mechanisms can be broadened and generalized? In

what cases we cannot expect to find truthful mechanisms? More specifically, most of the

above examples are for “single dimensional” problem domains. For such domains it has been

shown [23, 2, 26] that a simple monotonicity property completely characterizes truthfulness.

The powers of this monotonicity condition are demonstrated by the above mentioned results.

But what about multi-dimensional problem domains? Is there a similar variety of truthful

mechanisms for such domains? One interesting positive example [7] indicates that the answer

is not all negative, but an exact answer is waiting to be found.

One general method for designing truthful mechanisms is classically known: the Vickrey-

Clarke-Groves (VCG) mechanisms [39, 12, 17]. This method applies for cases where the

social goal is to maximize the welfare: the sum of players’ values for the chosen outcome.

This method is general in the sense that it fits any problem domain. However, it only fits the

specific social goal of welfare maximization. There are two main motivating reasons to look

for other types of mechanisms. First, the social goal may be different than welfare maximiza-
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tion. For example, one might desire other fairness criteria like Rawls’ max-min principle,

minimizing the sum-of-squares of the values (or other norms of the valuation vector), con-

sidering the trade-offs between the different criteria, or ignoring fairness and efficiency all

together, and instead maximize the seller’s revenue (in an auction setting). Second, even

if the social goal is the maximization of the welfare, in many cases this optimization prob-

lem is computationally infeasible. In such cases, it seems reasonable to settle in achieving

an approximate optimum. The key difficulty is the fact that attaching VCG-payments to

approximation methods, or to any other social goal, does not ensure truthfulness [30].

A particularly central problem that captures all these difficulties is Combinatorial Auc-

tions. In a combinatorial auction, k items are simultaneously auctioned among n bidders.

Bidders value bundles of items in a way that may depend on the combination they win, i.e.

each bidder has a valuation function vi that assigns a real value vi(S) for each possible subset

of items S that he may win. Many recent works focused on combinatorial auction models,

many types of iterative auctions have been suggested [33, 5], and the bundling equilibria

of the VCG mechanisms was studied [19, 20]. Combinatorial auctions has many real world

applications (e.g. the FCC spectrum rights auction), and, equally important, they general-

ize many classic combinatorial problems like scheduling and allocation of network resources.

Even if the social goal is to maximize the welfare, i.e. to find a partition S1...Sn of the

items in a way that maximizes
∑

i vi(Si), it is computationally infeasible to exactly solve it1.

Experimental results have shown many methods to quickly obtain an approximate optimum

for problems with up to thousands of items [37, 32, 16]. Unfortunately, it is not known how

to turn such non-fully-optimal methods into truthful mechanisms. Thus, all the abstract

discussion given above seems to boil down to a very concrete real problem: what types of

truthful combinatorial auctions can we design?

2.2 Characterizing Truthfulness

A general approach to the question of designing truthful mechanisms would be to obtain a

characterization of their powers. To do this, let us get slightly more formal about the basic

model.

There is a set A of possible outcomes of the mechanism, and each player has a valuation

function vi : A → R that specifies his value vi(a) for each possible outcome a ∈ A, where

vi is chosen from some possible domain of valuations Vi. For each n-tuple of valuations v =

(v1, . . . , vn), the mechanism produces some outcome f(v) that may be viewed as aggregating

1The optimum may be approximated to within a factor of O(
√

m), but no better [23, 18].
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the preferences vi of the n players. The function f is called the social choice function.

Additionally, the mechanism hands out payments to the players (the players are assumed to

have quasi-linear utilities). For example, in the case of combinatorial auctions, A is the set

of all possible partitions (a1, . . . , an) of the items, and each Vi is the set of valuations that

depend only on ai (“no externalities”) and are monotone in ai (“free disposal”). It turns out

that for each implementable social choice function f , there is essentially a single way to set

the payments needed to ensure truthfulness [11]. The basic question is what social choice

functions are implementable?

The VCG mechanism mentioned above implements the social choice function that max-

imizes the social welfare, i.e. the social choice function f(v) = argmaxa∈A

∑

i vi(a). Three

generalizations may be applied to the VCG payment scheme, yielding generalizations to the

implemented social choice function: (a) the range may be restricted to an arbitrary A′ ⊂ A;

(b) different non-negative weights ωi can be given to the different players; (c) different addi-

tive weights γa can be given to different outcomes. All three generalizations can be combined,

yielding an implementation for any social choice function that is an affine maximizer 2:

Definition: A social choice function f is an affine maximizer if for some A′ ⊂ A, non-

negative {ωi}, and {γa}, for all v1 ∈ V1, . . . , vn ∈ Vn we have:

f(v1, . . . , vn) ∈ argmaxa∈A′(
∑

i

ωivi(a) + γa)

What other social choice functions can be implemented? A classic negative result of

Roberts [34] shows that if the domain of players’ valuations is unrestricted, and the range is

non-trivial, then nothing more:

Theorem (Roberts, 1979): If there are at least 3 possible outcomes, and players’ val-

uations are unrestricted (Vi = R|A|), then any implementable3 social choice function is an

affine maximizer.

The requirement that the valuations are unrestricted is very restrictive. In almost all

interesting scenarios the domain of valuations is restricted. E.g., as mentioned, for the

combinatorial auction problem the valuations are restricted in two ways: “free disposal”

and “no externalities”, and thus Vi 6= R|A|. Indeed, some assumption about the space of

valuations is also necessary: In the extreme opposite case, the domain is so restricted as

2This term was coined by Meyer-ter-Vehn and Moldovanu [24].
3Roberts, as we do here, only discusses implementation in private-value environments. See [24] for a

generalization to environments with inter-dependent valuations.
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to become single dimensional, for which truthful non affine maximizers exist, as mentioned

above. Interesting examples in the context of combinatorial auctions involve “single-minded”

bidders, where the valuation function is given by a single value vi offered for a single set of

items Si [23]. While the optimization problem in this case is still NP-hard and thus affine

maximization is not efficiently computable, [23] presented computationally efficient truthful

approximation mechanisms for it. Additional mechanisms for this single-minded case were

presented in [26, 1].

However, most interesting problems are not single dimensional either – they lie somewhere

between the two extremes of “unrestricted” and “single dimensional”. This intermediate

range includes combinatorial auctions and many of their interesting special cases such as,

multi-unit (homogeneous) auctions, or unit-demand auctions (matching). It also includes

most examples of other combinatorial optimization problems such as various variants of

scheduling and routing problems. Almost nothing is known about this intermediate range.

The only positive example of a non-VCG mechanism for non-single-dimensional domains

is for a special case of multi-unit combinatorial auctions where each bidder is restricted to

demand at most a fraction of the number of units of each type [7].

It is interesting to draw parallels with the non-quasi-linear case, i.e. the model where

player preferences are given by order relations �i over the possible outcomes. The classic

Gibbard-Satterthwaite result [15, 38] shows that, in this case, over an unrestricted domain,

the only social choice function that can be implemented is the dictatorial social choice func-

tion. The proof shows that any implementable social choice function must essentially satisfy

Arrow’s condition of “Independence of Irrelevant Alternatives”, and thus Arrow’s impossi-

bility result [4] applies. On the other hand, in this non-quasi-linear case, there exists much

literature for various interesting restricted domains. For example, over “single peaked do-

mains” [10, 25], many non-dictatorial social choice functions are implementable, and over

“saturated domains” [21], only dictatorial functions are implementable.

2.3 Our results

In this paper we initiate an analysis of implementable social choice functions over restricted

domains in quasi-linear environments. It is widely known that certain monotonicity require-

ments characterize implementable social choice functions. E.g. Roberts starts by defining

a condition of “positive association of differences” (PAD) that characterizes implementable

social choice functions over unrestricted domains. It turns out that this condition is usually

meaningless for restricted domains. We start with a formulation of a “weak monotonicity”
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condition (W-MON), that provides this characterization for “usual” restricted domains (ex-

act definitions are given below)4. We also demonstrate that other natural notions are not

appropriate.

Theorem: Every implementable social choice function over every domain must satisfy

W-MON. Over “usual” domains, W-MON is also a sufficient condition.

As opposed to the case of unrestricted domains, it turns out that, for restricted domains,

W-MON by itself does not imply affine maximization! A key contribution of this paper

is the identification of a key additional property, Independence of Irrelevant Alternatives

(IIA), that will provide this implication. This property is a natural analog, in the quasi-

linear setting, of Arrow’s similarly named property in the non-quasi-linear setting. This

condition states that if the social choice function changes its value from one outcome a to

another outcome b, then this is due to a change in some player’s preference between a and b.

Definition: A social choice function f satisfies IIA if for any v, u ∈ V , if f(v) = a and

f(u) = b 6= a then there exists a player i such that ui(a) − ui(b) 6= vi(a) − vi(b).

For example, in a combinatorial auction that satisfies IIA, the effect of some player increasing

his value for the bundle that contains all items will be either that this player will now receive

all items, or that the same allocation will still be chosen. Any other allocation violates IIA.

We show that the IIA property is equivalent to a slight, but significant, strengthening of

the W-MON condition, termed “strong monotonicity”. We further show that in unrestricted

domains IIA may be assumed without loss of generality. This is also true in a class of

domains that includes the case of combinatorial auctions with two players in which all items

are always allocated. In other domains we demonstrate that IIA may not be assumed without

loss of generality.

We then get to our main result: truthful mechanisms that also satisfy IIA must be

“almost” affine maximizers. The theorem is proved in a general setting and requires certain

technical conditions.

Main Theorem: In “auction-like” domains, any implementable social choice function

that additionally satisfies IIA and certain technical conditions must be an “almost” affine

maximizer.

4Bikhchandani, Chatterji,and Sen [8] independently study the same condition for a restricted class of
Multi-Unit Auctions. Later on, Muller and Vohra [27] provided different proofs and some generalizations for
Combinatorial Auctions.
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The proof of this theorem is different from the one Roberts provides for unrestricted

domains, and uses ideas suggested, in a somewhat different context, by Archer and Tardos [3].

This theorem applies to combinatorial auctions as well as to multi-unit (non-combinatorial)

auctions. It even applies to the case of “known double minded bidders”, i.e. where each

bidder has only two bundles on which he may bid – showing that the mechanisms of [23, 26]

regarding single-minded bidders cannot be generalized this way (if one additionally requires

IIA to be satisfied). For unrestricted domains, the IIA condition may be assumed without

loss of generality, and therefore this yields a new proof of Roberts’ theorem (the qualifications

in the theorem statement all disappear in this case). For two-player auctions where all items

must always be allocated, the IIA condition can similarly be dropped. We also show that

in this two-player case, the requirement that all items must always be allocated is necessary

– without it, there exist implementable social choice functions that are not almost affine

maximizers (and do not satisfy IIA)5.

The major open problem we leave is whether the IIA condition is necessary:

Main Open Problem: Are there truthful combinatorial auctions that are not “essentially”

affine maximizers?

The meaning of “essentially” in this open problem is soft, as we demonstrate that various

“minor” variations from affine maximization are possible. The question is really whether

anything useful is possible, e.g. can any non-trivial welfare approximation be achieved.

Our results has important implications to the existence of computationally efficient truth-

ful approximation mechanisms. Formally, a mechanism has an approximation ratio of c (or

is a c-approximation) if it always produces outcomes with a social welfare of at least the

optimal social welfare divided by c. We observe that essentially any affine maximizer is as

computationally hard as exact social welfare maximization. This implies that if exact com-

putation of the optimal allocation is computationally hard, then truthful mechanisms that

satisfy IIA are essentially powerless. For an exact statement of computational hardness we

must first fix an input format, i.e. a “bidding language” [28] that is powerful enough to make

the exact optimization problem computationally intractable6. We say that a combinator-

ial auction mechanism is unanimity-respecting if whenever every bidder values only a single

5We note that the truthful mechanism of [7] also does not always allocate all items.
6E.g.: for general combinatorial auctions any complete bidding language that can succinctly express

single-minded bids is enough; if the number of players is a fixed constant, the language must allow OR-bids;
for multi-unit (non-combinatorial) auctions, the bidding language must allow specifying the number of items
in binary.
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bundle, and furthermore, these bundles compose a valid allocation, then this allocation is

chosen7. This condition essentially ensures that all allocations are possible outcomes, ruling

out “bundling” auctions8.

Theorem: (Assuming P 6= NP and a sufficiently powerful bidding language) Any unanimity-

respecting truthful polynomial-time combinatorial (or multi-unit) auction that satisfies IIA

cannot obtain any polynomially-bounded approximation ratio.

An especially crisp result is obtained for the case of two-player multi-unit auctions. This

case is still computationally hard, but has a 1 + ε approximation for any ε > 0 (where

the computation time depends on ε). However, this approximation is not implementable.

Indeed, [22] who considered this problem were only able to show “almost truthfulness” 9.

Our results show that this is no accident. Implementation in dominant strategies directly

collides with an approximation scheme.

Corollary: (Assuming P 6= NP and a sufficiently powerful bidding language) No poly-

nomial time truthful mechanism for a multi-unit auction between two players that always

allocates all units can achieve an approximation factor better than 2.

3 Setting and Notations

3.1 Social choice functions on restricted domains

Social Choice Function. We study a general model of a social choice function f :

V1 × ... × Vn → A. The interpretation is that f gets as its input a vector of players’

preferences and chooses an alternative among a finite set of possible alternatives A. We

denote |A| = m, and assume w.l.o.g that f is onto A.

The Domain (player types). Each player i (1 ≤ i ≤ n) assigns a real value vi(a)

to each possible alternative from A. The vector vi ∈ Rm is called the player’s type and is

interpreted as specifying the player’s preferences. The set Vi ⊆ Rm is the set of possible

valuations vi. We denote V = V1 × ...× Vn. We use the notation v = (v1, ..., vn) ∈ Rnm, and

7This is essentially equivalent to the property of a “reasonable” auction of [29].
8E.g., where all items are sold as a single bundle in a simple auction – this clearly gives a factor min(n, k)-

approximation. Slightly better approximations in polynomial time are possible by partitioning the items into
a constant number of bundles [19].

9A somewhat similar notion of “almost truthfulness” for an approximation scheme for a different problem
was also obtained in [1].
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v(a) = (v1(a), ..., vn(a)) ∈ Rn. We also use the notation v−i = (v1...vi−1, vi+1...vn) ∈ Rn−1.

For vi ∈ Vi, we denote by ui = vi|a+=δ the following type: ui(a) = vi(a) + δ, and for all

b 6= a, ui(b) = vi(b). Similarly, ui = vi|a=δ denotes the type ui(a) = δ, and for all b 6= a,

ui(b) = vi(b). We use 1m to denote the vector (1, . . . , 1) ∈ Rm.

The main point in this paper is that Vi may be a proper subset of Rm. The domains that

we are concerned with in this paper are as follows:

• Unrestricted Domains. We say that the domain is unrestricted if Vi = Rm. In

other words, the value of alternative a for player i does not place any restrictions upon

i’s values for the other alternatives.

• Combinatorial Auctions (CA). In a combinatorial auction, a set Ω of k items are

auctioned between n bidders. The “alternatives” that the auction chooses among are

allocations of items to bidders. That is, an alternative a is an allocation a = (a1...an),

where ai ⊆ Ω is the set of items allocated to player i, and ai ∩ aj = ∅ for i 6= j (each

item can be allocated to at most one player). The valuations are assumed to satisfy

three conditions:

1. No externalities: vi only depends on i’s allocated bundle ai. I.e. vi(a) = vi(ai).

2. Free disposal: vi should be non-decreasing with the set of allocated items. I.e.

For every ai ⊆ bi, we have that vi(ai) ≤ vi(bi).

3. Normalization: vi(∅) = 0.

• Multi Unit Auctions. A special case of combinatorial auctions, where items are

homogeneous. In this case an allocation (a1...an) is simply a vector of nonnegative

integers, subject to the restriction that
∑

i ai ≤ k, and the valuation functions vi can

be represented as non-decreasing non-negative functions vi : {1...k} → R+.

• Order-Based Domains. We will phrase our results in this paper in terms of

a general family of domains termed “order-based”, which contains all the previous

examples, as well as others. These are domains where each Vi is defined by a (finite)

family of inequalities and equalities of the form vi(a) ≤ vi(b), vi(a) < vi(b), vi(a) = vi(b)

or vi(a) = 0. Thus for example an unrestricted domain is defined by the empty family,

while the domain of valuations for combinatorial auctions is defined by the following

set of inequalities: for all a, b ∈ A such that ai = bi : vi(a) = vi(b) (no externalities);
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for all a, b ∈ A such that ai ⊆ bi: vi(a) ≤ vi(b) (free disposal); for all a ∈ A such that

ai = ∅: vi(a) = 0.

We denote by Ri(a, b) the relation of player i between alternatives a, b, and use Ri(a, b) =

null to denote that there is no such relation. We also use 0i = {a ∈ A | vi(a) = 0 }.

• Strict Order-Based Domains. A subset of order-based domains for which we can

prove strong statements is those defined only by strict inequalities vi(a) < vi(b) (i.e.

Ri(a, b) ∈ {>, <, “null′′}), as well as at most a single equality of the form vi(a) = 0.

Examples of strict order-based domains are two-players combinatorial auctions, or two-

player multi-unit auctions, where all items must be allocated, i.e. a1 ∪ a2 = Ω (this is

discussed in details in section 6). Trivially, unrestricted domains are also strict order

based.

3.2 Implementation and Truthfulness

We assume that players’ valuations are private information. Thus, a player might be mo-

tivated to declare a different type than his true type, in order to shift the social choice in

some direction desirable for him. One solution is to construct a mechanism, which is allowed

to charge payments (pi : V → R) from the players, in addition to producing the chosen

alternative. We assume that players are quasi-linear and rational in the sense of maximizing

their total utility: ui = vi(f(v))− pi(v). In truthful mechanisms, a player is motivated to be

truthful and declare his true type, vi, rather than a different type, ui:

Definition 1 (Truthfulness) 10 A mechanism (f, p1...pn), where f : V → A and pi : V →
R is called truthful if for any player i, any v−i ∈ V−i, and any vi, ui ∈ Vi: vi(f(v))−pi(v) ≥
vi(f(ui, v−i)) − pi(ui, v−i). We say that such a mechanism implements the social choice

function f . We say that the social choice function f is implementable or simply truthful if

there exists some mechanism that implements it.

The only known general class of truthful social choice functions over multi-dimensional

domains are affine maximizers, which can be implemented using a simple generalization of

VCG payments:

Definition 2 (Affine maximization) A social choice function f is an affine maximizer

if there exist constants ω1, . . . , ωn ≥ 0 and {γa}a∈A such that for any v ∈ V : f(v) ∈
10In this paper we only discuss direct revelation mechanisms with dominant strategy implementations in

quasi-linear private value domains.
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argmaxa∈A{
∑n

i=1 ωivi(a) + γa}. It can be verified that, in this case, f is implemented by

the payments pi = −ω−1
i (

∑n
j 6=i ωjvj(a) + γa).

4 Truthfulness and Monotonicity

It is well known that truthfulness is related to some notions of monotonicity. In this sec-

tion we derive these relationships which serve as the embarking point towards our main

characterization.

4.1 Weak monotonicity

In simple “one parameter” domains, monotonicity is usually the property of “still winning

when raising my value”. In general domains, we must examine value differences. Roberts [34]

used a definition of monotonicity called PAD: f satisfies PAD if for every v, u ∈ V , f(v) = a

and ui(a) − vi(a) > ui(b) − vi(b) for all i = 1, . . . , n and all b ∈ A implies that f(u) = a.

However, PAD has no real meaning for most restricted domains: Suppose there exists a

player i and two alternatives a, b s.t. vi(a) = vi(b) for all vi ∈ Vi (e.g. in CA, when i gets

the same bundle in a and b). Then the condition of PAD is never satisfied if f(v) = a. One

can make several attempts to “fix” this. Below we describe several natural “candidates” for

a more general monotonicity condition, and demonstrate that they fail to be necessary for

truthfulness. We first identify the “correct” notion of monotonicity:

Definition 3 (Weak Monotonicity (W-MON)) A social choice function f satisfies W-

MON if for any v ∈ V , player i, and ui ∈ Vi: f(v) = a and f(ui, v−i) = b implies that

ui(b) − vi(b) ≥ ui(a) − vi(a).

In other words, if player i caused the outcome of f to change from a to b by changing his

valuation from vi to ui, then it must be that i’s value for b has increased at least as i’s value

for a. W-MON implies PAD on every domain but makes sense also in domains where PAD

does not.

Claim 1 If f satisfies W-MON then f satisfies PAD.

proof: Fix any v, u ∈ V . Suppose f(v) = a, and ui(a) − vi(a) > ui(b) − vi(b) for all

i = 1, . . . , n and b ∈ A. Let v0 = v, v1 = (u1, v2, . . . , vn), v2 = (u1, u2, v3, . . . , vn), vn =

(u1, . . . , un) = u. Now, f(v0) = a and f(vi) = a implies by W-MON that f(vi+1) = a.
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For restricted domains, it turns out that W-MON is crucially important, as it is essentially

equivalent to truthfulness:

Theorem 1 Every implementable social choice function in any domain satisfies W-MON.

If V is an order based domain then W-MON is also a sufficient condition for truthfulness.

A proof of this theorem is given in subsection 4.2 below.

The condition that the domain is order-based is needed (although it may be relaxed) to

ensure that W-MON is a sufficient condition. The following example, inspired by [36], shows

that W-MON by itself is not a sufficient condition for truthfulness.

Example 1 Consider a single player with A = {a, b, c} and a domain of three possible types

va, vb, vc, as follows: va = (0, 1,−2) ; vb = (−2, 0, 1) ; vc = (1,−2, 0), where the first

coordinate in each type is a’s value, the second is b’s value, and the third c’s value.

The function f has f(vx) = x, for every x ∈ A. f satisfies W-MON since vx(x)−vy(x) >

vx(y) − vy(y) for any x, y ∈ A.

Suppose by contradiction that there are truthful prices. Therefore: −1 = vc(c) − vc(a) ≥
p(c)−p(a). Similarly, −1 = va(a)−va(b) ≥ p(a)−p(b), and −1 = vb(b)−vb(c) ≥ p(b)−p(c).

But the last two inequalities imply p(c) − p(a) ≥ 2, a contradiction.

We next describe two natural “candidates” for a more general monotonicity condition,

and show by an example that they fail to be necessary for truthfulness.

Strong PAD: For every v, u ∈ V , where f(v) = a), if for all i = 1, . . . , n and b ∈ A:

ui(a) − vi(a) ≥ ui(b) − vi(b) then f(u) = a.

Generalized W-MON: For every v, u ∈ V , if f(v) = a and f(u) = b then there exists a

player i such that: ui(b) − vi(b) ≥ ui(a) − vi(a).

To contradict both types of monotonicity, consider the following example:

Example 2 Suppose there are two players, and four alternatives: A = {Y Y, Y N, NY, NN}.
A player type is determined by one positive value vi, as follows. For any a ∈ A (denote

a = a1a2 where ai ∈ {Y, N}): if ai = N then vi(a) = 0, and if ai = Y then vi(a) = vi.

Define f(v) = a1a2, where ai = Y if vi > 2vj − 10, otherwise ai = N . It is easy to verify

that f is truthful, with the payments pi(N, vj) = 0 and pi(Y, vj) = 2vj − 10.

Now, suppose v1 = v2 = 9, and u1 = u2 = 11. Then f(v) = Y Y , but f(u) = NN ! 11

11Note that PAD trivially holds – its condition is never satisfied. This example is also “far from affine
maximization”, and can be extended to more than two players.
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Since the condition W-MON is equivalent to truthfulness, we can directly use it to exam-

ine whether a given social choice function is implementable. We next demonstrate that, with

W-MON, we can easily show that Rawls’ max-min criteria is not implementable. We show

this for a matching game (which is an order based domain): There are n players and n items

and each player has a value for any item. An alternative specifies a matching between players

and items. Given a specific vector of players’ values, the max-min rule chooses the alternative

a∗ ∈ argmaxa∈A{mini=1,...n{vi(a)}}. Unfortunately, this rule is not implementable:

Proposition 1 Rawls’ max-min rule over a domain of a matching game is not imple-

mentable.

proof: Denote the items by g1, ..., gn. We will show that the max-min rule does not satisfy

W-MON, hence, by theorem 1, it is not implementable. Consider the following players’

valuation vectors:

v1(g1) = 2, v1(g2) = 1, v1(ci) = 0 (i = 3, ..., n)

v2(g1) = 10, v2(g2) = 4, v2(ci) = 0 (i = 3, ..., n)

v′
2(g1) = 2, v′

2(g2) = 0.5, v′
2(ci) = 0 (i = 3, ..., n)

∀ j = 3, ..., n vj(g1) = 0, vj(g2) = 0, vj(ci) = 4 (i = 3, ..., n)

Given that the player types are {vi(·)}i, Rawls’ rule will choose some outcome that allocates

objects g1 and g2 to players 1 and 2, respectively. But for the player types (v′
2, v−2), the

max-min rule assigns g2 to player 1 and g1 to player 2, a contradiction to W-MON.

4.2 W-MON characterizes truthfulness

In this subsection we prove theorem 1. To show the first direction we start with a basic

known claim, that essentially states that the prices of player i do not depend on i’s type,

and that f always chooses an alternative that maximizes i’s utility, under these prices (for

completeness, we provide the proof in appendix B):

Claim 2 Any truthful function f has (price) functions pi : A × V−i → R∪ {∞} such that,

for any v ∈ V and any player i, f(v) ∈ argmaxa∈A{vi(a) − pi(a, v−i)}.

Lemma 1 Every truthful social choice function satisfies W-MON.
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proof: Let pi : A × V−i → R∪ {∞} be the price functions according to claim 2. Suppose

that f(v) = a and f(ui, v−i) = b. Therefore vi(a) − pi(a, v−i) ≥ vi(b) − pi(b, v−i), and

ui(b)−pi(b, v−i) ≥ ui(a)−pi(a, v−i). Thus ui(b)−ui(a) ≥ pi(b, v−i)−pi(a, v−i) ≥ vi(b)−vi(a),

and the claim follows.

For the second direction of the theorem, we assume that V is ordered based, and use the

following definitions. Fix any player i. For any a, b ∈ A, let Ei(a) = {d ∈ A | Ri(a, d) = “ =

” or d = a}, and define:

δab(v−i) = inf {vi(a) − vi(b) | vi ∈ Vi and f(vi, v−i) ∈ Ei(a)}.

Claim 3 For any a, b, c ∈ A, and v−i ∈ V−i:

1. W-MON implies that δab(v−i) ≥ −δba(v−i).

2. If Ri(a, b) ∈ {=,≤} then δcb(v−i) ≤ δca(v−i).

proof: Suppose by contradiction that δab(v−i) < −δba(v−i). Take vi ∈ Vi such that vi(a) −
vi(b) = δab(v−i) + ε and f(v) = ã, where ã ∈ Ei(a), and ui ∈ Vi such that ui(b) − ui(a) =

δba(v−i) + ε and f(ui, v−i) = b̃(b̃ ∈ Ei(b)). Since Ri(a, ã) = Ri(b, b̃) = “ = ” it follows that

vi(ã) − vi(b̃) < ui(ã) − ui(b̃). But by W-MON, since f(v) = ã it follows that f(ui, v−i) 6= b̃,

a contradiction.

For the second part, assume by contradiction that δcb(v−i) > δca(v−i), and choose some

vi such that vi(c) − vi(a) = δca(v−i) + ε < δcb(v−i) and f(v) ∈ Ei(c). Since vi(a) ≤ vi(b) it

follows that vi(c) − vi(b) ≤ vi(c) − vi(a) < δcb(v−i), contradicting the definition of δcb.

We now describe a price function pi : A × V−i → R that induces truthfulness, for all

v ∈ V : f(v) ∈ argmaxa∈A{vi(a)− pi(a, v−i)}. For this, fix some alternative c ∈ A such that

for any other d ∈ A, Ri(c, d) /∈ {≤, <} (there always exists such alternative since the Ri

relations depict partial order over A) 12, and set:

pi(a, v−i) =

{

0 a ∈ Ei(c)

−δca(v−i) otherwise
(1)

Claim 4 For any a ∈ A, c̃ ∈ Ei(c), and v ∈ V :

12We also assume that c /∈ 0i. This is w.l.o.g since we can always “normalize” the domain with respect to
any other alternative a, as follows: we convert any original type vi to a new type ui = vi − vi(a) · 1m. It is
not hard to verify that this maintains truthfulness.

16



1. If vi(a) − pi(a, v−i) < vi(c̃) − pi(c̃, v−i) then f(v) 6= a.

2. If vi(a) − pi(a, v−i) > vi(c̃) − pi(c̃, v−i) then f(v) 6= c̃.

proof: By definition, pi(c̃, v−i) = 0 and vi(c̃) = vi(c). First suppose that vi(a)− pi(a, v−i) <

vi(c). By definition and by claim 3, vi(a) − vi(c) < −δca(v−i) ≤ δac(v−i), and therefore

f(v) 6= a. In the other direction, vi(c) − vi(a) < −pi(a, v−i) = δca(v−i), and therefore

f(v) 6= c̃.

We can now finish the proof.

Lemma 2 If V is an order based domain then W-MON is a sufficient condition for truth-

fulness.

proof: Suppose that f satisfies W-MON. We will show that the prices of equation 1 induce

truth-telling. Suppose by contradiction that there exists v ∈ V such that f(v) = a, but

vi(a) − pi(a, v−i) < vi(b) − pi(b, v−i). By claim 4 it follows that a, b /∈ Ei(c), and that

vi(c)− pi(c, v−i) ≤ vi(a)− pi(a, v−i). Choose some small enough ε > 0 and some δ such that

vi(a) + ε − pi(a, v−i) < vi(c) + δ − pi(c, v−i) < vi(b) − pi(b, v−i). Define Ti = {a} ∪ {d ∈
A | vi(d) = vi(a) and Ri(a, d) ∈ {≤, =} }, and let ui = vi|Ei(c)+=δ, Ti+=ε. Notice that ui ∈ Vi

(we can raise Ei(c) as we wish, and raise Ti by some small enough ε) 13.

By claim 3, for any d ∈ Ti, pi(a, v−i) ≤ pi(d, v−i), and therefore vi(d) − pi(d, v−i) ≤
vi(a) − pi(a, v−i). From this we conclude that b /∈ Ti, and also that for any d ∈ Ti, ui(d) −
pi(d, v−i) < ui(c) − pi(c, v−i). Thus, by claim 4, f(ui, v−i) 6= d. Similarly, for any c̃ ∈ Ei(c),

ui(c̃)− pi(c̃, v−i) < ui(b)− pi(b, v−i), and so f(ui, v−i) 6= c̃. But, by W-MON, since f(v) = a

it must be the case that f(ui, v−i) ∈ Ei(c) ∪ Ti, a contradiction.

4.3 Strong monotonicity and IIA

So far we have seen that weak monotonicity is almost equivalent to truthfulness. We identify

the following slightly stronger monotonicity condition, where the inequality in the definition

is strict, as being of particular importance. We require this stronger condition for our main

result.

Definition 4 (Strong Monotonicity (S-MON)) A social choice function f satisfies S-

MON if for any v ∈ V , player i, and ui ∈ Vi: f(v) = a and f(ui, v−i) = b 6= a imply that

ui(b) − vi(b) > ui(a) − vi(a).

13It is possible that there exists some c̃ ∈ Ei(c) ∩ Ti. In this case we raise c̃ by δ
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In both definitions, we have the situation that i’s valuation changed from vi to ui and

this caused the outcome of f to change from a to b. S-MON asserts that this implies that i’s

valuation of b had to increase more than did the valuation of a. W-MON only requires that

it did not increase less. While this seems like a slight change, it is in fact crucial. S-MON

is not a necessary condition for truthfulness – we give several counter examples for this in

section 6, in the context of Combinatorial Auctions. The following definition, inspired by

Arrow’s notion for non-quasi-linear environments [4], essentially characterizes the difference

between W-MON and S-MON:

Definition 5 (Independence of Irrelevant Alternatives (IIA)) f satisfies IIA if for

any v, u ∈ V , if f(v) = a and f(u) = b 6= a then there exists a player i such that ui(a) −
ui(b) 6= vi(a) − vi(b).

In other words, if the social choice function on some valuations clearly prefers a over b, as a

is chosen, and no player changes his preference of a with respect to b, then it cannot be the

case that the social choice function would now choose b. For example, imagine some setting

of a combinatorial auction, and an initial valuation declaration that causes some allocation

to be chosen. Suppose now that player 1 raises his value for the bundle that contains all

items, and that nothing else is changed. Then, a combinatorial auction that satisfies IIA

would have to now choose either the previous allocation, or the allocation that hands in all

items to player 1. Any other allocation violates IIA.

We would like to explicitly state the connection between W-MON, S-MON, and IIA. As

we will show, W-MON plus IIA always implies S-MON. The other direction is not always

true – the following example demonstrates that S-MON does not always imply IIA:

Example 3 Suppose there are four alternatives (A = {a, b, c, d}) and two players, each one

with two possible types vi, ui such that: u1(c) − v1(c) > u1(a) − v1(a) = u1(b) − v1(b) >

u1(d)− v1(d), and u2(d)− v2(d) > u2(a)− v2(a) = u2(b)− v2(b) > u2(c)− v2(c). Define f as

follows: f(v1, v2) = a, f(u1, u2) = b, f(u1, v2) = c, and f(v1, u2) = d. It is not hard to verify

that S-MON holds (there are four inequalities to check, all of them follow from the way the

types are defined). IIA does not hold since f(v) = a, f(u) = b, but u(a)−u(b) = v(a)−v(b).

However, for order based domains, IIA exactly characterizes the difference between W-MON

and S-MON:

Proposition 2 If f satisfies W-MON and IIA then it satisfies S-MON. In the other direc-

tion, if V is order based and f satisfies S-MON then f satisfies W-MON and IIA.
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Remark: We actually show that, for order based domains, S-MON implies the following

“generalized S-MON”: f(v) = a and f(u) = b ⇒ ∃i : ui(b) − ui(a) > vi(b) − vi(a). This

clearly implies IIA.

We prove the proposition using several claims:

Claim 5 If f satisfies W-MON and IIA then f satisfies S-MON.

proof: Fix any v ∈ V , player i, and ui ∈ Vi. Suppose f(v) = a and f(ui, v−i) = b. We

need to show that ui(b) − vi(b) > ui(a) − vi(a). By W-MON it follows that ui(b) − vi(b) ≥
ui(a) − vi(a). Suppose by contradiction that ui(b) − vi(b) = ui(a) − vi(a). But then, denote

u = (ui, v−i), and we have f(v) = a, f(u) = b, and for any player j, vj(a) − vj(b) =

uj(a) − uj(b), thus contradicting IIA.

For the other direction, we first claim that we can assume w.l.o.g that V is not normalized,

i.e. 0i = ∅ for all i:

Claim 6 If V is normalized then there exists a non-normalized order based domain Ṽ and

a function f̃ : Ṽ → A such that:

1. If f satisfies S-MON then f̃ satisfies S-MON as well.

2. V ⊆ Ṽ , and for any v ∈ V , f(v) = f̃(v).

3. If f̃ satisfies IIA then f satisfies IIA as well.

proof: Define Ṽ as the order based domain defined by exactly the same relations Ri(a, b)

but with 0i = ∅, for all i. V ⊆ Ṽ since for any v ∈ V , all the relations Ri(a, b) hold, and

therefore v ∈ Ṽ . Define f̃ : Ṽ → A as follows: For every i, choose some ai ∈ 0i. For any

ṽ ∈ Ṽ , let vi = ṽi − ṽi(a
i), and define f̃(ṽ) = f(v) (v ∈ V since all inequalities hold after a

translation, and for any b ∈ 0i, ṽi(b) − ṽi(a) = 0 since Ri(a, b) = “ = ”).

To see that f̃ satisfies S-MON, suppose f̃(ṽ) = a and f̃(ũi, ṽ−i) = b. Let vj = ṽj − ṽj(a
j)

(for j = 1, . . . , n), and ui = ũi − ũi(a
i). By definition, f(v) = a and f(ui, v−i) = b. Since f

satisfies S-MON, ui(b) − vi(b) > ui(a) − vi(a). Therefore ũi(b) − ṽi(b) > ũi(a) − ṽi(a), and

thus f̃ satisfies S-MON.

Since V ⊆ Ṽ , contradicting IIA for f implies contradicting IIA for f̃ , and the claim

follows.
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Claim 7 (Dependence on Differences (DOD)) Suppose V is order based and non nor-

malized, and f satisfies S-MON. Then for any v ∈ V and δ ∈ R: vi + δ · 1m ∈ Vi, and

f(v) = f(vi + δ · 1m, v−i).

proof: vi +δ ·1m ∈ Vi since all inequalities hold after a translation. Since [vi(b)+δ]−vi(b) =

[vi(a) + δ] − vi(a) for any a, b ∈ A, it follows from S-MON that f(v) = f(vi + δ · 1m, v−i).

Claim 8 (Generalized S-MON) Suppose V is order based, and f satisfies S-MON. Then

for any u, v ∈ V , if f(v) = a and f(u) = b then there exists a player i such that ui(b)−vi(b) >

ui(a) − vi(a).

proof: By claim 6 we can assume w.l.o.g that V is not normalized: otherwise, move to f̃ , and

then, contradicting generalized S-MON for f implies contradicting generalized S-MON for f̃ .

By claim 7 we can assume w.l.o.g that ui(a) = vi(a): otherwise let ṽi = vi+[ui(a)−vi(a)]·1m,

then f(ṽ) = a, and finding i such that ui(b) − ṽi(b) > ui(a) − ṽi(a) = 0 implies that

ui(b) − vi(b) > ui(a) − vi(a).

Now, we “move” from v to u by L “elementary steps” v = v1, v2, . . . , vL = u, such that:

(1) for any index j there exists a player i and d ∈ A such that vj+1
i = vj

i |d+=ui(d)−vi(d), (2)

every pair (i, d) appears only once in the sequence, and (3) there exists an index l∗ such that

for any l ≤ l∗, ui(d)− vi(d) < 0, and for any l > l∗, ui(d)− vi(d) > 0 (since V is order based,

we can construct such a sequence of types). By S-MON, f(vl∗) = a, and for any l > l∗, if

f(vl) = c then f(vl+1) ∈ {c, d} (where d is the alternative that changes from vl to vl+1).

Therefore, if f(vL) = b it follows that there exists i such that ui(b)− vi(b) > 0, as claimed.

Clearly, generalized S-MON implies IIA, and S-MON implies W-MON, hence the second

direction of the proposition follows.

4.4 Equivalence of W-MON and S-MON

For some domains, S-MON can be assumed without loss of generality for our main purpose

of proving affine maximization. Intuitively, in such domains, the only possibility of having

W-MON but violating S-MON is due to “tie-breaking” rules, which cannot harm the affine

maximization property. The formal statement is:

Theorem 2 If V is an open set 14 then for every f : V → A there exists f̃ : V → A such

that:
14V is open if for any v ∈ V there exists εv > 0 such that for any u ∈ Rm×n, if |ui(a) − vi(a)| < εv for all

i, a then u ∈ V as well.
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1. If f satisfies W-MON then f̃ satisfies S-MON.

2. If f̃ is affine maximizer then f is affine maximizer.

By this theorem, proving that S-MON implies affine maximization exactly implies that W-

MON implies affine maximization: Using the first step of the theorem we “generate” from

f that satisfies W-MON an f̃ that satisfies S-MON. We then show that this f̃ is an affine

maximizer using the main theorem. Finally, by the second step of theorem 2 we conclude

that our original f is also an affine maximizer.

Proof of theorem 2: We use the notation v + ε1i,b = (vi|b+=ε, v−i), and v + ε1b =

v + ε11b + . . . + ε1nb. For any v ∈ V , define:

T (v) = { b ∈ A | ∃ε∗ > 0 s.t. ∀ε ∈ (0, ε∗) : f(v + ε1b) = b }

Claim 9 For any v ∈ V , i, and ui ∈ Vi : if a ∈ T (v), b ∈ T (ui, v−i), and ui(a) − vi(a) ≥
ui(b) − vi(b), then a ∈ T (ui, v−i).

proof: For any (small enough) ε > 0, since a ∈ T (v), f(v+ ε1a) = a. By W-MON, it follows

that:

f(vi + ε1i,a, v−i + 2ε1−i,b + 4ε1−i,a) = a (2)

(this follows by changing the player types one at a time). Similarly, since b ∈ T (ui, v−i),

we get that f(ui + ε1i,b, v−i + ε1−i,b) = b. By W-MON (changing the player types one at a

time):

f(ui + 2ε1i,b + 4ε1i,a, v−i + 2ε1−i,b + 4ε1−i,a) ∈ {a, b} (3)

Since ui(a)−vi(a) ≥ ui(b)−vi(b) it follows that [ui(a)+4ε]− [vi(a)+ ε] > [ui(b)+2ε]−vi(b).

Therefore, comparing Eq. 3 to Eq. 2, and by W-MON, we conclude that f(ui + 2ε1i,b +

4ε1i,a, v−i + 2ε1−i,b + 4ε1−i,a) = a. Thus also f(ui + 5ε1i,a, v−i + 5ε1−i,a) = a, hence

a ∈ T (ui, v−i), and the claim follows.

We can now define f̃ . Fix any complete order � on A, and then:

f̃(v) = max
�

T (v)

Claim 10 f̃ satisfies S-MON.

proof: Suppose that f̃(v) = a and f̃(ui, v−i) = b. Therefore a ∈ T (v) and b ∈ T (ui, v−i).

Assume by contradiction that ui(a) − vi(a) ≥ ui(b) − vi(b). By claim 9 it follows that
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a ∈ T (ui, v−i), and thus b � a. On the other hand, it is also the case that vi(b) − ui(b) ≥
vi(a) − ui(a), and so, by claim 9 again (changing variable names), we get that b ∈ T (v) and

therefore a � b, a contradiction.

Claim 11 If f̃ is an affine maximizer, then f is an affine maximizer as well.

proof: Assume that for any v ∈ V , f̃(v) ∈ argmaxa∈A{
∑

i ωivi(a) + γa}, and suppose that

f̃(v) = a but f(v) = b. We first claim that for any (small enough) ε > 0, f̃(v + ε1b) = b:

otherwise, suppose it equals c. By definition, this implies that f(v + ε1b + (ε/2)1c) = c,

contradicting PAD (claim 1), since f(v) = b and b was raised strictly more than all other

alternatives for all players. Since f̃ is affine maximizer it follows that
∑

i ωi[vi(b) + ε] + γb ≥
∑

i ωi[vi(a)+ε]+γa. This is true for any (small enough) ε > 0, so it follows that f(v) chooses

a maximal alternative as well, as claimed.

This concludes the proof of theorem 2.

Since an unrestricted domain is an open set, this theorem immediately applies to it. The

theorem also applies to strict order based domains:

Corollary 1 If V is strict order based then for every f : V → A there exists f̃ : V → A such

that, if f satisfies W-MON then f̃ satisfies S-MON, and then, if f̃ is an affine maximizer,

then f is an affine maximizer as well.

proof: If V is not normalized (i.e. 0i = ∅ for all i then it is an open set, by definition, and

the corollary immediately follows. Otherwise, we expand V to a non normalized V̂ , exactly

as in claim 6. Then f̂ also satisfies W-MON, and if f̂ is affine maximizer then f is affine

maximizer as well. Since V̂ an open set, there exists f̃ that satisfies S-MON, and if f̃ is

affine maximizer then f̂ is affine maximizer, which in turn implies that f is affine maximizer

as needed.

In order to use all this for our main theorem, we have to verify that all the translations

from f to f̃ also preserve the other requirements of the theorem. It is not hard to verify that

the player decisiveness and the non-degeneracy conditions are indeed preserved. As for the

“conflicting preferences” requirement, the removal of the normalization in the translation

from f to f̃ does not harm it, since the structure of “top” and “bottom” alternatives is not

affected.
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5 Main Theorem

Our main theorem shows that, under certain conditions, social choice functions that satisfy S-

MON are “almost” affine maximizers. Let us first explain these conditions and qualifications:

• The Domain: The theorem holds for a family of restricted domains which we call

order-based domains with conflicting preferences – These are essentially order based

domains in which the most preferred alternative of player i is the least preferred alter-

native of all other players:

Definition 6 (top and bottom alternatives of player i) Suppose Vi is order based.

The alternative a ∈ A \ 0i is a top alternative if its value is never smaller than the

value of any other alternative. I.e. if for all other b ∈ A, Ri(a, b) ∈ { > , ≥ , null }.
Similarly, the alternative a ∈ A is a bottom alternative if for all other b ∈ A, Ri(a, b) /∈
{ > , ≥ }.

Definition 7 (Conflicting preferences) An order based domain has conflicting pref-

erences if:

1. Any player i has at least one top alternative (denoted ci).

2. For all i and j 6= i, cj is a bottom alternative for player i, and cj ∈ 0i
15.

Note that cj 6= ci for all i 6= j as cj /∈ 0j and ci ∈ 0j. Combinatorial Auctions and Multi-

Unit Auctions have conflicting preferences: the allocation of all the goods to player i

is a top alternative for i, and is indeed a bottom alternative (with a value of zero) for

all other players. Matching, however, does not have conflicting preferences, since there

is no top alternative – every alternative is coupled with many other alternatives (all

the ones that match i to the same person).

• The Range: The actual range of the social choice function must be non-degenerate:

Definition 8 (Non-degenerate range) A is non-degenerate if for any player i > 1

there exists a ∈ A such that a /∈ 01 and a /∈ 0i.

15This normalization is for convenience. We can instead just assume that for any i, j, l, Ri(c
j , cl) is “=”,

and use S-MON to normalize the domain.
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For combinatorial auctions or multi-unit auctions this means that there exists some

player (w.l.o.g player 1) such that, for every other player i, the range includes an

allocation a with a1 6= ∅ and ai 6= ∅. Without this condition, the problem may

essentially be reduced to a single-dimensional setting (e.g. when the range contains

only the allocations that allocate all items to one player), in which case many truthful

non affine maximizers exist.

• The Social Choice Function: We require player decisiveness. This means that a

player can ensure that his top alternative is chosen if he bids high enough on it:

Definition 9 (Player decisiveness) f is player-decisive if for any v ∈ V and any

player i there exist ui = vi|ci+=δ for some δ > 0 such that f(ui, v−i) = ci.

For CAs and MUAs, this means that a player can always receive all goods if he bids high

enough on them. We note the difference between this requirement and the decisiveness

requirement of [24], where it is required that some player will be able to cause any

alternative to be chosen, when declaring appropriately. For CAs, this is very strong –

for example, it requires that player 1 will be able to decide whether player 2 or player

3 will receive all goods.

• Almost Affine Maximizer: The theorem only shows that the social choice function

must be an affine maximizer for large enough input valuations. I.e. there exists a

threshold M s.t. the function is an affine maximizer if vi(a) ≥ M for all a and i (except

from inherently zero alternatives). We believe that this restriction is a technical artifact

of the current proof, although we were not able to remove it.

Theorem 3 Every social choice function over an order-based domain with conflicting pref-

erences and onto a non-degenerate range, that is player decisive and satisfies S-MON, must

be an almost affine maximizer.

5.1 Intuitive proof outline

We now provide an intuitive outline of the proof. Full details appear below. It will be first

useful to visualize the valuation vector v as described in Figure 1. The i’th row contains the

valuation vector of player i, and each column represents an alternative. Thus, i’s value for

alternative a, vi(a), is the first number in the i’th row. In the proof we extensive use the

notation x@a (x at a), which simply denotes the fact that x = v(a) = (v1(a), ..., vn(a)).
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Figure 1: The structure of the valuation vector, and the notion x@a.

Our first step in the proof is to infer some order that f induces on the domain. Specifically,

if for some vector v of valuations the choice is a = f(v) then we may say that the vector of

values v(a) = (v1(a), . . . , vn(a)) has more weight than the vector v(b). This leads us to the

following definition:

Definition 10 (“x at a” is larger than “y at b”) For a, b ∈ A and x, y ∈ Rn we say

that x@a > y@b if there exists v ∈ V such that v(a) = x, v(b) = y, and f(v) = a.

This notation certainly suggests that “>” is an order. In unrestricted domains this is

indeed the case. However, in restricted domains, it is not generally so. The requirements of

the theorem imply “just enough” of the properties of an order to proceed with the proof.

Once such a “near-order” is defined, we can compare every x@a to multiples of some fixed

reference z@c. This is inspired by the “min-function” model of Archer and Tardos [3]. We

would expect that for small values of α we would have x@a > (αz)@c, while for large values

of α we would have x@a < (αz)@c. The value of α where the change happens somehow

summarizes the “size” of x@a. To proceed we need to find such c and z where this holds for

“enough” x and a. From now on, let such appropriate c and z be fixed.

Definition 11 The “measure of x at a” is defined as:

m(x@a) = inf { α | x@a < (α · z)@c }

This measure captures the choice function, as the following property shows:
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Claim: Under the conditions of the theorem, if m(v(a)@a) < m(v(b)@b) then f(v) 6= a.

This claim basically shows that f(v) ∈ argmaxa{m(v(a)@a)}. What remains to show is

that m(x@a) is in fact an affine function (in x) on Rn. (And, that it does not depend on

a, up to an additive constant.) To get this result let us, informally, consider the partial

derivative ∂m(x@a)/∂xi. A key observation is that this partial derivative must be equal to

∂m(y@b)/∂yi for any other “compatible” y and b. Let us see the intuition for this: consider

some v such that v(a) = x and v(b) = y. Since the S-MON requirement only looks at

differences vi(a) − vi(b) when “choosing between a and b”, we would expect that adding a

constant δ to both xi = vi(a) and to yi = vi(b) will also leave m(x@a)−m(y@b) unchanged.

This is indeed the case:

Claim: Under the conditions of the theorem, for all (appropriate) a, b, x, y and δ we have

that m(x@a) − m(y@b) = m((x + δ · ei)@a) − m((y + δ · ei)@b). 16.

But now we claim that this means that ∂m(x@a)/∂xi is independent of x. To see this,

fix some y and denote hi(δ) = m((y + δ · ei)@b) − m(y@b). The previous claim states

that m((x + δ · ei)@a) − m(x@a) = hi(δ). It is a simple exercise to verify that such a

condition on m(x@a) implies that it is linear in x. Specifically it must have the form

m(x@a) =
∑

i hi(1) ·xi +γa, where γa is an arbitrary constant. This is (almost) the required

result. (Delicate difficulties enter when we are unable to choose a single y@b in an appropriate

way for all x@a – those are treated in the full proof.)

5.2 Proof of Theorem 3

We describe the proof in a somewhat abstract way: we define several requirements for f ,

V , and A, and show in parallel that: (1) these requirements are satisfied for order based

domains with conflicting preferences, and, (2) under these requirements, f must be an almost

affine maximizer. This abstraction will enable us to show that the proof, without most of

the qualifiers, holds for unrestricted domains (this is described in section A below).

As we cannot “measure” x@a if there is no v ∈ V such that f(v) = a and v(a) = x,

we refer to the abstract sets V a ⊆ {x | ∃v ∈ V such that v(a) = x}, for all a ∈ A, and

V ∗ = { v ∈ V | ∀a : v(a) ∈ V a }. The proof shows that f is affine maximizer for any

v ∈ V ∗.

16Here ei is the i’th unit vector
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Figure 2: The structure of the full proof

The proof structure is demonstrated in figure 2: we define three abstract requirements

from a sub-domain V ∗ of V , and show that they imply affine maximization over V ∗. We also

of-course show that these abstract requirements are satisfied in our case.

For order based domains with conflicting preferences, we define the V a’s (and by this V ∗)

as follows:

Definition of V a, for all a ∈ A: Denote T = {c1, c2, . . . , cn} and S = {a ∈ A | a1 /∈
01 and a 6= c1}, then

1. V c1 = { v(c1) | v ∈ V }.

2. For any a ∈ S : V a = { x | ∃v ∈ V s.t. v(a) = x and f(v) = a }.

3. For any ci, i > 1 : V ci

= { y | ∃a ∈ S, a /∈ 0i, and ∃x ∈ V a s.t. y@ci > x@a }.

4. For any a ∈ 01 \ T : V a = { x | for all i s.t. a /∈ 0i there exists y ∈ V ci

s.t. x@a >

y@ci }.

We will show below that all the V a’s are non-empty.
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Requirement 1: Closure under positive Translation. For any a, b ∈ A, player i such

that a, b /∈ 0i, and δ > 0:

1. x@a > y@b implies (x + δ · ei)@a > (y + δ · ei)@b.

2. x ∈ V a implies (x + δ · ei) ∈ V a.

Proposition 3 If V is order based with conflicting preferences, and f satisfies S-MON, then

Requirement 1 is satisfied.

proof: We prove this in several steps, as follows:

Definition 12 (Closure under minimum) A domain V is “closed under minimum” if

for any v, v′ ∈ V : min(v, v′) ∈ V , where the minimum is taken componentwise.

Claim 12 Any order based domain is closed under minimum.

proof: Suppose vi, v
′
i ∈ Vi, and let ui = min(vi, v

′
i). For any a ∈ 0i, since vi(a) = v′

i(a) = 0

then ui(a) = 0. For any a, b ∈ A, if Ri(a, b) ∈ { = , null } then trivially “ui(a) Ri(a, b) ui(b)”.

Suppose Ri(a, b) is “≥”, and suppose ui(a) = vi(a). Then ui(b) ≤ vi(b) ≤ vi(a) = ui(a), as

needed. The other cases are similar.

Claim 13 Suppose V is closed under minimum and f is strongly monotone. Then for any

x@a, y@b, x̃ ≥ x, and ỹ ≤ y: x@a > y@b ⇒ ¬(x̃@a < ỹ@b).

proof: Since x@a > y@b, ∃v ∈ V such that v(a) = x, v(b) = y, and f(v) = a. Suppose

by contradiction that x̃@a < ỹ@b. Therefore ∃v′ ∈ V such that v′(a) = x̃, v′(b) = ỹ, and

f(v′) = b. Let u = min(v, v′). By S-MON, since u(a) = v(a) and u ≤ v, f(v) = a implies

f(u) = a. And since u(b) = v′(b) and u ≤ v′, f(v′) = b implies f(u) = b, a contradiction.

Claim 14 Suppose V is order based with conflicting preferences, and f is strongly monotone.

Then for any a, b ∈ A, if x@a > y@b and a, b /∈ 0i then (x + δ · ei)@a > (y + δ · ei)@b for

any δ > 0.

proof: Since x@a > y@b there exists v ∈ V with v(a) = x, v(b) = y, and f(v) = a. Define

ui as follows: ui(d) = vi(d)+ δ for any d ∈ A\0i, and ui(d) = vi(d) for any d ∈ 0i. Since V is

order based, and the alternatives in 0i are all bottom alternatives (this is a side-effect of the

second condition of conflicting preferences), raising all non-zero coordinates by a constant

does not violate any relation, and so ui ∈ V . Since ui(a) − vi(a) ≥ ui(d) − vi(d) for any

d 6= a it follows from S-MON that f(ui, v−i) = a, so (x + δ · ei)@a > (y + δ · ei)@b.
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Claim 15 For any a ∈ A, V a is non-empty, and x ∈ V a ⇒ (x + δ · ei) ∈ V a, for all i such

that a /∈ 0i, and for any δ > 0.

proof: For any a ∈ S take any v ∈ V such that f(v) = a, thus v(a) ∈ V a, and, similarly to

claim 14, (v(a) + δ · ei) ∈ V a, whenever δ > 0 and a /∈ 0i.

For any ci, choose some a ∈ S \0i (it is not empty since A is non-degenerate) and x ∈ V a.

By player decisiveness there exists some y@ci such that y@ci > x@a, and thus y ∈ V ci

. By

S-MON and since ci is a top alternative, (y + δ · ei)@ci > x@a, and thus (y + δ · ei) ∈ V ci

as

well.

For any a ∈ 01 \ T , take any v ∈ V such that f(v) = a, thus x@a > y@ci (where

y = v(ci)). Notice that, since V is normalized, y = yi · ei. Therefore there exists δ ≥ 0 such

that (y + δ · ei) ∈ V ci

, and, by claim 14, (x+ δ · ei)@a > (y + δ · ei)@ci, thus (x+ δ · ei) ∈ V a.

If x ∈ V a then x@a > y@ci and, similarly to claim 14, (x + δ · ej)@a > y@ci for any distinct

i, j (a /∈ 0i, 0j).

We can therefore conclude that Requirement 1, closure under positive translation, follows

from claims 14 and 15.

We now continue to Requirement 2. An affine maximizer attaches a measure to every

alternative (its weighted welfare), and chooses the one with the highest measure. Essentially,

we show that every social choice function with the characteristics of the theorem must do

the same. It has an underlying measure, it always chooses the alternative with the highest

measure, and this measure is an affine function. In order to actually calculate the measure

of alternative a, for some type v, we use a reference alternative, c. Intuitively, we start with

some type profile where x@a is chosen, and raise c’s welfare until c is chosen. If we do this

“slowly”, then at some point the measure of the two alternatives will become equal, and

thus, by knowing the measure of c, we obtain the measure of a. For this to succeed, we need

an alternative with several technical properties:

Definition 13 (Comparable) x@a and y@b are comparable if either x@a > y@b or y@b >

x@a.

Requirement 2: A Transitive Reference z@c for the set Mc ⊆ A \ {c}.
z@c (where c ∈ A and z ∈ Rn

+, z 6= 0) is termed a transitive reference for the set

Mc ⊆ A \ {c} if, for any a, b ∈ Mc, x ∈ V a, and y ∈ V b, we have:

1. Measurability: There exist α, β ∈ R , α < β, such that (α · z)@c < x@a < (β · z)@c,

and for any α′ ∈ (α, β): x@a and (α′ · z)@c are comparable.
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2. (semi) Transitivity: If x@a < (α · z)@c and ¬(y@b < (α · z)@c) then ¬(x@a > y@b).

3. R-monotonicity: x@a > (α · z)@c ⇒ ¬(x@a < (β · z)@c) for any β ≤ α.

4. L-monotonicity: For δ > 0, (x + δ · ei)@a < (α · z)@c ⇒ x@a < (α · z)@c.

Proposition 4 If V is order based with conflicting preferences, and f satisfies S-MON and

player decisiveness, then Requirement 2 is satisfied by taking e1@c1 to be a transitive reference

for A \ {c1}.

proof: We show that e1@c1 is a transitive reference by several claims:

Claim 16 If x@a < (α · e1)@c1 and ¬(y@b < (α · e1)@c1) then ¬(x@a > y@b).

proof: Suppose by contradiction that x@a > y@b, and take v ∈ V such that v(a) =

x, v(b) = y, and f(v) = a. Since V is normalized, v(c1) = β ·e1. Thus x@a > (β ·e1)@c1 and

by claim 13 it follows that β ≤ α. Denote u1 = v1|c1=α. By S-MON, f(u1, v−1) ∈ {a, c1}. If

it is a then x@a > (α ·e1)@c1, contradicting the assumption x@a < (α ·e1)@c1 (by claim 13).

Thus it is c1, and therefore y@b < (α · e1)@c1, a contradiction.

Claim 17 ∀a ∈ A and x ∈ V a, if (x + δ · ei)@a < (α · e1)@c1, for some δ > 0, then

x@a < (α · e1)@c1.

proof: Choose some v such that v(a) = (x + δ · ei), v(c1) = α · e1, and f(v) = c1, and v′

such that v′(a) = x (there is one since x ∈ V a). Let u = min(v, v′) (thus u(a) = x and

u1(c
1) ≤ α) and u′ = u|c1=α·e1. Thus u′(a) = x, u′(c1) = α · e1, and u′ ≤ v. By S-MON,

f(u′) = c1, as needed.

Definition 14 (Compatible) x@a and y@b are “compatible” if there exists v ∈ V such

that v(a) = x and v(b) = y.

Claim 18 For any a ∈ A, ci ∈ T , x ∈ V a, and (α · ei)@ci, if x@a and (α · ei)@ci are

compatible then they are comparable.

proof: Since x ∈ V a there exists v ∈ V such that v(a) = x and f(v) = a. Since x@a and

(α · ei)@ci are compatible then there exists v′ ∈ V such that v′(a) = x and v′(ci) = α · ei.

Let u = min(v, v′). Thus f(u) = a and ui(c
i) ≤ α. Therefore f(u|ci=α·ei) ∈ {a, ci}, and the

claim follows.
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We can now conclude that e1@c1 is a transitive reference for A \ {c1}: Transitivity is

by claim 16, R-monotonicity follows from claim 13, and L-monotonicity is by claim 17.

Measurability follows since, by the definition of the V a’s, there exists (α · z)@c such that

x@a > (α · z)@c, by player decisiveness there exists (β · z)@c such that x@a < (β · z)@c,

and by claim 18, since for any α′ ∈ (α, β), x@a and (α′ · e1)@c1 are compatible, they are

comparable.

Using Requirements 1 and 2, we can measure x@a in a way that has several important

properties:

Definition: The “measure of x at a”, for a ∈ Mc and x ∈ V a, is defined as:

m(x@a) = inf { α | x@a < (α · z)@c }

and also: m((α · z)@c) = α.

The following claims specify some important properties of the measure function.

Claim 19 For any a, b ∈ Mc, x ∈ V a, and y ∈ V b: m(x@a) = sup { α | x@a > (α · z)@c },
and, as a conclusion, −∞ < m(x@a) < ∞.

proof: By measurability, there exist α, β ∈ R such that (α · z)@c < x@a < (β · z)@c. Hence

the infimum is at most β, and the supremum is at least α. By R-monotonicity, the infimum

is not smaller than the supremum. Therefore they both reside in the interval [α, β]. Since

for any α′ ∈ [α, β], x@a and (α′ · z)@c are comparable, the claim follows.

Claim 20 For any a, b ∈ Mc, x ∈ V a, and y ∈ V b: m(x@a) < m(y@b) ⇒ ¬(x@a > y@b)

(and thus x@a > y@b ⇒ m(x@a) ≥ m(y@b)).

proof: Choose some α, m(x@a) ≤ α < m(y@b), such that x@a < (α · z)@c. Since

¬(y@b < (α · z)@c) it follows, by Transitivity, that ¬(x@a > y@b).

Claim 21 For any a ∈ Mc \ 0i, x ∈ V a, and δ > 0: m((x + δ · ei)@a) ≥ m(x@a).

proof: Suppose by contradiction that m(x@a) > m((x + δ · ei)@a), and choose some

α, m(x@a) > α ≥ m((x + δ · ei)@a), such that (x + δ · ei)@a < (α · z)@c. But since

¬(x@a < (α · z)@c), this contradicts L-monotonicity.

Definition 15 (The “support” of z@c) Sc = { a ∈ Mc | a /∈ 0i for all i s.t. zi > 0 }.
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The following claim implies that, for the alternatives in the support of z@c, we can “inflate”

the measure in a very simple way.

Claim 22 For any a ∈ Sc, x ∈ V a, and β > 0: m((x + β · z)@a) = m(x@a) + β.

proof: Suppose by contradiction that m((x + β · z)@a) > m(x@a) + β. Choose some

α, m((x+β · z)@a)−β > α ≥ m(x@a), such that x@a < (α · z)@c. By positive translation,

x@a < (α · z)@c ⇒ (x + β · z)@a < (α + β) · z@c. But since α + β < m((x + β · z)@a), we

have a contradiction.

Similarly, suppose by contradiction that m((x + β · z)@a) < m(x@a) + β. Choose some

α, m((x + β · z)@a) − β < α ≤ m(x@a), such that x@a > (α · z)@c (such α exists by

claim 19). By positive translation, x@a > (α · z)@c ⇒ (x + β · z)@a > (α + β) · z@c. But

since α + β > m((x + β · z)@a), we have a contradiction to claim 19.

Claim 23 For any a, b ∈ Mc \ 0i, x ∈ V a, and y ∈ V b: if x@a and y@b are comparable, and

m(x@a) < m(y@b), then m((x + δ · ei)@a) ≤ m((y + δ · ei)@b), for any δ > 0.

proof: m(x@a) < m(y@b) implies ¬(x@a > y@b) by claim 20. Since they are comparable

it follows that x@a < y@b. Thus (x + δ · ei)@a < (y + δ · ei)@b by the closure under positive

translation property, and thus by claim 20 again, m((x + δ · ei)@a) ≤ m((y + δ · ei)@b), as

claimed.

The next claim argues that, in some sense, f will choose an alternative with maximal

measure:

Claim 24 For any a, b ∈ Mc, and v ∈ V such that v(a) = x ∈ V a,

1. If v(b) = y ∈ V b, and m(x@a) < m(y@b), then f(v) 6= a.

2. If v(c) = α · z (for some α ∈ R) and m(x@a) < α, then f(v) 6= a.

3. If v(c) = α · z (for some α ∈ R) and m(x@a) > α, then f(v) 6= c.

proof: (1) If, by contradiction, f(v) = a then x@a > y@b by definition, contradicting

claim 20.

(2) Suppose f(v) = a, thus x@a > (α · z)@c, and by claim 19, m(x@a) ≥ α, a contradiction.

(3) Suppose f(v) = c, thus x@a < (α ·z)@c and, by definition, m(x@a) ≤ α, a contradiction.

Using these properties of the measure function, we next show that it is affine.
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Definition 16 x@a “calibrates” y@b using w ∈ Rn
+ if x@a < y@b, and if (x+α ·w)@a and

y@b are comparable for any α > 0.

In a descriptive manner, x@a calibrates y@b using w if we can “inflate” x@a to (x+α ·w)@a

while still keeping it comparable to y@b. The following claim implies that, if we can inflate

the measure function as well, then the derivatives of m(x@a) and m(y@b) are identical:

Claim 25 Suppose there exist ω ∈ R, ω > 0 and w ∈ Rn
+ such that m((x + α · w)@a) =

m(x@a)+ω ·α for all x ∈ V a and α > 0. Fix any x ∈ V a and y ∈ V b such that x@a calibrates

y@b using w. Then for any i such that a, b /∈ 0i and any δ > 0: m((x+δ ·ei)@a)−m(x@a) =

m((y + δ · ei)@b) − m(y@b).

proof: Since x@a < y@b then m(x@a) ≤ m(y@b). Let β be such that ω · β = m(y@b) −
m(x@a) (thus β ≥ 0). If β > 0, then for any 0 < α < β, m((x + α · w)@a) = m(x@a) +

ω · α < m(y@b), and thus by claim 23, m((x + δ · ei + α · w)@a) ≤ m((y + δ · ei)@b).

Therefore m((x + δ · ei + β · w)@a) ≤ m((y + δ · ei)@b). If β = 0 then since x@a < y@b,

(x + δ · ei)@a < (y + δ · ei)@b and so m((x + δ · ei)@a) ≤ m((y + δ · ei)@b).

For any α > β, m((x + α · w)@a) = m(x@a) + ω · α > m(y@b), and thus by claim 23,

m((x+δ·ei+α·w)@a) ≥ m((y+δ·ei)@b). Therefore m((x+δ·ei+β ·w)@a) = m((y+δ·ei)@b).

Since m((x + δ · ei + β · w)@a) = m((x + δ · ei)@a) + ω · β and ω · β = m(y@b) − m(x@a),

the claim follows.

To use this property, we need the domain to have “calibrators”:

Requirement 3: A calibrator. An alternative d ∈ Mc is a “calibrator” for player i if,

1. d /∈ 0i, and there exist y ∈ V d, (α · z)@c, and ε, δ > 0 such that y@d < (α · z)@c, and

(y + δ · ei)@d > ((α + ε) · z)@c.

2. For all y, ỹ ∈ V d there exists a ∈ Sc \ 0i and x ∈ V a such that x@a calibrates both

y@d and ỹ@d using z.

3. For all a ∈ Sc \ 0i and x ∈ V a there exists y ∈ V d such that x@a calibrates y@d using

z.

4. For all b ∈ (Mc \ Sc) \ 0i, and x ∈ V b, there exists y ∈ V d such that y@d calibrates

x@b using ei.
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Proposition 5 If V is order based with conflicting preferences, f satisfies S-MON and

player decisiveness, and A is non-degenerate, then Requirement 3 is satisfied: alternative

ci is a calibrator for i (for any i > 1).

proof: The first calibrator requirement follows immediately from player decisiveness. For

the second requirement, notice that S is the support of e1@c1. Now fix any y, ỹ ∈ V ci

, and

suppose y ≤ ỹ. Since A is non-degenerate, there exists some a ∈ S \ 0i. By definition of

V ci

, there exists x ∈ V a such that y@ci > x@a. Thus also ỹ@ci > x@a. Since i > 1, for any

α > 0, y@ci and (x+α ·e1)@a are compatible. Since (x+α ·e1) ∈ V a it follows from claim 18

that they are comparable (the same is true for ỹ@ci), and so the second requirement holds.

The third and fourth requirements follows from essentially the same arguments.

To show that Requirement 3 implies affinity, we use this basic technical fact (for com-

pleteness, we provide a proof in appendix C):

Claim 26 Fix some m : X → R, where X ⊆ Rn has the property that x ∈ X and y ≥ x

implies y ∈ X. Suppose also that m is monotonically non-decreasing.

1. If there exists hi : R+ → R+ such that m(x + δ · ei)−m(x) = hi(δ) for any x ∈ X and

δ > 0, then there exist ωi ∈ R such that hi(δ) = ωi · δ.

2. If there exist ω1, . . . , ωn such that m(x + δ · ei) − m(x) = ωi · δ for any i, x ∈ X, and

δ > 0 then m(x) =
∑n

i=1 ωi · xi + γ (for some constant γ ∈ R).

Claim 27 If there exists a calibrator d for player i then there exists some ωi ∈ R, ωi > 0

such that for any b ∈ Mc\0i, for any x ∈ V b and for any δ > 0: m((x+δ ·ei)@b)−m(x@b) =

ωi · δ.

proof: By the second calibrator property, for any y, ỹ ∈ V d there exists x@a that satisfies

the conditions of claim 25 (recall that by claim 22, m((x + α · z)@a) = m(x@a) + α). Thus:

m((y + δ · ei)@d) − m(y@d) =

m((x + δ · ei)@a) − m(x@a) =

m((ỹ + δ · ei)@d) − m(ỹ@d)

so we conclude that there exists some h : R+ → R+ such that m((y + δ · ei)@d)−m(y@d) =

h(δ) for all y ∈ V d and δ > 0. By claim 26 there exists some ωi ∈ R+ such that h(δ) = ωi · δ.
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By the first calibrator property we can conclude that ωi > 0, since, for y ∈ V d that

is specified by the property, m(y@d) ≤ α, m((y + δ · ei)@d) ≥ α + ε, and thus ωi · δ =

m((y + δ · ei)@d) − m(y@d) > 0.

By the third and fourth calibrator properties, for any b ∈ Mc \ 0i, for any x ∈ V b and

for any δ > 0, there exists y ∈ V d that satisfies the conditions of claim 25 (recall we already

know that m((y + δ · ei)@d) = m(y@d) + ωi · δ). Thus:

m((x + δ · ei)@b) − m(x@b) =

m((y + δ · ei)@d) − m(y@d) = ωi · δ

and the claim follows.

Claim 28 Requirements 1 to 3 imply that there exist constants ω1, . . . , ωn and {γa}a∈A such

that:

1. m(x@a) =
∑n

i=1 ωi · xi + γa for all a ∈ A and x ∈ V a.

2. ∀a, b ∈ A, v ∈ V : if v(a) ∈ V a, v(b) ∈ V b, and
∑n

i=1 ωi·vi(a)+γa <
∑n

i=1 ωi·vi(b)+γb,

then f(v) 6= a.

proof: For any i 6= 1, a 6= c and x ∈ V a there exists ωi ∈ R such that m((x + δ · ei)@a) −
m(x@a) = ωi·δ for any δ > 0 (by claim 27 if a /∈ 0i, and trivially if a ∈ 0i). For i = 1, if a /∈ 0i

then a ∈ Sc, and thus by claim 22 m((x + δ · e1)@a) − m(x@a) = δ so we take ω1 = 1. By

claim 26 we conclude that m(x@a) =
∑n

i=1 ωi ·xi +γa for a 6= c. For c, since x = v(c) = α ·e1

then m(x@c) = α =
∑n

i=1 ωi · xi (so we take γc = 0). Therefore the first part of the claim

follows. The second part is exactly claim 24, when replacing m(x@a) =
∑n

i=1 ωi · xi + γa as

shown in the first part of the proof.

We can now immediately conclude:

Theorem 3 Suppose V is order based with conflicting preferences, f is strongly monotone

and player-decisive, and A is non-degenerate. Then f is affine maximizer for any v ∈ V ∗.

Corollary 2 Suppose V is order based with conflicting preferences, f is strongly monotone

and player-decisive, and A is non-degenerate. Then there exist ω1, . . . , ωn, {γa}a∈A, and a

constant M ∈ R such that:

f(v) ∈ argmaxa∈A{
n

∑

i=1

ωi · vi(a) + γa }
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for all v ∈ V such that vi(a) > M for all i and a /∈ 0i.

proof: (of corollary) Take representatives va ∈ V a and denote M = maxi,a{vi(a)}. By the

closure under positive translation of the V a’s, if vi(a) > M for all i and a /∈ 0i then v ∈ V ∗.

Corollary 3 Suppose V is order based with conflicting preferences, f is strongly monotone

and player-decisive, and A is non-degenerate. For any I ′ ⊆ {1, . . . , n}, denote BI′ = {a ∈
A|a ∈ 0i ⇔ i ∈ I ′}. Then there exist ω1, . . . , ωn and {γa}a∈A such that:

f(v) ∈ ∪I′⊆{1,...,n}argmaxb∈BI′
{

n
∑

i=1

ωivi(b) + γb }

proof: Fix the constants implied by claim 28. Notice that ∪I′⊆{1,...,n}BI′ = A. Fix any

v ∈ V . Suppose f(v) = b ∈ BI′, but, by contradiction, there exists a ∈ BI′ such that
∑n

i=1 ωivi(b) + γb <
∑n

i=1 ωivi(a) + γa Choose some large enough δ so that v(b) + δ · 1n ∈ V b

(this is somewhat an abuse of notation, since only the non-zero coordinates are raised) and

v(a) + δ · 1n ∈ V a. For every player i /∈ I ′ (i.e. a /∈ 0i) let ui = vi + δ · 1m, and for player

i ∈ I ′, ui = vi. By S-MON, f(u) = f(v) = a, contradicting claim 28.

In appendix A we show how to prove Roberts’ theorem (for unrestricted domains) as a

corollary of our theorem.

Among the three conditions on f needed for the proof, it seems that the crucial one

is the strong monotonicity (indeed, in section 6 we show examples of truthful CAs with

non-degenerate range, that satisfy player decisiveness, but do not satisfy S-MON, and are

not affine maximizers). On the other hand, for one parameter domains, it is not hard to

construct strongly monotone functions that are not (almost) affine maximizers. The main

question remained is, for exactly what domains is S-MON the main characterization of affine

maximization:

Open Problem 1: Is there a weaker condition than S-MON that implies affine maxi-

mization for combinatorial auctions?

Open Problem 2: Does S-MON imply affine maximization for order based domains that

do not have conflicting preferences (e.g. matching) ?
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6 The Implications for Combinatorial Auctions

In this section we discuss the applicability of the main theorem to the main motivating

problem: truthful mechanisms for approximating the optimal allocation in combinatorial

auctions (CAs) and multi-unit auctions (MUAs). For this application most of the technical

issues in the main theorem can be dropped. We start dealing with general issues, proceed

with those implied by approximation factors, and conclude with the computational ones.

6.1 General Issues

CAs and MUAs satisfy all the requirements on the domain of theorem 3. Thus any CA or

MUA that satisfies S-MON and player decisiveness, onto a non-degenerate domain, must

be almost affine maximizer. In fact, a non-degenerate domain captures even the case where

each bidder is interested in only two, known in advance, bundles (“known double minded

bidders”), where one of bundles is the set of all goods.

Let us now look at the different requirements of the theorem. First notice that if the

range is degenerate, then as discussed above, the social choice function need not be an almost

affine maximizer17. As for the strong monotonicity, the following example demonstrates a

truthful CA that does not satisfy S-MON, and indeed is not an affine maximizer:

Example 4 Assume at least three players. Define A to be all possible allocations (where all

goods are allocated). Define constants γa = 0 if a1 6= ∅, and γa = 1 if a1 = ∅. The function

f is as follows. For player 1, choose some allocation a that maximizes
∑n

i=1 vi(a) + γa and

allocate a1 to player 1. (clearly this is truthful for 1, e.g. with a price
∑n

i=2 vi(a) + γa).

For the others, if v1(c
1) ≥ 1, choose the allocation a from before. If v1(c

1) < 1, choose

the allocation that maximizes
∑n

i=2 ωivi(a) (for some fixed ωi’s) (clearly this is also truthful

for the other players, from the same reason as before, and since the choice between the two

different affine maximizers depends only on player 1’s declaration). Notice that f always

chooses a feasible allocation: if v1(c
1) < 1 then it must be the case that player 1 gets the

empty set.

Notice that f is player decisive and A is non-degenerate. To see that f does not satisfy

S-MON, consider the following two types of 1: at first, v1(c
1) = 1 + ε, but the others declare

high enough, so 1 gets nothing. Now, if 1 lowers all his values by ε, the allocation changes

since now, f maximizes
∑n

i=2 ωivi(a).

17A simple class of examples is the ”bundled auction” that allocates all items to the player with maximum
value of ti(vi(Ω)), where each ti is an arbitrary monotone real function.
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When there are two players, and all the goods are always allocated, then S-MON is no

longer a burden: in this case, for any distinct allocations a and b we have that ai 6= bi. Thus,

V is very close to being strict order domain, so we expect to be able to use Corollary 1 to

reduce S-MON to W-MON. Specifically, define the interior of V to be
◦

V = {v ∈ V | vi(a) <

vi(b) for all a, b ∈ A s.t. ai ( bi} and define
◦

f :
◦

V → A by
◦

f(v) = f(v).

Theorem 4 Fix any truthful CA or MUA f for two players, that always allocates all the

goods. Suppose that
◦

f is player decisive and onto a non-degenerate range 18. Then:

1. f must be almost affine maximizer in the interior of V .

2. If the {γa}a∈A’s are all zero then f is almost affine maximizer in all of V .

proof: (1)
◦

V is strict order based, with conflicting preferences. Since f is truthful, it

satisfies W-MON. Thus
◦

f satisfies W-MON as well. Therefore, by theorem 1, we can assume

w.l.o.g that
◦

f satisfies S-MON. Therefore, by theorem 3,
◦

f is almost affine maximizer, and,

therefore, so is f .

(2) We show that, if there exists v ∈ V such that f(v) /∈ argmaxa∈A{
∑

i ωivi(a)} then

there exists u ∈
◦

V such that f(u) /∈ argmaxa∈A{
∑

i ωiui(a)}, thus a contradiction. We do

this in two steps, moving from vi to ui ∈
◦

V i (so suppose w.l.o.g that i = 1).

Let f(v) = d. Take any v′
1 ∈

◦

V 1 such that |v′
1(a) − v1(a)| < ε for all a ∈ A. Define

D = {a ∈ A | d1 ⊆ a1 and v1(d) = v1(a) }. Let u1 = v′
1|D+=2ε. Choose ε small enough so

that u1 ∈
◦

V 1 and argmaxa∈A{ω1u1(a) + ω2v2(a)} ⊆ argmaxa∈A{
∑

i ωivi(a)}. By W-MON,

f(u1, v2) ∈ D since d ∈ D, and all alternatives not in D were raised by at most ε, while

d was raised by 2ε. We claim that for any b ∈ argmaxa∈A{ω1u1(a) + ω2v2(a)}, b /∈ D and

the claim follows. To see this suppose by contradiction that b ∈ D. Therefore d1 ⊂ b1, and

so b2 ⊂ d2. But also v1(d) = v1(b), and since ω1v1(d) + ω2v2(d) < ω1v1(b) + ω2v2(b) (since

b ∈ argmaxa∈A{
∑

i ωivi(a)} and d /∈ argmaxa∈A{
∑

i ωivi(a)}) it follows that v2(d) < v2(b),

contradicting b2 ⊂ d2.

If we drop the assumption of always allocating all goods, then S-MON cannot be assumed

without loss of generality – here is a specific CA that sometimes leaves unallocated goods, is

player decisive and onto a full range, but does not satisfy S-MON, and is not almost affine

maximizer:

18It is not enough to require that f has a non-degenerate domain (i.e. we must require that
◦

f has that),
as example 6 in appendix D demonstrates.
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Example 5 For any X ⊆ Ω, let p̃i(X, vj) = vj(Ω)−vj(Ω\X) (these are the Clarke prices).

Suppose f allocates to each player the bundle that maximizes his utility under these prices

(breaking ties for the two players in a consistent manner). It is not hard to verify that this

is truthful and always chooses an optimal allocation. Now, change the prices of player 2 to

be p2(X, v1) = p̃2(X, v1) + v1(Ω)/2 for any X 6= ∅, and p2(∅, v1) = p̃2(∅, v1) = 0. Clearly,

f is still truthful. To see that it chooses a legal allocation, suppose that the Clarke function

chooses ã, and that f(v) = a. a1 = ã1, since the prices of 1 did not change. a2 is either the

empty set or ã2: since we added a constant to the price of all the non-empty bundles, the

difference between the utility of ã2 and any other non-empty bundle remains the same as in

the Clarke function. Since we break ties in the same manner, f chooses either the empty set

or ã2.

To see that f is not almost affine maximizer (and does not satisfy S-MON), take any

g ∈ Ω, and fix v1(Ω) = 16, v1(Ω \ {g}) = 10, v2({g}) = 9 the rest of v is just small

perturbations of the values, so that v will be in the interior of V ). The optimal allocation

is (Ω \ {g}, {g}), so, f allocates Ω \ {g} to 1. But p2({g}, v1) = 13 > v2({g}), so 2 gets

nothing. If player 1 lowers his value for Ω to 12, then p2({g}, v1) = 8, and so the allocation

changes, contradicting S-MON.

6.2 Approximation

Since exact welfare optimization in CAs is computationally hard (see also below), we ask

whether there exist truthful welfare approximations. A social choice function is a c-approximation

of the optimal welfare if, for any type v, the alternative f(v) has welfare of at least 1/c times

the optimal welfare for v. For this class of functions, we are able to show that most of the

qualifiers of the main theorem can be dropped.

Specifically, we define an auction to be unanimity-respecting (essentially equivalent to

the notion of “reasonable” in [30]) if, whenever every player values only a single bundle ai,

and ai ∩ aj = ∅ for all i, j, then f chooses the allocation a = (a1, . . . , an). Using these, the

“almost” qualifier and the player decisiveness property are dropped from the main theorem:

Lemma 3 Any unanimity-respecting truthful CA or MUA that satisfies IIA and achieves a

c-approximation must be an affine maximizer. Furthermore, the weights must satisfy γa = 0

for all alternatives a and and (1/c) ≤ (ωi/ωj) ≤ c for all players i, j.

The proof of this claim is given in Appendix E.
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For two players, where all the goods are always allocated, we can drop even the remaining

qualifiers:

Lemma 4 Any truthful CA or MUA for two players that always allocates all items and

achieves an approximation factor of c < 2 must be an affine maximizer. Furthermore, it

must have a full range, and the weights must satisfy γa = 0 far all a and 0.5 < (ωi/ωj) < 2

for all i, j.

The proof of this claim is given in Appendix E.

6.3 Polynomial-Time Computation

All treatment of mechanisms so far assumed a fixed number of players n and a fixed number

of items k. When formalizing the notion of computational running time we must let these

parameters (or at least the number of items k) grow, and consider the running time as a

function of them. A mechanism whose running time we wish to analyze would apply to all

k and, if n is not fixed, for all n, i.e. would really be a uniform family of mechanisms. The

characterization as affine maximizer above would then only apply to each mechanism in the

family separately (with no explicit relationship across the different values of n and k.) This

implies that, for a given k and n, the constants ωi, γa, and the range A, may all depend on k

and n. We denote these by the superscript n, k, i.e. ωn,k
i , γn,k

a , An,k (we sometimes drop the n

if it is clear from the context). Notice that, if these constants are large (w.r.t. n and k), then

this may limit the range of the auction in a way that will enable it to become polynomial

(e.g. if ωi is much larger than the input size and the other constants, this depicts that player

i will always receive all goods). This motivates the following definition:

Definition 17 An affine maximizer CA or MUA has polynomially bounded constants

if there exists a constant c such that (ωn,k
i /ωn,k

j ), γn,k
a ≤ 2(n·log k)c for all number of goods k,

for any number of players n and any players i, j ∈ {1, . . . , n}, and for any a ∈ An,k.

Note that ωk
i /ω

k
j , ω

k
j /ω

k
i , γ

k
a are real numbers with possibly infinitely many digits. The only

consideration about these numbers is that they are not too small or too large.

In order to represent the mechanisms’ running time as a function of its input size, we

must fix an input representation for the valuations, i.e. a bidding language [28]. Our results

apply to any such choice of a bidding language as long as it is complete (i.e. can represent

all valuation) and sufficiently powerful. In fact, for claiming that affine maximization is as
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computationally hard as exact maximization, we only need the bidding language to have the

following two elementary properties:

Definition 18 A bidding language L is elementary if,

1. For any bid b ∈ L that implicitly represents some valuation v, there exists a polyno-

mial time procedure to construct a bid b′ ∈ L that represents the valuation α · v, i.e.

multiplying all values of all bundle by some constant α > 0.

2. There exists a valid bid in which all bundles except Ω are valued as 0, and Ω is valued

as α, for any α ≥ 0.

For example, OR bids and XOR bids (see details below) are elementary: the first property

is satisfied by just going over all the bid’s blocks and multiplying their value by α.

We can now state formally that affine maximizers CAs and MUAs are as hard to compute

as exact welfare maximizers:

Lemma 5 Any affine maximizer CA or MUA with an elementary bid language, with poly-

nomially bounded constants, and with the additive constants being equal to zero, is as compu-

tationally hard as the exact welfare maximization problem (with the same bidding language

and the same range A).

The proof is given in Appendix F.

Our interest is in cases where the bidding language is sufficiently powerful as to make

exact welfare maximization NP-complete. If the bid language forces the input to be long, e.g.

the value of all possible bundles must be specified, then clearly we can construct an affine

maximizer that will take linear time in the size of this input. Therefore, we need to allow

short inputs. In particular, [23] show that as long as even single-minded bids are possible

then the CA problem with n players is NP-complete (where n is not fixed). We observe

that this is true for MUAs as well, as long as the number of desired items may be given in

binary (rather than unary). When the number of players is fixed, then single-minded bids

(as well as XOR-bids) may be handled in polynomial time, but we show that allowing OR

bids results in an NP-complete optimization problem. More formally:

Definition 19 (Single Minded Bids) A single minded bid of player i has the form (qi, vi),

which implies the following valuation: for MUA, any quantity not smaller than qi has a value

vi, and, for CA, any bundle that contains the bundle qi has value vi. All other bundles have

value 0.
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Definition 20 (OR Bids) Player i’s valuation is represented by OR bids if it is a collection

of pairs (qi
1, vi

1), (q
i
2, vi

2), . . . , (q
i
l , vi

l), where each vi
j is the value of i for the bundle qi

j – for

MUA qi
j specifies just the number of items in the bundle, where in CA it identifies uniquely

some bundle. From this representation, it is implicit that the value of any bundle X is:

vi(X) = max { ∑

j∈I vi
j | I ⊆ {1, . . . , l} s.t. ∪j∈I qi

j ⊆ X and for all j, j′ ∈ I, qi
j ∩ qi

j′ = ∅}
19.

Claim 29 Any welfare maximizing CA or MUA for n players (where n is not fixed), with

full range, is NP-hard, even with single minded bids. If the number of players is fixed, then

the above holds with OR bids as the bidding language.

proof: We give the proof in appendix G.

To integrate our main characterization with this computational hardness, we need a

bidding language that will be rich enough to express all possible valuations, since the char-

acterization does not assume any limitations on the possible valuation of the players. Notice

that single minded bids and OR bids are not rich enough (OR bids can express only super-

additive valuations).

Definition 21 A bidding language L generalizes the bidding language L′ if,

1. L contains all valid bids of L′.

2. L can express all possible player valuations.

For example, XOR bids generalize single minded bids. And, OR bids with dummy items,

and XOR of ORs, both generalize OR bids.

We can now integrate the above claims with our characterization of truthful welfare

approximations:

Theorem 5 Any Unanimity-respecting truthful polynomial-time combinatorial (or multi-

unit) auction, with a bidding language that generalizes single minded bids, and that satisfies

IIA, cannot obtain poly(n, k) welfare approximation (unless P = NP ).

proof: By Lemma 3, any truthful CA or MUA that satisfies Unanimity-respecting and IIA,

and is a poly(n, k) welfare approximation is an affine maximizer with polynomially bounded

constants and the additive constants are zero. By Lemma 5, the affine maximization problem

19In MUA, X and the qi
j are number of goods, and so the condition becomes

∑

j∈I qi
j ≤ X .
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is as computationally hard as the exact maximization problem, and by claim 29, this problem

is NP-hard. Therefore the auction cannot be polynomial (unless P = NP ).

For the case of two-player auctions, we can omit the ”unanimity-respecting” and ”IIA”

assumptions:

Corollary 4 Any truthful polynomial-time multi-unit (or combinatorial) auction between

two players, with a bidding language that generalizes OR bids, and that always allocates all

goods, cannot obtain a welfare approximation better than 2 (unless P = NP ).

proof: Follows from essentially the same arguments as above, replacing Lemma 3 with

Lemma 4.

In contrast, for MUA without the truthfulness requirement there exists an FPAS [31]! Also

notice that a truthful 2-approximation can be easily obtained using a simple auction of the

bundle of all goods.
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A Unrestricted Domains

In this section we give an alternative proof to Roberts’ Theorem, using the notions of our
main theorem. Notice that an unrestricted domain is (trivially) an order based domain
with conflicting preferences. Therefore, our main theorem applies for it (with its qualifiers).
However, if we want to remove the qualifiers, we can prove requirements one to three in a
different (and in fact easier) way. We choose V ∗ = V , and show that for any alternative
c ∈ A, ~1@c is a transitive reference for A\{c}, and that any alternative a ∈ A is a calibrator
for any player i. For this we assume only that f satisfies S-MON:

Proposition 6 If V is unrestricted and f is strongly monotone, then Requirements 1 to 3
are satisfied.

proof: We show this using several claims: the first one summarizes some nice properties of
an unrestricted domain:

Claim 30 Suppose V is unrestricted and f is strongly monotone. Then:

1. x@a > y@b implies (x + δ · ei)@a > (y + δ · ei)@b for any i and δ > 0.
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2. For any x@a there exists v ∈ V such that f(v) = a and v(a) = x.

3. Any x@a and y@b are comparable.

proof: (1) Take v ∈ V such that f(v) = a, v(a) = x, and v(b) = y. By S-MON, f(vi + δ ·
~1, v−i) = a 20, and the claim follows.

(2) Fix some u ∈ V such that f(u) = a. Let δi = xi − ui(a), and vi = ui + δi · ~1. By
S-MON, f(vi, u−i) = a, and thus also f(v) = a. Since v(a) = x, the claim follows.

(3) Fix any u ∈ V such that u(a) = x and f(u) = a. Let us construct some v ∈ V as
follows: v(a) = x, v(b) = y, and for any c 6= a, b: v(c) = u(c). Since x@a > u(c)@c then by
claim 13, it follows that f(v) 6= c (otherwise x@a < u(c)@c). Therefore f(v) ∈ {a, b}, and
the claim follows.

Requirement 1 follows from the part 1 of the claim.

Claim 31 For any c ∈ A, ~1@c is a transitive reference for A \ {c}. Therefore, requirement
2 is satisfied.

proof:

Measurability: Fix any v ∈ V such that f(v) = a and v(a) = x. Therefore x@a > y@c
(where y = v(c)). By claims 13 and 30, x@a > (α · ~1)@c for any α such that α · ~1 ≤ y. For
the other direction, fix any u ∈ V such that f(u) = c. By claim 30 we can assume w.l.o.g
that u(a) = x. Therefore, for any β such that β ·~1 ≥ u(c) it follows that x@a < (β ·~1)@c.

Transitivity: Assume x@a < (α ·~1)@c and ¬(y@b < (α ·~1)@c), but, by contradiction, x@a >
y@b. Choose v ∈ V “for” x@a > y@b. By claim 13 it must be the case that v(c) < (α · ~1).

By S-MON, f(v|c=α·~1 ∈ {a, c}. But if this equals a it contradicts x@a < (α · ~1)@c, and if
this equals c it contradicts ¬(y@b < (α ·~1)@c).

R-monotonicity: follows immediately from claim 13.

L-monotonicity: Suppose by contradiction that (x + δ · ei)@a < (α · z)@c but ¬(x@a <
(α · z)@c). Therefore x@a > (α · z)@c, contradicting to claim 13.

Since a transitive reference cannot measure itself, we need some “rich enough” structure
of transitive references:

Definition 22 (A zero player) Fix any reference z@c. Player i is a zero player w.r.t. Mc

if for any a ∈ Mc and any x ∈ V a: x@a < (α · z)@c ⇒ (x + δ · ei)@a < (α + ε)z@c, for
any ε, δ > 0.

Claim 32 For any c ∈ A and any non-zero player i (w.r.t. A\ {c}) there exists a calibrator
for i. Therefore, requirement 3 is satisfied.

20By definition, ~1 = (1, . . . , 1).
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proof: Since i is a non-zero player, there exists b ∈ A \ {c}, y@b, α · z@c, and ε, δ > 0 such
that the first calibrator requirement holds. For the second requirement, first notice that
0i = ∅, and Sc = A \ {c}. For any y@b choose some a and x@a such that y@b > x@a.
Similarly, for ỹ@b choose some x̃@a such that ỹ@b > x̃@a. Then, for x′ = min(x, x̃) it
follows that x′@a calibrates both y@b and ỹ@b. The third and fourth requirements are also
immediate.

This concludes the proof of the proposition.

Requirement 4: Connected references. f has (a set of) “connected references” if there
exists some R ⊆ A such that, for every c ∈ R, z@c is a transitive reference for Mc (for some
z ∈ Rn, z ≥ 0), and,

1. For any a, b ∈ A there exists c ∈ R such that a, b ∈ Mc.

2. For any c, d ∈ R and any player i there exists a ∈ A \ 0i such that a, c ∈ Md, and
a, d ∈ Mc.

3. For any c ∈ R and any player i, either i is a zero player w.r.t. Mc, or there exists a
calibrator ci ∈ Mc for i (the calibrators ci, cj are not necessarily distinct).

Proposition 7 If V is unrestricted, f is strongly monotone, and |A| ≥ 3, then f has con-
nected references.

proof: Fix any three alternatives as R, the set of connected references. For any c ∈ R, it
follows from claim 31 that ~1@c is a transitive reference for A\{c}. The first two requirements
from R immediately follow from this, and the third requirement follows from claim 32.

Lemma 6 Suppose f has connected references. Then there exist constants ω1, . . . , ωn and
{γa}a∈A such that:

f(v) ∈ argmaxa∈A{
n

∑

i=1

ωi · vi(a) + γa }

for all v ∈ V ∗.

We prove this Lemma in sub-section A.1 below. From all this we can immediately conclude:

Theorem 6 If V is unrestricted, f is strongly monotone, and |A| ≥ 3, then f is affine
maximizer.

Corollary 5 Any truthful social choice function on an unrestricted domain, with at least
three alternatives, must be affine maximizer.

proof: By theorem 1, f satisfies W-MON. By theorem 1, since an unrestricted domain is an
open set, there exists a function f̃ that satisfies S-MON, and that if f̃ is affine maximizer,
then so is f . By theorem 6, f̃ must be affine maximizer, and the claim follows.
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A.1 Connected references

Since there are several references, we denote by mc(x@a) the measure of x@a according to
the reference z@c. Before proving the lemma, we need some useful claims:

Claim 33 For any reference c ∈ R, a ∈ Mc and x ∈ V a,

1. If i is a zero player w.r.t. Mc, then mc((x + δ · ei)@a) − mc(x@a) = 0, for any δ > 0.

2. There exist ωc
1, . . . , ω

c
n, {γa,c}a∈Mc

such that: mc(x@a) =
∑n

i=1 ωc
i · xi + γa,c.

3.
∑n

i=1 ωc
i · zi = 1.

proof: (1) From the definition of a zero player it follows that mc((x+ δ · ei)@a) ≤ mc(x@a).
By claim 21, mc((x + δ · ei)@a) ≥ mc(x@a), and the claim follows.

(2) Similarly to claim 28, since for every c ∈ R and every player i, either there exists a
calibrator for i or i is a zero player, it follows that mc((x + δ · ei)@a) − mc(x@a) = ωc

i · δ,
and the claim follows.

(3) Fix any a ∈ Sc, x ∈ V a, and some β > 0. By claim 22, mc((x+β·z)@a) = mc(x@a)+β.
Therefore

∑n

i=1 ωc
i · zi · β = β, and the claim follows.

Claim 34 For any c, d ∈ R:

1. For any a ∈ Mc ∩ Md, and x ∈ V a: mc(x@a) = md(x@a) − γc,d.

2. For any i, ωc
i = ωd

i = ωi.

proof: First suppose by contradiction that mc(x@a) < md(x@a) − γc,d, and choose some
α such that x@a < (α · z)@c, and α < md(x@a) − γc,d. Since c ∈ Md, and by claim 33,
md((α·z)@c) = α+γc,d < md(x@a). By claim 20, this contradicts x@a < (α·z)@c. Similarly,
suppose by contradiction that mc(x@a) > md(x@a) − γc,d, and choose some α such that
x@a > (α · z)@c, and α > md(x@a) − γc,d. Thus md((α · z)@c) = α + γc,d > md(x@a), a
contradiction.

The second claim follows from the first one by taking some a ∈ Mc∩Md \0i, x ∈ V a, and
δ > 0, and therefore ωc

i · δ = mc((x+ δ · ei)@a)−mc(x@a) = md((x+ δ · ei)@a)−md(x@a) =
ωd

i · δ.

Claim 35 For any c, d ∈ R, and any a ∈ Mc ∩ Md,

1. γc,d = −γd,c.

2. γa,c = γa,d + γd,c.

proof: Fix any x ∈ V a. By claim 34, mc(x@a) = md(x@a) − γc,d, and also md(x@a) =
mc(x@a) − γd,c. Therefore γc,d = −γd,c. Since mc(x@a) =

∑n
i=1 ωi · xi + γa,c, md(x@a) =

∑n

i=1 ωi · xi + γa,d, and mc(x@a) = md(x@a) − γc,d, the second claim follows.
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Lemma 6 Suppose f has connected references. Then there exist constants ω1, . . . , ωn and
{γa}a∈A such that:

f(v) ∈ argmaxa∈A{
n

∑

i=1

ωi · vi(a) + γa }

for all v ∈ V ∗.

proof: Fix any c∗ ∈ R. For any a ∈ A and x ∈ V a, choose any c ∈ R such that a ∈ Mc,
and define w(x@a) = mc(x@a) − γc∗,c (where γc∗,c∗ = 0 by definition, also notice that for
any c 6= c∗, c∗ ∈ Mc by the second property of R, and so γc∗,c is well defined).

We first claim that for any c ∈ R, a, b ∈ Mc, x ∈ V a, and y ∈ V b, w(x@a) − mc(x@a) =
w(y@b) − mc(y@b). Let d ∈ R (not necessarily distinct from c) be the reference that de-
termined w(x@a). Therefore: w(x@a) = md(x@a) − γc∗,d = mc(x@a) − γd,c − γc∗,d =
mc(x@a) − γc∗,c (where the second equality follows from claim 34, and the third equality
follows from claim 35, since c∗ ∈ Mc ∩ Md). Similarly, let e ∈ R (not necessarily distinct
from c, d) be the reference that determined w(y@b). Therefore: w(y@b) = me(y@b)−γc∗,e =
mc(y@b) − γe,c − γc∗,e = mc(y@b) − γc∗,c, and so w(x@a) − mc(x@a) = w(y@b) − mc(y@b).

From this it follows that f(v) ∈ argmaxa∈A,x=v(a){ w(x@a)} for any v ∈ V ∗: by contradic-
tion, let v ∈ V ∗ be such that f(v) = a, but w(x@a) < w(y@b) (for x = v(a), y = v(b)). Let
c ∈ R be such that a, b ∈ Mc. Since w(x@a)−mc(x@a) = w(y@b)−mc(y@b), it follows that
mc(x@a) < mc(y@b), contradicting claim 24. From this the Lemma immediately follows.

B Proof of claim 2

Claim 2 Any truthful function f has (price) functions pi : A × V−i → R∪ {∞} such that,
for any v ∈ V and any player i, f(v) ∈ argmaxa∈A{vi(a) − pi(a, v−i)}.

proof: Since f is truthful it has price functions p̃i : V → R. Suppose by contradiction
that there exists v ∈ V and ui ∈ Vi such that f(v) = f(ui, v−i) = a, but p̃i(v) 6= p̃i(ui, v−i).
W.l.o.g p̃i(v) > p̃i(ui, v−i). Thus when the other players declare v−i, and the true type of
player i is vi, she will increase her utility by declaring ui, a contradiction. Therefore we
can define the price functions pi : A × V−i → R ∪ {∞}, as follows. For any i, v−i ∈ V−i,
and a ∈ A, if there exists vi ∈ Vi such that f(v) = a we set pi(a, v−i) = p̃i(v), otherwise
pi(a, v−i) = ∞.

To see that f(v) ∈ argmaxa∈A{vi(a) − pi(a, v−i)}, suppose by contradiction that there
exists v ∈ V such that f(v) = a, and vi(a) − pi(a, v−i) < vi(b) − pi(b, v−i). Let ui ∈ Vi be
the type that determined pi(b, v−i). Therefore if i will declare ui instead of vi, when his true
valuation is vi, she will increase his utility, a contradiction.

C Proof of claim 26

We split claim 26 to two claims:
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Claim 36 Suppose m : R+ → R is monotonically non-decreasing and there exists h : R+ →
R+ such that m(x + δ) − m(x) = h(δ) for any x, δ ∈ R+. Then there exist ω ∈ R+ such
that h(δ) = ω · δ.

proof: Let ω = h(1) (note that ω ≥ 0 since m is non-decreasing). First we claim that for
any two integers p, q, h(p/q) = ω · (p/q). Note that h(1) = m(1) − m(0) =

∑q−1
i=0 m((i +

1)/q)−m(i/q) = q ·h(1/q). Thus h(1/q) = (1/q) ·h(1). Similarly, h(p/q) = m(p/q)−m(0) =
∑p−1

i=0 m((i + 1)/q) − m(i/q) = p · h(1/q) = (p/q) · h(1) = (p/q) · ω. Now we claim that for
any real δ, h(δ) = δ ·ω. Notice that since m is monotonically non-decreasing then h must be
monotonically non-decreasing as well. Suppose by contradiction that h(δ) > δ · ω. Choose
some rational r > δ close enough to δ such that h(δ) > r · ω. Since h is monotone and r > δ
then h(r) ≥ h(δ), but since r is rational, h(r) = r · ω < h(δ), a contradiction. A similar
argument holds if h(δ) < δ · ω.

Claim 37 Suppose that X ⊆ Rn has the property that x ∈ X and y ≥ x implies y ∈ X. Let
m : X → R be monotonically non-decreasing, and suppose there exist ω1, . . . , ωn such that
m(x + δ · ei) − m(x) = ωi · δ for any i, x ∈ X, and δ > 0. Then there exist γ ∈ R such that
m(x) =

∑n

i=1 ωi · xi + γ.

proof: First we claim that for any x, y ∈ X such that yi ≥ xi for all i, it is the case that
m(y) = m(x) +

∑n

i=1 ωi · (yi − xi). Notice that (y1, x2, . . . , xn) ∈ X, and m(y1, x2, . . . , xn) =
m(x) + h1(y1 − x1). Repeating this step n times we get m(y) = m(x) +

∑n
i=1 ωi · (yi − xi).

Now fix some x∗ ∈ X. We claim that for any x ∈ X, m(x) = m(x∗) +
∑n

i=1 ωi · (xi −x∗
i ).

To see this, choose some y such that yi ≥ xi, x
∗
i for all i. Thus m(y) = m(x)+

∑n

i=1 ωi·(yi−xi)
and also m(y) = m(x∗) +

∑n
i=1 ωi · (yi − x∗

i ), therefore the claim follows.

D Additional Example for Theorem 4

This example shows that it is not enough to require that f has a non-degenerate domain –

we must require that
◦

f has that:

Example 6 Suppose a CA for two players, who considers three alternatives: ci: allocating
all the goods to player i, and a: allocating half the goods to player 1 and half to player 2.
The allocation rule is as follows:

f(v) =























c2 v2(c
2) >

√

v1(c1)

c1 v2(c
2) <

√

v1(c1)

a v2(c
2) =

√

v1(c1) and v2(c
2) = v2(a)

and v1(c
1) = v1(a)

c1 otherwise

If a player gets nothing he pays zero. If player 1 is allocated some non-empty bundle he pays
(v2(c

2))2, and if player 2 is allocated some non-empty bundle he pays
√

v1(c1). To verify
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that this is truthful, notice that the prices of each player does not depend on his deceleration,
and that a player always receives an allocation that maximizes his utility under these prices.

This auction is player decisive and has a non-degenerate domain, but is not almost affine
maximizer - indeed, it does not satisfy S-MON: if a is chosen and player i raises his value
for every non empty bundle by some δ > 0, then ci is chosen, thus contradicting S-MON.

In the interior of the domain, however, the situation changes. First,
◦

f satisfies S-MON

(and this is not accidental, as theorem 1 implies). But, clearly,
◦

f is not almost affine

maximizer, and this is since the range of
◦

f becomes degenerate.

E Proofs for section 6.2

Proof of Lemma 3:
First notice that, by the unanimity-respecting property, it follows that f has full range,

since every possible allocation is obtained when the players are unanimous for it. Also notice
that, since f is a c-approximation, it must be player decisive.

We now show that V ∗ from the proof of the main theorem now becomes V ∗ = {v ∈
V | vi(a) > 0∀i and a ∈ A \ 0i}. This will immediately follow from the claim that, for any
a ∈ A: V a = {v(a)|vi(a) > 0 for all i s.t. a /∈ 0i}, where the V a’s are defined in the proof of
the main theorem. For a ∈ S (S = {a ∈ A|a1 /∈ 01}), then by definition, x ∈ V a iff there
exists v ∈ V s.t. f(v) = a and v(a) = x. Therefore, take vi so that player i is interested in
ai with vi(ai) = xi (and if ai ∈ 0i then i has a value of zero for all bundles), and so f(v) = a,
since f is unanimity-respecting. For the ci alternatives, y ∈ V ci

iff there exists some a ∈ S
and x ∈ V a such that y@ci > x@a. Take some allocation a s.t. a1, ai 6= ∅. Thus a ∈ S.
For any ε > 0, let x = (ε, . . . , ε). As shown before, x ∈ V a. Let v be some type in which
all players are interested in the single bundle ai with a value of ε, and player i, in addition,
has a value of 2ncε for ci. Since f is a c-approximation, it follows that f(v) = ci, and so
y@ci > x@a (where we choose ε so that yi = 2ncε). For the other alternatives a, x ∈ V a

iff there exists y ∈ V ci

s.t. x@a > y@ci (for all i s.t. a /∈ 0i). For this, start with a type v
in which all players are unanimous for a with value x, except player i who has value xi − ε.
Thus f(v) = a. Now, if we raise all non-zero coordinates of i by ε, then by S-MON f will
still choose a, and so x@a > y@ci, where y ∈ V ci

, as needed.
Therefore, by our main theorem, f is affine maximizer for any v ∈ V ∗. We now show that

the γa constants are all zero. Assume w.l.o.g that γa ≥ 0 for any a ∈ A. Let b an alternative
with γb = 0. Suppose all players are unanimous with value δ for b. Then f(v) = b. Suppose
that bj 6= ∅. Then, if j raises all his non-zero values by ε, b is still chosen. Since v(b) ∈ V b

and vcj ∈ V cj

, then by claim 28, γcj ≤ γb +
∑

i ωiδ. Since this is true for any δ > 0 it follows
that γcj = 0. Now suppose by contradiction that γa > γcj for some alternative a. Consider
the type where j values all the goods for a value of cε, and all players value a by some ε′ s.t.
∑

i ωiε
′ < ε. Then, for small enough ε, ε′, j will not receive all the goods since γa > γcj . But

this contradicts the approximation guarantee.
To verify that for any i, j, (ωi/ωj) ≤ c, suppose i, j are interested only in the bundle that
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contains all the goods, for a value of 1 and c+ ε, respectively. From the approximation ratio
it follows that j wins, and therefore ωi · 1 ≤ ωj(c + ε).

We are left to show that f is an affine maximizer for any v ∈ V . Suppose by contradiction
that there exists a type v s.t. f(v) = a but

∑

i ωivi(a) <
∑

i ωivi(b) for some alternative
b. We first verify that v(a) ∈ V a by adding ε to all non-zero coordinates of any player
i with ai 6= ∅ (by S-MON the result remains a). By claim 28, it follows that for every
ci, ωivi(c

i) ≤ ∑

i ωivi(a) (as shown above, if vi(c
i) > 0 then v(ci) ∈ V ci

). We turn this
inequality to be strict by choosing two players i, j with ai, aj 6= ∅ and raise all their non-zero
values by ε. 21 We now move to some u ∈ V ∗ in which the measure of a is still smaller
than that of b: For every player i, increase all non-zero coordinates by ε, and ci’s value by
2ε. Let ui denote this new type of i. By S-MON, f(v−i, ui) is either a or ci, and since
ωiui(c

i)+γci <
∑

i ωivi(a)+γa (we choose a small enough ε) we have that f(v−i, ui) = a. By
induction, f(u) = a. But now u ∈ V ∗, and we still have

∑

i ωiui(a) + γa <
∑

i ωiui(b) + γb,
thus a contradiction.

Proof of Lemma 4:
We observe the following:

1. Any c-approximation algorithm must satisfy player decisiveness: Fix any player i and
v−i. If vi(Ω) = (c + 1) maxj 6=i vj(Ω) then f(vi, v−i) must allocate all goods to i in order to
c-approximate the optimal welfare. (In fact this is true for any number of players).

2. Any (2 − ε)-approximation that always allocates all the goods must have a full range,
even in its interior: Fix any allocation a = (a1, a2) where a2 = Ω \ a1. If player i wants ai

with some value x (for i = 1, 2) then a has welfare of 2x and any other allocation has a value
at most x (if player i is allocated a bundle that contains ai then the bundle of player j is
partial to aj). This type is on the boundary of V , but we can easily shift it to the interior by
choosing a small enough δ (w.r.t. ε and x) and “space” the values for other bundles with δ
jumps: a bundle X + Si has value lδ, where l = |X|, and a bundle X ⊃ Si has value x + lδ.
We need to choose δ so that 2x/(x + Lδ) > 2 − ε (where L is the number of goods).

3. For the case of a (2−ε)-approximation CA (or MUA) for two players (that always allocates
all the goods), V ∗ from the main theorem’s proof equals V , as follows. Notice that definition
of V a’s for this case become: V c1 = V |c1, V a = {v(a)|f(v) = a} (for any a 6= ci), and
V c2 = {y|∃a, x ∈ V a s.t. y@c2 > x@a}. For any a ∈ A s.t. ai 6= ∅ for i = 1, 2, for any x > 0
we have seen in the last section that there exists v ∈ V such that v1(a) = v2(a) = x and
f(v) = a. Thus (x, x) ∈ V a. For any y ≥ (x, x) it follows from the closure under positive
translation, that y ∈ V a. Since this is true for any x > 0 it follows that V a = R2

+. For the
alternative c2, and any y@ci, since x = (y2/4, y2/4) ∈ V a for some a ∈ A, it follows that
y@ci > x@a (since this is a (2− ε)-approximation), and so y ∈ V ci

. Thus V ci

= R2
+, and so

V ∗ =
◦

V .

21The possibility that only one player, say j, receives a non-empty bundle in a is handled by performing
the move from vj to uj last. Then, neither a nor cj can be chosen since both measures are strictly smaller
than b’s measure – and now v(b) ∈ V b.

53



Since all the goods are always allocated, we conclude, by theorem 4, that f is affine
maximizer in its interior.

We now claim that the γa constants are all equal to zero: Otherwise, suppose there are
two allocations a, b s.t. γb > γa. Then, if we choose x = (γb−γa)/4 to be the x of observation
2 (as the value of ai), we get that a will not be chosen, contradicting the fact that a must
be chosen in order to be a (2− ε)-approximation (as shown there). Therefore, by theorem 4
again, f is affine maximizer.

We are left to show that ωi ≤ 2ωj. Otherwise suppose ωi > 2ωj, and consider the case
where player i is interested only in Ω, for a value of 1, and player j is also interested only in
Ω, for a value of 2. Then, f will allocate Ω to i, contradicting the (2 − ε)-approximation.

F Proof of Lemma 5

Lemma 5 Any affine maximizer CA or MUA with an elementary bid language, with
polynomially bounded constants, and with the additive constants being equal to zero, is as
computationally hard as the exact welfare maximization problem (with the same bidding
language and the same range A).

proof: Denote by AM the affine maximizer CA or MUA, and by EM the exact welfare
maximizer. To prove the claim, we need to show a reduction from EM to AM . Before
showing this, we need a method to calculate a close enough bound on the constants ωi.
We assume w.l.o.g that ω1 = 1 (any affine maximizer with constants {ω1, . . . , ωn} is also
an affine maximizer with constants {ω1/ω1, . . . , ωn/ω1}). Suppose the input bid is of size
l (i.e. it contains l bits), let M = 2l be an upper bound on the value of any bundle, and
1/R = 1/2l be a lower bound on the precision of the bundle values, i.e. if vi(X) > vi(Y )
then vi(X) ≥ vi(Y ) + (1/R).

Claim 38 There is a polynomial time procedure that computes ω̃i such that 1 ≤ (ωi/ω̃i) ≤
1 + 1/(2nMR).

proof: We describe a simple iterative procedure: maintaining an interval I that contains
ωi, while reducing its size half until it is sufficiently small. We use a bid b(α1, αi), which
represents n players, where players 1 and i are interested only in the bundle Ω for a value of
α1, αi, respectively, and the other players have a value of zero for all bundles.

The procedure works as follows. Initially, find some α s.t. AM(b(α, 1)) = 1 (i.e. the
auction allocates all goods to player 1). This is done by starting with α = 1 and doubling it
until the desired allocation is achieved. Since ωi is polynomially bounded, i.e. ωi ≤ 2(n·log k)c

,
this requires at most 2(n · log k)c steps. Since the auction choose the allocation with maximal
weighted welfare, we have that ωi ·1 ≤ ω1α = α. Then we find c1 such that AM(b(α, c1)) = i,
using the same doubling method. This again takes polynomial time in the number of players
and the input size. Therefore we now have that ωi ∈ [(α/c1), (α/c0)], where c0 = 1. We now
set c∗ = (c1 + c0)/2. And test AM(b(α, c∗)). If this equals 1 then we set c0 = c∗, otherwise
this equals i and we set c1 = c∗. Thus we maintain ωi ∈ [(α/c1), (α/c0)]. We repeat this
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until c1 − c0 ≤ 1/(2nMR), and then determine ω̃i = α/c1. Therefore 1 ≤ ωi/ω̃i ≤ c1/c0.
Since c0 ≥ 1 it follows that c1/c0 = (c1 − c0)/c0 + 1 ≤ 1 + 1/(2nMR). This binary search
procedure takes log(β(2nMR)), where β is the initial length of the interval. This is again
polynomial in the number of players and the input size.

We can now describe a reduction from EM to AM :

1. Given an input bid b = (b1, . . . , bn) for EM , first compute the bounds {ω̃i}i according
to claim 38.

2. Create a bid b̃ such that b̃i represents the valuation ṽi = vi/ω̃i (where vi is the valuation
that bi represents) – there is an efficient method to compute b̃ from b since the bid
language is elementary.

3. Return the allocation AM(b̃) (as the allocation that EM outputs).

The correctness of this reduction immediately follows from the following claim:

Claim 39 For any two allocations a, b ∈ A, if
∑

i ωiṽi(a) ≥ ∑

i ωiṽi(b) then
∑

i vi(a) ≥
∑

i vi(b).

proof: We show that
∑

i vi(a) <
∑

i vi(b) implies
∑

i ωiṽi(a) <
∑

i ωiṽi(b). First note that
∑

i ωi(ṽi(b)− ṽi(a)) =
∑

i(ωi/ω̃i)(vi(b)− vi(a)) =
∑

i(vi(b)− vi(a))+
∑

i((ωi/ω̃i)−1)(vi(b)−
vi(a)). Since

∑

i vi(b) >
∑

i vi(a) then
∑

i(vi(b) − vi(a)) ≥ 1/R. Since 0 ≤ ((ωi/ω̃i) − 1) ≤
1/(2nMR) and (vi(b) − vi(a)) ≥ −M , it follows that, for every i, ((ωi/ω̃i) − 1)(vi(b) −
vi(a)) ≥ (−M)(1/(2nMR)) = −(1/(2nR)). Therefore:

∑

i((ωi/ω̃i) − 1)(vi(b) − vi(a)) ≥
n(−1/(2nR)) = −1/(2R). So we can conclude that

∑

i ωi(ṽi(b)− ṽi(a)) ≥ 1/R−1/(2R) > 0.

This concludes the proof of the lemma.

G The hardness of welfare maximization

In this section we prove that CA or MUA that is an exact welfare maximizer (with the
appropriate bid language) is NP-hard. For two players, we prove this for any affine maxi-
mizer, even with additive constants not equal to zero (this claim is stronger then proving
NP-hardness for exact welfare maximization and using Lemma 5, since Lemma 5 requires
the additive constants to be zero). For n players, we prove this for exact welfare maximizers.

Lemma 7 An affine maximizer CA or MUA for two players, with OR bids as the input,
that has polynomially bounded constants and full range 22, is an NP-complete problem.

22In fact it is enough to assume that the range contains the following three allocations: allocating all goods
to player 1, allocating k − 1 goods to player 1, and one goods to player 2, and allocating all goods to player
2.
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proof: We show this in two parts. First, we show how to calculate polynomial bounds on
the constants ωi and γa (we omit the superscript k when it is clear from the context), in
polynomial time. We then use these bounds to describe a reduction of exact-subset-sum to
MUA, and of independent-set to CA.

We also assume w.l.o.g that ω1 = 1 and γa ≥ 0 for all a ∈ A (since f is also an affine
maximizer with all the constants multiplied by 1/ω1, and with all the γa constants increased
by the same value). Denote by c the constant implied from the polynomially bounded
constants definition.

By an abuse of notation, we denote by k the alternative that allocates all goods to player
1, by k − 1 the alternative that allocates k − 1 goods to player 1 and 1 good to player 2
(for CA, there are several such alternatives - we define below exactly to which one we refer),
and by 0 the alternative that allocates all goods to player 2. We need three bounds on the
constants, according to the following three claims:

Claim 40 There exists a polynomial time procedure to calculate a bound γ̄ > max{(γa −
γk), (γa − γk−1)}, for all a ∈ A.

proof: We first show how to find a bound on γa − γk. Assume that player 1 has the single
OR bid (k : 2), and 2 has a single OR bid (1 : 1). We double 1’s price (for k) l times, until
k is chosen. We denote this as f(k : 2l | 1 : 1) = k. Since the auction is affine maximizer
with ω1 = 1, we have: 2l + γk ≥ ω2 + γa for every a ∈ A, therefore 2l ≥ γa − γk, so we can
take the bound to be 2l. To verify that l is polynomial, notice that 2l−1 ≤ ω2 + γa (where
f(k : 2l−1 | 1 : 1) = a 6= k), and so l ≤ 4(log k)c, i.e. the number of bits and iterations l is
linear in (log k)c.

To bound γa − γk−1, we use a similar procedure: we iteratively find the minimal r s.t.
f(k − 1 : 2r | 1 : 2r) = k − 1. Notice first that such an r exists: if 2r > γa − γk−1 this
implies that 2r + ω22

r + γk−1 > ω22
r + γa and so any a 6= k, k − 1 cannot be chosen, and

if ω22
r > γa − γk−1 then this implies that 2r + ω22

r + γk−1 > 2r + γk, and so k cannot be
chosen. Since f(k − 1 : 2r | 1 : 2r) = k − 1 it follows that 2r + ω22

r + γk−1 > γa, and so
γa−γk−1 ≤ 2r(ω̄+1), where ω̄ is the upper bound on ω2 that is calculated in the next claim.
To verify that r is polynomial, notice that either 2r−1 ≤ γa − γk−1 or ω22

r ≤ γa − γk−1, and
hence r is linear in (log k)c.

Claim 41 There exists a polynomial time procedure to calculate a bound ω̄ ≥ ω2 in polyno-
mial time.

proof: We start with f(k : 1 | k : 2), and double 2’s bid until f(k : 1 | k : 2r2) = 0, that is
2 wins all the goods. Thus, ω22

r2 + γ0 ≥ 1 + γk, and so 2r2ω2 ≥ γk − γ0.
We continue with f(k : 2 | k : 1+ 2r2) and double 1’s bid until f(k : 2r1 | k : 1+ 2r2) = k.

Now, 2r1 + γk ≥ ω2(1 + 2r2) + γ0. In particular ω2(1 + 2r2) ≤ 2r1 + γk − γ0 ≤ 2r1 + 2r2ω2. We
conclude that ω2 ≤ 2r1 = ω̄.

To verify that r1 and r2 are polynomial, notice first that ω22
r2−1 − γ0 ≤ 1 + γk, and

therefore r2 is linear in (log k)c. Similarly, r1 is polynomial since 2r1−1+γk ≤ ω2(1+2r2)+γ0,
in fact r1 is O(log k)2c.
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Claim 42 There exists a polynomial time procedure to calculate a bound ω ≤ ω2 in polyno-
mial time.

proof: We start by iteratively finding β̂ s.t. f(k : 1 | k : β̂) = 0, and then m s.t. f(k : m | k :
β̂) = k. Therefore γa ≤ ω2β̂ + γ0 ≤ m + γk (for all a ∈ A), i.e. 0 ≤ ω2β̂ − (γk − γ0) ≤ m.
Define β = β̂+1. It follows that f(k : 1 | k : β) = 0. We note that finding m takes O(log k)2c

time (as detailed in the proof of claim 41).
Consider the interval I = [ω2β̂ − (γk − γ0) , ω2β − (γk − γ0)]. The length of I is ω2 but

we do not have exactly its two ends. We shall find 2 distinct points in I, then the distance
between these 2 points is a lower bound for ω2. However we have an interval [1, m] that
contains I. From this we can find a point α ∈ I, using binary search as follows: Set l0 = 1,
l1 = m. Iteratively, let α = (l0 + l1)/2. (notice that f(k : α | k : β̂) may only be either 0 or
k, and the same for β instead of β̂, since f(k : 1 | k : β̂) = 0). Test if f(k : α | k : β̂) = 0:
If so, α ≤ ω2β̂ − (γk − γ0). Therefore set l0 = α and start another iteration. Otherwise, test
if f(k : α | k : β) = k: If so, α ≥ ω2β − (γk − γ0). Therefore set l1 = α and start another
iteration. Otherwise we have that α ∈ I. Let L be the number of iterations performed. Thus,
after L − 1 iterations we still have that I ⊆ [l0, l1]. Therefore m/2L−1 = l1 − l0 ≥ |I| = ω2,
and so the procedure will iterate at most O(log k)3c times.

To find a second point in I we find ε s.t. either (α + ε) ∈ I or (α − ε) ∈ I. We start
with ε = 1, and check if either (α + ε) ∈ I or (α − ε) ∈ I, using the test described above. If
not, we decrease ε by half and continue. When we stop, we will have ε > ω2/4 - the distance
between α to one of I’s ends must be at least |I|/2 = ω2/2. Thus, since ω2 > 1/(log k)c

(this follows since ω1/ω2 < (log k)c), we conclude that finding ε took polynomial time as well
(we assume that to represents a polynomial proper fractional number we separately store
its denominator and numerator as integers occupying together polynomial number of bits).
Now, we have an interval of size ε that is contained in I. Therefore ω2 = |I| ≥ ε. On the
other hand, we have ε ≥ ω2/4 ≥ 1/4(log k)c, so we can take ω = ε.

Reducing Exact Subset Sum to MUA: In order to show that an affine maximizer MUA
(with OR bids, denoted below as AMOR) is NP complete we show that it is harder from the
following NP-complete problem:

The Problem Exact Subset Sum denoted below as Exact:

1. Input: a finite collection of positive integers S, r1, r2, . . . , rd.

2. Output: “yes” if there is a sub-collection I ⊆ {1, . . . , d} of ri’s that amounts to S, that
is Σi∈Iri = S, and “no” otherwise.

The reduction: Given an input J = (S, r1, r2, . . . , rd) for EXACT, the reduction con-
structs the following input τ(J) for AMOR:

1. k = S.

2. compute the bounds γ̄, ω̄, and ω (notice that these are computed for this specific k).
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3. The OR bids for player 1 are: (r1, c1r1), . . . , (rd, c1rd), where c1 = 2·γ̄·ω̄
ω

4. The OR bids for player 2 is: (1, c2), where c2 = γ̄

ω
.

And then, answer “yes” if and only if all goods are allocated to player 1.

c1 can be viewed as the average price of one item for player 1 c1 > ω2c2 implies that the
donation of player 2 to the welfare is always smaller in case both compete the same item.
Intuitively, the prices of both players are factored by γ̄ and so the γa’s never affect the chosen
allocation.

Claim 43 If Exact(J) is “yes” then AMOR(τ(J)) allocates all the S items to player 1.

proof: If Exact(J) is “yes” then there is I ⊆ {1, . . . , d} such that Σi∈Iri = S. The weighted
welfare of allocating all items to player 1 is then c1 · S + γS. We show that in this case
any other allocation achieves a sub optimal weighted welfare. The following is an upper
bound for the weighted welfare achieved whenever at least one item is allocated to player 2:
c1(S − 1) + ω2c2 + γx0

, where γx0
≥ γa for all alternatives a 6= k. We argue that c1 · S + γS

is greater than this upper bound and hence AMOR(τ(J)) would allocate all the items to
player 1.

c1 · S + γS > c1(S − 1) + ω2c2 + γx0
if and only if c1 > ω2c2 + γx0

− γS. Now, c1 = 2·γ̄·ω̄
ω

≥
2·γ̄·ω2

ω
= 2ω2c2. Thus, it is suffice show that 2ω2c2 > ω2c2 + γx0

− γS. This is true since

ω2c2 = ω2
γ̄

ω
≥ γ̄ > γx0

− γS.

Claim 44 If Exact(J) is “no” then AMOR(τ(J)) allocates at least one item to player 2.

proof: Assume by contradiction that AMOR(τ(J)) allocates all the items to player 1. We
argue that the allocation of S − 1 items to player 1 and one item to player 2 has a higher
welfare. That is, we argue that v1(S) + γS < v1(S − 1) + ω2v2(1) + γS−1. Note that in
this case v1(S) = v1(S − 1), since otherwise this implies that there exists I ⊆ {1, . . . , d} s.t.
Σi∈Iri = S. Thus it is suffice to show that γS < ω2c2+γS−1, or equivalently γS−γS−1 < ω2c2.
But, γS − γS−1 < γ̄ ≤ ω2c2.

This completes the proof w.r.t. MUA.

We now show a reduction from Independent Set to an affine maximizer CA for two
players. This is in the spirit of [23], but for two players, and where the CA obtains the
weighted optimum, and not simply the optimum.

The Problem Max. Independent Set:

1. Input: An undirected graph G = (V, E).

2. Output: The size of the maximal independent set23 of G.

23a set of vertices I ⊆ V s.t. for any u, v ∈ I, (u, v) /∈ E
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The reduction: Given a graph G, choose some node u0 ∈ V , and define the graph
G−u0

= G\{u0} 24. Let x, x−u0
be the size of the max. independent set of G, G−u0

respectively.
It is either the case that x = x−u0

or that x = x−u0
+ 1. We first determine which case is it,

using the following procedure. We then compute recursively x−u0
and, by that, determine x.

1. Construct a set of items s.t. each edge becomes an item. Define the specific bundles
(for any u ∈ V ): Bu = {(u, u′) ∈ E|u′ ∈ V } (i.e. all the edges of u).

2. Compute the bounds γ̄, ω̄, and ω for this problem instance. Here, the allocation termed
k − 1 is the allocation where player 1 receives E \ Bu0

, and player 2 receives Bu0
.

3. Define c1 = (2ω̄γ̄)/ω, and c2 = γ̄/ω.

4. Construct The OR bids for player 1: (Bu, c1)u 6=u0
– i.e. 1 values any bundle Bu (except

Bu0
) by c1. And the OR bids for player 2: (Bu0

, c2) (i.e. 2 only wants the bundle Bu0
).

5. Execute the CA. If player 2 receives all the items in Bu0
then x = x−u0

+ 1, otherwise
x = x−u0

.

Before proving the correctness of the reduction, it is useful to notice that the value of
player 1 for the entire set of goods is v1(E) = x−u0

· c1, since there are x−u0
(but no more)

disjoint bundles that player 1 is interested in, and each has a value of c1.

Claim 45 If x = x−u0
then player 2 will not receive Bu0

.

proof: If x = x−u0
then every max. IS for G−u0

contains a neighbor of u0 (otherwise, we
can take this set, add u0, and get an IS for G with size x−u0

+ 1). Thus, v1(E \ Bu0
) ≤

(x−u0
− 1)c1 < xc1 = v1(E). Therefore, if 2 receives all the items of Bu0

, then the maximal
weighted welfare that can be achieved is v1(E\Bu0

)+ω2v2(Bu0
)+γa ≤ (x−1)c1+ω2c2+γa (for

some γa). Allocating all items to 1 will result in a weighted welfare of v1(E)+γk = xc1 +γk.
We claim that the latter term is strictly larger, and by that the claim is proved. But this
follows since c1 − ω2c2 > γ̄.

Claim 46 If x = x−u0
+ 1 then player 2 will receive all the items of Bu0

.

proof: Since x = x−u0
+ 1, every max. IS for G contains u0 (if we had a max. IS that

does not contain u0, it will be also a max. IS for G−u0
, contradicting x−u0

< x). Let S
be any max. IS for G. Since S contains u0 it does not contain any of its neighbors. Thus
it contains x − 1 nodes s.t. none of them has an edge in Bu0

. Therefore, the set of goods
E \Buo

contains x− 1 disjoint bundles that player 1 values, and so v1(E \Buo
) ≥ (x− 1)c1.

Suppose by contradiction that player 2 does not receive Bu0
. Then the maximal weighted

welfare is at most v1(E) + γa = xu0
c1 + γa = (x− 1)c1 + γa. But the following allocation has

a larger weighted welfare: v1(E \ Buo
) + ω2v2(Buo

) + γk−1 ≥ (x − 1)c1 + ω2c2 + γk−1 (this
follows since ω2c2 > γa − γk−1), a contradiction.

24I.e. V−u0
= V \ {u0} and E−u0

= {(u, u′) ∈ E|u, u′ 6= u0}
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The correctness of the reduction now follows from these two claims: if player 2 receives
Bu0

then it cannot be the case that x = xu0
, and therefore x = xu0

+ 1. And if player 2 does
not receive Bu0

then it cannot be the case that x = xu0
+ 1, and therefore x = xu0

.

Lemma 8 A exact welfare maximizer MUA or CA for n players, with single minded bids
as the input and a full range is an NP-hard problem.

proof: For CA this was proved by [23]. We prove this for MUA.

Reducing Exact subset sum to MUA: Given an input J = (S, r1, r2, . . . , rd) for
EXACT, the reduction constructs the following input τ(J) for Multi Unit Auction with Single
Minded Bids and n players (denoted as MU-SMB):

1. k = S, n = d + 1.

2. The Single minded bids for players i = 1, . . . , d are: (ri, 2 ·ri), i.e. every player desires
ri items for a value of 2 · ri.

3. The Single minded bid for player d + 1 is: (1, 1).

And then, answer “yes” if and only if none of the items is allocated to player d + 1.

Claim 47 If Exact(J) is “yes” then MU-SMB(τ(J)) allocates none of the items to player
d + 1.

proof: If Exact(J) is “yes” then there is I ⊆ {1, . . . , d} such that Σi∈Iri = S. Thus
allocating ri items to players i = 1, . . . , d has total welfare of 2S. Allocating one item to
player d+1 means that at least one player from i = 1, . . . , d will now be allocated a quantity
less than ri, and thus his value will be zero. Since this player has a value of at least 2 for ri

items, we have that the total welfare when allocating player d + 1 a non-empty bundle is at
most 2S − 2 + 1 < 2S. Therefore MU-SMB will not allocate any item to player d + 1.

Claim 48 If Exact(J) is “no” then MU-SMB(τ(J)) allocates at least one item to player
d + 1.

proof: Let I be the set of players that received a non empty bundle. Suppose by contra-
diction that d + 1 /∈ I. Since Exact(J) is “no” then Σi∈Iri < S. Therefore there exists an
item who is not allocated, or is allocated to someone that is indifferent to not having it.
Delivering this item to player d + 1 will increase the welfare by 1, a contradiction.
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