
Open Research Online
The Open University’s repository of research publications
and other research outputs

Towards a chemical model for software architecture
reconfiguration
Journal Item
How to cite:

Wermelinger, Michel (1998). Towards a chemical model for software architecture reconfiguration. IEE Proceedings -
Software, 145(5) pp. 130–136.

For guidance on citations see FAQs.

c© 1998 IEE

Version: Accepted Manuscript

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1049/ip-sen:19982294

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://dx.doi.org/doi:10.1049/ip-sen:19982294
http://oro.open.ac.uk/policies.html


Towards a Chemical Model for Software
Architecture Reconfiguration

Michel Wermelinger

Departamento de Informática
Faculdade de Ciências e Tecnologia

Universidade Nova de Lisboa
2825 Monte da Caparica, Portugal

E-mail: mw@di.fct.unl.pt

Abstract

The Chemical Abstract Machine is a general-purpose, simple, and intuitive
programming model. Among other domains, it has been used forthe specifica-
tion and analysis of the computational behaviour of software architectures. In this
paper we explore the ability of the formalism to express the dynamics of the archi-
tecture itself and to unify different approaches to reconfiguration within a single
framework.

1 Introduction

1.1 Motivation

Software Architecture has been an emerging discipline that focuses on the high-level
design of complex systems. Usually systems have to be reconfigured in order to cope
with new human needs (i.e., new requirements), new technology (e.g., new imple-
mentation), or a new environment (e.g., if one of the components fails). Hence the
specification of the evolution of software architectures has been of concern [1]. There
are several issues to be taken into account:

specification Changes can be specified implicitly or explicitly. Self-organising archi-
tectures [2] belong to the first case. Ideally, the architecture “knows” what to
do when a reconfiguration triggering event (like component failure, or addition
of a new component) occurs. The architecture designer would just provide the
constraints on the architecture properties. However, most current approaches, in-
cluding the ones to be mentioned next, have explicitreconfiguration commands
to remove and add components and connections.

management Reconfiguration commands can be executed by the components them-
selves [3] or processed by some external configuration manager which coordi-
nates the change process [4].

time Changes may be executed off-line, when the system is shut down, or on-line,
while it is running. The latter is called dynamic reconfiguration. In this case

1



there are additional constraints on the evolution of the architecture: the con-
figuration manager, given a change script (i.e., a sequence of reconfiguration
commands), must execute it causing the least possible disruption and keeping
the system always in a consistent state [4, 5, 6].

source Commands are given by the user or triggered by the system itself based on its
current state. This is called, respectively, ad-hoc and programmed reconfigura-
tion [7]. In the latter approach, a change script is executed when the state of the
system satisfies some conditions. The fundamental problem is that, contrary to
ad-hoc reconfiguration, the script is written together with the initial architecture,
but it may be executed when the architecture has already changed. The solu-
tion has been to use queries [7] or path expressions [8] that assess the current
architecture, and provide the actual components and connections to be used as
arguments of the reconfiguration commands.

constraints A further problem in reconfiguration, whether ad-hoc or programmed, is
that the changes to be performed might violate some structural properties of the
architecture, and in that case system evolution has to be constrained. It can be
donea posteriorior a priori. An example of the first approach is [8], where
Prolog predicates check the architecture after each change. If some integrity
property has been violated, the reconfiguration must be undone. The second
method is typical of programmed reconfiguration approaches and is exemplified
by [7]. Each change script has a pre-condition that checks whether the architec-
ture in which the script will be executed satisfies some properties. If it does not,
the reconfiguration will not be performed.

In this paper we explore the suitability of the chemical reaction model [9] for the
specification and analysis of architecture reconfiguration, hoping to provide a first step
towards a model that unifies the above mentioned approaches. The actual formalism to
be used is the Chemical Abstract Machine (CHAM) [10].

1.2 The CHAM model

The chemical model views computation as a sequence of reactions between data ele-
ments, calledmolecules. The structure of molecules is defined by the designer. The
system state is described by a multiset of molecules, thesolution. The possible reac-
tions are given by rules of the form

m1; : : : ;mi ! m0

1; : : : ;m
0

j

wherem1:::i andm0

1::: j are molecules. If the current solution contains the molecules
given on the left-hand side of a rule, that rule may be applied, replacing those molecules
by the ones on the right-hand side. Usually a CHAM is presented usingrule schemata,
the actual rules being instances of those schemata. There is no control mechanism.
At each moment, several rules may be applied, and the CHAM chooses one of them
non-deterministically. Reactions on disjoint multisets can occur simultaneously, i.e.,
in parallel. The solution thus evolves by rewriting steps. A solution is inert when no
reaction rule can be applied.

As a very simple example, consider a CHAM to build ring-shaped architectures.
The initial solution is a multiset of components, each of the form —c— stating that it
may be connected to two other components. A molecule of the form —c—c—. . . —c—
may still grow. When the first component of a linear architecture is linkedto the last

2



one, a ring is obtained: c—c—. . . —c. The molecules are thus built from theconstant
“c” and from the operator “—” as given by the grammar

Ring := c—Ring j c
Molecule := —Ring—

and rings are formed according to the reaction rules

—x—, —y— ! —x—y—
—x— ! x

If the initial solution has four components, up to four rings can be built. For exam-
ple, the following transformations lead to two rings: —c—, —c—, —c—, —c—�!

—c—c—, —c—, —c—�!—c—c—, c, —c—�!—c—c—c—, c�! c—c—c, c.
Notice that the second transformation (corresponding to an application of the second
reaction rule) could occur in parallel with any of the other transformations.

1.3 Software Architecture and the CHAM

The CHAM was first used to specify and analyse software architectures by Inverardi
and Wolf [11]. Other kinds of analysis performed on the CHAM model are archi-
tecture refinement [12] and deadlock detection [13]. These works describe and study
only static architectures: the number and type of components and connections do not
change.

Le Métayer’s proposal to deal with dynamic architectures views an architecture
as a graph, where nodes denote components and arcs represent connections, and an
architectural style as a class of graphs [14]. Reconfigurations are specified bygraph
rewriting rules and architectural styles are given by context-free grammars. Moreover,
[14] provides a general method to check whether the rewriting rules keep thearchi-
tectural style or not, i.e., whether the resulting graph belongs to thesame class as the
original one.

Our inspiration for this paper came from two observations: 1) grammarsand rewrit-
ing rules are basically CHAMs with one kind of molecules to represent non-terminal
symbols and two kinds of molecules for terminal symbols (the graph’snodes and arcs);
2) the graph rewriting approach is suited for self-organizing architectures. Our prelim-
inary proposal can be summarized as follows.

Architectural style and reconfiguration are specified by two different CHAMs, the
creation CHAM and the evolution CHAM. The former uses the initial solution to im-
pose global system integrity constraints (e.g., the maximal number of components)
while the reaction rules enforce local component integrity properties (e.g., the number
of bindings [2]).

The reaction rules of the evolution CHAM specify how the solution that describes
the architecture can be transformed. The reconfigured architecture is obtainedwhen
the solution becomes inert. If a CHAM’s reaction rules do not consume nor gener-
ate a reconfiguration command, then it is self-organization; if they onlyconsume, it
is ad-hoc change; but if they also produce commands on the right-hand sides, then it
is programmed reconfiguration. Even if the creation CHAM is not context-free (i.e.,
at least one of its rules has more than one molecule on its left-hand side),it may be
possible to prove straightforwardly that the evolution CHAM keeps the architectural
style by showing (through inspection) that its rules are invariantsregarding the style’s

3



properties. The evolution CHAM is thus used to specify, analyse, and simulate archi-
tecture reconfiguration. The actual process is efficiently carried out by a configuration
manager whose input script can be obtained from the CHAM specification.

The next three sections show how the CHAM can be used to describe the three
forms of reconfiguration. We follow the Configuration Programmingapproach pio-
neered by Kramer and colleagues. The goal is to separate structural from computa-
tional and interaction aspects. Thus the evolution of the structure ofa system should
preferably be specified at the architectural level only, not at the component level. To
this end we use different molecules to represent the architecture and the components’
state. Moreover, we use explicit reconfiguration commands like those of[4, 7, 5, 6].
Since the reaction rules state how components are linked, the user only hasto provide
create component(cc) andremove component(rc) commands.

The CHAM is of course no universal panacea for architectural changes. Since each
rule fires due to the actual presence of some molecules in the solution, reconfigurations
which depend on “negative” or global conditions (e.g., “when no fast server of is avail-
able, connect all clients to a slow server”), instead of “positive” and local ones,are not
the most suitable for our approach, although the use of counters may solve the problem
in some cases, as the last example will show.

2 Ad-hoc Reconfiguration

To illustrate the specification and analysis of architectural style and ad-hoc reconfigu-
ration we adopt Le Métayer’s example [14]. It is a client-server system with a central-
ized manager. A client sends a request to the manager which forwards it to an available
server. The server’s reply is sent back to the correct client via the manager.

2.1 Specification

The structure of molecules is given by the following grammar, which leaves the precise
syntax of component identifiers open.

Molecule := Componentj Link jCommand
Component:= Id :Type
Type := C jM j S
Link := Id—Id
Command := cc(Component) j rc(Id)

To make the example more interesting we assume that there must always beat least
one server. The CHAM that specifies the client-server architectural style is

cc(m:M) ! c:C, c—m, cc(m:M)
cc(m:M) ! s:S,m—s, cc(m:M)

s:S, cc(m:M) ! s:S,m:M

Assuming that the initial solution given by the user contains just the creation command
cc() with the manager’s name, the first rule adds a client and its link, the second rule
adds a server and its connection, and the last rule actually creates the manager, ifat
least one server has been previously created.

Although syntactically there is no difference between this creation CHAM andthe
evolution CHAM to be presented next, the distinction can be made justby looking
at the rules. A creation CHAM is used to generateall architectures belonging to a

4



certain style. This entails two properties of creation CHAMs. First, there are no rc()
commands, because components and links are only added, not removed. Second, com-
ponents may be created on the right-hand side without a cc() command on theleft-hand
side, in order to allow an arbitrary number of components (and their connections) to be
generated.

Now we turn to the evolution specification. Besides adding and deleting clients
as in [14], we also deal with server and manager creation and removal. Each change
must be explicitly invoked by an appropriate command, to be handled by (at least) one
reaction rule of the reconfiguration CHAM.

cc(c:C), m:M ! c:C, c—m, m:M
cc(s:S),m:M ! s:S,m—s, m:M

rc(c), c:C, c—m!
s0:S, rc(s), s:S,m—s! s0:S

m:M, rc(m), cc(m0:M) ! m0:M
m—s, m0:M ! m0—s, m0:M
c—m, m0:M ! c—m0, m0:M

The first four rules deal with client and server creation and removal, while the other
rules handle manager substitution, which is indicated by a pair of creation/removal
commands. The last two rules relink the existing clients and servers to the new man-
ager. Notice that we assume different variables to be instantiated with different identi-
fiers. Otherwise the right-hand sides would be instances of the left-hand sides. In other
words, those two rules could be immediately reapplied (although provoking no change
in the architecture) and the solution would never become inert.

This CHAM illustrates ad-hoc reconfiguration because the reconfigurationcom-
mands appear only on the left-hand sides of rules. In other words, the commands are
only consumed by the CHAM and thus must have been put into the solution by the
user. As an example of reconfiguration, let us assume that we have an architecture with
a single server (and manager, of course), and we want to add a client and replace the
manager. The initial solution for the evolution CHAM is

m1:M, m1—s1, s1:S, cc(c1:C), rc(m1), cc(m2:M)

and the states of the solution until it becomes inert are

1. m1:M, m1—s1, s1:S, c1:C, c1—m1, rc(m1), cc(m2:M)

2. m2:M, m1—s1, s1:S, c1:C, c1—m1

3. m2:M, m2—s1, s1:S, c1:C, c1—m1

4. m2:M, m2—s1, s1:S, c1:C, c1—m2

2.2 Analysis

In general, to make sure that the specification is correct, it is necessary to prove that
a CHAM terminates, i.e., that an inert solution can be reached. Usually this involves
some assumptions on the initial solution. For our example stylewe are assuming the
initial solution contains just one molecule of the form cc(m:M). Then it is quite easy
to prove that the style CHAM always terminates (assuming fairness in rule selection):
the third rule consumes the cc() command that is necessary for any of the rules to be
triggered. Hence the computation terminates.

5



Another issue is to prove that the architectures generated by the creation CHAM
are really those that we intended. Towards that end it is necessary to write down the
properties of the architectural style and then, given the initial solution, prove that any
inert solution obeys those properties.

Returning to our example, the properties of the client-server style are:

� there is exactly one manager;

� there arex� 0 clients, each one linked to the manager;

� there arey> 0 servers, each one linked to the manager.

As an illustration, we just prove that the third proposition is true of the creation CHAM.
If the solution is inert, then there is no cc(m:M) command because otherwise the first
two reaction rules could be applied. Since there is such a command in the initial so-
lution, it must have been consumed somehow. By inspection of the rules, this is only
possible by the third reaction rule. However, that rule can only have been applied if
there existed a server. Since no rule decreases the number of servers, it is proven that
at least one server must have been created and that it has not been removed by the ap-
plication of some other rule. As for the server links, the only rule that creates servers
connects them to the component whose name is given by the cc() command. Thiscom-
pletes the proof of the third property, assuming that while proving the first one it has
been established that the manager’s name is the one given by the cc() command.

Sometimes it is necessary to prove that a reconfiguration does not “break” thestyle.
For some properties this can be done inductively: prove that the initial solution of the
reconfiguration CHAM satisfies the property and that each rule keeps it. The first part is
usually not needed since it is assumed that the initial solution is eitheran inert solution
of the creation CHAM (and thus satisfies the properties as proven before) orit is the
inert solution of a previous reconfiguration (and therefore satisfies the properties as it
will be proven by inspection of the rules). It thus suffices to prove that for each rule
L ! R, if it is applied to a solutionS that satisfies the property, thenS� L]R also
satisfies it.

As an illustration we prove that the client-server reconfiguration CHAMkeeps at
least one server. Lety (resp. y0) be the number of servers immediatelybefore(resp.
after) the application of a rule. One has to prove thaty> 0) y0

> 0 for each rule. The
second rule states thaty0

= y+1, the fourth rule thaty� 2) y0

= y�1, and for the
remaining rulesy0

= y. It is obvious that for each one the implication is true.
However, the second part of the third property, namely that each server is linked to

the manager, cannot be proven in this way because it is not an invariant of thesystem.
In fact, due to rule 5 of the evolution CHAM, the solution does notrepresent a graph
temporarily: there are linksm—sbut there is nom! The connectivity property can thus
only be established for inert solutions. The proof goes as follows.First show that there
is always exactly one manager. Next prove that there is always exactly one connection
m—s for each servers. Finally show that for inert solutions, ifm:M is the manager
andm0—s is a server connection, thenm = m0. The first two statements can be proven
inductively, the third results from the fact that in an inert solutionthe last two rules of
the evolution CHAM cannot be applied.

2.3 Dynamic Reconfiguration

Since a CHAM does not have any control mechanism, the exact order in which the
reactions take place is unknown and cannot be predicted. This is no problem if the

6



reconfiguration takes place when the system is shutdown. However, in dynamic recon-
figuration the changes occur while the system is running. In that case it is of paramount
importance to execute the reconfiguration actions in such a way that the system is kept
consistent and that disruption is minimized. That has been the object of the work of
several researchers [4, 5, 6]. Their goal is to provide an algorithm for theconfiguration
managerto execute the set of reconfiguration commands provided by the user in the
correct order. We adopt the four primitive commands used in the works mentioned to
create and remove components and links: create(), delete(), link(), and unlink(). No-
tice that our cc() and rc() commands are high-level create() and delete() commands,
respectively, that also deal with the links “automatically”.

We separate concerns by using the CHAM just to specifywhat to do, letting the
configuration manager decidehow to do it. To that end we let the CHAM “trace” its
execution, creating a “log” of the changes performed. That log corresponds to the
change script that a user would input directly to the configuration manager. In other
words, the CHAM can be seen as a “compiler” of high-level reconfiguration commands
into low-level ones to be executed by the “run-time system”, i.e., the configuration
manager.

The molecule syntax is extended with

Command:= create(Component) j delete(Id) j link(Id, Id) j unlink(Id, Id)

and the reconfiguration CHAM becomes

cc(c:C), m:M ! c:C, c—m, m:M, create(c:C), link(c, m)
cc(s:S),m:M ! s:S,m—s, m:M, create(s:S), link(m, s)

rc(c), c:C, c—m! delete(c), unlink(c, m)
s0:S, rc(s), s:S,m—s! s0:S, delete(s), unlink(m, s)

m:M, rc(m), cc(m0:M) ! m0:M, delete(m), create(m0:M)
m—s, m0:M ! m0—s, m0:M, unlink(m, s), link(m0, s)
c—m, m0:M ! c—m0, m0:M, unlink(c, m), link(c, m0)

For the reconfiguration example shown in Section 2.1, the generated changecom-
mands are:

create(c1:C), link(c1, m1), delete(m1), create(m2:M),
unlink(c1, m1), link(c1, m2), unlink(m1, s1), link(m2, s1)

As shown in the example, if the commands are executed in this order then temporarily
some arcs do not point to any existing component. Moreover, two commands cancel
out. Looking at such a script, it is easy for the configuration manager to optimize and
reorder the commands, based on such simple rules as “a component to be removedmust
have no connections” and “a component must be created before it can be connected”
[6]. In this case, the configuration manager may execute the following sequence of
commands (other sequences are possible):

unlink(m1, s1), create(c1:C), delete(m1), create(m2:M), link(c1, m2), link(m2, s1)

3 Self-Organizing Architectures

The chemical model is well suited to describe self-organizing architectures where ex-
ternal explicit management is kept to a minimum [2]. In fact, the very essenceof the

7



CHAM model is that molecules react freely with each other until the solution “stabi-
lizes”, i.e., becomes inert. Once that state is reached, new reactions may be triggered
by adding new molecules, but the reaction process itself is purely an “internal affair”.
The evolution of the solution proceeds without any intervention from the outside.

Our client-server example illustrates this. Once the commands to substitute the
manager are given, the architecture reorganizes itself to maintain the right connections,
without needing any further commands from the user. In this section we provide a more
elaborate example of self-organization: an-ary tree architecture where components can
be removed without destroying the properties of the tree. Such a topology might be
useful for divide-and-conquer problems, each component splitting the data it gets from
its parent and combining the results produced by its children.

The example is a generalization of the binary tree architecture presented in [8]. Fol-
lowing the Configuration Programming approach, [8] only considers structural proper-
ties. In this case, thestructural integrityto be kept by the reconfiguration action is the
binary tree shape. Such integrity constraints are divided intonode integrityandsystem
integrity properties. The former are local, the latter global. In this example, being a
tree is a system constraint because no single node can ensure that the graphis acyclic.
On the other hand, it is enough for each node to restrict the number of children to at
most two in order to have a binary tree. Other examples of system integrity constraints
are the number of components in the tree and that the system consists of only one tree.

The approach taken in [8] to handle structural integrity properties is verification.
The properties are expressed as Prolog clauses used to check the architecture after
each change. If the reconfiguration violates at least one of the constraints, itmust be
undone. We follow the self-organization approach of [2]: when a change occurs, the
system components reorganize themselves in order to satisfy the structural constraints.

But first let us specify then-ary tree architectural style. The reaction rules gen-
erate trees with a maximum branching factor given by the initial solution. A node is
represented by a moleculena

c wheren is the node’s name,a is the number of its an-
cestors (i.e., its depth), andc is the number of children the node has. A root node has
no ancestors and therefore its depth is zero. Natural numbers are represented as usual,
using the constant zero and the successor function (written as a postfix +).Numbers
are compared using substring prefix matching:n�m if n is of the formmx, andn> m
if n is of the formm+x, in both casesx being matched by a sequence of zero or more
+.

Molecule := Node
Nat
Nat

jNode—Node jNat

Nat := Nat+ j 0

The initial solution contains just the root node and the maximal branching factor:
r0
0, 0++. The creation CHAM is

xa
c, c+w! xa

c+, x—y, ya+
0 , c+w

b+!

The first rule creates a new node and attaches it to an existing node that has not yet
exceeded the children limit. The second rule allows the solution to become inert by
eliminating the branch factor.

The initial solution of the evolution CHAM contains the branchingfactor again and
the current architecture. When a node fails, a command to remove it is added tothe
solution, and the architecture reconfigures itself according to the rules

8



rc(x), x—y, x0
c+, y0+

c0

! rc(x), y—x, x0+
c , y0

c0

+

rc(x), y—x, x—z, ya
c0

, xa+
c+ , za++

c00

! rc(x), y—x, y—z, ya
c0

+

, xa+
c , za+

c00

rc(x), y—x, ya
c+, xa+

0 ! ya
c

b, x—y, x—z, xa
b+w, ya+

c ! b, x—y, y—z, xa
bw, ya+

c+

x—y, xa
c, ya

c0

! x—y, xa
c, ya+

c0

x—y, xa
c, ya++

c0

! x—y, xa
c, ya+

c0

The first rule handles the case of the root node: it is swapped with one of its children,
which thus becomes the new root. The former root node now is a middlenode or a
leaf node and the second or third rule applies, respectively. The second rule links the
children of the middle node directly to its parent. The node hence becomesa leaf node
and we get to the third rule which effectively removes the node from the tree, updating
the children counter of the parent. During this process some nodes may have more than
b children, whereb is the branching factor. The fourth rule ensures the correct number
by demoting the exceeding children to grandchildren. The last two rules propagate the
correct depth to children of nodes that have been promoted or demoted. The simplicity
and conceptual elegance of these rules should be compared with the parameterized
recursive rule of [8] which uses four different kinds of path expressions and a marking
command.

Some comments about this example are in order. The notation has been chosen
to be as compact as possible, showing only the relevant data. Furthermore,using su-
perscripts for depth and subscripts for children makes both of them standout. Thus it
is easier to see how a node changes from the left to the right side of a rule. A more
conventional notation is obtained by translating every molecule of the formxa

c into two
molecules “depth(x, a), children(x, c)”, and by transformingx—y into “linked(x, y)”.

The specification can be simplified by omitting the depth of each node, as in the
original example [8]. In fact, all that is necessary is to be able to distinguish the root
node from the others. This can be done just with an extra molecule “root(x)”. The first
rule becomes

rc(x), root(x), x—y, xc+, yc0

! rc(x), root(y), y—x, xc, yc0

+

the last two rules are not necessary any more, and the superscripts of the remaining ones
disappear. However, we chose to have this additional difficulty because it introduces
further self-organization.

Besides illustrating self-organization and allowing comparison of ourapproach
with a previous one, the example shows how structural and cardinalityconstraints on
architectures can be specified. This is also useful for other kinds of topologies.

4 Programmed Reconfiguration

This section shows how a single CHAM may combine the specification of the com-
putational behaviour with the specification of the architectural evolution in order to
describe programmed reconfiguration.

The chosen example is a client-server system where the server is a printing system
with a set of printers. Each client makes a single request to print a document. Printers
may break down while printing. If no printer is working then any new client requests
are immediately rejected.

9



The chosen architecture consists of zero or more clients, one name server, one “in-
hibitor” and one composite component containing zero or more printers. If there are
no working printers, the name server is linked to the “inhibitor”, otherwise it is linked
to the printing system. Whenever a new client arrives, it is automatically linked to the
name server whose name is known and whose job is to relink the client to the compo-
nent the name server is linked to. The “inhibitor” just rejects any client request. The
printing system accepts any incoming request if there is an available printer. Otherwise
the request stays on hold until a printer becomes available. During that time no further
request can be sent to the printing system. Clients automatically leave the system after
getting a positive or negative reply. When the last working printerbreaks down, the
name server is unlinked from the printing system and linked to the “inhibitor”. In-
versely, if no printer is working but one of them starts working again(e.g., because a
user has reset it), the name server is linked back to the printing system.

We now present the CHAM. The syntax of molecules is given by the following
grammar, whose meaning will become clear from the explanation of the reaction rules.

Molecule := ComponentjConnection jData j Command
Connection:= Id—Id
Component:= Printer j Port
Data := working(Number)
Command := cl(Connection) j rl(Connection)
Printer := idle j toprint(Number) j broken
Number := 1Number j
Port := Id j Id=Message
Id := Letter Id j Letter
Message := Number j print(Number) j acceptedj rejectedj

A possible initial solution is: p=, idle, working(1), i=, n—p. This states that the
printing system has a port called “p” to receive requests and send replies, and there is a
single working printer, which is initially idle. The “inhibitor”is represented as a single
port “i”, initially without messages. The name server is denoted by port “n” linked to
port “p” of the printing system. There is no molecule “n=” because the nameserver
does not send or receive messages.

Initially, a client is of the formc=n, wheren is the number—in unary notation—
of pages to print, andc the name of the port. Each client may use a different name.
The following three rules describe the behaviour of a client. The first rule links it
to the name server (thereby changing the state of the port in order to avoid duplicate
connections) and the other two remove the client and its connection after getting a
reply.

c=n! c=print(n), c—n
c=accepted,c—s!
c=rejected,c—s!

The name server simply relinks a client to the current server (either the “inhibitor” or
the printing system).

c—n, n—s! c—s, n—s

The “inhibitor” replies to any incoming request with a rejection. As forthe printing
system, it accepts any request provided there is an available printer.

i=print(n)! i=rejected
p=print(n), idle! p=accepted, toprint(n)

10



Each printer outputs a document one page at a time. When reaching the end, it becomes
available again. However, while printing a page, the printer may break down. If it is
the last working printer, then the name server must get linked to the “inhibitor”. To that
end, the corresponding reconfiguration commands are generated to remove theold link
and create the new one.

toprint(1n)! toprint(n)
toprint()! idle

toprint(1n), working(11p)! broken, working(1p)
toprint(1n), working(1),! broken, working(), rl(n—p), cl(n—i)

A broken printer can become idle again if it is reset or repaired. If there were no
working printers, the connection between the name server and the “inhibitor” must be
removed and a link to the printing system must be created.

broken, working(1p)! idle, working(11p)
broken, working()! idle, working(1), rl(n—i), cl(n—p)

In order for all this to work, general rules to remove and create connections and to
exchanges messages between connected ports are necessary.

rl(a), a!
cl(a)! a

p=msg, p—q, q=msg0 ! p=msg0, p—q, q=msg

Consider the following scenario. Initially, there is only one printer, and a client
requesting to print 2 pages. The printing system accepts the request and the client
goes away. The printer prints the first page and then breaks down. The name server is
relinked to the inhibitor and thus a new client arriving will get its request rejected.

1. c=11, n–p, p=, idle, working(1), i=

2. c=print(11), c–n, n–p, p=, idle, working(1), i=

3. c=print(11), c–p, n–p, p=, idle, working(1), i=

4. c=, c–p, n–p, p=print(11), idle, working(1), i=

5. c=, c–p, n–p, p=accepted, toprint(11), working(1), i=

6. c=accepted, c–p, n–p, p=, toprint(1), working(1), i=

7. n–p, p=, broken, working(), i=, rl(n–p), cl(n–i)

8. newc=1, p=, broken, working(), i=, cl(n–i)

9. newc=print(1), newc–n, n–i, p=, broken, working(), i=

10. newc=print(1), newc–i, n–i, p=, broken, working(), i=

11. newc=, newc–i, n–i, p=, broken, working(), i=print(1)

12. newc=, newc–i, n–i, p=, broken, working(), i=rejected

13. newc=rejected, newc–i, n–i, p=, broken, working(), i=

14. n–i, p=, broken, working(), i=

11



5 Concluding Remarks

Inverardi and others [11, 12, 13] have shown that the chemical reaction model [9],
and in particular the Chemical Abstract Machine [10], is a useful tool to describe and
study the computational behaviour of a system with a static architecture. In this pa-
per we extended the work in two directions: first, to handle not a single architecture
but whole classes of architectures, by specifying a style as a non-deterministic self-
organized reconfiguration process starting with an “empty” architecture; second, to
cope with dynamic architectures. In particular, we dealt with self-organized, ad-hoc,
and programmed reconfiguration, and global and local structural constraints. Based on
our preliminary exploration, we conclude that the CHAM may be used forthe specifi-
cation and analysis of software architecture style and reconfiguration due to following
characteristics of the chemical model.

simplicity There is a single data structure (multiset of terms) and a single program-
ming construct (rewrite rules), both of which are familiar and intuitive con-
cepts. The specifications tend thus to be rather compact and easy to write and
read. Moreover, proving properties about architectures or their reconfigurations
is normally straightforward (although tedious), often based on induction over the
structure of molecules and rules.

suitability The model’s view of “computation as the global evolution of a collection of
atomic values interacting freely” [9] is naturally suited to describe the evolution
of self-organising architectures, which is the most general case of reconfigura-
tion. Also, the combination of reaction rules (the interactions) and initial solution
of molecules (the atomic values) can be used to specify both system and node
integrity properties [8].

flexibility The definition of the molecules is left to the designer. Hence, a molecule
can represent an element of the architecture (i.e., a component or a connection), a
reconfiguration command or rule, or auxiliary data (like counters). As for com-
ponents, it is possible to represent their structural and computationalaspects.
The former include the number of connections a component has, the latter de-
scribe the component’s state. As for reconfiguration commands, they may be
high-level (like the “cc” command which also creates new links) or low-level
ones (like the “create” command). With all these options one can encode and
compare several models of reconfiguration described in the literature within a
uniform framework. With the CHAM, the diverse approaches are easily recog-
nizable according to where molecules that represent reconfigurations (like “rc”
and “cc”) appear in the reaction rules: in programmed reconfiguration they ap-
pear on both sides, in ad-hoc reconfiguration they appear only in left-handsides,
and in self-organization they do not appear at all.

However, flexibility has some disadvantages too. As seen in the previous sections,
each CHAM introduces its own syntax and assumptions. This requires additional ex-
planations and does not allow reuse of specifications. The solution is tohave a fixed
representation for the most important concepts (like component and connection). To-
wards that goal we have made a first attempt at a minimal CHAM-based architecture
description language [15].

In future work we plan to investigate the means to provide support for partial me-
chanical analysis of complex properties and architectures. There are at least threepos-
sible independent lines of action.

12



� A CHAM is a term rewriting system (TRS) with an associative and commutative
operator: multiset union. It might be possible to use or adapt techniques de-
veloped for TRS to prove termination of reconfiguration and uniqueness of the
resulting architecture.

� The CHAM can be encoded in rewriting logic [16] and thus tools for thatframe-
work, like Maude [17] and ELAN [18], could be used to test architecture specifi-
cations written in CHAM. Another possibility is to adapt and expand sequential
and parallel implementations of Gamma, the original chemical model [19, 20].

� If a given creation CHAM is context-free, the algorithm of [14] can be applied
to check whether a given evolution CHAM keeps the style of an architecture
generated by the creation CHAM. It remains to be seen if the method can be
adapted to the general CHAM model or if a new algorithm can be developed.

We are of course aware that the chemical model is not suited for every kind of style
or reconfiguration. Since a reaction depends on the presence of some molecules, recon-
figurations that depend on “negative” or global conditions (e.g., “if every client is not
connected to the printing system, then. . . ”) may be impossible or very hard to specify,
leading to CHAMs that are cumbersome to write and hard to understand. We also ex-
pect several global integrity constraints to be not as easy to express as the branching
factor or the depth of a tree. However, we hope that our exploration has reinforced the
suggestion that “the CHAM model might be one useful tool in the software architect’s
chest of useful tools” [11].

Acknowledgements

We thank Daniel Le Métayer for helpful comments on an early draft. We are also in-
debted to an anonymous reviewer for pointing out several aspects which needed further
clarification.

References

[1] Alexander L. Wolf. Succeedings of the Second International Software Archi-
tecture Workshop.ACM SIGSOFT Software Engineering Notes, 22(1):42–56,
January 1997.

[2] Jeff Kramer and Jeff Magee. Self organising software architectures. InJoint
Proceedings of the SIGSOFT’96 Workshops, pages 35–38. ACM Press, 1996.

[3] B. Agnew, C. Hofmeister, and J. Purtilo. Planning for change: a reconfiguration
language for distributed systems.Distributed Systems Engineering, 1(5):313–
322, September 1994.

[4] Jeff Kramer and Jeff Magee. The evolving philosophers problem: Dynamic
change management.IEEE Transactions on Software Engineering, 16(11):1293–
1306, November 1990.

[5] Kaveh Moazami Goudarzi and Jeff Kramer. Maintaining node consistency inthe
face of dynamic change. InProceedings of the Third International Conference on
Configurable Distributed Systems, pages 62–69. IEEE Computer Society Press,
1996.

13



[6] Michel Wermelinger. A hierarchic architecture model for dynamic reconfigura-
tion. In Proceedings of the Second International Workshop on Software Engi-
neering for Parallel and Distributed Systems, pages 243–254. IEEE Computer
Society Press, 1997.

[7] Markus Endler. A language for implementing generic dynamic reconfigurations
of distributed programs. InProceedings of the 12th Brazilian Symposium on
Computer Networks, pages 175–187, 1994.

[8] A. J. Young and J. N. Magee. A flexible approach to evolution of reconfigurable
systems. InProceedings of the First International Workshop on Configurable
Distributed Systems, pages 152–163. IEE, 1992.

[9] Jean-Pierre Banâtre and Daniel Le Métayer. Gamma and the chemical reaction
model: Ten years after. In Jean-Marc Andreoli, Chris Hankin, and Daniel Le
Métayer, editors,Coordination programming: mechanisms, models and seman-
tics, pages 3–41. Imperial College Press, 1996.

[10] Gérard Berry and Gérard Boudol. The chemical abstract machine.Theoretical
Computer Science, (96):217–248, 1992.

[11] Paola Inverardi and Alexander L. Wolf. Formal specification and analysis of
software architectures using the chemical abstract machine.IEEE Transactions
on Software Engineering, 21(4):373–386, April 1995.

[12] Paola Inverardi and Daniel Yankelevich. Relating CHAM descriptions of soft-
ware architectures. InProceedings of the 8th International Workshop on Software
Specification and Design, pages 66–74. IEEE Computer Society Press, 1996.

[13] Paola Inverardi, Alexander L. Wolf, and Daniel Yankelevich. Checkingassump-
tions in component dynamics at the architecture level. InCoordination Languages
and Models, volume 1282 ofLNCS, pages 46–63. Springer-Verlag, 1997.

[14] Daniel Le Métayer. Describing software architecture styles using graph gram-
mars.IEEE Transactions on Software Engineering, 24(7):521–553, July 1998.

[15] Michel Wermelinger. A simple description language for dynamic architectures.
In Proceedings of the Third International Software Architecture Workshop. ACM
Press, 1998. To appear.

[16] José Meseguer. Rewriting logic as a semantic framework for concurrency: a
progress report. InProceedings of the 7th International Conference on Concur-
rency Theory, volume 1119 ofLNCS, pages 331–372. Springer-Verlag, 1996.

[17] Manuel Clavel, Steven Eker, Patrick Lincoln, and José Meseguer. Principles of
Maude. InProceedings of the First International Workshop on Rewriting Logic,
volume 4 ofElectronic Notes in Theoretical Computer Science, pages 65–89.
Elsevier, 1996.

[18] Peter Borovanský, Claude Kirchner, Hélène Kirchner, Pierre-Etienne Moreau,
and Marian Vittek. ELAN: A logical framework based on computational systems.
In Proceedings of the First International Workshop on Rewriting Logic, volume 4
of Electronic Notes in Theoretical Computer Science. Elsevier, 1996.

14



[19] C. Creveuil.Techniques d’analyse et de mise en œuvre des programmes Gamma.
PhD thesis, University of Rennes, 1991.

[20] Jean-Pierre Banâtre, A. Coutant, and Daniel Le Métayer. A parallel machine for
multiset transformation and its programming style.Future Generation Systems,
pages 133–144, 1988.

15


