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Abstract

The Chemical Abstract Machine is a general-purpose, singild intuitive
programming model. Among other domains, it has been usethéospecifica-
tion and analysis of the computational behaviour of sofenachitectures. In this
paper we explore the ability of the formalism to express §madhics of the archi-
tecture itself and to unify different approaches to recamfitjon within a single
framework.

1 Introduction

1.1 Motivation

Software Architecture has been an emerging discipline that focuses orgtindekel

design of complex systems. Usually systems have to be reconfiguredieinto cope
with new human needs (i.e., new requirements), new technology (ew.inmge-

mentation), or a new environment (e.g., if one of the componenty.faidence the
specification of the evolution of software architectures has been of condeffhidre
are several issues to be taken into account:

specification Changes can be specified implicitly or explicitly. Self-organising archi-
tectures [2] belong to the first case. Ideally, the architecture “knows” vehat t
do when a reconfiguration triggering event (like component failure, ditiad
of a new component) occurs. The architecture designer would just jertved
constraints on the architecture properties. However, most currentagty@s, in-
cluding the ones to be mentioned next, have expigbnfiguration commands
to remove and add components and connections.

management Reconfiguration commands can be executed by the components them-
selves [3] or processed by some external configuration manager which coordi-
nates the change process [4].

time Changes may be executed off-line, when the system is shut down, anen-li
while it is running. The latter is called dynamic reconfiguration. lis ttase



there are additional constraints on the evolution of the architecthe:can-
figuration manager, given a change script (i.e., a sequence of reconfiguration
commands), must execute it causing the least possible disruptioneapihl

the system always in a consistent state [4, 5, 6].

source Commands are given by the user or triggered by the system itself based on i
current state. This is called, respectively, ad-hoc and programmed reconfigura-
tion [7]. In the latter approach, a change script is executed when the §tate o
system satisfies some conditions. The fundamental problem is thatagotat
ad-hoc reconfiguration, the script is written together with theahirchitecture,
but it may be executed when the architecture has already changed. The solu-
tion has been to use queries [7] or path expressions [8] that assess réma cur
architecture, and provide the actual components and connections to be used as
arguments of the reconfiguration commands.

constraints A further problem in reconfiguration, whether ad-hoc or programmed, is
that the changes to be performed might violate some structural pregpeftihe
architecture, and in that case system evolution has to be constrained. It can be
donea posteriorior a priori. An example of the first approach is [8], where
Prolog predicates check the architecture after each change. If some integrity
property has been violated, the reconfiguration must be undone. The second
method is typical of programmed reconfiguration approaches and is exemplified
by [7]. Each change script has a pre-condition that checks whether the architec-
ture in which the script will be executed satisfies some propertiessddfas not,
the reconfiguration will not be performed.

In this paper we explore the suitability of the chemical reaction moddbfathe
specification and analysis of architecture reconfiguration, hoping togeaviirst step
towards a model that unifies the above mentioned approaches. The actuaidiorinal
be used is the Chemical Abstract Machine (CHAM) [10].

1.2 The CHAM model

The chemical model views computation as a sequence of reactions between data ele-
ments, callednolecules The structure of molecules is defined by the designer. The
system state is described by a multiset of moleculessdhéion The possible reac-

tions are given by rules of the form

M, M — My, |

wheremy_j andm, ; are molecules. If the current solution contains the molecules
given on the left-hand side of arule, that rule may be applied, replauirsgtmolecules
by the ones on the right-hand side. Usually a CHAM is presented usi@agchemata
the actual rules being instances of those schemata. There is no control mechanis
At each moment, several rules may be applied, and the CHAM chooses one of them
non-deterministically. Reactions on disjoint multisets can occur samabusly, i.e.,
in parallel. The solution thus evolves by rewriting steps. A sofuis inert when no
reaction rule can be applied.

As a very simple example, consider a CHAM to build ring-shaped archiestu
The initial solution is a multiset of components, each of the form —c¢atirgy that it
may be connected to two other components. A molecule of the form —c—c—...—c—
may still grow. When the first component of a linear architecture is lirtketie last



one, aring is obtained: c—c—...—c. The molecules are thus built fromadhstant
“c” and from the operator “—" as given by the grammar

Ring :=c—Ring | c
Molecule:= —Ring—

and rings are formed according to the reaction rules

—X—, —Yy— = —X—y—
—X— — X

If the initial solution has four components, up to four rings can tié.For exam-
ple, the following transformations lead to two rings: —¢—, —¢—, —C—¢——
—c—¢—, —¢—,—¢—— —C—C—,C,—C—— —C—C—C—, C— C—C—C, C.
Notice that the second transformation (corresponding to an applicdtitne second
reaction rule) could occur in parallel with any of the other transformations

1.3 Software Architecture and the CHAM

The CHAM was first used to specify and analyse software architectures byatdver
and Wolf [11]. Other kinds of analysis performed on the CHAM model aohiar
tecture refinement [12] and deadlock detection [13]. These works describéuayd s
only static architectures: the number and type of components and consebiomot
change.

Le Métayer's proposal to deal with dynamic architectures views an archigectur
as a graph, where nodes denote components and arcs represent connections, and an
architectural style as a class of graphs [14]. Reconfigurations are specifgraly
rewriting rules and architectural styles are given by context-free gramrivtreover,
[14] provides a general method to check whether the rewriting rules keegrehe
tectural style or not, i.e., whether the resulting graph belongs teahe class as the
original one.

Our inspiration for this paper came from two observations: 1) gramamatsewrit-
ing rules are basically CHAMs with one kind of molecules to representtaoninal
symbols and two kinds of molecules for terminal symbols (the grapides and arcs);
2) the graph rewriting approach is suited for self-organizing architestWur prelim-
inary proposal can be summarized as follows.

Architectural style and reconfiguration are specified by two different CHANEs
creation CHAM and the evolution CHAM. The former uses the initialoh to im-
pose global system integrity constraints (e.g., the maximal numbeoroponents)
while the reaction rules enforce local component integrity propertigs (ae number
of bindings [2]).

The reaction rules of the evolution CHAM specify how the soluticat thescribes
the architecture can be transformed. The reconfigured architecture is obtdirad
the solution becomes inert. If a CHAM’s reaction rules do not consumeyeoer-
ate a reconfiguration command, then it is self-organization; if they colhsume, it
is ad-hoc change; but if they also produce commands on the right-des] ghen it
is programmed reconfiguration. Even if the creation CHAM is not corfre-i.e.,
at least one of its rules has more than one molecule on its left-hand isidey be
possible to prove straightforwardly that the evolution CHAM ked#pe architectural
style by showing (through inspection) that its rules are invarisegarding the style’s



properties. The evolution CHAM is thus used to specify, analyse, andlaie archi-
tecture reconfiguration. The actual process is efficiently carried out by a aoatfign
manager whose input script can be obtained from the CHAM specification.

The next three sections show how the CHAM can be used to describe & thr
forms of reconfiguration. We follow the Configuration Programmamgproach pio-
neered by Kramer and colleagues. The goal is to separate structural from computa-
tional and interaction aspects. Thus the evolution of the structuaesgétem should
preferably be specified at the architectural level only, not at the compormnveht o
this end we use different molecules to represent the architecture and therveamg
state. Moreover, we use explicit reconfiguration commands like thopg @f 5, 6].

Since the reaction rules state how components are linked, the user ontygraside
create componertc) andremove componeiitc) commands.

The CHAM is of course no universal panacea for architectural changes. Since each
rule fires due to the actual presence of some molecules in the solutionfigerations
which depend on “negative” or global conditions (e.g., “when no fast sefisiewail-
able, connect all clients to a slow server”), instead of “positive” and local @mes)ot
the most suitable for our approach, although the use of counters rvaytise problem
in some cases, as the last example will show.

2 Ad-hoc Reconfiguration

To illustrate the specification and analysis of architectural style and edelconfigu-
ration we adopt Le Métayer’s example [14]. It is a client-server systémawcentral-
ized manager. A client sends a request to the manager which forwards it to abkvail
server. The server's reply is sent back to the correct client via the manager.

2.1 Specification

The structure of molecules is given by the following grammar, whichds#he precise
syntax of component identifiers open.

Molecule := Component| Link | Command
Component= Id: Type

Type =C|M|S

Link = Ild—Id

Command := cc(Componeny | rc(ld)

To make the example more interesting we assume that there must alwatyle &t
one server. The CHAM that specifies the client-server architectural style is

cc(m:M) — c:.C,c—m, cc(m:M)
cc(mM) — s.S, m—s, cc(m:M)
sS, ccnM) — sS,mM

Assuming that the initial solution given by the user contains justreation command
cc() with the manager’'s name, the first rule adds a client and its link,etensl rule
adds a server and its connection, and the last rule actually creates the manaiger, if
least one server has been previously created.

Although syntactically there is no difference between this creation CHAMIz&d
evolution CHAM to be presented next, the distinction can be madebjsboking
at the rules. A creation CHAM is used to generaliearchitectures belonging to a



certain style. This entails two properties of creation CHAMs. First,etage no rc()
commands, because components and links are only added, not removed. Sewend, co
ponents may be created on the right-hand side without a cc() commandieft-itend
side, in order to allow an arbitrary number of components (and their coonsito be
generated.

Now we turn to the evolution specification. Besides adding and deletiegtsl
as in [14], we also deal with server and manager creation and removal. Each change
must be explicitly invoked by an appropriate command, to be handledthggst) one
reaction rule of the reconfiguration CHAM.

cc(c:C),mM — c:.C,c—m, m:M
cc(sS),mM — s.S, m—s, m:M
rc(c), c.C,c—m—
g:S, rch), sS,m—s — §:S
m:M, rc(m), ccm’:M) — m':M
m—s, mM:M — m'—s, m':M
c—m, m:M — c—n', m:M

The first four rules deal with client and server creation and removal, whelether
rules handle manager substitution, which is indicated by a pair of créainaval
commands. The last two rules relink the existing clients and servehe toew man-
ager. Notice that we assume different variables to be instantiated wighegtif identi-
fiers. Otherwise the right-hand sides would be instances of thedefi-bides. In other
words, those two rules could be immediately reapplied (although giogmo change
in the architecture) and the solution would never become inert.

This CHAM llustrates ad-hoc reconfiguration because the reconfiguration
mands appear only on the left-hand sides of rules. In other words, theaods are
only consumed by the CHAM and thus must have been put into the @olbti the
user. As an example of reconfiguration, let us assume that we have an anchiteith
a single server (and manager, of course), and we want to add a client and replace th
manager. The initial solution for the evolution CHAM is

m1:M, m1l—sl, s1:S, cc(cl:C), rc(ml), cc(m2:M)
and the states of the solution until it becomes inert are
1. m1:M, ml—sl, s1:S, c1:C, c1—m1, rc(m1), cc(m2:M)
2. m2:M, ml1—s1, s1:S, c1.C, c1—ml
3. m2:M, m2—s1,sl1:S, c1:C, cl—ml
4. m2:M, m2—s1, s1:S, c1:C, c1—m2

2.2 Analysis

In general, to make sure that the specification is correct, it is necessarywi thed
a CHAM terminates, i.e., that an inert solution can be reached. Usuallynthob/es
some assumptions on the initial solution. For our example stgl@re assuming the
initial solution contains just one molecule of the formmad{l). Then it is quite easy
to prove that the style CHAM always terminates (assuming fairnesderselection):
the third rule consumes the cc() command that is necessary for any of dsetoube
triggered. Hence the computation terminates.



Another issue is to prove that the architectures generated by the creatibi CH
are really those that we intended. Towards that end it is necessary to owitetde
properties of the architectural style and then, given the initial solyfprove that any
inert solution obeys those properties.

Returning to our example, the properties of the client-server style are:

¢ there is exactly one manager;
¢ there arex > 0O clients, each one linked to the manager;

e there arey > 0 servers, each one linked to the manager.

As an illustration, we just prove that the third propositionigetof the creation CHAM.
If the solution is inert, then there is no aaM) command because otherwise the first
two reaction rules could be applied. Since there is such a command in tilaé Sok
lution, it must have been consumed somehow. By inspection of the thless only
possible by the third reaction rule. However, that rule can only haen lapplied if
there existed a server. Since no rule decreases the number of servermveis fhat
at least one server must have been created and that it has not been removed by the ap-
plication of some other rule. As for the server links, the only ruiks treates servers
connects them to the component whose name is given by the cc() commandoifhis
pletes the proof of the third property, assuming that while prptire first one it has
been established that the manager’s name is the one given by the cc() command.

Sometimes it is necessary to prove that a reconfiguration does not “breaitykhe
For some properties this can be done inductively: prove that thalisd@lution of the
reconfiguration CHAM satisfies the property and that each rule keeps it.rhedit is
usually not needed since it is assumed that the initial solution is eithierert solution
of the creation CHAM (and thus satisfies the properties as proven befoite¥ dhe
inert solution of a previous reconfiguration (and therefore satidiieptoperties as it
will be proven by inspection of the rules). It thus suffices to prdwat for each rule
L — R, if it is applied to a solutiort that satisfies the property, th&+ L W R also
satisfies it.

As an illustration we prove that the client-server reconfiguration CHé&dps at
least one server. Lst(resp.y) be the number of servers immediatélgfore(resp.
after) the application of a rule. One has to prove that0 =y > 0 for each rule. The
second rule states thgt=y+ 1, the fourth rule thay > 2 =y =y —1, and for the
remaining ruley/ =y. It is obvious that for each one the implication is true.

However, the second part of the third property, namely that each serugkeésl lio
the manager, cannot be proven in this way because it is not an invariantsyfstiesn.
In fact, due to rule 5 of the evolution CHAM, the solution does reiresent a graph
temporarily: there are links—s but there is nan! The connectivity property can thus
only be established for inert solutions. The proof goes as foll&ivst show that there
is always exactly one manager. Next prove that there is always exactly oneatimm
m—s for each serves. Finally show that for inert solutions, if:M is the manager
andm'—sis a server connection, them= m'. The first two statements can be proven
inductively, the third results from the fact that in an inert solutioa last two rules of
the evolution CHAM cannot be applied.

2.3 Dynamic Reconfiguration

Since a CHAM does not have any control mechanism, the exact order in wiach t
reactions take place is unknown and cannot be predicted. This is no prdbdeen i



reconfiguration takes place when the system is shutdown. However, amtdgnecon-
figuration the changes occur while the system is running. In that casefiparamount
importance to execute the reconfiguration actions in such a way that tieensigskept
consistent and that disruption is minimized. That has been the objeat ofdtk of
several researchers [4, 5, 6]. Their goal is to provide an algorithm éaathfiguration
managerto execute the set of reconfiguration commands provided by the user in the
correct order. We adopt the four primitive commands used in the woekgioned to
create and remove components and links: create(), delete(), link(), an&(nho-

tice that our cc() and rc() commands are high-level create() and delete() commands,
respectively, that also deal with the links “automatically”.

We separate concerns by using the CHAM just to spestiatto do, letting the
configuration manager decit®wto do it. To that end we let the CHAM “trace” its
execution, creating a “log” of the changes performed. That log corresponitie t
change script that a user would input directly to the configuration man&gyether
words, the CHAM can be seen as a “compiler” of high-level reconfiguratiomtamas
into low-level ones to be executed by the “run-time system”, i.e., thdigoration
manager.

The molecule syntax is extended with

Command= createComponerj | delete(d) | link(/d, Id) | unlink(/d, Id)
and the reconfiguration CHAM becomes

cc(c:C),mM — c:C, c—m, m:M, create€:C), link(c, m)
cc(sS),mM — s.S, m—s, m:M, creates§.S), link(m, s)
rc(c), ¢:C, c—m — delete€), unlink(c, m)
§:S, rc@), s:S,m—s — 'S, delete), unlink(m, s)
m:M, rc(m), cc(m':M) — m':M, delete(n), create’:M)
m—s, m':M — m'—s, m':M, unlink(m, s), link(m, s)
c—m, mM:M — c—m', m':M, unlink(c, m), link(c, m)

For the reconfiguration example shown in Section 2.1, the generated otamge
mands are:

create(cl1:C), link(cl, m1), delete(m1l), create(m2:M),
unlink(c1, m1), link(c1, m2), unlink(m1, s1), link(m2, s1)

As shown in the example, if the commands are executed in this order thporizrihy

some arcs do not point to any existing component. Moreover, two consraamtel

out. Looking at such a script, it is easy for the configuration managepttmize and
reorder the commands, based on such simple rules as “a component to be remasved
have no connections” and “a component must be created before it can be connected”
[6]. In this case, the configuration manager may execute the followingeseguof
commands (other sequences are possible):

unlink(m1, s1), create(cl1:C), delete(m1), create(m2:M), link(c1, nr&(h2, s1)

3 Self-Organizing Architectures

The chemical model is well suited to describe self-organizing architectureevetx-
ternal explicit management is kept to a minimum [2]. In fact, the very essgfite



CHAM model is that molecules react freely with each other until the solutitabfs
lizes”, i.e., becomes inert. Once that state is reached, new reactions may keetigg
by adding new molecules, but the reaction process itself is purely an “altaffair”.
The evolution of the solution proceeds without any interventiomfthe outside.

Our client-server example illustrates this. Once the commands toitsitdshe
manager are given, the architecture reorganizes itself to maintain the rigteatmns,
without needing any further commands from the user. In this sectiomovide a more
elaborate example of self-organizatiom-ary tree architecture where components can
be removed without destroying the properties of the tree. Such acgpahight be
useful for divide-and-conquer problems, each component splittingatagitthets from
its parent and combining the results produced by its children.

The example is a generalization of the binary tree architecture presen8driof
lowing the Configuration Programming approach, [8] only consideustiral proper-
ties. In this case, thgtructural integrityto be kept by the reconfiguration action is the
binary tree shape. Such integrity constraints are dividedriotte integrityandsystem
integrity properties. The former are local, the latter global. In this examplegkeein
tree is a system constraint because no single node can ensure that this gauiic.

On the other hand, it is enough for each node to restrict the number dfeito at
most two in order to have a binary tree. Other examples of systemiiytegnstraints
are the number of components in the tree and that the system consistg ohe tree.

The approach taken in [8] to handle structural integrity propertiegiigication.
The properties are expressed as Prolog clauses used to check the architesture aft
each change. If the reconfiguration violates at least one of the constramtsstitbe
undone. We follow the self-organization approach of [2]: when a changesdbe
system components reorganize themselves in order to satisfy the sitectstraints.

But first let us specify the-ary tree architectural style. The reaction rules gen-
erate trees with a maximum branching factor given by the initial solutfonode is
represented by a molecuh® wheren is the node’s nameg is the number of its an-
cestors (i.e., its depth), amds the number of children the node has. A root node has
no ancestors and therefore its depth is zero. Natural numbers are represersigal as u
using the constant zero and the successor function (written as a postfifumbers
are compared using substring prefix matchimg: mif nis of the formmx andn > m
if nis of the formm+ X, in both cases being matched by a sequence of zero or more
+.

Molecule:= Node%Z; | Node—Node | Nat
Nat =Nat+ |0

The initial solution contains just the root node and the maximal driaag factor:
rd, 0+ +. The creation CHAM is

X8, c+w — &, , x—y, Y3+, c+w
b+ —

The first rule creates a new node and attaches it to an existing node thaithg n
exceeded the children limit. The second rule allows the solution to bedoent by
eliminating the branch factor.

The initial solution of the evolution CHAM contains the branchfagtor again and
the current architecture. When a node fails, a command to remove it is adtfesl to
solution, and the architecture reconfigures itself according to the rules



re(), x—y, X2, Y& = re(x), y—x, 3+, %,
re(), y—x, x—2z ¥4, &t , 25" — re(®), y—x, y—z V& . ", &
re(), y—X ¥, %5 — Vo
b, X—Y, X—2, X3, » Ya© —= b, x—y, y—2,)8,, Vot
X—Y, %, Yo = x—y, &, vt
X—Y, ¢ Y = =y 8, Vet

The first rule handles the case of the root node: it is swapped withfateahildren,
which thus becomes the new root. The former root node now is a mitidie or a

leaf node and the second or third rule applies, respectively. The secanléthid the
children of the middle node directly to its parent. The node hence becamteatnode

and we get to the third rule which effectively removes the node fronrées tpdating

the children counter of the parent. During this process some nodes wvaynioae than

b children, wheré is the branching factor. The fourth rule ensures the correct number
by demoting the exceeding children to grandchildren. The last two rudgspate the
correct depth to children of nodes that have been promoted or demotednifiieity

and conceptual elegance of these rules should be compared with the parameterized
recursive rule of [8] which uses four different kinds of path exp@ssand a marking
command.

Some comments about this example are in order. The notation has been chosen
to be as compact as possible, showing only the relevant data. Furtheorsiog su-
perscripts for depth and subscripts for children makes both of them stand@’hus it
is easier to see how a node changes from the left to the right side of.aAuinore
conventional notation is obtained by translating every molecule ofoitme>& into two
molecules “depthy, a), children, c)”, and by transforming—y into “linked(x, y)".

The specification can be simplified by omitting the depth of each node, as in th
original example [8]. In fact, all that is necessary is to be able to gjsigh the root
node from the others. This can be done just with an extra molecul&3ytarhe first
rule becomes

re(x), root, X—Y, Xei., Yor = re(x), rootly), y—x, X, yor

the last two rules are not necessary any more, and the superscripts of #ieingrones
disappear. However, we chose to have this additional difficulty becairgeoiduces
further self-organization.

Besides illustrating self-organization and allowing comparison of approach
with a previous one, the example shows how structural and cardigalitstraints on
architectures can be specified. This is also useful for other kinds of wipslo

4 Programmed Reconfiguration

This section shows how a single CHAM may combine the specificationeo€dm-
putational behaviour with the specification of the architectural ewwiuith order to
describe programmed reconfiguration.

The chosen example is a client-server system where the server is agsysiem
with a set of printers. Each client makes a single request to print a dotuRvarters
may break down while printing. If no printer is working then any neigrm requests
are immediately rejected.



The chosen architecture consists of zero or more clients, one name see/én-on
hibitor” and one composite component containing zero or more printetsere are
no working printers, the name server is linked to the “inhibitorhyetvise it is linked
to the printing system. Whenever a new client arrives, it is automafiliaked to the
name server whose name is known and whose job is to relink the clidm tmmpo-
nent the name server is linked to. The “inhibitor” just rejects any cliequest. The
printing system accepts any incoming request if there is an availablepi®@therwise
the request stays on hold until a printer becomes available. Duringrti&nb further
request can be sent to the printing system. Clients automatically leaggdtem after
getting a positive or negative reply. When the last working pribtelaks down, the
name server is unlinked from the printing system and linked to thalitdr”. In-
versely, if no printer is working but one of them starts working adeig., because a
user has reset it), the name server is linked back to the printing system.

We now present the CHAM. The syntax of molecules is given by the fallgw
grammar, whose meaning will become clear from the explanation of the neaclés.

Molecule := Component| Connection| Data | Command
Connection:= Id—Id
Component= Printer | Port

Data :=working(Numbej)

Command := cl(Connectioiy | rl(Connectiof
Printer :=idle | toprint(Numbej | broken
Number = 1Number |

Port :=1Id | Id=Message

Id = Letter Id | Letter

Message := Number | print(Numbe) | accepted| rejected|

A possible initial solution is: p=, idle, working(1), i=, n—p. iEhstates that the
printing system has a port called “p” to receive requests and send repliebemadsta
single working printer, which is initially idle. The “inhibitor’s represented as a single
port “i”, initially without messages. The name server is denoted by pdtiriked to
port “p” of the printing system. There is no molecule “n=" because the nsameer
does not send or receive messages.

Initially, a client is of the formc=n, wheren is the number—in unary notation—
of pages to print, and the name of the port. Each client may use a different name.
The following three rules describe the behaviour of a client. The fire links it
to the name server (thereby changing the state of the port in order ith Gwplicate
connections) and the other two remove the client and its connection afterggett
reply.

c=n — c=print(n), c—n
c=accepteds—s —
c=rejectedc—s —

The name server simply relinks a client to the current server (either thibftor” or
the printing system).

c¢—n, n—— C—S§, N—S

The “inhibitor” replies to any incoming request with a rejection. Astlee printing
system, it accepts any request provided there is an available printer.

i=print(n) — i=rejected
p=print(n), idle — p=accepted, toprintj

10



Each printer outputs a document one page at a time. When reaching the exdnitds
available again. However, while printing a page, the printer may breakdtf it is
the last working printer, then the name server must get linked to thédibor”. To that
end, the corresponding reconfiguration commands are generated to remoleHlithie
and create the new one.

toprint(1n) — toprint(n)
toprint() — idle
toprint(1n), working(11p) — broken, working(})
toprint(1n), working(1),— broken, working(), rl(n—p), cl(n—i)

A broken printer can become idle again if it is reset or repaired. If there were n
working printers, the connection between the name server and the “oiilmitist be
removed and a link to the printing system must be created.

broken, working(p) — idle, working(11p)
broken, working()— idle, working(1), rl(n—i), cl(n—p)

In order for all this to work, general rules to remove and create connectiahtoan
exchanges messages between connected ports are necessary.

ri(a), a —
cl(@ — a
p=msg p—q, g=msg — p=msg, p—q, =mMsg

Consider the following scenario. Initially, there is only one pgmand a client
requesting to print 2 pages. The printing system accepts the requesteanlietit
goes away. The printer prints the first page and then breaks down. Tleeseawer is
relinked to the inhibitor and thus a new client arriving will get #sjuest rejected.

c=11, n—p, p=, idle, working(1), i=

c=print(11), c—n, n—p, p=, idle, working(1), i=
c=print(11), c—p, n—p, p=, idle, working(1), i=

c=, c—p, n—p, p=print(11), idle, working(1), i=

c=, c—p, n—p, p=accepted, toprint(11), working(1), i=
c=accepted, c—p, n—p, p=, toprint(1), working(1), i=
n—p, p=, broken, working(), i=, rl(n—p), cl(n—i)

newc=1, p=, broken, working(), i=, cl(n—i)

© © N o g M 0w NP

newc=print(1), newc—n, n—i, p=, broken, working(), i=

-
©

newc=print(1), newc—i, n—i, p=, broken, working(), i=

[
[N

. hewc=, newc—i, n—i, p=, broken, working(), i=print(1)

[iny
N

. newc=, newc—i, h—i, p=, broken, working(), i=rejected

[N
w

. hewc=rejected, newc—i, h—i, p=, broken, working(), i=

H
'

. n—i, p=, broken, working(), i=

11



5 Concluding Remarks

Inverardi and others [11, 12, 13] have shown that the chemical reactioelrfjd
and in particular the Chemical Abstract Machine [10], is a useful tool tordesand
study the computational behaviour of a system with a static archieectarthis pa-
per we extended the work in two directions: first, to handle not alsiaghitecture
but whole classes of architectures, by specifying a style as a non-detsiongelf-
organized reconfiguration process starting with an “empty” architecture; setmnd
cope with dynamic architectures. In particular, we dealt with self-organamdhoc,
and programmed reconfiguration, and global and local structural constiBagsd on
our preliminary exploration, we conclude that the CHAM may be useth®specifi-
cation and analysis of software architecture style and reconfiguratiom dokotving
characteristics of the chemical model.

simplicity There is a single data structure (multiset of terms) and a singlyramo
ming construct (rewrite rules), both of which are familiar and imteitcon-
cepts. The specifications tend thus to be rather compact and easy to write and
read. Moreover, proving properties about architectures or their reconfapsat
is normally straightforward (although tedious), often based ondtion over the
structure of molecules and rules.

suitability The model’s view of “computation as the global evolution of a collettd
atomic values interacting freely” [9] is naturally suited to describe trodugion
of self-organising architectures, which is the most general case of recafigu
tion. Also, the combination of reaction rules (the interactions) aitidisolution
of molecules (the atomic values) can be used to specify both system and node
integrity properties [8].

flexibility The definition of the molecules is left to the designer. Hence, a molecule
can represent an element of the architecture (i.e., a component or a connection), a
reconfiguration command or rule, or auxiliary data (like counters). Asdm-
ponents, it is possible to represent their structural and computatspakts.
The former include the number of connections a component has, the letter d
scribe the component’s state. As for reconfiguration commands, they enay b
high-level (like the “cc” command which also creates new links) or lovelev
ones (like the “create” command). With all these options one can encode and
compare several models of reconfiguration described in the literaturgnwsith
uniform framework. With the CHAM, the diverse approaches are easilygreco
nizable according to where molecules that represent reconfigurations (like “rc”
and “cc”) appear in the reaction rules: in programmed reconfiguration they ap-
pear on both sides, in ad-hoc reconfiguration they appear only in leftdides]
and in self-organization they do not appear at all.

However, flexibility has some disadvantages too. As seen in the piesgctions,
each CHAM introduces its own syntax and assumptions. This requiresoaddiex-
planations and does not allow reuse of specifications. The solutiorhavima fixed
representation for the most important concepts (like component and cam)edi-
wards that goal we have made a first attempt at a minimal CHAM-based arctatectu
description language [15].

In future work we plan to investigate the means to provide suppopdrtial me-
chanical analysis of complex properties and architectures. There are at leapoiree
sible independent lines of action.
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e A CHAM is a term rewriting system (TRS) with an associative and comriveatat
operator: multiset union. It might be possible to use or adapt tqaleside-
veloped for TRS to prove termination of reconfiguration and uniquenfes® o
resulting architecture.

e The CHAM can be encoded in rewriting logic [16] and thus tools for trahe-
work, like Maude [17] and ELAN [18], could be used to test architectpeeii-
cations written in CHAM. Another possibility is to adapt and expandisatjal
and parallel implementations of Gamma, the original chemical model [19, 20].

¢ If a given creation CHAM is context-free, the algorithm of [14] can be iapl
to check whether a given evolution CHAM keeps the style of an architecture
generated by the creation CHAM. It remains to be seen if the method can be
adapted to the general CHAM model or if a new algorithm can be developed.

We are of course aware that the chemical model is not suited for everykatyl®
or reconfiguration. Since a reaction depends on the presence of some molecales
figurations that depend on “negative” or global conditions (e.g., “if geéient is not
connected to the printing system, then...”) may be impossible or \an/th specify,
leading to CHAMSs that are cumbersome to write and hard to understand.sd/exal
pect several global integrity constraints to be not as easy to express hsatiching
factor or the depth of a tree. However, we hope that our exploratioreiv#erced the
suggestion that “the CHAM model might be one useful tool in thevgarié architect’s
chest of useful tools” [11].
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