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Abstract— Previous work on natural scene statistics (NSS)-
based image models has focused primarily on characterizing
the univariate bandpass statistics of single pixels. These models
have proven to be powerful tools driving a variety of com-
puter vision and image/video processing applications, including
depth estimation, image quality assessment, and image denoising,
among others. Multivariate NSS models descriptive of the joint
distributions of spatially separated bandpass image samples have,
however, received relatively little attention. Here, we develop a
closed form bivariate spatial correlation model of bandpass and
normalized image samples that completes an existing 2D joint
generalized Gaussian distribution model of adjacent bandpass
pixels. Our model is built using a set of diverse, high-quality
naturalistic photographs, and as a control, we study the model
properties on white noise. We also study the way the model fits are
affected when the images are modified by common distortions.

Index Terms— Natural scene statistics, bivariate correlation
models, bandpass images, 1/f noise models.

I. INTRODUCTION

IN THE early 1990s, Ruderman and Bialek [2] observed
that images processed by a simple bandpass operation

followed by a local divisive nonlinearity become gaussian
distributed with a remarkably high degree of regularity. This
observation has led to deeper parametric models of the statis-
tics of visual data, that are commonly referred to as Natural
Scene Statistics (NSS) models, although they are applicable
to photographic images of the world at large, including of
human-made objects.

A. Overview

NSS models are useful probes of the visual brain, and of
how it has evolved to efficiently process gigantic amounts of
visual data [3]. The parameters of univariate NSS models sam-
ples of bandpass images have been used as fundamental low-
level picture descriptors to successfully solve image and video
processing and analysis tasks such as image interpolation [4],
texture modeling [5], [6], full reference and blind image
quality prediction [7]–[11], and color depth modeling [12].
Extending NSS models to characterize the bivariate behavior
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of images could help advance improved solutions to a wide
variety of applications. However to date, little effort has been
applied towards modeling the bivariate NSS of bandpass image
samples. Simoncelli [13] studied the problem, and developed
a parametric model of the conditional distributions of neigh-
boring wavelet coefficients that represents and synthesizes
textures. Lee et al. [14] studied the relationship between
spatially separated bandpass (wavelet) image coefficients and
found that the spatial covariance functions follows a reciprocal
power law.

Prior efforts on the bivariate NSS have not produced closed
form representations. The first attempt to do so was reported in
Su et al. [1]; but their model was incomplete. Here we advance
this problem by extending their closed form model to account
for spatial separations between the bandpass samples. Specif-
ically, our model captures the correlations that exist between
bandpass divisively-normalized image samples, as a function
of the spatial separations and the relative orientations between
the samples and the bandpass filter tuning. We demonstrate
that for any image, the bivariate NSS model correlation can be
expressed using 6 parameters, per spatial orientation. We also
study the bivariate NSS of distorted images. We find that
our model is capable of representing the correlations between
distorted image samples. The observed changes in the bivariate
NSS model parameters when distortions are introduced are
found to be systematic, suggesting their usefulness in image
distortion analysis and future image quality models.

B. Background

Here, we review existing relevant models of the second
order statistics of natural scenes. Early on, Simoncelli [13]
and Liu and Moulin [15] observed that the coefficients of
orthonormal wavelet (i.e; bandpass) decompositions of natural
images tend to be much less spatially correlated than the
source images, yet they exhibit strong intra and inter scale
dependencies between bands [16]. These observations formed
the basis of an image texture model [5], where a set of
parametric constraints imposed on pairs of complex wavelet
coefficients occupying adjacent spatial locations, orientations
and scales were used to represent and synthesize textures.
Po and Do [17] developed a natural image model using a
hidden Markov tree, a Gaussian mixture model and two dimen-
sional contourlet features that capture interlocation, interscale
and interdirection dependencies. Mumford and Gidas [18]
proposed an infinitely divisible statistical bandpass image
model that assumes natural segmentations of images into
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high-information objects, cast against an ergodic field of low-
information regions. However, their model does not capture
the two-dimensional dependencies that occur within bandpass
images. Lee et al. [14] found that the power law dominates the
short spatial covariance function of pairs of bandpass image
samples obeying a reciprocal power law over short distances.
Su et al. [1] developed a closed-form model of the correlation
between adjacent oriented bandpass image samples, and used it
to develop a bivariate generalized Gaussian distribution model
bandpass images and range maps. The authors found it to be
useful for tasks such as color depth and range modeling [19]
and stereopair quality evaluation [20]. In [21] and [22],
we extended their work by studying the bivariate distributions
of the responses of horizontally related, oriented bandpass
image samples separated by distances of up to 10 pixels.
Here, we further generalize this work, by diversifying the
model across spatial orientations and by extending the studied
distances to at least 25 pixels (up to 35 pixels for some of
the cardinal orientations) and by studying the behavior of
the model when the images are subject to various types of
distortions.

The remainder of the paper is organized as follows; in
Section II we review 1/f image models (which is a key
concept for understanding our model). In Section III we
present the details of our model, then in Section IV we study
the model in the context of image distortions. Source code and
supplementary information regarding the model can be found
at: http://live.ece.utexas.edu/research/bivariateNSS/index.html.

II. 1/f PROCESSES

It is well known that the power spectra of natural photo-
graphic images tend to follow a reciprocal power law [23]:

S( f ) ∝ k

f α
, (1)

where α > 0 determines the rate of spectral fall-off of the
process.

Other phenomena that can be described by this law include
the extreme case of white processes (α = 0) which exhibit no
correlation over time or space, and random walks (e.g., Brown-
ian motion where α = 2, which is the integral of white noise).
Johnson [24] first observed a so called “1/f ” phenomenon
while studying shot noise in vacuum tubes. Processes that can
be accurately described as “1/f ” arise in such widely-varying
disciplines as biological evolution [25], animal population
studies [26], economics [27], personal growth and develop-
ment [28], and musical loudness and pitch [29], among many
others. The wide range of occurrences of the 1/f phenomenon
may be attributed to deep natural laws that reflect the self-
similarities of certain signal measurements over scales and the
behavior of equilibrium systems. Formal mathematical frame-
works such as fractional Brownian motion models [30], [31],
fractals [32], and iterated function systems [33] have been
deeply developed, yet the physical origins of 1/f phenomena
are often poorly understood. For example, although images of
natural scenes are enormously diverse, their power spectra can
be reliably described as 1/f [3], [23], [34], reflecting statistical
regularities underlying their correlation structure.

Fig. 1. Image pre-processing used in the NSS correlation model.

Here we are primarily interested in the 1/f image model in
regards to its implications regarding the correlation structure of
bandpass natural images. Our interest in this topic is motivated
by the successes that have been obtained on perception-
driven image analysis problems using spatial NSS models,
and since these solutions might be furthered by expanding
these models. This may also lead to insights on how natural
correlations may drive spatial interactions between visual
cortical neurons [3], [35]–[37]. Keshner [38] derived models
of the stationary autocorrelation functions of one-dimensional
1/f processes, arriving at a power law of reciprocal separation.
In the following, we develop a similar expression for the
peak correlation between bandpass image samples, using a
stabilized reciprocal power law.

III. NORMALIZED BANDPASS IMAGE

CORRELATION MODEL

Here we present the details of our model beginning with the
preprocessing steps of bandpass decomposition and divisive
normalization. A flow diagram of the involved processing is
shown in Fig. 1. Along the way, we demonstrate the various
processing steps used in the model using high quality images
from the pristine subset of LIVE Image Quality Assessment
database [39].

A. Steerable Filters

The NSS model that we use and develop is based on lumi-
nance images that have been subjected to bandpass processing.
While the model appears to hold over a wide range of bandpass
operations (Gabor, wavelet, etc.), we use steerable filters [40]
in our simulations, owing to their simple, easily manipulated
form, their invariance to content translations, and their good
fit as a frequently used model of bandpass simple cells in
primary visual cortex. A steerable filter at a given frequency
tuning orientation θ1 is defined by:

Fθ1(x) = cos(θ1)Fx (x) + sin(θ1)Fy(x), (2)

where xxx = (x, y), and Fx and Fy are the gradient components
of the two-dimensional unit-energy bivariate isotropic gaussian
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function:

G(x) = 1

2πσ 2 e
−(x2+y2)

2σ2 , (3)

having scale parameter σ . Steerable filter based decompo-
sitions, such as steerable pyramids [41] yield substantially
spatially decorrelated responses when applied to high-quality
photographic images.

Modifying the scale parameters σ of the bivariate gaussian
derivative functions (Fx and Fy) enables the construction of
a multi-scale bandpass image decomposition broadly resem-
bling the responses of populations of simple cells in cor-
tical area V1. Other filter models could be used equally
well to obtain bandpass orientation and radial frequency
responses, such as Gabor filters, but the steerable filters
present advantages of simple definition and efficient computa-
tion. The radial frequency bandwidth of the steerable filter
(1) is fairly narrow (about 2.6 octaves). In the following
development and testing of the bivariate correlation model,
each analyzed image is passed through steerable filters of
scales σ ∈ {1, 2, 3, . . . , 15} and over 15 frequency tuning
orientations θ1 ∈ [0, π/15, 2π/15, . . . , π], yielding 225 band-
pass responses. The bandpass images were computed on all
29 pristine images from the LIVE Image Quality Assessment
database, yielding a total of 6525 bandpass filtered image
responses.

B. Divisive Normalization

Divisive normalization was then applied on all of the steer-
able filter responses. When applied to naturalistic photographic
images that have been bandpass filtered, normalization by the
energy of the local signal has been observed to gaussianize
and further decorrelate the image data [2], [13]. The divisive
normalization model used here is:

u j (x) = w j (x)√
t + ∑

y g( j (y),w j (y))2
, (4)

where w j are the steerable filter responses for filters indexed
by j , u are the coefficients obtained after divisive normal-
ization, and t = 10−4 is a stabilizing saturation constant.
The weighted sum in the denominator is computed over
a spatial neighborhood of pixels from the same sub-band,
where g(xi , yi ) is a circularly symmetric Gaussian function
having unit volume. To match the increase in scale applied
at the steerable filtering step (translated by increasing σ ), the
variance of g(xi , yi ) is also increased linearly as a function of
σ . Furthermore, we note that this step is also a good functional
model of the nonlinear adaptive gain control of V1 neuronal
responses in the visual cortex [35]. Divisive normalization
causes the subband statistics of good quality natural images
to become strongly Gaussianized. If the images are distorted,
then the bandpass distribution tends away from Gaussian [11].

C. Bivariate Density Model

Following Su et al. [19], we use a multivariate generalized
Gaussian distribution (MGGD) to model the joint histogram
of a pair of divisively normalized bandpass image samples

located at different spatial (pixel) locations. Methods for
estimating the parameters of MGGD model fits to multi-
dimensional image histograms are studied by Pascal et al. [42].
The probability density function of the MGGD is:

p(x; M, η, s) = 1

|M| 1
2

gη,s(xT M−1x), (5)

where x ∈ R
N , M is an N×N scatter matrix, η and s are scale

and shape parameters respectively, and gη,s(.) is the density
generator:

gη,s(y) = s�( N
2 )

(2
1
s πη)

N
2 �( N

2s )
e− 1

2 ( y
η )s

, (6)

where � is the digamma function and y ∈ R
+. Note that

when s = 0.5, (6) becomes a multivariate Laplacian density
function, and when s = 1, it becomes multivariate Gaussian
density. Here we fix s = 1, where η controls the spread of the
density function.

While pairs of Gaussian random variables are not neces-
sarily jointly Gaussian, pairs of image samples that have been
subjected to bandpass processing followed by divisive normal-
ization are observed to be reliably jointly Gaussian. The reason
for the Gaussianity of images processed in this perceptually
relevant manner remains elusive. It cannot be explained as a
consequence of the Central Limit Theorem (CLT), since the
only additive process (linear filtering) is on strongly correlated,
raw image samples rather-than on uncorrelated or weakly
correlated variances, as required by the CLT. Moreover,
the outcome of the linear filtering is decidedly non-Gaussian,
and instead is distributed with much heavier tails, typically
described as leptokurtic generalized Gaussian [2]. The shape
of these empirical non-Gaussian “sparsity” densities is typi-
cally attributed to the imaging projection of a world that is
smooth nearly everywhere (yielding heavily massed bandpass
samples near or at zero), except where (blurred) singularities
occur (resulting in large responses defining the heavy tails).
Gaussianity finally arises as a consequence of a process of
local divisive normalization by neighboring bandpass image
energy [2], [43]. While this ultimate Gaussianity remains unex-
plained, there may be connections with theoretical processes
defined as quotients of highly correlated quantities, such as
the Fisz transform [44], [45].

The bivariate empirical histograms of the sub-band coeffi-
cients of natural images are thus modeled here as following a
bivariate generalized Gaussian distribution (BGGD), by setting
N = 2. This also presumes that the images have not been
distorted, which may change their statistics. In all of the
following, the parameters of the BGDD were estimated using
the efficient maximum likelihood estimation method of [42].
We systematically applied this modeling process to all of the
bandpass normalized images.

To remove any undesirable border filter effects, we cropped
10 pixels from each image’s four borders, defined a window
at a fixed position within the cropped image (Window 1) and
another sliding window of the same dimensions (Window 2).
Denote the distance between the center of the two windows
of bandpass, normalized image samples of interest by d , and
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Fig. 2. An illustration of an image after the divisive normalization and
steerable filtering (of fixed σ and θ1 values) are applied, with the two sliding
windows, and how θ2 is computed.

the angle between them by θ2, as illustrated in Figure 2.
Next, define the relative angle θ2 − θ1, where θ1 is the
sub-band tuning of the bandpass filter orientation relative to
the horizontal axis. The bivariate histogram takes predictable
shapes. For example, when the relative angle θ2 − θ1 = 0,
the bivariate joint histogram takes a highly eccentric elliptical
shape indicating a strong degree of a correlation, whereas
when the relative angle is increased, the bivariate histogram
becomes more circular. Figure 3 plots bivariate histograms as
intensity for the case of d = 1 and θ2 = π/2. As we discuss
further, we observe similar histogram shape trends for longer
separations d and for all other spatial angles θ2.

The bivariate model (5) is a closed form, except for the
elements of the scatter matrix M . The scatter matrix defines
the covariance matrix of the bivariate model. To complete the
closed form model, we studied the Pearson correlation function
between the two windows. We obtain the correlation as the
gradient of the covariance of the two entities and the product
of their standard deviations. The two windows were separated
by horizontal and vertical separations δx and δy which we
varied over the integer range from 1 and 25, i.e. distances of√

δ2
x + δ2

y at spatial orientations θ2 = arctan(
δy
δx

) (relative to
the horizontal axis). We limited the range of θ2 to [0, π[ since
the quantities being measured are symmetrically defined and
are π periodic.

The tuning orientation θ1 is the frequency tuning orientation
of the steerable filter. We used a discrete set of 15 sub-band
orientations {0, π

15 , 2π
15 , . . . , , 14π

15 } to build our model.
The correlation function model expresses a periodic behav-

ior in the relative angle θ2 − θ1, which can be well modeled
as:

ρ(d, σ, θ2) = A(d, σ, θ2)cos(2(θ2 − θ1)) + c(d, σ, θ2) (7)

where A(d, σ, θ2) is the amplitude, c(d, σ, θ2) is an offset,
d is the spatial separation between the target pixels, σ is the
steerable filter spread parameter, and θ2 is as before. Generally,
the shapes of ρ, A, and c vary in a consistent way with d , σ
and θ2, as we shall see.

Figure 4 plots the average correlation function of several
processed images from the set of LIVE reference images,
as a function of θ2 − θ1, over 4 scales for θ2 = π/2 rad
and d = 1. From this plot, it may be observed that the

maximum correlation value P = max(ρ) that is attained,
occurs (as expected) when θ2 − θ1 = 0, falling monotonically
from this maximum value as the absolute relative angle is
increased to π/2. Figure 4 also shows that the correlation
increases with the scale factor σ , which we have observed
over all studied spatial orientations θ2 and spatial separa-
tions d . This is to be expected, since as σ is increased,
the filter bandwidths decrease, which tends to increase in-band
correlations.

As the spatial separation d is increased, the correlation also
drops, as shown in Fig. 5, where the empirical correlations
are plotted for a fixed scale σ and spatial orientations θ2, over
several values of the spatial separation d .

As a further illustration of the correlation function’s behav-
ior, Figure 6 plots the correlations of adjacent samples mea-
sured at the same scale (σ = 2) and spatial separations but
different spatial orientations θ2 ∈ {0, π

4 , π
2 , 3π

4 }. Note that the
sample separation takes two values: d = 1 for θ2 ∈ {0, π

2 }
and d = √

2 for θ2 ∈ {π
4 , 3π

4 }. From the plot, it may be seen
that horizontally and vertically related pixels (θ2 = π/2 rad
and θ2 = 0 rad) are more correlated than diagonally related
pixels (θ2 = π/4 rad and θ2 = 3π/4 rad), which is also
expected owing to the different spatial separations. However,
the correlation also likely increases along the cardinal direc-
tions because of the preponderance of horizontal and vertical
structures in real-world images [46].

In order to better understand and to complete our model of
the correlation function ρ in (7), we also model the amplitude
and offset functions A and c. To do so, we define the peak
correlation function:

P = max(ρ) = A + c. (8)

wherein we may rewrite (7) as:

ρ(d, σ, θ2) = A(d, σ, θ2)cos(2(θ2 − θ1))

+ [P(d, σ, θ2) − A(d, σ, θ2)] (9)

We did not impose any constraints on the values of A and P
when fitting ρ. We have observed the values of A to be
positive except in a few instances where the correlation is very
small (at large spatial separations) or large and flat (at small
separations and large scales). In those cases, A took slightly
negative values (10−3).

As mentioned earlier, Lee et al. [14] systematically observed
that the sample covariances of bandpass image pixels follow an
approximate reciprocal power law, of the form 1

|d |b , which, like
white processes, cannot be realized. Similarly, Keshner [38]
remarks on the fact that the nonstationary autocorrelation
function of 1/f processes take a reciprocal form, and that a
practical stationary model might be obtained by modifying the
autocorrelation model near the origin. Here, we take a different
approach, whereby we model the peak correlation function as
having a general version of the form 1

|d |β+1
.

Figure 7 plots the empirical peak correlation function P
against the sample separation d for a few values of σ and θ2.
As expected, the measured correlations decrease rapidly from
a peak value of 1 as the spatial separation d increases; which is
natural since one should expect reduced correlations between
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Fig. 3. Bivariate joint histograms of a steerable filter response at distance d = 1, scale σ = 2, tuned to spatial orientation θ2 = π/2 for various spatial
angular differences θ1. Each plot presents the probability of the values that two pixels separated by d and θ2 will take. (a) θ1 = 0, and θ2 − θ1 = −1.57.
(b) θ1 = 3

15π , and θ2 − θ1 = −0.94. (c) θ1 = 6
15π , and θ2 − θ1 = −0.31. (d) θ1 = 9

15π , and θ2 − θ1 = 0.31. (e) θ1 = 11
15π , and θ2 − θ1 = 0.73. (f) θ1 = 14

15π ,
and θ2 − θ1 = 1.36.

Fig. 4. Average correlation function of the luminance components of natural
images plotted against relative angle θ2 − θ1, for θ2 = π/2 rad, d = 1, and
σ = 3, 6, 9, and 12.

pixels as the spatial separation increases. There is a slight
observed undershoot, especially for small σ values, which is
likely a consequence of unsmoothness of the applied filter,
but this is small and difficult to model, hence we neglect this
minor behavior.

The general form of our stabilized peak correlation model
is as follows: given a fixed spatial orientation θ2 and a scale σ ,
define

P̂(d, σ, θ2) = 1

( d
α0(θ2)∗σ )β0 + 1

(10)

where {α0, β0} are parameters that control the shape and fall-
off of the peak correlation function, and which depend on the
spatial orientation θ2.

Fig. 5. Average correlation function of the luminance components of natural
images plotted against relative angle θ2 − θ1, for θ2 = π/2 rad, σ = 10 and
d = 1, 5, 10, and 15.

We discuss the validation and application of our model (10)
further along, but first we will look at the other function
comprising the correlation model (9).

Figure 8 plots the amplitude function A(d, σ, θ2) against
d for few scales σ and spatial orientations θ2. The graph
of A rises from the value 0 at d = 0, then decreases with
increasing separation. Given the similarity of the graph of A to
the difference of two functions of the same form but different
scales, and the close relationship between A and P , we model
A as the difference of two functions of the form (10):

Â(d, σ, θ2) = 1

( d
α1(θ2)∗σ )β1(θ2) + 1

− 1

( d
α2(θ2)∗σ )β2(θ2) + 1

(11)
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Fig. 6. Average correlation function of the luminance components of
bandpass, divisively normalized natural images for the case of adjacent pixels
(horizontal, vertical, diagonal) plotted against relative angle, for σ = 2 for
θ2 − θ1 for θ2 = 0, π/4, π/2, and 3π/4.

Fig. 7. Peak function P(d, σ, θ2) plotted against pixel separation d for
σ = 2, 5, and 10 for (a) θ2 = 0 and (b) θ2 = π

4 (rad).

where {α1, β1,α2, β2} are parameters that are functions of θ2
that control the shape of A.

Our goal next is then to find, for a fixed spatial orienta-
tion θ2, the values of the parameters {α0, β0} that produce
the best fit to (10), and the parameters {α1, β1, α2, β2}, that
yield the best fit to (11), in the least mean squared error
sense. We form two optimization systems for P and A that
account for scale to find those optimal values. The optimiza-
tion systems minimize the summed squared errors of the peak
and amplitude. To accomplish this, we apply unconstrained
nonlinear regression using the quasi newton method [47].
We restrict our modeling of the correlation to a span of
dimensions 25×25 so that d ∈ [0,

√
1250], since the peak cor-

relation becomes negligible if d is increased further. The four

Fig. 8. Amplitude function A(d, σ, θ2) plotted against pixel separation d for
σ = 2, 5, and 10 for (a) θ2 = 0 and (b) θ2 = π

4 (rad).

TABLE I

OPTIMAL VALUES OF α0, β0, b0, α1, β1, b1, α2, β2 , AND b2 FOR

THE 8 MOST FREQUENTLY OCCURRING VALUES OF θ2
ON THE LIVE IQA REFERENCE LUMINANCE IMAGES

functions P(d, σ, θ2), A(d, σ, θ2), P̂(d, σ, θ2), and Â(d, σ, θ2)
form vectors of size m × 1, where m is the number of
occurrences of θ2 inside the span of interest. Denote by D the
set of distances for a given spatial orientation θ2. For the case
θ2 = 0 or π/2, D = {0, 1, 2, 3, . . . , 24, 25}. For the case θ2 =
π/4 or 3π/4, D = {0,

√
2,

√
8,

√
18, . . . ,

√
1152,

√
1250}.

Our optimization systems are then expressed as:

min
α0,b0

∑
d∈D

∑15
σ=2(P(d, σ, θ2) − P̂(d, σ, θ2))

2 (12)

and

min
α1,b1,α2,β2,b2

∑
d∈D

∑15
σ=2(A(d, σ, θ2)− Â(d, σ, θ2))

2 (13)

Table I gives the optimal parameters yielding the best
average correlation fit to (12) and (13) over all of the (lumi-
nance) images in the LIVE reference image set over the
8 most frequently occurring spatial orientations θ2. It may
be observed that the fitting parameters fall within narrow
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Fig. 9. Examples of best-fitting peak correlation model P̂ to the peak correlation P of the average empirical correlation P . (a) σ = 2, θ2 = 0.
(b) σ = 5, θ2 = 0. (c) σ = 10, θ2 = 0. (d) σ = 2, θ2 = π/4. (e) σ = 5, θ2 = π/4. (f) σ = 5, θ2 = π/4.

ranges, the exceptions being the peak correlation parameters
(α0, β0) which deviate a little more along the cardinal orienta-
tions, and to a lesser degree, along the diagonal orientations.
This is not unexpected given the well-known prevalence of
horizontal, diagonal, and vertical oriented structures in the
visual environment [46]. What is perhaps surprising is the
high degree of uniformity of the other parameters against
orientation, particularly those of the amplitude function (11).
We also computed these parameters over the larger set of
values θ2 = {0.000, 0.785, 1.571, 2.356, 0.464, 1.107,
2.034, 2.678, 0.322, 0.588, 0.983, 1.249, 1.893, 2.159,
2.554, 2.820, 0.245, 0.644, 0.927, 1.326, 1.816, 2.214,
2.498, 2.897}. These values occur at least 5 times in the
area of interest. Values of θ2 where there was insufficient
data (viz., pairs of pixels at those orientations) are left out
to conduct the optimization. We computed the optimal para-
meters α0, β0, α1, β1, α2, and β2 for this set of θ2 values for
each σ ∈ {1, 2, 3, . . . , 15}. Since this is a sizeable amount
of tabulated data, we make it available at the following link:
http://live.ece.utexas.edu/research/bivariateNSS/index.html.

D. Model Validation

Next, we validate our model by examining the closeness of
fit of the models P̂ , Â and ρ̂ to the empirical functions P ,
A and ρ.

1) Validation of A and P: We computed the mean squared
error (MSE) between the reconstructed peak and amplitude
correlation functions P̂ and Â, relative to the empirical average
functions P and A that were computed and measured, respec-
tively, on the LIVE Image Quality Assessment Database [39]
luminance images across integer scales σ ∈ {2, 3, . . . , 15}.

The MSE between P and P̂ for a fixed scale σ and orienta-
tion θ2 is defined as:

M SE P =
∑

d∈D

(P(d, σ, θ2) − P̂(d, σ, θ2))
2

|D| , (14)

where |D| is the cardinality of D. Similarly, for a fixed
scale σ and orientation θ2, the MSE of between A and Â is
defined as:

M SE A =
∑

d∈D

(A(d, σ, θ2) − Â(d, σ, θ2))
2

|D| . (15)

The largest errors between P and P̂ and A and Â over
all pairs (σ, θ2) were on the order of 10−3. The results for
the considered (σ, θ2) pairs can be found at the same link as
above. Examples of the empirical functions P and A are shown
in Fig. 9 and Fig. 10, which visually illustrate the goodness
of our model in capturing P and A. It is worth remarking that
the results obtained by finding the best-fitting P̂ and Â on
the average empirical correlation data, were as good as those
obtained by finding the best fits on the empirical correlations
from each of the naturalistic images in the LIVE Image Quality
Assessment [39] database and their corresponding best fits
P̂ and Â.

Furthermore, for each fixed scale σ and spatial orienta-
tion θ2, we computed the χ2 test statistic:

χ2
A =

∑

d∈D

29∑

i=1

(Ai (d, σ, θ2) − Â(d, σ, θ2))
2

Â(d, σ, θ2)
(16)

where Ai (d, σ, θ2) is the empirical amplitude function of
the i th naturalistic image from the LIVE Image Quality
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Fig. 10. Examples of best-fitting amplitude correlation model Â to the peak correlation A of the average empirical correlation A. (a) σ = 2, θ2 = 0.
(b) σ = 5, θ2 = 0. (c) σ = 10, θ2 = 0. (d) σ = 2, θ2 = π/4. (e) σ = 5, θ2 = π/4. (f) σ = 5, θ2 = π/4.

TABLE II

χ2
P RESULTS FOR THE 8 MOST FREQUENTLY OCCURRING θ2 ON THE LIVE IMAGE QUALITY ASSESSMENT REFERENCE LUMINANCE IMAGES

Assessment [39] for fixed σ and θ2 values, and Â(d, σ, θ2)
was obtained by finding the best fit to the amplitude function
of the average empirical correlation. Likewise the χ2 statistic
for the peak correlation was also computed:

χ2
P =

∑

d∈D

29∑

i=1

(Pi (d, σ, θ2) − P̂(d, σ, θ2))
2

P̂(d, σ, θ2)
, (17)

where Pi (d, σ, θ2) is the empirical peak correlation function
of the i th naturalistic image from the LIVE Image Quality
Assessment [39] for σ and θ2 fixed, and P̂(d, σ, θ2) was
obtained by finding the best fit to the peak of the average
correlation.

The results of the χ2
P and χ2

A tests for the 8 most frequently
occurring values of θ2 are presented in Tables II and III respec-
tively. The values are in general small (on the order of 10)
except at the smallest scales of σ . This is not unexpected,
as highly localized (less smoothed) measurements of the
correlation will be less certain. However, we have observed the
functional fits to be reasonably good, even when σ = 1. The
somewhat less consistent behavior of the results when σ = 1
is likely due to two reasons: first, the spatial implementation
of the steerable filters begins to become degenerate at that
scale, leading to poorer localization properties than afforded
by larger Gaussian envelopes, and second, the presence of high
frequency noise, including quantization, present even in high-
quality pictures, may affect the steerable responses as well.



3202 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 27, NO. 7, JULY 2018

TABLE III

χ2
A RESULTS FOR THE 8 MOST FREQUENTLY OCCURRING θ2 ON THE LIVE IMAGE QUALITY ASSESSMENT REFERENCE LUMINANCE IMAGES

Fig. 11. Graphs of the model and empirical correlation functions ρ and ρ̂ plotted against θ2 − θ1 for various values d, θ2 and σ values. (a) d = 20.13,
σ = 14, θ2 = 2.678. (b) d = 2, σ = 5, θ2 = 0. (c) d = 10, σ = 7, θ2 = 2.214 (d) d = 12, σ = 10, θ2 = 1.571. (e) d = 29.70, σ = 12, θ2 = 0.7854.
(f) d = 4.24, σ = 3, θ2 = 2.356.

2) Validation of ρ: To validate the correlation model, ρ,
we followed a similar approach. The MSE for a fixed scale σ ,
distance d , and orientation θ2, is defined as:

M SEρ =
14π
15∑

θ1=0, π
15

(ρ(θ2 − θ1) − ρ̂(θ2 − θ1))
2

15
. (18)

We computed the MSE values between the model correla-
tion function ρ̂ and the average empirical correlation function
ρ on the luminance components of the LIVE IQA dataset.
Again, the largest error was on the order of 10−3 for θ2 = 0.
We observed similar results across other θ2 values, which
are not included here for lack of space, but could be found

on http://live.ece.utexas.edu/research/bivariateNSS/index.html.
Figure 11 plots the best-fitting model correlation ρ̂ along with
the empirical correlation function for a variety of randomly
selected values of d , θ2 and σ .

We also performed the χ2 test for θ2 and d fixed. The
statistic is computed as:

χ2
ρ =

14π
15∑

θ1=0, π
15

29∑

i=1

(ρi (d, σ, θ2) − ρ̂(d, σ, θ2))
2

ρ̂(d, σ, θ2)
, (19)

where ρi (d, σ, θ2) is the correlation of the i th naturalistic
image from the LIVE Image Quality Assessment reference set
for given values of d , σ and θ2, and ρ̂(d, σ, θ2) is the best fit
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TABLE IV

MEDIAN χ2
ρ WITH RESPECT TO THE AVERAGE LUMINANCE CORRELATION FOR θ2 = 0 ON

THE LIVE IQA REFERENCE IMAGES AS A FUNCTION OF THE SCALE PARAMETER σ

TABLE V

MEDIAN χ2
ρ WITH RESPECT TO THE AVERAGE LUMINANCE CORRELATION FOR θ2 = 0 ON

THE LIVE IQA REFERENCE IMAGES AS A FUNCTION OF THE SPATIAL SEPARATION d

Fig. 12. Comparison of the behavior of the model over LIVE IQA, Toyama and CSIQ. (a) ρ(d = 1, σ = 1, θ2 = π/2) vs θ2 − θ1. (b) P(d, σ = 1,
θ2 = π/2) vs d. (c) A(d, σ = 1, θ2 = π/2) vs d.

of the average correlation. Due to the lack of space, we only
present the median results for ρi (d, σ, θ2) as a function of
σ and d for the case of θ2 = 0, in Tables IV and V respectively.
Results for other angles can be found at the same web link
given earlier.

The very low MSE values, the low values of χ2
ρ , and the

apparent good functional fits shown in the plots validates the
accuracy of our model. In a few instances, the values of χ2

ρ

took larger values, as a byproduct of numerical instability
when computing (19): the appearance of small values in the
denominator of (19) resulted in larger values of χ2

ρ . However,
even in those cases, we still observed excellent alignment
between the empirical data and the functional fits.

We also found that the model correlations computed on the
individual pristine LIVE reference luminance images yielded
similar measurements of goodness of fit.

E. Validation on Other Databases

As an additional way to validate our model, we studied its
behavior of on other databases; first on the CSIQ database [48]
which contains 30 pristine images and second on the Toyama
Database [49] which contains 14 pristine images. As depicted
by the example in Fig. 12 we obtained a great overlap between
the average correlation, amplitude in peak of the different
databases. Also we observed small χ2

ρ , χ2
P and χ2

A values
between the mean case from the LIVE IQA database and the
images from the other databases.

F. Scale Invariance

Several aspects in the environment are statistically self-
similar, meaning that their structure is invariant over

multiple scales. An observed property of natural images is the
invariance of their statistics with respect to the scale at which
the image is observed. For example, the power spectrum of
images is invariant to scaling [50], which implies a similar
correlation scale-invariance property. Also, many natural struc-
tures are scale-invariant [32]. Figure 13 plots P and A against
the scaled spatial separation for several values of the scale, for
the case θ2 = 0. Excellent alignment of the plots across scales
is observed, in agreement with the scale-invariance property,
over all θ2 values. To conserve space, we present the results
for only a few scales in Fig. 13, however we have observed
invariance to also hold over all the other scales.

G. White Noise Images

Next we study how our correlation model applies to com-
posed images of simulated white noise (i.e, random matrices).
We conduct this analysis both as an experimental control
and as a way to better understand the properties of our
model. The relative correlation structure of bandpass filtered
and normalized white noise against that of natural images
is of interest. For example, while the perceptually relevant
processing used in our model is known to decorrelate natural
images, which are otherwise strongly correlated, instead it
introduces correlation on white noise images.

However, the processed white noise images still exhibit
less correlation than processed natural images, as may be
observed in Fig. 15 (a). Note that both the correlation
and peak correlation functions of the (bandpass, normalized)
processed natural images are everywhere higher than for the
processed white noise. Overall, we have found the parametric
fits (and associated parameters) to natural images and white
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Fig. 13. Plots of (a) peak function and (b) amplitude correlation function
for θ2 = 0 rad, for several values of scale σ , illustrating the scale invariance
of these functions.

noise to be quite different and to obey the ordering observed
in Fig. 15 (b). This serves not only to validate the unique
characteristics of high-quality natural images processed in this
manner (like those in the LIVE reference dataset), but also
raises the question of how the model applies to distorted
images, and how it might be exploited to analyze them. For
example, they might be exploited to augment or improve upon
existing image quality prediction models and algorithms [7].

IV. BEHAVIOR OF THE MODEL IN

THE PRESENCE OF DISTORTIONS

Distortions lead to consistent changes in the behavior of
bandpass image fits to univariate NSS models [11]. Next,
we examine how our correlative model behaves in the presence
of image distortion. To study this, we applied the model to both
reference and distorted images taken from the LIVE IQA data-
base [39]. The database contains images impaired by gaussian
blur, JPEG compression, JPEG 2000 compression, fast fading
channel noise and additive white noise. We begin by using
a simple example image from the LIVE IQA database to
demonstrate our observations along the way; image “Woman
Hat” is shown in Fig. 16(a). While we restrict ourselves
to commenting on “Woman Hat,” we have observed very
similar results on distorted versions of all the other LIVE
IQA images.

Fig. 14. A sample natural image (a) before and (b) after bandpass filtering
and normalization. Similar for white noise image (c) and processed version
of it (d).

Fig. 15. Graphs of (a) correlation function ρ plotted against θ2 − θ1 for
σ = 2, d = 1, and θ2 = 0 (b) peak correlation function P plotted against
d for σ = 2 and θ2 = 0. Each plot shows the result of processing natural
images (in blue) and white noise (in red).

A. Impact of Distortions on Correlation, Amplitude and Peak

We begin by visualizing the correlation, peak and amplitude
functions as they are modified by distortion. Figures 17-19
show plots of ρ, P , and A, respectively, on the images
modified by the distortions. The observations that will be
drawn from the presented examples are generalized across
other scales, σ , and spatial orientation θ2.
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Fig. 16. Image “Woman Hat” and several distorted versions of it. (a) Distortion Free. (b) Blur. (c) JPEG. (d) JPEG 2000. (e) Fast Fading. (f) White Noise.

Fig. 17. Plots of the correlation function of image “Woman Hat” subject to (a) blur; (b) JPEG; (c) JPEG 2000; (d) Fast fading; (e) White noise.

1) Blur: Increases in blur were produced by increasing the
space constant of the applied gaussian filter σ , which generally
leads to worsening degradation of the perceptual image quality,
which are reflected in drops in the Structural Similarity Index
(SSIM) [8] between the blurred images and the undistorted
original values. As expected, blur leads to an increase in
the correlation functions of the bandpass normalized images,
as can be seen in Fig. 17(a). The reductions of detail and
diversity as a consequence of low-pass smoothing (Fig. 16(b))
progressively increases the correlation as the filter bandwidth
is decreased. The increase in the correlation is monotonic with
the level of blur. Furthermore, at small spatial separations,
the values of the peak and amplitude functions increase, as can
be seen in Fig. 18(a) and Fig. 19(a), respectively.

2) JPEG: Increases in JPEG compression is controlled by
decreases in the JPEG coefficient quantization q , which in turn

leads to reduction of the SSIM values between compressed and
original images. JPEG distortion also leads to an increase in
the computed correlation function since it causes both over-
smoothing and blocking artifacts, and hence greater degrees
of local homogeneity, as may be observed in Fig. 16(c). The
increase in the correlation is monotonic, as may be seen by
comparing the plots in Fig. 17(b). As a result, the peak and
amplitude functions also increase in value, as in Fig. 18(b)
and in Fig. 19(b) respectively. This increase is not limited
to small spatial separations, unlike the case with blur. The
values of A and P remain high even for larger separations
when measured on heavily compressed images.

3) JPEG 2000: Ringing and blur are two common arti-
facts that afflict JPEG 2000 compressed images as may be
observed in Fig. 16(c). Generally, the correlation is increased
as shown in Fig. 17(c). However this increase is not monotonic
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Fig. 18. Plots of the peak function of image “Woman Hat” subject to (a) blur; (b) JPEG; (c) JPEG 2000; (d) Fast fading; (e) White noise.

Fig. 19. Plots of the amplitude function of image “Woman Hat” subject to (a) blur; (b) JPEG; (c) JPEG 2000; (d) Fast fading; (e) White noise.

with increased compression. This may be partially explained
by the fact that multiple parameters control JPEG 2000, such
as the assigned weighting. The LIVE IQA database [39] does

not indicate the weighting used on each image. P and A are
impacted in ways similar to JPEG, as may seen in Fig. 18(c)
and Fig. 19(c), respectively. The peak and amplitude functions
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Fig. 20. Boxplots of the different parameters (a) α0; (b) β0; (c) α1; (d) β1; (e) α2; and (f) β2 for the various applied controlled distortions; (1) Undistorted;
(2) Blur; (3) JPEG; (4) JPEG 2000; (5) Fast Fading; (6) White Noise.

in these cases exhibit bumps that are possibly caused by the
ringing distortions.

4) Fast Fading: The fast fading category in LIVE IQA [39]
is a complex, difficult distortion that is modeled as JPEG-2000
compression followed by fast fading bit errors. It also leads to
increases in the correlation functions shown in Fig. 17(d). The
behavior is not entirely monotonic owing to the complexity of
the distortion. Generally, however, there is a resemblance in
the correlation plots of JPEG 2000 and fast fading channel
noise, since both contain JPEG 2000 compression artifacts
(Fig. 16(d)). However, the increases in the peak and amplitude
values are less subtle as compared to JPEG 2000, as depicted
in Fig. 18(d) and in Fig. 19(d). This is because low com-
pression (2.5 bits per pixel) was used to generate the JPEG
2000 distortion on all of the fast fading data, leading to less
harsh ringing or blur artifacts as compared to the pure JPEG
2000 distortions.

5) White Noise: White noise of standard deviation σ was
added to the R, G and B components. This leads to a decrease
in the SSIM values. As a general trend, white noise leads to
a decrease in the correlation functions, as expected. The peak
correlation function is not impacted, as shown in Fig. 18(e).
The amplitude functions appears to absorb most of the vari-
ation, as seen in Fig. 19(e), where the amplitude at small
distances is higher. The exception to this general observation
occurs at small standard deviations. In this case, the correlation
slightly increased.

B. Impact of Distortions on Model Parameters
α0, β0, α1, β1, α2, and β2

Understanding how the values of α0, β0, α1, β1, α2,
and β2 are impacted as function of the distortions is

less straightforward. It is not clear yet how changing trends in
the different parameters impact A, P , and ρ. Figure 20 shows
these parameters against the various considered distortions.
In the presence of distortions, the distributions of the values
of these different parameters are modified. Some parameters
seem to respond to distortions better than others; by comparing
the boxplots of α2 and β1, for example, it may be observed
that the distribution of values of α2 changes more drastically
than does the distribution of values of β1. In the near future,
we will describe ways to use the parameters α0, β0, α1, β1, α2,
and β2 as features to build correlation-based models that are
able to automatically assess the perceptual quality of images.

Towards exploring the utility of correlation features for a
wide array of possible distortion-sensitive applications (quality
assessment, denoising, deblurring, deblocking, etc), we built
a system to classify images by distortions. To do this,
we focused on the set of distortions that are common to
the LIVE IQA database [39] and the TID database [51]:
JPEG 2000, JPEG, White Noise and Gaussian Blur. We par-
titioned the data into random 80%-20% training-testing splits,
on which we trained a Support Vector Machine (SVM) [52]
to classify images by distortions. We used {α0, β0, α1, β1}
at θ2 = 0 and θ2 = π

2 as training features (8 features).
The experiment was repeated over 100 iterations, yielding a
median correct classification rate of 70% on the LIVE IQA
database [39] and 71% on the TID database [51]. These are
good results using only a sparse set of second-order features.
Including simple first-order (univariate) NSS features such
as the shape and the variance parameters of the Mean Sub-
tracted Contrast Normalized (MSCN) coefficients [9] improves
the classification accuracy. Using the shape and variance
parameters at scale 1 and the shape parameter at scales 2
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TABLE VI

DISTORTION CLASSIFICATION PERFORMANCE

(as defined in [9]) increased the correct classification rate to
85% on the LIVE IQA database [39] and to 86% on the TID
database [51], using a total of 11 features. Details regarding the
individual distortion classification performance and the inter-
class accuracies are given in Table VI.

V. CONCLUSION

We built a simply, parametric bivariate natural scene statistic
model of images and demonstrated its validity on a well-
known set of high quality images. Our new model is global
and is able to accurately capture the correlation behavior of
natural images as well distorted images. As an application,
we plan to use the model to derive new methods for pre-
dicting the quality of images [53]. We also plan to model
color space structures [54], and to study the applicability
of the bivariate NSS model to different modalities such as
millimeter wave, X-ray and infra red images. These kinds
of images have already been shown to nicely satisfy natural
scene statistic models [55], [56]. We also plan to apply our
new correlation model for the estimation of depth maps from
both monocular and binocular images, building on the work
in [1], [17], and [57].
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