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Abstract 

In this paper, we present a new approach to embedded system design based on model­

ing discrete and also continuous system parts with high level Petri-Nets. Our investi­

gations concentrate on a complete design flow, analysis on high level Petri-Nets and 

their meaning for hardware/software partitioning of real-time embedded systems. 

The concepts for hybrid modeling of discrete and continuous systems are applied in 

an example in the domain of mechatronic systems. 
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1 INTRODUCTION 

In recent years embedded systems have gained increasing importance. This develop­

ment is rooted in the growing number of systems containing embedded systems. Si­

multaneously the focus in design has shifted towards criteria requiring a common de­

sign process of the whole system. While classical hardware/software-codesign just 

considered optimizing the contrary aims of maximizing speed and minimizing costs, 

thinking about the fulfillment of hard real-time restrictions, minimization of the ab­

solute size and weight of the assembly group, reduction of energy-consumption, and 
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especially safety and reliability are getting more important now. Especially for the 

systems' reliability it is important to consider not only each single component on its 

own but its behavior within the whole context. Many functional errors only expose 

themselves when all individual components work together in the whole context, ob­

served over time. The individual components are typically partitioned into hardware 

components (ASICs, FPGAs) and software components (parallel real-time software 

on one or several general purpose processors) in order to ensure a realization fulfill­

ing all requirements. 

When modeling embedded systems it is important to handle concurrency. As 

shown in (Dittrich 1994) Petri-Nets are very well suited for the specification of con­

current systems. To handle the complexity they use hierarchical Petri-Nets as specifi­

cation language in order to support hardware/software-codesign. In our work we also 

decided to use an extended form of Petri-Nets, namely Extended PredicatelTran­

sition-Nets (Extended PrIT-Nets). Our work differs from their approach as we use 

Petri-Nets that support the notion of time and have a more powerful hierarchy se­

mantic. We additionally consider verification and partitioning methods using the 

known methods for formal analysis of Petri-Nets. 

Often embedded systems do not only contain discrete but also continuous system 

parts. In order to model those parts with a continuous behavior we transform them 

into a form that can be denotated by the event-based Petri-Net semantics. This trans­

formation is basically a discretization described in (Brielmann 1995). In contrast to 

other methods that contain continuous time control, e.g., (Grimm et at. 1996), this 

allows us to analyze properties for hardware/software-partitioning purposes in one 

common model. Nevertheless a discretization means a loss of information in the 

model. For our purposes this disadvantage is not relevant as analysis or optimiza­

tions that need the original continuous informations (e.g. differential equations) are 

done on a higher level and an earlier design step. Using a combined graph-based 

model for analog and digital system parts as described in (Grimm et at. 1996) has 

the disadvantage that the analyzing facilities are limited to structural properties of 

the graph. 

In (Tanir et at. 1995) PrIT-Nets are used for analysis purposes either, but do not 

serve as a common model. The final implementation of the system is not compiled 

from the PrIT-Net model but from their common specification language DSL. 

In (Esser 1996) object oriented Petri-Nets are used as a common model for hard­

ware/software-codesign. For this type of nets it will be very hard to develop analysis 

methods. Actually it is possible to simulate object oriented Petri-Nets for design 

validation. 

As an example for an embedded system with discrete and continuous system parts 

we use a decentralized traffic management system, based on communicating au­

tonomous units. Within the continuous system parts we have to deal with controllers 

for certain properties of the vehicle. Discrete system parts are responsible for event­

oriented decisions within each vehicle and for communication between the vehicles 

to organize crossroad management. When considering each subsystem in isolation, 

the following problems would arise: 
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Coupling. By now every single area of application has developed its own well un­

derstood techniques for modeling, combined with corresponding methods and tools 

for analysis and simulation. Already at this level many predictions about the tempo­

ral and functional behavior of each subsystem can be made. To validate the behavior 

of the whole system, the individual models have to be coupled. Often the models 

are given in different domain-specific modeling languages, so coupling can only be 

realized either on the level of simulation or within a hybrid language, that usually 

does not offer any facilities for further analysis. Coupling of simulators allows a hy­

brid simulation in the sense of a combined simulation of all subsystems, while each 

subsystem may be formulated in a different language for a specific simulator. On the 

level of simulation temporal and functional behavior and performance can be studied 

and validated. But not all errors can be found by simulation because of the exhaustive 

number of possible simulation runs. Hence it is desirable to run a formal analysis of 

the static and dynamic properties for formal verification purposes. The prerequisite 

for this kind of analysis is that all models are given in an uniform language. 

Analysis techniques. For every new modeling language the corresponding for­

mal analysis methods always have to be re-developed and re-implemented. They are 

mostly based on classical analysis methods, e.g., the well-known ones for Petri­

Nets, and represent an extension or adaptation to the specific areas of application. 

In order to avoid the expenditure of deducing new analysis techniques and to reuse 

existing methods, it is apparently more effective to use a known modeling language 

for the analysis that offers the desired methods suitable for the tasks at hand. So, we 
decided to use a special form of high-level Petri-Nets in our approach. 

Continuous Systems. A lot of methods that have evolved in the area of hard­

ware/software-codesign only consider discrete parts when partitioning the system 

into hardware and software components. As we can see in our application example 

continuous parts, e.g., controllers of continuous behavior, play an important role, too. 

For the purpose of performance estimations or formal verification it is necessary to 

have a common model for the discrete and continuous system parts. Thereby it is 

sufficient to transform continuous parts into a discrete form on an implementation­

like level. On this level temporal and structural properties of these components are 

still existent. 

Global Optimization. A further problem in a separated design process of different 

subsystems is that each individual domain has proprietary methods of optimization, 

but no facility for a global optimization of the joint system exists. Especially when 

coupling different subsystems it may be useful and more cost-effective to export 

some functionality from one into another subsystem. An overall analysis of the joint 

system may reveal states that can neverbe reached and therefore can be eliminated 

from the design. 

In the following sections we will give a brief introduction to our common formal 

model and an overview of our proposed design flow. We then describe strategies for 

hardware/software partitioning and formal analysis methods. Our application exam­

ple shows how to model a hybrid system using extended Prrr-Nets and how to apply 

some analysis methods for verification purposes. 
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2 FUNDAMENTALS ON PRtr-NETS 

Prff-Nets were first introduced by Genrich and Lautenbach in (Genrich et al. 1981). 

They are bipartite graphs consisting of places usually depicted as circles and transi­

tions depicted as rectangles (s. Figure 1). In order to define the behavior of a system, 

the places may contain tokens. The edges between places and transitions (partly) 

define the possible flow of tokens in a net by the so called firing of transitions. To 

further specify the flow in Prff-Nets edges may be annotated by sums of constant or 

variable tuples and transitions may carry first order formulas over a set of constants 

and variables. When a transition fires it removes tokens from its input places and 

produces some new tokens on its output places according to the flow specified by 

the edges and the annotations. In this way the behavior of the Prff-Net is formally 

defined. 

Figure 1 Prff-Net 

Figure 1 shows a simple Prff-Net consisting of one transition with two input 

places and one output place. The tokens on the places are integers. The edges are 

annotated with tuples of variables ([x], [y], [z]) which determine the token flow over 

the edges. A condition is linked to the transition (x < y) which must be fulfilled by 

the tokens removed from the input places during the firing cycle of the transitions. 

Variables occurring on output edges of a transition ([ z l) may be calculated using the 

firing rule of the transition (z = x + y). Transitions in an extended Predicate Tran­

sition Net are enabled (can fire) if appropriate tokens are available on all their input 

places. In this example the substitution of x by 3 and y by 5 determines a valid set of 

tokens for which the transition may fire, since 3 < 5. The left side of Figure 1 shows 

the transition before firing and the right side after firing. 

We extended Prff-Nets with several additional features. In this paper we will only 

explain the extensions which are necessary to understand the concepts for the design 

method for embedded systems. Information about the other extensions can be found 

in (Kleinjohann et al. 1996) or (Tacken 1992). 

2.1 Extensions to Prff-Nets 

Firstly, we extended the basic definition of Prff-Nets by a timing concept to allow 

the modeling of time dependent systems. In extended Prff-Nets an enabling delay 

and afiring delay (Starke 1990) can be defined for a transition. The enabling delay 
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determines the time delay before a transition may become active after it has been 

enabled for any substitution and the firing delay specifies how long a transition in an 

extended Prff-Net is active. If a transition is active, the tokens from the input places 

are removed but the tokens for the output places are not yet produced. 

Furthermore, extended Prff-Nets allow a hierarchical specification. Hierarchical 

specifications are useful to handle complexity in large designs and allow the reuse 

of predefined nets in several models. This is a necessity for the definition of libraries 

with subnets for special purposes. Furthermore, a hierarchical specification supports 

both a top down design as well as a bottom up design during the system specifica­

tion. In extended Prff-Nets transitions and places can be refined by subnets. Such 

nodes are called structured nodes. The subnet of a structured node is itself an ex­

tended Prff-Net which may again contain structured nodes. A subnet of a structured 

node may also have connections to nodes in the surrounding net. The places and tran­

sitions which are connected to nodes in the instantiating net are called port-places 

or port-transitions. The structured nodes are not simply replaced by their instanti­

ated subnets. They have a special semantics which is defined via the activity of their 

subnet. A subnet of a structured transition is active as long as the structured transi­

tion itself is active which is similar to the philosophy of structured nets as described 

in (Cherkasova et al. 1981). The subnet of a structured place is active as long as 

the structured place contains at least one token. The concept for structured places is 

similar to the hierarchical concept in statecharts (Harel 1978). 

2.2 Abstract graphical representation 

Petri-Nets and also Prff-Nets have a standard graphical representation with places 

as circles, transitions as bars, and edges as arrows. For an engineer who has to decide 

whether a model works correctly this graphical representation is not easy to under­

stand. Therefore, an abstract graphical representation which reflects the structure and 

state of a defined net would gain more acceptance. 

Extended Prff-Nets provide the ability to define an intuitively understandable ab­

stract graphical representation that is also capable to "continuously" represent the 

system's behavior and state changes during simulation. Hence, an engineer can de­

fine his own graphical representation of the system he is familiar with. This results 

in a more or less expressive animation. The description of the abstract representation 

may use arbitrary graphical elements. Hence, existing graphical specification lan­

guages can be produced by using their predefined symbols as the abstract represen­

tation of the Petri-Net elements. Furthermore, this graphical representation allows 

the user to interact with the system model in a natural way. 

As an environment for a comfortable specification, simulation, and animation of 

extended Prff-Nets we use the SEA (System Engineering and Animation)-environ­

ment (Kleinjohann et at. 1996). 
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3 DESIGN FLOW 

To advance towards a complete design method one has to take the flow of design 

into account. The process we suggest in this work is divided into the three stages 

modeling, analysis and synthesis. In Figure 2 these design steps can be identified 

easily. 

3.1 Modeling 

The process of modeling usually starts from a concept of a given system the designer 

has in mind. During a manual prepartitioning phase he roughly defines which com­

ponents will constitute the system. For the application described here this should be a 

partitioning into parallel real-time-software, controllers having continuous behav­

ior, and digital hardware. This prepartitioning is based upon the experience of the 

engineer developing the system. Typically designers of the individual components 

choose a specification language they are familiar with and that is appropriate for 

the area of application. Generally these languages have their own domain-specific 

tools for analysis and optimization which are not subject of this work. Already at 

this level a simulation can be performed by means of the corresponding, approved 

domain-specific tool. Eventually one may try to couple the simulations of several 

components and review them as a whole. There are two possible ways to transform 

models given in different specification languages (e.g. C++, SDL, Differential Equa­

tions, VHDL, Statecharts) into a Prff-Net model: 

• Transformation. Each individual specification can be transformed, either man­

ually or automatically, into an extended Prff-Net. Depending on how skillful 

this transformation was performed a more or less complex Prff-Net is created 

that realizes the specification. A transformation for differential equations is pre­

sented in (Brielmann 1995). The existence of a transformation for the widely 

used specification language statecharts (Hare! 1978) into Prff-Nets was proven 

in (Suffrian 1990). We are currently working on a transformation of SOL (Spec­

ification and Description Language). As such a transformation has to be imple­

mented for each individual specification language we prefer another method for 

the SEA-environment described in the following. 

• Library Construction. The process of modeling may be performed using com­

ponents from a library directly within the graphical SEA-environment. For all 

components there is an underlying Prff-Net that can be combined with other 

components, resulting in an executable specification. So a complete hierarchical 

Prff-Net is generated automatically. Of course, modeling this way the resulting 

net will be more complex than the one generated by a direct transformation of the 

specification. However, the development of a transformation is much more costly 

than the creation of a library of language components. For the SEA-environment 

we have tested this library method for the specification of data flow, block dia-
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grams for differential equations, and asynchronous hardware on gate level, but 

other graphical languages are possible, too. 
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All resulting Prrr-Nets now have to be coupled into a combined net, using an inter­

face model library for coupling the subnets together. There are a number of interface 

models for all combinations of different subnets from different domains. These in­

terface models are necessary to combine the different modeling techniques of event­

based and continuous system parts. The combined net can be modified manually 

with the help of a graphical editor. At this stage of the design process we are able to 

validate the specification by a very important feature of the SEA-environment. With 

the built in Prrr-Net simulator and -animator the specification can be executed and 

tested. The readability of the simulation is supported by an animator which shows an 

abstract graphic representation of the underlying execution (s. Section 2.2). 

After the process of modeling has been finished the design continues with the 

analysis and synthesis phase. In the following we describe strategies for those phases 

which are currently subject of our investigations. It is our aim to develop tools that 

support the presented methods for analysis and synthesis of our common specifica­

tion language. 

3.2 Analysis 

In the analysis phase we have to distinguish between different purposes of the anal­

ysis. We consider analysis for the hardware/software partitioning and synthesis and 

for fonnal verification of certain system properties described in Sections 4 and 5.2. 
There are static and dynamic methods of analysis. The static methods are based on 

structural properties of the Petri-Net graph. When we talk about dynamic methods 

we think about the classical analysis methods for Petri-Nets that have to be expanded 
to the scope of extended Prrr-Nets including occurrence, liveness, and safeness. Fur­

thennore, timing annotations of the Prrr-Net are considered for analysis. The results 

of this analysis can either be used for the partitioning or for the synthesis phase. Dur­

ing the partitioning phase some system parts are identified to be realized in hardware. 

The net representation of those system parts has to be transfonned in order to ensure 

a hardware realization. An example for a net property of a hardware realization is the 

safeness of a place. A transfonnation reshapes the net in a way that the correspond­

ing subnet does not contain any potentially overflowing places (ref. Section 4.2 c). 

To support an iterative design process, the whole net is re-exported into the modeling 

environment. 

3.3 Synthesis 

After a stable state is reached in the alternating phases of modeling and analysis, the 

partitioned net graph can be compiled into the specification languages of the known 

synthesis tools during the phase of synthesis. The compilation process can be sup­
ported by results of the analysis. In the case of digital hardware the net is transfonned 

into VHDL--code that is synthesized by the SYNOPSYS-tools. Also on this level 
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it is feasible to simulate the specification, either by executing the VHDL-code di­

rectly with a VHDL-simulator, or by emulating the synthesized FPGA-description 

by means of a hardware emulator. In the other case of parallel real-time software 

one compiles the corresponding Prff-subnet into parallel C++-code. In a first step 

we are trying to generate a kind of Prff-Net simulator in a compilation process. An­

other possibility is to identify certain net patterns by superimposing, matching, and 

replacing them with a known realization in C++. The resulting code will be much 

more lean compared to the one that includes a complete simulator. 

4 PARTITIONING 

The purpose of the partitioning phase is to divide the common Prff-Net specification 

w.r.t. the realization technique. That means that the structure of the partitions as well 

as the classification into the provided realization techniques digital hardware and 

parallel real-time software have to be determined. In this chapter we will describe 

how structural and behavioral analysis methods can be used for a hardware/software 

partitioning. 

4.1 Level of Partitioning 

Essentially for the usability of the results obtained by the partitioning is the choice 

of a suitable level of abstraction for the execution of the partitioning. A partitioning 

on system level divides the system into parts with specific functions. The advantage 

of functional partitioning is, that functionally depending blocks are not split in the 

synthesis phase. Mapping functionally depending blocks into different realization 

techniques results in a system hard to understand and hard to maintain. Depending 

on the granularity of the blocks a possibly more cost effective usage of resources 

is prevented, because parts of a functional block cannot be shifted to processors 

with a low utilization. Partitioning on a behavioral level allows a free choice of the 

boundaries of a partition. The realization technique is only determined by means of 

the behavioral analysis. 

With regard to the Prff-Net modeling this means the following: During the mod­

eling phase the designer defines possible partitions using hierarchy. This is already 

a more or less rough functional partitioning. However, this is also a restriction of 

the design space, which can only be avoided by transforming the entire hierarchical 

net into an equivalent flat net. Within this net partitions can be found on a behav­

ioral level exceeding the boundaries of the original, hierarchical subnet. However, 

the experiences of the designer would be rejected when transforming a hierarchical 

net into a flat net. Thus it is suggestive to reduce hierarchical levels stepwise, i.e., in 

each step only one level of the hierarchy should be eliminated. The partitioning will 

be done on the flat net of the lowest level. This will be iterated as long as the results 

of the partitioning can be improved. 
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4.2 Analysis 

At the level of the common specification language which is very far from a concrete 

realization it is very difficult to make realistic estimations of the performance and 

other properties of the system. The only chance to do hardware/software partitioning 

at this level is to use good heuristics which are applicable to our PrIT-Net repre­

sentation. In a first step we decided to concentrate on structural and timing aspects 

of the specification. Figure 3 shows a concrete strategy for analysis on the common 

PrlT-Net. At first, the size and position of the partitions is determined as a result 

of a structural analysis of the net. It is suggestive to perform this step at the very 

beginning to reduce the complexity of the behavioral analysis. Therefore it has to be 

considered, that every edge in the PrIT-Net crossing the boundaries of a partition is 

a communication link producing costs for the realization. The partitions have to be 

chosen in a way, that the number of communication links crossing the boundaries is 

minimal. This is a classical graph partitioning problem, which can be solved by using 

known methods, such as described in (Gajski et ai. 1992). We are currently applying 

those methods using graph partitioning algorithms of the PARTY-library (Preis et 

at. 1996). Therefore we have to convert the PrIT-Net into a graph using transitions 

as the only vertices and communication links as edges. The weights of transitions 

and communication links have to be determined w.r.t their annotations (number of 

operations in transitions and size of variables in communication links). The size of 

the partitions is given by the specification of the architecture which is taken from the 

architecture library. 

The following two steps are based on the assumption that the intensive use of dy­

namics is not suitable for a hardware realization. For the generated partitions the use 

of recursion can be examined by means of the hierarchy graph. Those partitions are 

not suitable for a hardware realization because of the potentially infinite process dy­

namics. However, dynamic processes are not only produced by the use of recursion, 

but also by the use of the hierarchy semantics for structured places (s. Section 2.1). 

Such a dynamics can be recognized by means of a place invariance analysis of all 

places instantiating the same subnet. 

In the next step timing annotations defining real-time restrictions are examined. 

For embedded real time systems it is not important to maximize speed as much 

as possible but it is necessary to guarantee that all subsystems always meet their 

deadlines. Depending on the dimension of the deadline annotations a realization 

technique can be assigned immediately. For very small deadline annotations it is 

necessary to synthesize special hardware, for very large or no deadline annotations 

a software realization suffices. In all other cases the runtime of the subnet has to 

be estimated for all possible realization techniques. Therefore the runtime of the 

preconditions and instructions in the transitions have to be evaluated step by step. 

We are currently adapting runtime estimation methods for C-code specifications 

used in (Hardt et at. 1995, Hardt 1995) to our PrIT-Net based specification. If a 

software realization is preferred after this analysis, the real-time restrictions have 

to be classified. The operating system on which the software will be implemented 
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has to be configured regarding the kind of real-time restrictions (hard, smooth, or 

no real-time restrictions). The fundamentals for this configuration are described in 

(Altenbernd 1995b, Altenbernd 1996, Altenbernd 1995a). In case of an identified 

hardware solution the corresponding subnet has to be transformed into a safe net to 

guarantee the existence of a hardware solution. In order to have no possibly over­

flowing buffers in the kernel of the net, potentially infinitely often markable places 

are moved to the boundaries of the subnet. 

-AnoIJoIo 
(GIojJIIP""""*'!!) 

Figure 3 Partitioning 

(a) Detection of recursion 
In extended Prrf-Nets recursive Nets can be specified using the instantiation mech­

anism. A net can be used as a subnet of a structured node which is defined in the net 

itself. This is possible because the structured node only contains a reference to the 

subnet and the dynamic information is copied only if necessary (a structured place is 

marked or a structured transition becomes active). An extended Prrf-Net cannot be 
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realized as hardware if it contains recursion. Therefore it is necessary to detect such 

recursive definitions in a specification. 

To show which nets are used as subnets in other nets a hierarchy tree can be built. 

The nodes in this tree are the used subnets and the edges denote the instantiation 

dependencies. But if the hierarchical definitions contain recursive specifications this 

hierarchy tree becomes infinite. Figure 4 a) shows such an infinite tree. The net Nl 

instantiates the net N2 two times and the net N3 once. The net N2 instantiates N4 

which instantiates N3 which again instantiates N2 and so on. 

, , 
t t 

a) hierarchy tree b) reduced hierarchy graph 

Figure 4 Example hierarchy tree and corresponding graph 

To avoid such an infinite tree a reduced hierarchy graph can be built. In this graph 

each net occurs only once as a node. Figure 4 b) shows the corresponding reduced 

hierarchy graph for the hierarchy tree in Figure 4 a). If the reduced hierarchy graph 

is built the detection of recursion is reduced to the detection of cycles in the graph. 

(b) Dynamics 
The main purpose of this analysis is to detect if a subnet which is used several times 

in a specification may also be active several times or perhaps only once. For exam­

ple a subnet which calculates a complex computation is used several times to refine 

structured places. This subnet should be realized as a functional hardware block and 

it has to be determined, if one or several hardware components are needed. The sub­

net of a structured place is only active if the structured place is marked. To decide 

whether such a subnet may be active several times one needs to check if more than 

one of the structured places is marked at once. This can be done with a place invari­

ance analysis as described in (Genrich et al. 1981) and (Genrich 1987). If a set of 

places is recognized as an invariant this means that the number of tokens on these 

places is constant for every firing sequence of the net. 

(c) Transformations 
If a subnet is chosen for a hardware realization, one has to assure that the subnet is 

k-safe. K-safeness means that no place in the subnet contains more than k tokens for 

every possible firing sequence. If some places do not fulfill the k-safeness criterion, 
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the subnet has to be transformed by moving the unsafe places to the boundaries of the 

subnet. This transformation is an equivalence transformation, thus the behavior of the 

subnet does not change and only buffer functionality is moved to the boundaries. The 

k-safe kernel of the subnet can then be implemented in hardware, while the border, 

i.e., the interface of the subnet to the environment, has to be implemented as software. 

The required transformations for Prrr-Nets can be deduced from transformations 

suggested in (Kleinjohann 1994). There transformations for the implementation of 

Prrr-Nets as asynchronous hardware are described. 

5 APPLICATION EXAMPLE 

The concepts of hybrid modeling based upon a common Prrr-Net model have been 

applied to an example from the area of mechatronics, in our case a decentralized 

traffic management system. The idea of this system is to equip vehicles with an intel­

ligent control allowing an optimal run of the vehicles under certain criteria by means 

of communication between the vehicles. Such criteria are avoidance of collision, 

energy consumption, pollution emission, noise reduction, and flow-rate. In order to 

increase the flow-rate of vehicles on a road it is suggestive to build motorcades. 

5.1 Modeling 

Figure 5 shows the structure of a vehicle with the ability to build motorcades au­

tonomously. It is assumed that all vehicles are connected via a communication chan­

nel. By means of a special protocol those vehicles eligible for building a motorcade 

are found and an optimal velocity and other parameters are negotiated. Beside this 

discrete part of information processing there is a continuous part controlling the ve­

locity and distance to the vehicle driving ahead. This controlling is based upon a 

measurement of distance and velocity by means of corresponding sensors. 

Distance 

""fell 
Control 

Motorcade 
Engine 

Protocol 
v 

Velocity 

1 
Control v Velocity 

Vehicle 
Sensor 

Figure 5 Global Structure of a Vehicle 

In Figure 6 the protocol for building a motorcade is shown as a SDL-specification. 



Towards a complete design method for embedded systems 17 

Initially the vehicle is in the state Searching sending a search signal (MSearchReq) 

periodically to all other vehicles. Once a vehicle answers the state is switched to 

Building. If the distance and direction of the vehicle allows the building of a mo­

torcade the leading vehicle and the optimal velocity is determined. Otherwise the 

building of the motorcade is refused (MRefuseReq) . If the own vehicle is the leader 

of the motorcade the computed velocity is transferred to the velocity control and the 

state changes to Leading. Otherwise the distance control is switched on and the state 

becomes Following. 

--
S .. ,chlng - -

s...dtng 

FoRowing 

WIIhlng 

Figure 6 Motorcade Protocol in SDL 

This modeling can easily be transformed into a Prff-Net. Therefore a place is 

modeled for each state of the SDL-diagram. There are two additional places, one for 

receiving input signals and one containing output signals to be sent. A state transition 

is represented by a transition in the Prff-Net. The preconditions of this transition 

are the place with the input signals and the place representing the corresponding 

state. The predicate of the transition formulates a condition only allowing tokens 

representing the corresponding input signals. The transition then generates a token 

representing the output signal. This token is fired into the output place while a control 

token is fired into a place representing the following state. Additional places for 

the variables used in the model have to be specified. Every transition where such 

a variable is needed has to be connected to the corresponding place. This is partly 

performed in Figure 7. 

In Figure 8 the distance control is shown as a block diagram. The controlling is 

done by leading the measured distance signal back to the input of the controller. 
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Figure 7 Motorcade Protocol as a Prff-Net 
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Figure 8 Block Diagram of the Distance Control 

The controller itself can be described by a differential equation, in this case already 

given in its state form. From this form a discretized representation can be found 

which can be transformed into a Prff-Net (s. Figure 9.) The process of discretization 

is basically the implementation of a numerical integration method computing the 

integral by a stepwise summation. The step width h has to be determined w.r.t. the 

required precision. This transformation is described in (Brielmann 1995) in more 

detail. 

5.2 Correctness 

As mentioned before there are many classical methods for analysis on Petri-Nets. 

We applied those methods to prove the correctness and certain properties of our 

application. Examples for those properties are the safeness and deadlock freeness of 

our traffic management system, in this case the collision avoidance mechanism of 
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Figure 9 Controller of the Distance Control as a Prff-Net 
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an intersection. We modeled such a mechanism by an extended Prff-Net based on 

critical regions in an intersection. Figure 10 a) shows the intersection with the critical 

regions Al to A l2 . There should never be more than one car in such a critical region. 

a) Intersection b) Extended Prrr-Net model for intersection 

Figure 10 Intersection with extended Prff-Net model 

Figure 10 b) shows the extended Prff-Net model. In this simple example the cars 

may only cross the intersection straight forward or tum right. The critical regions 

are modeled by places PAl to P A l2 . Each of these places has a corresponding 

semaphore place PTl to PTl2 that initially contains a simple token (a token with no 
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special value). The cars are modeled by tokens with a value containing their desired 

direction en', 's', 'w' or 'e'). The tokens for the cars are produced by the transitions 

TEl to T Es moved by the transitions Tl to T12 and at last consumed by the transi­

tions T Eg to T E12 . Every time a car enters a critical region the transition that models 

the entering needs the simple token from the corresponding semaphore place. The 

semaphore places guarantee a safe crossing of the intersection. This can formally 

be proven by linear analysis methods (building the so called invariance matrix and 

compute place invariants). The results are that all the pairs of places {PAl, PTd 

to {P A 12 , PT12} are invariant, i.e. for every firing of any transition the number of 

tokens on these pairs of places is constant. The initial number of tokens on each pair 

is set to one, i.e. all these places are I-safe and so the whole net is I-safe. If a net is 

safe the state space (occurrence graph) is finite and can therefore be computed. Based 

on the state space more properties of the net like liveness or possible deadlocks may 

be proved. 

Because of the variety of different possible markings for the net in Figure 10 b) 

the whole state space contains 104976 states. We tried to compute this state space 

using the DesignCPN-Tool (Jensen et al. 1996) (after transforming the net into an 

equivalent colored net (Jensen 1992, Jensen 1994)) on a SPARC Ultra Station with 

128 MB of main memory and 130 MB of swap space but failed. After 16 hours of 

computing the tool gave up because their was not enough memory to compute the 

whole design space. Therefore we reduced the net by omitting the critical regions A5 

to A12 as shown in Figure 11 a). This resulted in an occurrence graph with 81 states 

that could be computed by the DesignCPN-Tool. We found out that the defined net 

has a deadlock which occurs if there are four cars in the regions Al to A4 that all 

want to drive straight forward. In this case the places PAl to P A4 are marked with 

[' s'] [' w'] [' n'] and [' e']. 

a) simplified model for intersection b) deadlock free model for intersection 

Figure 11 Reduced extended Prtr-Net model with and without deadlock 

To avoid this deadlock we redesigned the net model. If a car wants to go straight 
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forward the corresponding transition has to allocate the tokens for both used critical 

regions in advance. The resulting net is depicted in Figure 11 b). For this net we 

could prove that it is deadlock free and that the liveness property holds for all its 

transitions. 

6 SUMMARY AND OUTLOOK 

Our suggested design flow is an approach towards an integrated, complete embed­

ded system design. We have shown how to use an extended form of Prrr-Nets as 

a common model for specification. Due to their well known analysis methods we 

think that Prrr-Nets are suitable as a common modeling language. The application 

example shows that hybrid modeling of discrete and continuous systems is possi­

ble, although continuous systems have to be discretized. For our proposed target 

architecture this is no disadvantage because continuous controllers usually will be 

implemented in their discretized form (e.g., DSPs compute continuous behavior in 

a discrete data flow). We also applied the classical Petri-Net analysis methods for 

the purpose of formal verification. As formal verification is a difficult task there 

is another possibility to validate the system. The SEA-environment has a built-in 

simulator and animator for testing the common system specification. For an auto­

matic hardware/software partitioning we investigated different analysis methods on 

extended Prrr-Nets. Especially the use of dynamics, i.e., the use of recursion, pro­

cess dynamics, and potentially unrestricted places, can be recognized using Prrr-Net 

analysis methods. Our further investigations concentrate on optimizations using local 

transformations on the Prrr-Nets. 
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