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We demonstrate the potential of recently developed total-energy and electronic-structure methods
for the calculation of optical properties of real surfaces. We show that many-body effects such as
quasiparticle shifts and electron–hole interaction can now fully be taken into account. As a proto-
typical property the optical reflectance anisotropy is discussed. Surface examples are large stoichio-
metry-dependent reconstructions of InP(001) and the hydrogen-passivated Si(110) face.

1. Introduction

Surface reflectance spectroscopies in the visible to near-UV spectral range have success-
fully been used for monitoring surfaces during film growth by molecular beam epitaxy
and metalorganic vapour phase epitaxy as well as for exploring static surface geome-
tries [1]. These surface sensitive techniques include among others spectroscopic ellipso-
metry, surface photoabsorption, and reflectance anisotropy spectroscopy (RAS), also
known as reflectance difference spectroscopy (RDS) [2]. RAS is now frequently used
to obtain information about the atomic structure of surfaces in various environments
[3]. However, since the method gives only indirect information, a careful theoretical
modelling is required [4].
Nowadays such a theoretical treatment starts usually from a parameter-free descrip-

tion of the system by means of the density functional theory (DFT) [5] in the local
density approximation (LDA) [6]. Advanced numerical techiques for the total-energy
minimization together with powerful supercomputers allow for the determination of the
stoichiometry-dependent surface phases and their atomic geometries with a high accu-
racy even for very large surface unit cells [7, 8]. The eigenvalues and eigenfunctions of
the Kohn-Sham equation [6] can be used to calculate the surface optical properties
within the independent-particle approximation [9]. However, the Kohn-Sham formalism
is a ground-state theory. Since the excitation aspect is missing, the resulting optical
transition energies are too small [10]. Hedin’s GW approximation [11] is the state-of-
the-art approach to include the exchange-correlation energy of the excited particles in
ab initio bandstructure calculations. Apart from a few exceptions, where also the wave
functions are updated (see, e.g., Ref. [12]), this is usually done in a perturbative manner,
employing the eigenvalues and eigenfunctions from the DFT-LDA calculation as starting
point [13]. Calculations of quasiparticle bandstructures in GW approximation have been
performed for several semiconductor surfaces with small unit cells [14–16].
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During the measurement of optical properties electron–hole pairs are virtually or
really excited by the photons in the system. The excited electrons and holes do not only
interact with the surrounding electrons, giving rise to the exchange-correlation self-en-
ergy. Rather, there is a mutual interaction of the electron and the hole of the pair [17].
The screened attractive interaction gives rise to excitonic effects which can be accompa-
nied by bound electron–hole states (i.e. excitons) in the limit of the effective-mass
treatment [18]. The unscreened electron–hole exchange interaction occurring in the
two-particle equation [19, 20] can be identified with the local-field effects according to
the approach of Adler [21] and Wiser [22] as has been shown in Refs. [23, 24]. The full
inclusion of the electron–hole interaction requires the solution of a Bethe-Salpeter
equation. This recently became possible for bulk semiconductors [25, 26]. We are aware
of only one application for a semiconductor surface, where, however, only some
strongly localized surface states needed to be taken into account [27].
In this paper, the progress in including the many-body effects in the calculation of

the surface optical properties is discussed. We show that the reflectance anisotropy of
complicated surfaces can now be calculated from first-principles. Below we describe our
methodology. Thereafter the application of the theory is demonstrated for
InP(001)2� 4 surfaces and the prototypical Si(110) :H face. A brief summary concludes
the paper.

2. Method

In order to calculate surface optical spectra we proceed in four steps. First, the energe-
tically favoured surface phase is identified and the equilibrium atomic geometry is de-
termined. The required total-energy calculations are based on the DFT-LDA. The elec-
tron–ion interaction is described by nonlocal norm-conserving pseudopotentials [28].
Semi-core states are taken into account by nonlinear core corrections to the exchange
and correlation energy. A massively parallel, real-space finite-difference method [29] is
used to deal efficiently with the large unit cells needed to describe the surface. A multi-
grid technique accelerates the convergence. The spacing of the finest grid used to repre-
sent the electronic wave functions and charge density is about 10% of a bulk bond
length.
The surfaces are modelled by periodic supercells consisting of 12 atomic layers. The

material slabs are separated by a vacuum region corresponding to approximately
8 atomic layers. We describe polar surfaces by asymmetric slabs. The atoms in the lowest
bilayer are kept frozen and the surface dangling bonds at the bottom layer are satured
with pseudohydrogen atoms. We use a linear cutoff function to suppress the signal from
the bottom layers in order to avoid spurious effects on the calculated spectra. For
Si(110) :H a symmetric slab was used where the atoms in the innermost two atomic
layers were kept frozen at the ideal bulk positions. The surface dangling bonds of the
Si(110) surface are saturated by hydrogen atoms resulting in a 1�1 translational sym-
metry. The upper part of the corresponding [110] oriented slab is represented in Fig. 1.
The geometries investigated are relaxed until all calculated forces are below 20 meV/�A.
The surface optical property we are interested in here is the reflectance anisotropy

for normal incidence. For (001) surfaces the optical anisotropy between the polarization
directions x � ½1�110� and y � ½110� is calculated. In case of the (110) surface we identify
x and y with the ½1�110� and ½001� directions. The frequency dependent RA can be ob-
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tained from slab calculations as [4, 32]

DRðwÞ
RðwÞ ¼ 4dw

c
Im

axxðwÞ 	 ayyðwÞ
aðwÞ ; ð1Þ

where aiiðwÞ (i ¼ x or y) are the diagonal components of the polarizability tensor of a
slab with thickness d and aðwÞ denotes the bulk polarizability. The polarizabilies in
Eq. (1) factorize into the polarization function P of the system and matrix elements
representing the strength of the optical transitions.
We take advantage of the repeated-slab approximation where the Bloch picture is

valid. The wave vector k within the surface Brillouin zone (SBZ) and the band index n
are good quantum numbers. Within the local-density approximation to the exchange
and correlation energy the single-particle Kohn-Sham equation yields eigenfunctions
jnki and eigenvalues enðkÞ. The polarizability is then given by

aiiðwÞ ¼ 	 2e2�h2

V

P
c; v; k

P
c0; v0; k0

fMi*cvðkÞMi
c0v0 ðk0Þ Pðcvk; c0v0k0;wÞ

þMi
cvðkÞMi*c0v0 ðk0Þ P*ðcvk; c0v0k0;	wÞg ð2Þ

with matrix elements of the velocity operator v

Mi
cvðkÞ ¼

hckj vi jvki
ecðkÞ 	 evðkÞ

ð3Þ

and V as the volume of the system. In (2) we sum up over pairs of electrons in empty
conduction band states jcki and holes in occupied valence band states jvki, that are
virtually or really excited by photons. The polarization function P obeys a Bethe-Sal-
peter equation (BSE) of the form

P
c00;v00;k00

fHðcvk; c00v00k00Þ 	 �hðw þ iGÞdcc00dvv00dkk00 g Pðc00v00k00; c0v0k0;wÞ ¼ 	dcc0dvv0dkk0

ð4Þ

with an effective two-particle Hamiltonian Hðcvk; c0v0k0Þ and a small damping G of the
pair excitations.
Within the independent-particle approximation [9] the two-particle Hamiltonian can

be directly related to the Kohn-Sham eigenvalues enðkÞ of the DFT-LDA,

Hðcvk; c0v0k0Þ ¼ ecðkÞ 	 evðkÞ½ � dcc0dvv0dkk0 : ð5Þ
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Fig. 1. Upper part of the slab repre-
senting the hydrogen-covered Si(110)
surface



Such diagonal Hamiltonians allow for the immediate calculation of the polarization
functions as a second step and, hence, the calculation of the surface optical properties
in DFT-LDA quality. By inserting expressions (4) and (5) into the polarizability (2),
one obtains the well-known Ehrenreich-Cohen formula.
In the third and fourth step we include the many-body effects in the solution of the

BSE. We start with a perturbative treatment of the quasiparticle effects. In first-order
perturbation theory only the DFT-LDA eigenvalues are corrected,

eQPn ðkÞ ¼ enðkÞ þ DnðkÞ; ð6Þ
DnðkÞ ¼ hnkj SðenðkÞÞ 	 Vxc jnki : ð7Þ

The exchange-correlation self-energy operator S is taken within the GW approximation
[10, 11, 13], whereas Vxc represents the local exchange-correlation potential that enters
the Kohn-Sham equation. Within the perturbation-theory treatment the Kohn-Sham wave
functions are not updated [12]. The two-particle Hamiltonian (5) is modified by the quasi-
particle shifts DcðkÞ and DvðkÞ of electron and hole energies, respectively. The polariza-
tion function can again be calculated immediately. Within the resulting independent-qua-
siparticle approach the same expression as in the independent-particle case holds for the
polarizability. Only the spectral properties are changed by the quasiparticle shifts (7).
For surfaces described by slabs containing about 100 atoms many quasiparticle shifts

need to be calculated. Therefore, we introduce further approximations and use a model
dielectric function and an approximate treatment of the local-field contributions to cal-
culate the screened potential W [33, 34] entering the self-energy operator S. This meth-
od substantially speeds up the calculations and predicts bulk and surface quasiparticle
energies which are within about 0.1 eV of the complete calculations [35, 36]. Even a
rather strong variation of the effective dielectric constants induces changes in the ener-
getical positions of surface states of only about 0.1 eV [37].
After real or virtual excitation of electron–hole pairs with photons, the excited elec-

trons and holes do not only interact with the surrounding remaining valence electrons
resulting in the renormalization to quasiparticles. Rather, there is a direct interaction of
the excited electrons and holes, which is described by the pair Hamiltonian

Hðcvk; c0v0k0Þ ¼ eQPc ðkÞ 	 eQPv ðkÞ
� �

dcc0dvv0dkk0 þWðcvk; c0v0k0Þ þ �vvðcvk; c0v0k0Þ
ð8Þ

with the matrix elements

Wðcvk; c0v0k0Þ ¼ 	
Ð
d3x

Ð
d3x0 j*ckðxÞ jc0k0 ðxÞWðx; x0Þ jvkðx0Þ j*v0k0 ðx0Þ ð9Þ

and

�vvðcvk; c0v0k0Þ ¼ 2
Ð
d3x

Ð
d3x0 j*ckðxÞ jvkðxÞ �vvðx	 x0Þ jc0k0 ðx0Þ j*v0k0 ðx0Þ ð10Þ

of the (statically) screened Coulomb interaction Wðx; x0Þ and a bare Coulomb interac-
tion �vvðx	 x0Þ. Only the short-range part of the latter is taken into account in agreement
with the physical character of expression (10) as electron–hole exchange. The first con-
tribution (9) (cf. also Fig. 2a) to the total electron–hole interaction includes the classical
attraction of electron and hole as represented by the diagonal elements with respect to
the Kohn-Sham eigenfunctions hx j nki ¼ jnkðxÞ. Because of the long-range character of
the electrostatic attraction, this interaction is screened. One has to mention that the
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matrix elements of the electron–hole interaction which violate the particle conservation
or couple resonant ðcvÞ and nonresonant ðvcÞ pairs have been neglected in expression
(8). They are in general small.
The physical meaning of the pair Hamiltonian (8) including the screened electron–hole

interactionW is well-known, since it changes over into the Wannier-Mott exciton problem
in the effective-mass limit [18]. The interesting point is that the electron–hole exchange
term � �vv (cf. Fig. 2b) corresponds [23, 24] to the inclusion of local-field effects [21, 22].
Indeed, in the bulk case it has been shown [38] that the BSE (4) gives a polarization
corresponding to the macroscopic dielectric function, if the interactions � �vv are included.

3. Surface Optical Spectra

3.1 In-rich InP(001)2�4 surface: Quasiparticle effects

We probed a variety of structural models proposed for InP(001) surfaces [7, 39, 40],
among them the z structure [41] suggested recently to explain cation-rich GaAs(001)
surfaces. For slightly P-rich to In-rich conditions we found the b2, a2 and mixed-dimer
InP(001)2�4 surfaces to be stable. The accompanying RA spectra change remarkably
with the model, i.e., the surface stoichiometry. The b2 model characteristic of slightly
P-rich surfaces gives rise to a broad positive RA feature for photon energies between
2.0 and 4.5 eV [30]. With increasing number of In–In surface bonds the RA spectrum
develops into a characteristic three-buckle shape. Under the most In-rich conditions the
mixed-dimer model (Fig. 3) is stabilized. Its characteristic spectral feature is the devel-
opment of a pronounced negative RA peak for low photon energies. These findings
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Fig. 2. Schematic representation of a) electron–hole attraction and b) electron–hole exchange. The
screened (unscreened) Coulomb interaction is indicated by a dashed (dotted) line

Fig. 3. Top view of the mixed-dimer model of the re-
laxed InP(001)2� 4 surface. Empty (filled) circles re-
present In (P) atoms. Positions in the uppermost two
atomic layers are indicated by larger symbols



agree qualitatively with experimental observa-
tions [31]. However, the independent-particle the-
ory with the Hamiltonian (5) does neither de-
scribe the exact energetical positions of the
anisotropy peaks nor their fine structure.
This is demonstrated in Fig. 4. The inclusion of

band-index and wave-vector dependent quasipar-
ticle shifts DnðkÞ (7) gives rise to a non-uniform
blueshift of the entire RA spectrum by about
0.5 eV. Simultaneously, the strength of the posi-

tive and negative anisotropies increases and a fine structure appears. The negative ani-
sotropy at low energies splits into peaks at 1.9, 2.1, and 2.6 eV (denoted as S1, S2, and
S3). In the high-energy region derivative-like features occur around the energies of the
bulk E1 and E0

0 transitions. The calculated spectral behaviour widely agrees with the
results of the low-temperature measurement [42]. This holds in particular for the
‘‘three-buckle” shape of the RA in the energy region of the E1 and E0

0 transitions. This
agreement indicates that sufficiently thick material slabs allow for the description of
bulk-related features in the surface optical spectra. The negative anisotropy features
originate entirely from the uppermost atomic layers of the slab. Our calculations show
that the fine structure with the three minima S1, S2, and S3 in the low-energy region is
due to transitions between characteristic surface electronic states [42]. However, the
k-space sampling (1024 points in the full SBZ) is still not sufficient to allow for the resolu-
tion of the S1 and S2 anisotropies in the calculation. But altogether we can conclude that
the inclusion of the excitation aspect into the theory via a simplified and numerically
efficient algorithm improves considerably the agreement between calculated and mea-
sured spectra. This holds for both the peak positions and the peak intensities in the RAS.

3.2 Hydrogenated Si(110) surface: Excitonic effects

The hydrogen-passivated Si(110) surface is a model system for surface optical studies in
several aspects. It is one of the first well-defined surface systems that has been studied
by RAS [43]. In spectra of surfaces like InP(001)2� 4 two types of components of sur-
face optical spectra –– ‘‘intrinsic” contributions arising from optical transitions within
the bulk and ‘‘extrinsic” contributions directly related to the surface chemistry [43] ––
occur. However, since the Si–H bonding and antibonding states give rise to energies far
away from the fundamental gap of silicon, only surface-induced bulk-like features occur
in the RA spectrum of Si(110) :H. Since the RA of passivated Si(110) surfaces is deter-
mined by transitions between surface-perturbed bulk states, it does not depend on the
details of the surface termination. It has therefore become a calibration standard of
RAS apparatus. The RA spectrum of passivated Si(110) surfaces is a textbook example
for surface optical properties [44].
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Fig. 4. RA spectra of the In-rich InP(001)2� 4 surface.
The spectra in the upper panel have been calculated for
the mixed-dimer model (Fig. 3) within DFT-LDA and
including quasiparticle corrections. The lower panel
shows measurements performed at 300 K and 25 K [42]



Figure 5 presents spectra which have been
calculated in different approximations: a) inde-
pendent-particle approximation using the Ha-
miltonian (5), b) independent-quasiparticle ap-
proximation in which the single-particle
energies enðkÞ in the Hamiltonian (5) are re-
placed by the quasiparticle ones eQPn ðkÞ (6), c)
Coulomb-correlated electron–hole pairs with
the Hamiltonian (8). The measured data [45]
are given in (d). The DFT-LDA spectrum
shows two strong positive RA features near
the E1 and E2 bulk critical point energies.
However, the features are far too broad. This
is partially due to the use of a too small k-point
set (140 points) and a slab which is too thin to

allow for a complete description of the surface-perturbed bulk wave functions which are
responsible for the optical anisotropies in case of Si(110) :H. Denser k-point meshs and
thicker slabs lead to a much better description of the optical anisotropy at the E2 energy
[46]. They do not improve much the poor representation of the line shape and strength of
the anisotropy at the E1 energy, however. As can be seen from Fig. 5, inclusion of quasi-
particle effects leads basically to a blueshift of the spectrum without major changes of the
line shape. The intensity of the E1 peak is still underestimated in comparison with the E2

structure. This finding is similar to the observation in the absorption spectrum of bulk
silicon [9, 25, 26]. Excitonic and, perhaps, local-field effects have to be taken into account.
In principle, this can be done by diagonalizing the Hamilton matrix (8). However, in

contrast to surface optical features to which only a few band pairs contribute [27], the
rank of the matrix for Si(110) :H becomes very large. The slab contains 24 Si and 4 hydro-
gen atoms. That means that about 50 valence and 50 conduction bands need to be consid-
ered at the 140 k points, leading to a number of N ¼ Nv �Nc �Nk ¼ 350000 electron–hole
pair states. The diagonalization of a matrix with N2 elements is computationally far too
costly. Therefore, we follow an earlier idea by Glutsch et al. [47] to calculate the polariz-
ability from the time evolution of a vector jYðtÞi with N elements. In detail, the quantity

P
c0;v0;k0

Mi
c0v0 ðk0Þ Pðcvk; c0v0k0;wÞ ¼ i

�h

ð1

0

dt eiðwþiGÞ t Y cvkðtÞ ð11Þ

is calculated. The evolution of the elements of jYðtÞi are driven by the pair Hamiltonian
P

c0;v0;k0
Hðcvk; c0v0k0Þ Y c0v0k0 ðtÞ ¼ i�h

@

@t
YcvkðtÞ ð12Þ
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Fig. 5. RA spectra of the H-passivated Si(110)1� 1
surface. a) Calculated within DFT-LDA. b) Calcu-
lated taking quasiparticle shifts into account. c)
Calculated including the Coulomb correlation, i.e.,
screened electron–hole attraction and unscreened
electron–hole exchange. d) Measured [45]



with their inital values given by

Y cvkð0Þ ¼ Mi
cvðkÞ : ð13Þ

We solve the initial-value problem by the central difference (‘‘leap-frog”) method
where the matrix-vector multiplications ĤH jYðtÞi are distributed on several processors.
The upper limit of the Fourier integral in expression (11) can be truncated due to the
exponential e	G t. The number of time steps, i.e. the matrix-vector-multiplications, is
nearly independent of the dimension of the system. The operation count for this meth-
od scales thus quadratically with the dimension of the pair Hamiltonian, N, and is
therefore particularly suitable for complex systems as surfaces.
The resulting RA spectrum is presented in Fig. 5c. It contains now in addition to the

quasiparticle shifts also the effects of the screened electron–hole attraction and local-
field effects (unscreened electron–hole exchange). The most pronounced changes are a
distinct increase of the optical anisotropy at the E1 energy –– which is now in much
better agreement with experiment –– together with a redshift of the entire spectrum by
about 0.1–0.2 eV. Including the Coulomb correlation the calculations now also repro-
duce the negative anisotropy below the E1 energy. However, there still remain discre-
pancies between calculation and experiment: The calculated peak positions occur at
energies that are about 0.3 eV too high. Our calculations were performed at the theore-
tical equilibrium lattice constant of 5.378 �A. That leads to an increase of the energy
splitting between occupied and empty states by about 0.1 eV compared to calculations
at the experimental lattice constant of 5.431 �A. Temperature effects in the measured
spectra which are neglected in our calculations result in a redshift of the optical spectra
by a similar amount [48]. The remaining difference to the experiment is related to our
approximations in calculating the screened Coulomb potential W and to numerical in-
sufficiencies as the relatively small number of k points. In particular the latter is respon-
sible for the deviation from the measured line shape. That can be seen from DFT-LDA
calculations [46] which are computationally far less expensive and can thus be extended
to full numerical convergence.
The spectral behaviour of the reflectance anisotropy (1) is a complicated interplay of

surface and bulk effects. In order to clarify the origin of the RA features, we present
the imaginary parts of the slab polarizabilities in Fig. 6. They exhibit a strong depen-

dence on the light polarization due to
the matrix elements (3) which mainly
results from modifications of the bulk
wave functions due to the truncation of
the material. For light polarization par-
allel to the [1�110] direction the E1 transi-
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Fig. 6. Imaginary part of the slab polarizabil-
ity of Si(110) :H for two directions of the
light polarization. Solid line: x jj ½�1110�,
dashed line: y jj ½001�. The calculations were
performed including both electron–hole at-
traction and local-field effects



tions give rise to a strong peak, while
there is only a shoulder for the per-
pendicular polarization. Fig. 6 shows
that the negative RA feature below
E1 does not result from the absorp-
tion in the surface layers. Rather, it is
consequence of the real parts of the
slab polarizabilities weighted by the
bulk spectrum � Im 1

aðwÞ.
From the calculated spectra in Fig. 5

it is obvious that already an ideal
Si(110) :H is characterized by optical
anisotropies which correspond to the
measured signals. There is no need to

assume the existence of surface defects, e.g. of Si and H vacancies as concluded in Ref.
[49]. Furthermore, it has been discussed [49] that the surface local-field effect is of
particular importance for Si(110) :H surfaces. In order to check that hypothesis we per-
formed additional calculations where we included local-field effects in addition to the
self-energy effects. The results are shown in Fig. 7. The figure shows that local-field
effects alone lead to rather small changes of the RA spectrum. While we find a distinct
influence of local-field effects on the polarizabilities, the effect is nearly cancelled in the
RA spectrum. The most important many-body effects, at least for the surface con-
sidered, are the renormalization of electrons and holes and their screened Coulomb
attraction.

4. Summary

Focusing on the reflectance anisotropy of the In-rich InP(001)2�4 surface and the H-
passivated Si(110)1�1 surface we have demonstrated the recent progress in the theore-
tical description of surface optical properties. The theory is now able to predict optical
properties also for surfaces with large reconstructions and with a precision that allows
for the identification of specific surface structures. The progress has been made possible
by the availability of powerful, massively parallel computers and the development of
algorithms which allow for the inclusion of many-body effects in an efficient, yet accu-
rate manner.
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John von Neumann-Institut Jülich and the Höchstleistungsrechenzentrum Stuttgart are
gratefully acknowledged. The work was partially supported by the EU Research Train-
ing Network NANOPHASE (HPRN-CT-2000-00167).

phys. stat. sol. (a) 188, No. 4 (2001) 1391

Fig. 7. Comparison of the RAS calculated
for Si(110) :H within two approximations:
a) independent-quasiparticle approxima-
tion, b) electron–hole exchange is in-
cluded additionally
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[35] B. Wenzien, P. Käckell, F. Bechstedt, and G. Cappellini, Phys. Rev. B 52, 10897 (1995).
[36] W.G. Schmidt, J.L. Fattebert, J. Bernholc, and F. Bechstedt, Surf. Rev. Lett. 6, 1159 (1999).
[37] J.E. Northrup, Phys. Rev. B 47, 10032 (1993).
[38] P. Hahn, Diploma thesis, Friedrich-Schiller-Universität Jena, 2001.
[39] O. Pulci, K. Lüdge, W.G. Schmidt, and F. Bechstedt, Surf. Sci. 464, 272 (2000).
[40] W.G. Schmidt, Appl. Phys. A accepted.
[41] S.-H. Lee, W. Moritz, and M. Scheffler, Phys. Rev. Lett. 85, 3890 (2000).
[42] W.G. Schmidt, N. Esser, A.M. Frisch, P. Vogt, J. Bernholc, F. Bechstedt, M. Zorn, T. Han-

nappel, S. Visbek, and W. Richter, Phys. Rev. B 61, R16335 (2000).
[43] D.E. Aspnes and A.A. Studna, Phys. Rev. Lett. 54, 1956 (1985).
[44] P.Y. Yu and M. Cardona, Fundamentals of Semiconductors, Springer-Verlag, Berlin 1999.
[45] T. Yasuda, D.E. Aspnes, D.R. Lee, C.H. Bjorkman, and G. Lucovsky, J. Vac. Sci. Technol.

A 12, 1152 (1994).
[46] W.G. Schmidt and J. Bernholc, Phys. Rev. B 61, 7604 (2000).
[47] S. Glutsch, D.S. Chemla, and F. Bechstedt, Phys. Rev. B 54, 11592 (1996).
[48] P. Lautenschlager, M. Garriga, L. Viña, and M. Cardona, Phys. Rev. B 36, 4821 (1987).
[49] B.S. Mendoza, R. Del Sole, and A.I. Shkrebtii, Phys. Rev. B 57, R12709 (1998).

1392 F. Bechstedt et al.: Towards a Complete Many-Body Description


