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Abstract

Gene maps, or annotations, enable us to navigate the functional landscape of our genome. They 

are a resource upon which virtually all studies depend, from single-gene to genome-wide scales 

and from basic molecular biology to medical genetics. Yet present-day annotations suffer from 

trade-offs between quality and size, with serious but often unappreciated consequences for 

downstream studies. This is particularly true for long non-coding RNAs (lncRNAs), which are 

poorly characterized compared to protein-coding genes. Long-read sequencing technologies 

promise to improve current annotations, paving the way towards a complete annotation of 

lncRNAs expressed throughout a human lifetime.

A fundamental goal of biology is to understand how the instructions to create and maintain 

an organism are encoded in its DNA sequence. From worm to man, the genomes of different 

species house remarkably similar numbers of protein-coding genes1, prompting the notion 

that many aspects of complex organisms arise from non-protein-coding regions. These non-

coding regions comprise a rich diversity of regulatory and functional units, amongst the 

most numerous of which are loci encoding long non-coding RNAs (lncRNAs)2. Next-

generation sequencing has identified tens of thousands of lncRNA loci, from single-celled 

eukaryotes to humans3. The sequences of lncRNAs are under purifying evolutionary 

selection4,5, and a substantial fraction yield clear phenotypic effects in both in vitro and in 

vivo loss of function studies6–10. Growing numbers of lncRNAs have been linked to human 

diseases11. However, their functionality remains contentious12, and the number of 

* rory.johnson@dbmr.unibe.ch.
Author contributions
B.U.-R. and R.J. researched data for the article. B.U.-R., A.F. and R.J. wrote the article. All authors provided substantial contributions 
to discussions of the content and reviewed and/or edited the manuscript before submission.

Competing interests
The authors declare no competing interests.

HHS Public Access
Author manuscript
Nat Rev Genet. Author manuscript; available in PMC 2019 April 08.

Published in final edited form as:
Nat Rev Genet. 2018 September ; 19(9): 535–548. doi:10.1038/s41576-018-0017-y.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



experimentally characterized or disease-associated lncRNAs lies in the hundreds, or ≤1% of 

identified loci13.

Closing this gulf between mapped and experimentally validated lncRNAs has prompted 

functional studies of growing scope. These studies have depended on the development of the 

fundamental resource of annotations, which describe the genomic locations, sequences and 

exon structure of lncRNA transcripts. As the basis of microarray designs, early lncRNA 

annotations enabled researchers to perform the first generation of functional genomics 

studies, implicating lncRNAs in processes as diverse as embryonic stem cell pluripotency14, 

reprogramming15, tumour suppression16, neuronal differentiation17 and cardiac 

differentiation18. More recently, large-scale functional screens based on the CRISPR–Cas 

system have been applied to hundreds or thousands of lncRNAs in a single experiment19.

Several different annotations exist for the human genome (TABLE 1), each with advantages 

and drawbacks that might not be immediately evident. They are based on two principal 

strategies of automated and manual annotation. Automated annotation typically employs 

transcriptome assembly approaches that are rapid and inexpensive but produce incomplete 

and inaccurate annotations. Manual annotation yields high-quality catalogues but at slow 

rates and requiring substantial long-term economic support. Both approaches suffer from a 

variety of deficiencies that are important for end users to understand.

Recent technical developments promise to revolutionize annotation methods. Third-

generation sequencing technologies are capable of reading entire RNA or cDNA molecules. 

Combined with methods to capture desired transcripts, third-generation sequencing promises 

to extend and improve existing lncRNA annotations rapidly and cost-effectively. These 

advances make it feasible to envisage the eventual complete annotation of the genome, 

whereby the entirety of biologically relevant genes, transcripts and exons is catalogued in all 

cell types throughout the human lifespan. A key subsidiary aim will be to define what 

threshold constitutes biological relevance and hence whether expression (or other) 

thresholds should be used for inclusion in final annotations20.

This Review has two main objectives. The first is to provide an overview of the current state 

of lncRNA annotations: how they are created, how good they are, best practice in their use, 

and the development of quantitative standards by which they might be evaluated and 

compared. The second is to discuss how emerging technologies will have an impact on these 

annotations and may alter our understanding of what constitutes the human lncRNA 

transcriptome. Although we focus mainly on human studies, the following discussions are of 

relevance to other model and non-model organisms. Of note, the lncRNAs discussed here are 

almost exclusively those of the olyadenylated (polyA+) fraction, owing to the fact that most 

transcriptomic surveys have been performed on conventional, oligo-dT-primed cDNA. The 

universe of polyA– lncRNAs remains largely unexplored and may hold many functional 

molecules21.
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lncRNA annotations: a research foundation

Structure of lncRNA annotations and biotypes.

Annotations, whether of protein-coding or lncRNA-encoding genes, are hierarchical: they 

are composed of gene loci, each of which is composed of one or more partially overlapping 

transcripts, themselves composed of one or more exons (FIG. 1a). In the absence of a clear 

understanding of their sequence–structure–function relationship, lncRNAs have tended to be 

classified by their genomic organization, in other words, the relationship of their encoding 

locus to the nearest protein-coding gene (FIG. 1b). In the context of genome annotation, this 

can be used as a biotype label. The principal dichotomy of genomic organization is genic 

versus intergenic, or lncRNAs that overlap or do not overlap a protein-coding gene, 

respectively. The latter are also referred to as long intergenic non-coding RNAs (lincRNAs). 

Genic lncRNAs may be subdivided by the precise nature of their overlap with the protein-

coding gene, and there is some evidence for distinct functions and features between these 

classes22. By numbers, lncRNAs tend to be approximately equally divided into genic and 

intergenic classes.

Why are lncRNAs difficult to annotate?.

lncRNA annotations lag considerably behind those of protein-coding genes, for reasons that 

go beyond their more recent discovery. There are at least three factors that make lncRNA 

annotation challenging. First, lncRNAs are relatively lowly expressed, meaning that their 

transcripts will be weakly sampled in any unbiased transcriptomic data, including expressed 

sequence tags (ESTs), RNA sequencing (RNA-seq) and cap analysis of gene expression 

(CAGE) data2,23. Second, our understanding of the lncRNA sequence–function relationship 

is poor (BOX 1). Thus, in contrast to the information-rich, readily idenifiable open reading 

frame (ORF) of protein-coding genes, sequence features or functional elements can-not 

presently be used to identify novel lncRNAs. Third, lncRNAs tend to be weakly conserved 

during evolution24,25, making it challenging to identify their orthologues or paralogues by 

sequence similarity. Consequently, lncRNA annotation relies almost entirely on physical 

transcriptomic evidence.

The importance of accurate annotations.

The fundamental nature of lncRNA annotations means that uncertainties or inaccuracies can 

have a profound impact on downstream projects. For example, during studies on the 

developing bat wing, researchers used microarrays to identify what seemed to be an 

intergenic lncRNA upstream of the gene encoding the developmental factor Meis2 (REF.26). 

However, careful analysis revealed that the cDNA sequence upon which the annotation had 

been based was most likely an internally primed fragment of the Meis2 5′ untranslated 

region (UTR)26. Similarly, an annotated lncRNA whose orthologue was knocked out in 

mouse, Kantr, was identified through an analysis of full-length transcript models from long-

read sequencing to be a protein-coding transcript with an ORF in a previously unannotated 

exon9,27. Finally, 1/2-sbsRNA AF087999, which has been proposed to regulate mRNAs in 

trans through Staufen binding, lies within the 3′ UTR of the RBM4 gene. There is little 

evidence supporting AF087999 as an independent transcript, leaving it unresolved whether it 

is a standalone lncRNA or a misannotated UTR fragment28.
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Amongst the most frequent use of lncRNA annotations is as a reference for quantifying and 

identifying differentially expressed genes and transcripts in RNA-seq experiments. 

Quantifier programs, such as RSEM29 or Kallisto30, take annotation files as an input 

together with mapped RNA-seq reads and attempt to estimate abundances of lncRNA 

transcripts. This is a challenging problem, particularly for lowly-expressed transcripts31. 

Inaccuracies or omissions in lncRNA annotations will propagate to transcript abundance 

estimates. For example, an excessively long 3′ exon annotation will lead to artificially low 

expression estimates, given that measures such as fragments per kilobase per million 

mapped (FPKM) are scaled to the annotated length of transcripts32.

Accurate estimates of lncRNA transcription start sites (TSSs) are of particular importance 

for studies of lncRNA promoters or CRISPR–Cas screens, which depend on targeting Cas9 

molecules to gene promoters6,19. Such studies should only examine transcripts with 

confident 5′ ends, which may be achieved by using independent evidence such as CAGE 

data to exclude unvalidated TSSs27,33–35.

Biomedical applications for lncRNA annotations are of growing importance. The recent 

availability of cancer genomes has enabled searches for driver lncRNAs, whose mutations 

are positively selected for during tumorigenesis36,37. Predictions are critically dependent on 

lncRNA annotation quality. Similarly, diagnostic screening and genome-wide association 

studies (GWAS) depend on making accurate inferences of the functional impact of trait-

associated mutations38. Such mutations are often assumed to be regulatory when they fall 

outside exonic regions. Truncated lncRNA annotations could therefore lead to the 

misinterpretation of mutations that actually fall inside a lncRNA exon and act through the 

mature lncRNA transcript, for example, by modulating a microRNA response element, as in 

the case of lnc-LAMC2-1:1 (REF.39). Finally, the identification of lncRNA biomarkers, such 

as PCA3 for the detection of prostate tumours40, uses RNA-seq quantified against lncRNA 

annotations. In cases where the analysis output is a diagnosis, annotation quality can thus 

have a direct impact on patient outcomes.

Additional examples of the diverse uses for lncRNA annotations include evolutionary 

phylogenies24, analysis of splicing regulation and conservation41, identification of small 

ORFs (sORFs)42, lncRNA-specific gene properties25 and RNA modifications43. Finally, the 

success of the nascent field of lncRNA functional domain prediction will depend in large 

part on the availability of comprehensive and complete lncRNA annotations (BOX 1).

The ecosystem of annotations

Thanks to ongoing efforts over the past two decades (BOX 2), a range of lncRNA annotation 

resources obtained by different methods are presently available. Contemporary annotation 

efforts are principally based either on automated transcriptome assemblies from short reads 

or on manual annotation of existing cDNA and EST libraries (FIG. 2). Recent years have 

seen considerable efforts in consolidating lncRNA collections, with attention shifting from 

quantity to quality and a premium placed on 5′ and 3′ completeness. In this section, we 

review presently available annotations, grouped by method.
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Annotations based on transcriptome assembly using short reads.

Short-read RNA-seq experiments produce hundreds of millions of reads, providing a deep 

sampling of even large mammalian transcriptomes. These reads can be used to annotate 

transcripts from known and novel genes, both coding and non-coding. However, the fact that 

reads are much shorter than typical mRNAs and lncRNAs means that they must be 

bioinformatically assembled to infer the structure of the underlying transcript (FIG. 2a). 

Despite drawbacks inherent in this approach (discussed below), RNA-seq has facilitated the 

creation of large lncRNA catalogues.

The MiTranscriptome annotation combines 6,503 data sets, heavily weighted to 27 cancer 

types, to automatically annotate 58,648 lncRNA genes using a two-stage assembly 

strategy44. At the time of its creation, 54% of loci were not present in any other available 

resource.

Several studies are taking steps to improve the completeness of annotations. The Functional 

Annotation of the Mammalian genome (FANTOM) CAGE-associated transcriptome (CAT) 

meta-assembly combines both published sources and in-house short-read assemblies45. 

What sets this collection apart is its use of CAGE tags, which mark transcript TSSs, to 

identify 5′-complete transcript models. The resulting 27,919 gene loci are more complete at 

the 5′ end compared with other annotations, as judged by independent evidence, such as 

histone 3 lysine 4 trimethylation (H3K4me3) and DNase I hypersensitivity sites (DHSs)45. 

One drawback of CAGE is that, similar to other RNA-dependent methods, its signal scales 

with expression46; hence, lowly-expressed transcripts are more weakly represented.

The BIGTranscriptome catalogue comprises transcripts that are complete at both the 5′ and 

3′ ends47. It employs a new method, CAFE, which is capable of inferring strands of 

unstranded RNA-seq reads. Consequently, CAFE overcomes strand ambiguity, which 

particularly affects genic transcript models generated from unstranded data sets, such as 

those from the Human Body Map (HBM) or the Genotype-Tissue Expression (GTEx) 

project48. CAGE and poly(A)-position profiling by sequencing (3P-seq) were used to assess 

5′-end and 3′-end completeness, respectively45,49. Combining 169 RNA-seq data sets, 

BIGTranscriptome comprises 1,725 novel full-length lncRNA loci.

Annotations based on manual curation.

Gene annotation remains one of the few high-throughput scientific activities where humans 

still outperform computers. In manual annotation, a team of human annotators 

systematically assembles transcriptomic and genomic evidence into gene models according 

to defined protocols. By inspection of high-quality transcript evidence, principally from 

ESTs and cDNA databases, annotators can create fairly confident annotations, free from 

many of the artefacts inherent in automated approaches (FIG. 2b).

The most widely used manual annotation is GENCODE2,50, which stands out thanks to its 

extensive experimental validation and integration into the Ensembl annotation set2. Whereas 

the main GENCODE protein-coding gene annotation is created by merging the output from 

two pipelines, one manual and one automated, the lncRNA annotation is almost entirely 
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manual. Individual transcript models are annotated and grouped together on the basis of 

genomic overlap of exons and splice sites into gene loci.

Unsurprisingly, manual annotation is much slower than automated approaches. Nevertheless, 

GENCODE annotations, released at 6-month intervals, have grown rapidly since 2012 (BOX 

3; FIG. 3a). Moreover, single-exon models and transcript models supported by 

transcriptomic data from long-read sequencing are now being introduced (discussed below).

Newly created transcript models are assessed for protein-coding potential (BOX 4) and 

whether they are likely to be functional or pseudogenic. Where there is no evidence of 

coding potential from mass spectrometry data, orthologues or paralogues in reference 

databases such as UniProt51, structural or functional protein domains identified by Pfam52 or 

conservation data such as PhyloCSF53, a locus is defined as noncoding. lncRNAs from the 

literature are assessed with equal stringency. Although much of the annotation of lncRNAs 

was completed during first-pass manual annotation across the whole human genome, 

targeted (re)annotation of missing or truncated lncRNAs is now underway.

All new transcripts and genes are assigned stable identifiers on their creation. All updates to 

annotation are captured in an increment to the version of the gene and transcript identifier 

(that is, “ENSGXXXXXXX.2”). For example, when extension or trimming of a transcript is 

undertaken in light of new data or where new data emerges to strongly support changing the 

biotype of a locus (BOX 3), updates will be made and a version increment applied.

Owing to the quality deriving from its manual annotation, regularly updated versions, long-

term support, well-defined and consistent source data, identifier stability and integration into 

Ensembl50, GENCODE has been adopted by most large-scale genomics projects, including 

the Encyclopedia of DNA Elements (ENCODE)54 (for which it was originally created), 

GTEx project48, International Cancer Genome Consortium (ICGC)55, Blueprint56, 

Epigenome Roadmap57 and FANTOM45. The use of stable Ensembl identifiers simplifies 

the integration of data across projects and releases. However, the inherent weakness of 

GENCODE is its relatively small size: 15,778 genes in human (version 27) and 11,975 in 

mouse (version M15). Of note, the mouse annotation project was commenced later, 

accounting for the difference in size with human.

Another manual gene annotation resource, Reference Sequence (RefSeq), was created and is 

maintained by the National Center for Biotechnology Information (NCBI) and covers 

multiple species, including human58. Consisting of a mixture of manual and automated 

annotations, RefSeq is created using a variety of evidence, including cDNAs, ESTs and 

RNA-seq. Entries carry unique and stable identifiers and are associated with metadata 

summarizing their annotation history. Of relevance in this context are non-coding RNA 

annotations with accessions ‘NR_’ and ‘XR_’, which refer to manually curated models (NR) 

and products of an automated pipeline based on Illumina data (XR), respectively. Thus, the 

RefSeq annotation process is similar to GENCODE, with the exception of usage of RNA-

seq. Along with GENCODE, RefSeq is one of the most widely used lncRNA annotations59.
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Integrative annotations.

A number of other lncRNA collections are worthy of note. NONCODE has, since 2005, 

integrated annotations from a mixture of manual literature searches and other annotations3. 

The latest version, NONCODE (version 5), is to our knowledge the single largest present 

collection, describing 96,308 lncRNA gene loci in human alone (as of November 2017). It 

also has data for 15 species other than human and mouse.

RNACentral is a large-scale resource of non-coding RNA sequences, integrating various 

other databases, which lists 116,292 lncRNA sequences at the time of writing60. It is based 

on sequences, rather than annotations, making the total number of lncRNA loci unclear.

Finally, LNCipedia and LncRNAWiki stand out in their usefulness for integrating functional 

data. LNCipedia holds a database of 48,028 carefully filtered lncRNA genes from a range of 

sources61. Users may access information on peptide mapping, coding potential, RNA 

folding and microRNA recognition. Similarly, LncRNAWiki holds a variety of useful 

information, including disease association and putative small peptides, and is an invaluable 

resource of manually curated functional information for hundreds of lncRNAs62.

How good are lncRNA annotations?

Overlap between annotations.

Annotations tend to have low overlap (FIG. 3b). For example, the two largest annotations, 

MiTranscriptome and NONCODE, have just 27.7% and 45.5% of genes in common, 

respectively. Not surprisingly, NONCODE encompasses more than 97% of GENCODE, 

which it incorporates. What is perhaps unexpected is the poor overlap that is observed 

between the two manual annotations, GENCODE and RefSeq (34.6% and 44%, 

respectively). Overall, the low overlap points to much scope for merging of annotations to 

improve comprehensiveness.

Quality metrics for annotations.

An ideal annotation would be a record of every locus expressed at any point in time from the 

genome of a given species. An important requirement for future lncRNA mapping projects is 

the development of standards for assessing quality that go beyond anecdotal examples. For 

the present discussion, we make the following definitions of annotation quality: (a) 

comprehensiveness — the fraction of all gene loci that are included; (b) exhaustiveness — 

the fraction of all transcripts from each locus that are known; (c) completeness — the 

fraction of transcript models that cover the entire length, from start to end, of the physical 

RNA molecule. Obviously, comprehensiveness and exhaustiveness are impossible to define, 

as we do not know the total number of lncRNA genes or transcripts. Nevertheless, we can at 

least compare proxies for these metrics between annotations (TABLE 1) to get a 

comparative picture. By contrast, a minimum bound can be placed on completeness, owing 

to the availability of independent evidence for transcript 5′ and 3′ boundaries.

Based on these three metrics, we have compared the discussed lncRNA annotations (FIG. 

3c). Most striking is the general anti-correlation between comprehensiveness and 
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completeness. In other words, there is a trade-off between quality and size: smaller 

annotations tend to have higher completeness (although this remains low in absolute terms) 

and vice versa. Amongst the smaller annotations, BIGTranscriptome is the leader in terms of 

completeness, although with low numbers of annotated transcripts per gene. The two manual 

annotations, GENCODE and RefSeq, have comparable profiles. For the larger annotations, 

MiTranscriptome has just 4.4% of complete (full-length) transcript models (FIG. 3c), which 

is most likely the result of its dependence on transcriptome assembly. NONCODE beats 

MiTranscriptome in size and completeness but with lower exhaustiveness. FANTOM CAT 

represents a compromise between completeness and comprehensiveness. Of note, we find 

substantially lower 5′ completeness than originally reported45, which is due to the use of 

more stringent CAGE cut-off thresholds: only robust CAGE clusters (FANTOM5 phase 1/2 

robust (n = 201,802)) were considered, and FANTOM5 phase 2 unfiltered CAGE clusters (n 
= 4,218,430) were discarded owing to their seemingly high background rate.

Data are also displayed for protein-coding genes as a reference, with the assumption that 

their annotation is of the highest quality. The protein-coding gene annotation should be 

comprehensive, as not many are expected to remain undiscovered63. We also included a 

recently generated set of full-length lncRNA transcript models produced using capture long-

read sequencing (CLS) technology (discussed below)27. These models display high 

completeness, in part because their 5′ ends were defined using the same CAGE data as used 

here for evaluation. Incorporation of CLS models into GENCODE resulted in an improved 

annotation, GENCODE+ (TABLE 1), with dramatically higher completeness. It is 

noteworthy that GENCODE+ has a slightly reduced gene count as a result of unifying 

artefactually separate gene models in existing annotations.

One important caveat of this analysis is that CAGE clusters used for 5′-end definition are 

expression-dependent and only available for a defined set of tissues. This likely accounts, at 

least in part, for the fact that protein-coding genes have apparent 5′ completeness <100% 

(FIG. 3d) and will also underestimate completeness of lower expressed lncRNAs. However, 

it is also possible that some protein-coding gene annotations remain incomplete.

The use of proxies for comprehensiveness (numbers of loci) and exhaustiveness (transcripts 

per gene) makes the key assumption that no false-positive annotations exist. This assumption 

is probably incorrect and will affect some annotations more than others. In particular, 

assembly-based collections may hold substantial numbers of false-positive transcripts. 

Inspection of splice junctions supports the idea that certain annotations, particularly 

NONCODE, suffer from high rates of false-positive structures (FIG. 3e).

Overall, this analysis illustrates the strengths and weaknesses of contemporary annotations. 

It highlights the great scope for improving lncRNA annotations, first, by increasing their 

completeness to levels observed for protein-coding genes and, second, by improving their 

comprehensiveness by merging diverse available resources.

Sources of incompleteness.

The lack of completeness in existing lncRNA annotations may be traced to several historical 

and technical factors. cDNA molecules often tend to be 5′ truncated, owing to a 
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combination of RNA degradation and the tendency of reverse transcriptase molecules to 

disengage before reaching the 5′ end of the template RNA, often as a result of RNA 

secondary structures64. In short-read RNA-seq, a range of processes create non-uniformity 

in read coverage, particularly at the 5′ and 3′ ends65. Together, these factors introduce a 

tendency for short-read assemblies and cDNA libraries, upon which most annotations are 

based, to be 5′ and 3′ incomplete34,35,45,66.

More generally, the assembly of transcriptomes from short reads is inherently challenging. 

Assembly programs, including the widely used Cufflinks67, have high error rates. Whereas 

exons are identified with reasonable sensitivity, their assembly into correct transcripts is 

particularly difficult68. Simulations across a range of assembly programs demonstrate a 

mean sensitivity of only 41% in assembling expressed genes, dropping to 21% at the 

transcript level68. The majority of such transcript models lacks one or more exons. 

Assemblies are sensitive to gene expression levels and coverage uniformity68, which has a 

particular impact on lowly-expressed lncRNAs. However, even when controlling for 

expression, transcriptome assemblies are less sensitive for lncRNAs compared with mRNAs 

for unknown reasons68. More recent assemblers such as StringTie and Scallop run far faster 

than Cufflinks and have demonstrably better sensitivity and specificity, but resultant 

assemblies remain far from ideal69,70. In a study using StringTie to assemble synthetic 

spliced RNAs, it was found that for the correct assembly of >50% of its nucleotides, a 

transcript must be expressed at a level equivalent to 23 FPKMs — far in excess of the 

average lncRNA or even mRNA66. These issues will result in low comprehensiveness, 

exhaustiveness and completeness of annotations based on transcriptome assemblies.

Another issue that probably has an impact on comprehensiveness is of historical nature: the 

material used for the generation of cDNA libraries has been biased towards adult tissues, 

tumour samples and cell lines2,44. Thus, modern annotations may omit much of the wealth 

of lncRNAs likely to be expressed during embryogenesis, development and childhood48. 

Similarly, certain lncRNAs may only be expressed in rare subpopulations of cells within a 

tissue or even cell culture71 and thus are likely to be missed owing to the low apparent 

expression in bulk cell samples.

In summary, present annotations are likely to fall short in all the quality metrics described, 

leaving thousands of gene loci, transcripts and exonic nucleotides unmapped.

Emerging technologies in lncRNA annotation

Advances in key technologies for targeting and sequencing lncRNA transcripts promise to 

directly address the two principal challenges facing lncRNA annotations of low target 

abundance and incomplete transcript models.

Long-read sequencing technologies.

Pacific Biosciences’ (PacBio) technology employs zero-mode waveguides to sequence 

single circularized DNA or cDNA molecules. Around 40,000 reads are produced by each 

lane, with an average ∼1.5 kb length27,72. This length is several-fold longer than the average 

exon, meaning that the exon connectivity of complete or almost complete transcript 
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structures can be resolved. A recent study in human showed that, for transcripts up to ∼1.5–

2.0 kb, the majority of reads yields full-length transcript structures, falling short on average 

47 nt and 6 nt from the annotated 5′ and 3′ sites, respectively72.

Raw PacBio sequencing reads tend to have relatively high error rates72. To mitigate this 

issue, consensus reads of insert (ROIs) are assembled from multiple passes of the same 

circular template molecule. Resulting per-base sequencing errors are moderate, 

approximately twofold greater than for Illumina and with a tendency for nucleotide 

deletions72. At this rate, the majority of reads can be mapped with high confidence73. 

Despite its advantages, widespread adoption of PacBio is hindered by its cost and low 

throughput. Given the low representation of lncRNAs within the cellular transcriptome, pure 

PacBio sequencing would be an inefficient method to map lncRNA loci72. Perhaps its 

greatest drawback is its sequencing preference for short templates in a mixture. This 

limitation creates the need to size-select cDNA libraries, introducing a length-dependent bias 

in the sequenced transcripts27,72.

Nanopore-based technologies read single molecules in real time74; nucleic acid molecules 

are translocated at a controlled rate through a membrane-bound protein nanopore. Changes 

to electric currents through nanopores are used to infer the identity of each nucleotide. This 

technology has reached the mainstream market with Oxford Nanopore’s MinION 

technology74, which is capable of returning ∼5 million reads per flow cell, at a cost of ∼
€500.

Nanopore has a range of advantages over other sequencing approaches. By dispensing with 

the amplification or enzymatic modification of target molecules, important sources of bias 

are avoided. cDNA molecules can be directly sequenced with minimal preparation75, and it 

may even be feasible to identify chemically modified bases76. A recent report describes 

direct sequencing of RNA (as opposed to cDNA) from a variety of samples, with read 

lengths of up to 7.5 kb and sequencing accuracy of 80%77. Reads are free from biases 

regarding template length or GC content, which affect other technologies78. Most 

importantly in the present context, nanopore sequencing yields reads of lengths that are 

virtually unlimited and that far exceed known lncRNAs and mRNAs78. These beneficial 

properties of throughput, read length and cost make nanopore technology highly appealing 

in the context of gene annotation.

RNA capture sequencing.

lncRNAs tend to be expressed approximately one order of magnitude lower than mRNA and 

represent about 1–2% of polyA+ RNA in a cell27,72,79,80. This creates a considerable hurdle 

for annotation, because lncRNA molecules are simply less likely to be sampled at a given 

depth of sequencing. One solution is to boost their apparent concentration in a cDNA library 

using oligonucleotide capture in a technique known as RNA CaptureSeq81,82. Custom 

libraries of tiled complementary oligonucleotide probes are used to enrich a population of 

desired targets in solution. This approach boosts the representation of lncRNA sequences to 

>25%, improving sequencing coverage by tens of fold compared with a conventional, 

uncaptured sample81. To date, this approach has been used successfully in human83 and 

mouse84 tissues.
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RNA CaptureSeq demonstrates powerfully increased sensitivity compared with 

conventional, unbiased sequencing methods, typically discovering novel transcripts and gene 

loci expressed at far less than one copy per cell83. Often, adjacent and erroneously separate 

annotations are merged, or annotated loci are extended with new exonic sequence84. 

However, previous studies have largely relied on short-read Illumina sequencing coupled to 

Cufflinks transcriptome assembly81,83,84. Consequently, resulting annotations suffer from 

the same uncertainties and weaknesses as discussed above and have low 5′ and 3′ 
coverage66,68.

The dependence of RNA CaptureSeq on short reads has recently been overcome by coupling 

it to PacBio technology in a method termed CLS27,85. By using long reads, CLS avoids the 

issues associated with short reads and transcript assembly, enabling the identification of full-

length transcript models. By integrating CAGE data and fragments of poly(A) tails 

contained in PacBio reads, CLS can assess the completeness of transcript models at 5′ and 

3′ ends, respectively (FIG. 4). The use of template-switching reverse transcriptase 

technology to generate almost full-length cDNAs can boost 5′ completeness further64. Short 

reads sequenced from the same samples can be used to assess the accuracy of splice site 

predictions86. As such, CLS marries the enhanced sequencing coverage provided by capture 

to transcript model confidence afforded by long reads. In the first report of this method, 2 

million reads each in human and mouse across a panel of tissues and cells yielded novel full-

length transcript models from 947 previously annotated human lncRNA loci27. Although the 

annotation complexity of the probed regions was approximately doubled, there was no sign 

of saturation of splice junctions, indicating that much more sequencing depth will be 

required to establish definitive gene structures in detected loci. A similar conclusion was 

reached in a study using essentially the same strategy to survey the transcriptional landscape 

of chromosome 21 in human testis85.

Although the speed and cost of the CLS approach make it a substantial step towards more 

comprehensive lncRNA annotations, it suffers from some weaknesses that must first be 

resolved. The lengths of full-length transcript models are limited by PacBio reads, leaving 

many targeted transcripts incomplete. Also, sequencing depths are insufficient to saturate 

targeted loci. The incorporation of nanopore sequencing technology in the CLS workflow 

should help to overcome these barriers.

Towards complete lncRNA annotations

With the tools of long-read sequencing and RNA capture in hand, we may now envisage an 

eventual complete lncRNA annotation: maps of the entire universe of lncRNAs expressed 

throughout the lifetime of an organism, beginning with Homo sapiens.

A roadmap.

The most obvious route to complete annotation lies in the systematic application of CLS 

coupled to nanopore sequencing (FIG. 4). Capture library designs would have two main 

components. First, in order to complete existing annotations, the entire catalogue of known 

lncRNAs would be targeted27. Second, in order to map unknown lncRNAs, suspected loci 

lying outside of annotated exons would be probed. These would come from two main 
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sources: first, loci with a high confidence for lncRNA production, such as physical evidence 

from RNA-seq-derived assemblies and introns44,87, and second, regions with more 

speculative evidence, such as predicted lncRNA orthologues from other species24, 

bioinformatic predictions88, GWAS regions89 or small RNAs with presumed long 

precursors90.

Capture libraries would be used to probe diverse organ and tissue panels across the human 

lifespan from embryos to aged adults, thus going beyond the adult organ panels and tumours 

that tend to dominate present data sets91,92. Given that organs are complex mixtures of 

common and rare cell types, it will also be beneficial to probe purified cell populations93. 

Technology permitting, this may eventually be extended to sampling single-cell 

transcriptomes of rare types that would be missed in bulk preparations71. Finally, the 

majority of transcriptome studies to date have been performed on individuals of European 

ancestry, making future sampling across different human populations a priority.

Such an ambitious project would entail considerable logistical and economic challenges. As 

recognized by ENCODE54, a practical first step would be to focus on complete collections 

of lncRNA in defined cell types or organs. These might entail complex organs or cell lines of 

particular scientific or biomedical relevance, such as ENCODE cell lines80.

Captured cDNA libraries would be sequenced using nanopore technology, up to a rationally 

chosen depth, defined below. The accuracy of the 5′ end, the 3′ end and splice junctions 

would be validated using independent data sets, in addition to bioinformatic and 

experimental screening for protein-coding capacity53,94. With this level of quality, resulting 

transcript models can be added to existing annotations with low levels of scrutiny by human 

annotators, minimizing the delay between sequencing and public availability.

How do we know when to stop?.

A number of considerations must guide decisions regarding resource allocation in annotation 

projects. First, we must take care to focus efforts on collecting lncRNAs of biological 

relevance. Unfortunately, we remain far from having reliable methods for distinguishing 

functional lncRNAs from transcriptional noise. Although imposing a minimum expression 

threshold is an obvious path, the discovery of apparently functional lncRNAs with 

expression of <<1 copy per cell20 would argue against imposing a hard expression cut-off. 

Nevertheless, to maximize usefulness in downstream applications such as RNA-seq, it is 

sometimes helpful to eliminate unnecessary complexity arising from growing numbers of 

transcript isoforms. This has prompted the creation of simplified annotations such as 

GENCODE’s Basic annotation (BOX 3).

A question of singular importance to the design of annotation projects is: is the lncRNA 

population finite, and if so, how many transcripts and loci does it comprise? Or conversely, 

is an effort at complete annotation doomed by the fact that the transcriptome is infinite, 

owing to pervasive transcription or unlimited combinatorial splicing85? Certainly, after a 

decade of research, we are little closer to assigning an upper bound to the first question. 

Recent CLS studies finished sequencing before saturating even already known lncRNA 

loci27, while a recent study claims that lncRNA genes explore astronomical numbers of 
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available splicing combinations85. Furthermore, present upper estimates of lncRNA numbers 

are biased towards adult cell types, raising the possibility of existence of untold numbers of 

developmentally regulated lncRNAs.

A further source of complexity could be ‘personal’ transcriptomes — lncRNAs that are 

unique to individuals or populations95,96. Such transcripts might arise from individual-

specific genomic regions that are not represented in the reference or else shared genomic 

regions that are active in certain individuals thanks to processes such as transposon 

insertion97,98 or trans-acting factors99. Even if the size of every individual personal 

transcriptome is small, summed across the entire population it could be enormous. Efforts to 

map personal genomes and transcriptomes are underway with the ENCODE Tissue 

Expression (EnTEx) project amongst others100. Personal lncRNAs, if they exist, may 

explain individual-specific phenotypes and features and could be of crucial importance to 

personalized medicine.

However, there is evidence supporting the finiteness of the lncRNA transcriptome. 

Simulations performed on relatively shallow CLS sequences from an admittedly limited 

range of tissues exhibited a decreasing rate of discovery with depth27, indicating that 

lncRNA transcript complexity tends towards an asymptote. Deveson et al. seem to have 

exhaustively mapped all exons on chromosome 21 in testis85. Similarly, in analyses of nearly 

the entire volume of public RNA-seq data, the number of splice sites almost reached a 

plateau87. Finally, a more focused study in B cells also found evidence for an upper 

threshold in lncRNA isoform diversity101. Therefore, although lncRNA transcripts are 

highly complex and challenging to exhaustively map, a full map of at least their exons and 

splice sites is tractable.

Nevertheless, in any large-scale annotation project involving third-generation sequencing at 

depth, it will be imperative to periodically monitor the rate of novel transcript discovery in 

each tissue sample as a function of sequencing depth. This will indicate when transcriptome 

complexity has been saturated and hence when sequencing resources should be reallocated 

to other samples.

Conclusions and perspective

lncRNA annotations are a fundamental resource for basic research and also have growing 

importance for practical applications such as personalized medicine102. Although it has been 

argued, quite reasonably, that many lncRNAs may represent non-functional noise, the 

growing number of clearly documented counter-examples suggests that at least a substantial 

fraction of transcripts is functional in the strictest sense of enhancing organismal fitness.

The rapidly growing volume of the annotated lncRNA transcriptome will bring benefits but 

also new challenges, particularly in making this information available in a way that 

maximizes usefulness without sacrificing genuine biological complexity.

At present, lncRNA annotations lag far behind those for protein-coding genes, to an extent 

not often appreciated by individual researchers. However, there is now an opportunity to 

create complete annotations, at least in certain well-defined cell types. This will not only 
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open new vistas into the molecular biology of the cell, disease mechanisms and diagnostics, 

but also enable us to answer fundamental questions about the functionality of lncRNAs.
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Glossary

Long non-coding RNAs (lncRNAs)
RNA transcripts ≥200 nucleotides long that do not encode any identifiable peptide product.

Annotation
Catalogue of gene loci comprising detailed and hierarchical information on their genomic 

coordinates and that of their constituent transcript isoforms and exons, all of which are 

assigned unique and stable identifiers.

Transcriptome assembly
The use of bioinformatic algorithms to reconstruct gene and transcript models based on short 

sequence reads.

Manual annotation
The creation of gene and transcript models by human annotators based on RNA and protein 

evidence and according to defined protocols.

Biotype
An annotation label referring to the genomic classification, processing or other 

characteristics of a locus or transcript intended to provide insights into biological function.

Expressed sequence tags (ESTs)
An early transcriptomic method in which short fragments of transcribed regions, often from 

5′ or 3′ ends, are identified through sequencing of cDNA.

Cap analysis of gene expression (CAGE)
A cap-trapping and sequencing method that is considered a gold standard for mapping RNA 

5′ ends.

Transcript models
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Abstract descriptions of a transcription event, defining the genomic location of the start 

point, the end point and splice junctions.

Fragments per kilobase per million mapped (FPKM)
One of the principal units of RNA abundance in the context of RNA sequencing 

experiments, defined as the number of sequenced fragments per kilobase of annotation per 

million mapped fragments.

Oligonucleotide capture
A method for enriching cDNA libraries with sequences of interest using solution-phase 

hybridization to tiled, labelled oligonucleotide probes.
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Beyond gene annotation: mapping functions and domains

In tandem with complete gene annotations, an additional objective is to predict and label 

molecular, biological and disease functions of long non-coding RNAs (lncRNAs). This 

aim is held back by our poor understanding of the sequence–function relationship of 

lncRNAs, in contrast to protein-coding genes whose functions can usually be predicted 

from primary sequence alone52. Here, we discuss a selection of promising methods to 

predict the functions and functional domains of lncRNAs. It will be interesting in the 

future to see such information integrated with annotation databases, LNCipedia and 

LncRNAWiki being the only resources thus far to do this61,62.

Gene-level functional annotation

Strategies to predict lncRNA functions have traditionally involved reassigning functional 

labels from protein-coding mRNAs to lncRNAs based on expression patterns. Tissue 

profiles of lncRNAs and mRNAs are determined from RNA sequencing (RNA-seq) or 

microarray data and then used to create mixed gene clusters by correlation. Significantly 

enriched functional labels attached to mRNAs in each cluster, such as Gene Ontology, 

Kyoto encyclopedia of Genes and Genomes (KEGG) or disease association terms103–105, 

are assigned to any lncRNAs in the same cluster. This widely used approach is often 

referred to as guilt by association23. However, it assumes that expression patterns hold 

information on molecular functionality. Algorithms of growing sophistication, often 

integrating additional data, are being applied to this problem106–108. A lack of gold 

standard data means that it is difficult to assess the power of such techniques, although 

new databases may help resolve this11,109,110.

The expression of lncRNAs within the cell, or subcellular localization, may hold more 

useful clues for molecular functions. RNA-seq-based maps of lncRNA levels in 

compartments of the cell, including nucleus, cytoplasm and other organelles, can be used 

to create maps of localization111–114. These data are then used to classify lncRNAs by 

their localization according to defined cut-offs114. Although this approach does not make 

specific functional predictions, it can provide broad pointers; for example, nuclear-

enriched transcripts may regulate transcription, while cytoplasmic transcripts are more 

likely to play post-transcriptional roles. Localization data may also be used to search for 

domains or motifs that promote lncRNA trafficking to specific cellular sites115–117.

Mapping lncRNA functional elements

The prevailing view is that lncRNAs, similar to proteins, are modular and composed of 

separable ‘functional elements’ (REFS117–119). Convincing evidence is available for a 

limited number of cases117,118,120–124, but the global annotation of elements would be a 

powerful basis for predicting lncRNA functions.

Elements can be predicted by a variety of methods. Evolutionary conservation of RNA 

structures is a statistically rigorous way of finding putative functional elements88. 

Protein-binding data are useful in identifying molecular interactors and their binding 

sites, although they have the drawback that sensitivity depends on expression, which is 

usually low for lncRNAs125. Maps of inferred or experimentally identified microRNA 
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sites may point to post-transcriptional regulatory roles, such as for competitive 

endogenous RNAs (ceRNAs)125,126. lncRNAs may interact with genomic DNA through 

the formation of triplex structures that can be predicted bioinformatically127. Other 

studies have attempted to map functional sites through transposable 

elements98,115,116,128.
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Box 2 |

The evolution of lncRNA collections

The first hint at the volume of long non-coding RNAs (lncRNAs) populating our genome 

came from genomic microarray technology. Starting in 2002, tiled microarrays with 

increasing density and genomic span revealed extensive transcription outside of then-

known gene loci129. However, the exact sequence and hence protein-coding potential, of 

those transcripts could not be resolved with this technology. The sequences of these 

unannotated transcripts were first resolved by massive cDNA sequencing undertaken by 

the Functional Annotation of the Mammalian genome (FANTOM) consortium130,131. 

The consortium used a combination of cap analysis of gene expression (CAGE), which 

can identify transcription start sites (TSSs) by sequencing the 3′ end of cDNAs (that is, 

the 5′ end of RNAs), and ditag sequencing (also known as paired-end tag sequencing), 

which is capable of identifying both TSSs and polyadenylation sites. Approximately one-

third of cDNAs did not contain identifiable protein-coding sequences; in other words, 

they were lncRNAs. This data set facilitated the first studies demonstrating purifying 

evolutionary selection on lncRNAs as a population, implying that at least a subset is 

functional rather than “transcriptional noise”4.

lncRNA genes were also identified indirectly through their patterns of histone 

modifications23. Reasoning that lncRNA genes may carry similar combinations of 

histone 3 lysine 4 trimethylation (H3K4Me3) and histone 3 lysine 36 trimethylation 

(H3K36Me3) modifications — known markers of active protein-coding genes — 

researchers identified approximately 1,000 long intergenic non-coding RNAs (lincRNAs) 

in human and mouse23,132. These lincRNA genes exhibited low steady-state expression 

levels compared with mRNAs, now known to be a general property of lncRNAs.

Growing volumes of publicly available cDNA sequences opened the way to accurate 

lncRNA annotations, similar to those for protein-coding genes. The first catalogue of 

5,446 human lncRNA loci was generated largely on the basis of cDNAs filtered by an 

open reading frame (ORF) prediction tool and a pipeline based on the protein basic local 

alignment search tool (BLASTP)133.

The advent of RNA sequencing (RNA-seq) democratized lncRNA annotation. Using only 

a sequencer and off-the-shelf computational tools, any laboratory was able to identify 

thousands of lncRNA loci in their favourite cell type. A central requirement for this 

approach is transcriptome assembly, whereby computational algorithms are used to 

reconstruct the underlying transcript structures responsible for observed RNA-seq reads67 

(FIG. 2a). Reference-based methods that make use of read-to-genome alignments to infer 

transcript structures tend to be more accurate than de novo methods68. Foremost amongst 

reference-based assemblers are Cufflinks67 and, more recently, StringTie69. In the first 

attempt to apply RNA-seq to lncRNA annotation, Cabili et al.134 assembled RNA 

sequences from a variety of human tissues to yield a total of 4,662 lncRNA loci. This 

study discovered another fundamental property of lncRNAs: high tissue-specificity and 

cell type-specificity.
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Box 3 |

Using GENCODE lncRNA annotations

Availability

The GENCODE annotation of long non-coding RNAs (lncRNAs) is released in 

alignment with versioned Ensembl updates. Mouse releases are prefixed M; the most 

recent human release is GENCODE v27 and for mouse vM15. Full GENCODE 

annotations are available in GTF and GFF3 formats from the Ensembl and University of 

California Santa Cruz genome browsers and from gencodegenes.org. Separate files 

containing only lncRNA transcripts are also available. The GENCODE site also houses a 

full archive of previous releases and their statistics.

Biotypes

A full description of all GENCODE lncRNA biotypes is presented in the HAVANA 

annotation guidelines135. More recently, biotypes relating to other genomic features have 

been added and are being populated; for example, a ‘bidirectional-promoter lncRNA’ 

describes a locus where a lncRNA lies on the opposite strand to a protein-coding gene 

and there is evidence — for example, from cap analysis of gene expression (CAGE) data 

— that their transcription start sites lie within a window of 200 bp.

Biotype labels should be employed with caution as they tend to exhibit considerable 

inertia. As they are defined with reference to nearby protein-coding gene structures, any 

changes in those structures can lead to a change in the biotype. If users require up-to-date 

biotype information, it is recommended to regenerate them, for example, by using the 

lncrna.annotator script or the classifier module within FEELnc136.

GENCODE Comprehensive versus GENCODE Basic

GENCODE Comprehensive comprises the entire annotation of transcript models. As 

lncRNA annotations become increasingly complex, a need arises for a simplified 

annotation: GENCODE Basic. GENCODE Basic contains at least one transcript for 

every gene locus, ensuring full gene representation. For protein-coding loci, all coding 

transcripts with full-length coding DNA sequence (that is, ATG to stop codon) are 

included in the Basic set. For complex lncRNA loci, the Basic set is generated by 

including the minimal set of transcripts that capture >80% of the splice sites.
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Box 4 |

Are lncRNAs really non-coding?

The extent to which protein-coding capacity is a qualitative (binary) or quantitative 

(gradual) property of RNAs has long been debated137. Recently, functional small 

peptides have been identified in transcripts previously annotated as long non-coding 

(lncRNAs)42,138. More broadly, ribosome profiling139,140 and bioinformatic141 studies 

have claimed that a large proportion of annotated lncRNAs encode proteins.

However, these findings are not yet conclusive. Ribosome interaction itself is suggestive, 

but not direct, evidence of coding potential142,143. For bioinformatic identification, a 

large fraction of purported, novel coding transcripts are likely to be false positives, 

arising from inadequate statistical approaches that do not correctly account for technical 

and biological noise144–146. For example, of the ∼350 best-supported novel open reading 

frames (ORFs) proposed by Mackowiak et al.141 and manually reviewed by GENCODE, 

only 35 could be verified (A.F., unpublished observation). Together with the presently 

low number of cases for which peptides have directly been observed, this observation 

means that it may be premature to suppose that most lncRNAs are translated into 

functional peptides.

This is not to say that annotations should not be rigorously screened to flag “transcripts 

of unknown coding potential” (REF.134). A variety of tools exist to predict protein-coding 

regions in RNA sequences, which may be classified amongst those using intrinsic 

sequence properties (for example, Coding-Potential Assessment Tool (CPAT)147), 

similarity to known proteins (for example, Coding Potential Calculator (CPC)148) and 

evolutionary signatures of protein evolution (for example, PhyloCSF53). The latter tool is 

considered to have the greatest sensitivity, particularly for short peptides136,149 but 

identifies only evolutionarily conserved peptides and is computationally intensive. More 

direct evidence comes from mass spectrometry, although low sensitivity and the short 

length of potential peptides complicates their identification94,150–152, and care must be 

taken to correctly estimate false-positive predictions153.

Most annotation pipelines integrate one or several of these approaches136. For 

GENCODE, in addition to comparing putative ORFs within lncRNAs to entries in 

reference protein databases, such as UniProt and Pfam, all lncRNAs are routinely tested 

using both PhyloCSF and dedicated proteogenomics filtering. Manual re-examination can 

lead to reclassification of dubious lncRNAs. However, this is fairly infrequent: a stringent 

proteogenomics workflow to reprocess >52 million spectra revealed more than 1,400 

putative novel protein-coding genes, but only 16 were confirmed following detailed 

reanalysis and just 8 fell in annotated lncRNA loci94.

Uszczynska-Ratajczak et al. Page 27

Nat Rev Genet. Author manuscript; available in PMC 2019 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1 |. Basic concepts of lncRNA annotations.
a | The principal structures of a long non-coding RNA (lncRNA) to be annotated. 

Annotations are hierarchical: they are composed of gene loci, each of which is composed of 

one or more partially overlapping transcripts, themselves composed of one or more exons 

(blue rectangles). b | Positional classification of lncRNAs with respect to the nearest protein-

coding gene. Genic lncRNAs overlap a protein-coding gene locus, whereas intergenic 

lncRNAs, also known as long intergenic non-coding RNAs (lincRNAs), do not. Transcripts 

that overlap a protein-coding gene on the opposite strand are identified as antisense. PAS, 

polyadenylation site; TSS, transcription start site.
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Fig. 2 |. Annotation strategies for lncRNAs.
a | Automatic annotation based on RNA sequencing (RNA-seq) may follow two distinct 

strategies that differ in how the genome reference is used. The align-then-assemble strategy 

(left) aligns reads to the reference genome to reveal possible splicing events and then 

assembles reads into transcript models. The assemble-then-align strategy (right) builds 

transcript models de novo, directly from the RNA-seq reads, and then aligns them to the 

reference genome to determine their exon–intron structure. De novo transcriptome assembly 

has more explorative potential than alignment-based assembly but tends to have worse 

performance68. b | In manual annotation, human annotators employ various sources of data 

to build transcript models. Expressed sequence tags (ESTs) and cDNA form the primary 

evidence for transcript models and are often supplemented with RNA-seq reads to validate 

introns, cap analysis of gene expression (CAGE) clusters to identify 5′ ends45 and poly(A)-

position profiling by sequencing (3P-seq) to identify polyadenylation sites (PASs)47. A key 

step in the annotation process is to assess the protein-coding potential of transcripts, usually 

on the basis of a combination of methods. lncRNA, long non-coding RNA.
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Fig. 3 |. Comparison of leading lncRNA annotations.
a | Growth of GENCODE long non-coding RNA (lncRNA) collection over time, in terms of 

gene loci. Only reference releases are included. b | Overlap between annotations at the gene 

level, based on a medium-stringency definition. Values represent the percentage of gene loci 

in the annotation of each row that overlap the annotation in each column. Overlap is defined 

as at least 60% of the span of the shorter gene on the same strand. Only genes with at least 

one multiexonic transcript were included. See TABLE 1 for details. c | Comparison of 

quality metrics between annotations. x-axis: comprehensiveness, or the total number of gene 
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loci; y-axis: completeness, or percentage of transcript structures whose start is supported by 

a robust phase 1/2 Functional Annotation of the Mammalian genome (FANTOM) cap 

analysis of gene expression (CAGE) cluster (n = 201,802) within ±50 bases and whose end 

contains a canonical polyadenylation motif154 within a window of 10–50 bp upstream. 

Circle diameters reflect exhaustiveness, or mean number of transcripts per gene. GENCODE

+ is the union of GENCODE version 20 with non-anchor-merged capture long-read 

sequencing (CLS) transcript models. Protein-coding is a set of confident GENCODE 

protein-coding transcripts as described in REF.27. d | As for part c, but separately for 5′ and 

3′ completeness. e | The distribution of predicted splice junction strength for splice site 

acceptors and donors in each lncRNA catalogue, as calculated by the GeneID software155. 

The plots show non-redundant splice sites from lncRNA annotations sets (top), confident 

GENCODE protein-coding transcripts (middle), and 500,000 randomly selected GC|GT 

donors + AG acceptors with no evidence of splicing in any of the annotation sets under 

study (bottom). For each non-canonical splice site not scored by GeneID, a random score 

between −30 and −20 was assigned.
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Fig. 4 |. Integrating capture and long-read sequencing with annotation pipelines.
a | Full-length cDNA libraries are prepared from a variety of tissues across the human 

lifespan. b | Target annotations are prepared from a variety of known and suspected long 

non-coding RNA (lncRNA) loci and used to design capture probes (black bars). c | Solution-

phase oligonucleotide capture is performed, and enriched cDNA libraries are sequenced by 

long-read nanopore and short-read Illumina technologies. d | The resulting long reads are 

collapsed to produce non-redundant transcript models. The completeness and accuracy of 

these models are assessed using various evidence: introns (blue triangles) by short reads; 

transcription start site (TSS; green star) by promoter histone modifications, cap analysis of 

gene expression (CAGE) clusters and DNase I hypersensitivity sites (DHSs); and 

polyadenylation site (PAS; red star) by long-read-encoded poly(A) tails. e | With this 

information, transcript models are graded for completeness, checked for protein-coding 
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potential and passed to annotators for either direct incorporation into annotation pipelines 

(for complete models) or further manual curation (incomplete models).
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