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Abstract. Aiming to build a complete benchmark for better evaluation of exist-
ing ontology systems, we extend the well-known Lehigh University Benchmark 
in terms of inference and scalability testing. The extended benchmark, named 
University Ontology Benchmark (UOBM), includes both OWL Lite and OWL 
DL ontologies covering a complete set of OWL Lite and DL constructs, respec-
tively. We also add necessary properties to construct effective instance links 
and improve instance generation methods to make the scalability testing more 
convincing. Several well-known ontology systems are evaluated on the ex-
tended benchmark and detailed discussions on both existing ontology systems 
and future benchmark development are presented. 

1   Introduction 

The rapid growth of information volume in World Wide Web and corporate intranets 
makes it difficult to access and maintain the information required by users. Semantic 
Web aims to provide easier information access based on the exploitation of machine-
understandable metadata. Ontology, a shared, formal, explicit and common under-
standing of a domain that can be unambiguously communicated between human and 
applications, is an enabling technology for Semantic Web. W3C has recommended 
two standards for publishing and sharing ontologies on the World Wide Web: Re-
source Description Framework (RDF) [3] and Web Ontology Language (OWL) [4,5]. 
OWL facilitates greater machine interpretability of web content than that supported 
by RDF and RDF Schema (RDFS) by providing additional vocabulary along with 
formal semantics. That is, OWL has more powerful expressive capability which is 
required by real applications and is thus the current research focus. In the past several 
years, some ontology toolkits, such as Jena [23], KAON2 [22] and Sesame [14], had 
been developed for ontologies storing, reasoning and querying. A standard and effec-
tive benchmark to evaluate existing systems is much needed.  

1.1   Related Work 

In 1998, Description Logic (DL) community developed a benchmark suite to facilitate 
comparison of DL systems [18,19]. The suite included concept satisfiability tests, syn-
thetic TBox classification tests, realistic TBox classification tests and synthetic ABox 
tests. Although DL is the logic foundation of OWL, the developed DL benchmarks are 
not practical to evaluate ontology systems. DL benchmark suite tested complex  
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inference, such as satisfiability tests of large concept expressions, and did not cover 
realistic and scalable ABox reasoning due to poor performance of most systems at that 
time. This is significantly far away from requirements of Semantic Web and ontology 
based enterprise applications. Tempich and Volz [16] conducted a statistical analysis 
on more than 280 ontologies from DAML.ORG library and pointed out that ontologies 
vary tremendously both in size and their average use of ontological constructs. These 
ontologies are classified into three categories, taxonomy or terminology style, descrip-
tion logic style and database schema-like style. They suggested that Semantic Web 
benchmarks have to consist of several types of ontologies.  

SWAT research group of Lehigh University [9,10,20] made significant efforts to 
design and develop Semantic Web benchmarks. Especially in 2004, Guo et al. devel-
oped Lehigh University Benchmark (LUBM) [9,10] to facilitate the evaluation of 
Semantic Web tools. The benchmark is intended to evaluate the performance of on-
tology systems with respect to extensional queries over a large data set that conforms 
to a realistic ontology. The LUBM appeared at a right time and was gradually ac-
cepted as a standard evaluation platform for OWL ontology systems. More recently, 
Lehigh Bibtex Benchmark (LBBM) [20] was developed with a learned probabilistic 
model to generate instance data. According to Tempich and Volz’s classification 
scheme [16], the LUBM is to benchmark systems processing ontologies of description 
logic style while the LBBM is for systems managing database schema-like ontologies. 
Different from the LUBM, the LBBM represents more RDF-style data and queries. 
By participating in a number of enterprise application development projects (e.g., 
metadata and master data management) with IBM Integrated Ontology Toolkit [12], 
we learned that RDFS is not expressive enough for enterprise data modeling and 
OWL is more suitable than RDFS for semantic data management. The primary objec-
tive of this paper is to extend the LUBM for better benchmarking OWL ontology 
systems.    

OWL provides three increasingly expressive sublanguages designed for use by 
specific communities of users [4]: OWL Lite, OWL DL, and OWL Full. Implement-
ing complete and efficient OWL Full reasoning is practically impossible. Currently, 
OWL Lite and OWL DL are research focuses. As a standard OWL ontology bench-
mark, the LUBM has two limitations. Firstly, it does not completely cover either 
OWL Lite or OWL DL inference. For example, inference on cardinality and allVal-
ueFrom restrictions cannot be tested by the LUBM. In fact, the inference supported by 
this benchmark is only a subset of OWL Lite. Some real ontologies are more expres-
sive than the LUBM ontology. Secondly, the generated instance data may form multi-
ple relatively isolated graphs and lack necessary links between them. More precisely, 
the benchmark generates individuals (such as departments, students and courses) 
taking university as a basic unit. Individuals from a university do not have relations 
with individuals from other universities (here, we mean the relations intentionally 
involved in reasoning.) Therefore, the generated instance is grouped by university. 
This results in multiple relatively separate university graphs. Apparently, it is less 
reasonable for scalability tests. Inference on a complete and huge graph is substan-
tially harder than that on multiple isolated and small graphs. In summary, the LUBM 
is weaker in measuring inference capability as well as less reasonable to generate big 
data sets for measuring scalability.  
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1.2   Contributions 

In this paper, we extend the Lehigh University Benchmark so that it could better provide 
both OWL Lite and OWL DL inference tests (except TBox with cyclic class definition. 
Hereinafter, OWL Lite or OWL DL complete is understood with this exception) on 
more complicated instance data sets. The main contributions of the paper are as follows. 

 The extended Lehigh University Benchmark, named University Ontology 
Benchmark (UOBM), is OWL DL complete. Two ontologies are generated to 
include inference of OWL Lite and OWL DL, respectively. Accordingly, queries 
are constructed to test inference capability of ontology systems. 

 The extended benchmark generates instance data sets in a more reasonable way. 
The necessary links between individuals from different universities make the test 
data form a connected graph rather than multiple isolated graphs. This will guar-
antee the effectiveness of scalability testing. 

 Several well-known ontology systems are evaluated on the extended benchmark 
and conclusions are drawn to show the state of arts. 

The remainder of the paper is organized as follows. Section 2 analyzes and summarizes 
the limitations of the LUBM and presents the UOBM, including ontology design, in-
stance generation, query and answer construction. Section 3 reports the experimental 
results of several well-known ontology systems on the UOBM and provides detailed 
discussions. Section 4 concludes this paper. 

2   Extension of Lehigh University Benchmark  

This section provides an overview of the LUBM and analyzes its limitations as a 
standard evaluation platform. Based on such an analysis, we further propose methods 
to extend the benchmark in terms of ontology design, instance generation, query and 
answer construction. 

Table 1. OWL Constructs Supported by the LUBM 

 

Property Restrictions:

 allValuesFrom  

 someValuesFrom 
 

Restricted Cardinality:  

 minCardinality (only 0 or 1)  

 maxCardinality (only 0 or 1)  

 cardinality (only 0 or 1)  
 

(In)Equality:  

 equivalentClass  

 equivalentProperty  

 sameAs  

 differentFrom  

 AllDifferent  

 distinctMembers  

RDF Schema Features:  

 rdfs:subClassOf 

 rdfs:subPropertyOf 

 rdfs:domain 

 rdfs:range  
 

Property Characteristics:  

 ObjectProperty 

 DatatypeProperty 

 inverseOf 

 TransitiveProperty  

 SymmetricProperty  

 FunctionalProperty  

 InverseFunctional 
Property  
Class Intersection:  

 IntersectionOf

Class Axioms: 
 oneOf, dataRange  

 disjointWith  

 equivalentClass (applied to class expressions) 

 rdfs:subClassOf (applied to class expressions) 

 
Boolean Combinations of Class 
Expressions: 
 unionOf  

 complementOf  

 intersectionOf  
 

Arbitrary Cardinality:  
 minCardinality  

 maxCardinality  

 cardinality  
 
Filler Information:  
 hasValue 

OWL Lite OWL DL
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2.1   Overview of the LUBM 

The LUBM is intended to evaluate the performance of ontology systems with respect 
to extensional queries over a large data set that conforms to a realistic ontology. It 
consists of an ontology for university domain, customizable and repeatable synthetic 
data, a set of test queries, and several performance metrics. The details of the bench-
mark can be found in [9,10]. As a standard benchmark, the LUBM itself has two 
limitations. Firstly, it covers only part of inference supported by OWL Lite and OWL 
DL. Table 1 tabulates all OWL Lite and OWL DL language constructs which are 
inference-related as well as those supported by the LUBM (in underline).  

The above table shows clearly that the LUBM’s university ontology only uses a 
small part of OWL Lite and OWL DL constructs (the used constructs are in under-
line) and thus covers only part of OWL inference. That is, it cannot exactly and com-
pletely evaluate an ontology system in terms of inference capability. In fact, some 
constructs excluded by LUBM’s ontology, such as allValuesFrom, cardinality, oneOf 
and SymmetricProperty, are very useful for expressive data modeling in practice. For 
example, using construct hasValue, we can define class “basketBallLover” whose 
property “like” has a value of “basketBall”. We found that the LUBM’s ontology is 
less expressive than some real ontologies. With the increasing uses of ontologies in 
practical applications, more and more complex ontologies will appear. Obviously, 
more constructs (hence more inference requirements) should be included for system 
evaluation. 

Another limitation of the LUBM is that the generated instance data may form multi-
ple relatively isolated graphs and lacks necessary links between them for scalability 
testing. Figure 1(a) shows a simplified example of the LUBM generated instance (the 
real instance may include more universities and more departments in a university). We 
can see from this figure that there are two relatively independent university graphs, and 
two relatively independent department graphs in the same university. Such kind of data 
is less challenging for scalability testing. As is well known, to evaluate the scalability 
of a system, we generally observe the system performance changes with the increasing 
size of the data. Here, the increase of the testing data means that more universities will 
be generated. Due to the relative independence of the data of different universities, the 
performance changes of an ontology system on an Relational DBMS (currently, most 
ontology repositories are on top of RDBMS) with such data sets will be determined to 
a large extent by the underlying database. This cannot really reveal the inference effi-
ciency of an ontology system, considering the fact that inference on a complete and 
huge RDF graph is significantly harder than that on multiple isolated and small graphs 
with comparable number of classes and properties. The underlying reason leading to 
such a case is that the instance generator of the LUBM creates data using university as 
a basic unit and does not intentionally construct individuals and relationships across 
universities. Therefore, we will enhance the instance generator of the LUBM to gener-
ate instances in a more practical way. As shown in Figure 1(b), crossing-university and 
crossing-department relations will be added to form a more complicated graph. For 
instance, professor can teach course in different departments and universities, and  
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students can have friends from different universities. In the LUBM, it is possible that 
two persons from different universities graduate from the same university (by property 
degreeFrom). Here, our intention is to add more links between universities and the 
links should be involved in reasoning, which is challenging for scalability tests. Com-
pared with the graph in Fig 1(a), the graph in Fig. 1(b) can be used to better character-
ize the scalability of ontology systems. 

 
(a) Original graph                                   (b) Enriched graph 

Fig. 1. Instance Graph Enrichment of the LUBM 

2.2   University Ontology Benchmark (UOBM)  

Based on our analysis on the LUBM, we can conclude that LUBM is insufficient to 
evaluate the inference capability and less effective to reflect the scalability of an ontol-
ogy system. We build University Ontology Benchmark (UOBM) based on the LUBM 
to solve these two problems. Figure 2 gives an overview of the UOBM. It consists of 
three major components, ontology selector, instance generator and queries and answers 
analyzer. These core components are detailed in the following subsections. 

 

 

 

Instance 
Generator

OWL Lite 
Ontology 

OWL DL 
Ontology 

Ontology Selector 

Instance 
Files  

Testing Platform 

The UOBM 

Queries and Answers

Ontology Systems Evaluation Results 

 

Fig. 2. Overview of the UOBM 
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2.2.1   Ontology Selector 
Different from the original LUBM, the UOBM includes both OWL Lite and OWL 
DL ontologies. That is, one ontology includes all language constructs of OWL Lite, 
and another one covers all OWL DL constructs. The user can specify which ontology 
will be used for evaluation according to specific requirements. As Table 1 shows, a 
number of OWL constructs are absent in the LUBM. For those absent constructs, we 
newly define corresponding classes and properties in the UOBM. Table 2 lists our 
major extensions for OWL Lite and OWL DL ontologies, respectively. Classes and 
properties corresponding to the constructs in the table are represented in W3C’s OWL 
language abstract syntax [5]. Due to space limitation, some classes and properties, 
namespace of URIs and enumerated values in oneOf classes are not listed there. 

Table 2. Class and Property Extensions of the UOBM 

OWL Lite 

allValueFrom 
Class(GraduateStudent, complete intersectionOf( restriction(takesCourse, 
someValueFrom(Thing)),  restriction(takesCourse, allValue-
From(GraduateCourse)))) 

minCardinality Class(PeopleWithHobby, restriction(like, minCardinality(1)) ) 
EquivalentProperty EquivalentProperty(like, love) 
EquivalentClass EquivalentClass(Person, Humanbeing) 
SymmetricProperty ObjectProperty (isFriendOf, Symmetric, domain(Person), range(Person) ) 

TransitiveProperty 
ObjectProperty (hasSameHomeTownWith, Symmetric|Transitive, do-
main(Person), range(Person) ) 

FunctionalProperty ObjectProperty(isTaughtBy, Functional, domain(Course), range(Faculty)) 
InverseFunctional 
Property 

ObjectProperty(isHeadOf, InverseFunctional, domain(Person), 
range(Organization)) 

OWL DL 
disjointWith DisjointClasses(Man, Woman) 

oneOf 
Class(Science, oneOf(Physics, Mathematics ….))  
Class(Engineer, oneOf(Electical_Engineer, Chemical_Engineer…))  … 

unionOf 
Class(Person, unionOf(Man, Woman)) 
Class(AcademicSubject, unionOf(Science, Engineer, FineArts, Humanitie-
sAndSocial)) 

complementOf 

Class(NonScienceStudnet, complementOf(restriction(hasMajor, someVal-
ueFrom(Science)))) 
Class(WomanCollege, complete intersectionOf(College, retriction (hasStu-
dent, allValueFrom(complementOf(Man))))) 

intersectionOf 
Class(SwimmingFan, complete intersectionOf(Person, restriction (isCrazy-
About, hasValue(Swimming)) ) 

hasValue 
Class(BasketBallLover, restriction(like, value(BasketBall)) ) 
Class(TennisFan, restriction(isCrazyAbout, value(Tennis)) )… 

minCandinality Class(PeopleWithMultipleHobbies, restriction(like, minCardinality(3))) 

maxCandinality 
Class(LeisureStudent, intersactionOf(UndergraduateStudent, restric-tion 
(takesCourse, maxCardinality(2)))) 

Candinality Class(PeopleWith2Hobbies, restriction(like, Cardinality(2))) 

EquivalentClass 
EquivalentClass(TeachingAssistant, complete intersectionOf(Person, restric-
tion (teachingAssistantOf, someValueFrom(Course)))) 

Table 3 shows a comparison between the LUBM and the UOBM in terms of the 
number of classes, properties and individuals per university. The number of classes 
and properties used to define ABox are denoted in the bracket. This means that some 
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classes and properties are only used to define class and property hierarchies in TBox 
and not used to directly restrict individuals. But users can issue queries using such 
classes and properties constraints. Individuals in TBox are used to define oneOf and 
hasValue restrictions. We can see from the table that the UOBM can generate much 
larger and more complex instance graph. More important is that it covers all OWL 
Lite and OWL DL constructs. An effective evaluation on the benchmark will help 
researchers to figure out more problems and promote the development of ontology 
systems. Note that the number of instances shown in Table 3 (e.g., No. of statements 
per univ.) is assessed based on parameters used in [9] and used in our experiments 
presented in next section, respectively. 

Table 3. Comparison of the LUBM and the UOBM 

The UOBM 
Benchmark The LUBM 

OWL Lite OWL DL 
No. of Classes 43 (22) 51 (41) 69 (59) 
No. of Datatype Property 7 (3) 9 (5) 9 (5) 
No. of Object Property 25(14) 34(24) 34 (24) 
No. of Individuals in TBox 0 18 58 

No. of Statements per University 
90,000 – 
110,000 

210,000 – 
250,000 

220,000 – 
260,000 

No. of Individuals per University 
8,000 – 
15,000 

10,000 – 
20,000 

10,000 – 
20,000 

2.2.2   Instance Generator 
Instance generator automatically and randomly creates instances according to user-
specified ontology (OWL Lite or OWL DL). Also, the user can specify the size of the 
generated instance data by setting the number of universities to be constructed. Com-
pared with the LUBM, we extend following properties to link individuals from differ-
ent departments and universities. As a result, the UOBM will enable the construction 
of a complicated connected graph instead of multiple relatively-isolated graphs. 

 ObjectProperty (isFriendOf, Symmetric, domain(Person), range(Person) ) 
 ObjectProperty(hasSameHomeTownWith, Symmetric|Transitive, do-

main(Person), range(Person) ) 
 ObjectProperty(takesCourse, domain(Student)) 
 ObjectProperty (hasMajor, domain(Student), range(AcademicSubject)) 
 ObjectProperty (like, domain(Person), range(Interest)) 

EquivalentProperties(love, like) 
 ObjectProperty (isCrazyAbout, super(like), domain(Person), range(Interest)) 

Instance generator can be configured to generate data sets for specific evaluation. 
Some important parameters for building a connected graph are listed below. 

 Specify ontology, OWL Lite or OWL DL (parameter for TBox configuration) 
 Specify the probability that a student takes courses of other departments and 

universities, and the range of the number of courses a student takes. 
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 Specify the probability that a person has the same hometown with those from 
other departments and universities. (Affect the ratio of transitive properties as 
well) 

 Specify the probability that a person has friends of other departments and uni-
versities, and the range of the number of friends a person has.  

 Specify the probability that a university has woman college, and the range of 
the number of students. 

 Specify the probability that a person has some hobbies. 

2.2.3   Queries and Answers Analyzer 
A set of queries are constructed to evaluate the inference capability and scalability of 
an ontology system. Queries are designed based on two principles: 1) Queries need 
search and reasoning across universities so that the scalability of a system can be 
better characterized. In the original LUBM, some queries are evaluated only on spe-
cific universities and departments regardless of the increasing size of the testing data. 
This results mainly from lacks of links between different universities. 2) Each query 
supports at least a different type of OWL inference. By this way, if a query cannot be 
correctly answered, we can easily identify which kind of inference is not well sup-
ported. The test queries are listed in appendix with detailed explanations.  

Given queries and randomly generated test data, we have to find corresponding 
correct answers in order to compute completeness and soundness of the inference. 
The original LUBM does not explicitly provide a method to generate correct results. 
Our current scheme is to import all statements into an RDBMS such as DB2 or 
MySQL, and then manually translate each query into SQL queries to retrieve all cor-
rect results. It is feasible because we know inference required by every query and can 
use a DL reasoner for TBox inference and build SQL queries on the inferred TBox for 
ABox inference and retrieval. Also, we use some tricks for SQL query rewriting, for 
example, naming convention of instances. The manual translation method has been 
written into a standalone application in the benchmark. It is convenient to run the 
application to obtain answer sets. 

Using the UOBM, the user can follow a simple approach for performance evalua-
tion of ontology systems. Firstly, the user selects an ontology (OWL Lite or OWL 
DL) to generate corresponding instances. Then, using the built-in query translation 
method, the user can obtain correct query results in advance. Finally, based on the 
selected ontology, generated instances, test queries and correct answers, load time, 
query response time, inference completeness and soundness of a system can be easily 
computed. Currently, the UOBM is publicly available at [12]. 

3   Evaluation of Ontology Systems and Discussions 

In this section, we use the UOBM to evaluate several well-known ontology systems 
and discuss problems deserving further research work based on experimental results. 
This work is not intended to make a complete evaluation for existing OWL ontology 
systems. From our preliminary experiments, we hope to find some critical problems 
to promote the development of OWL ontology systems as well as figure out more 
issues needed to be considered in a complete benchmark. 
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3.1   Target Systems and Experiments Setting 

In [9], Guo et al. conducted a quantitative evaluation on the LUBM for four knowl-
edge base systems, Sesame’s persistent storage and main memory version [14,15], 
OWLJessKB [13], and DLDB-OWL [8]. They used data loading time, repositories 
sizes, query response time, query completeness and soundness as evaluation metrics. 
Experimental results showed that, as a whole, DLDB-OWL outperformed other sys-
tems on large-scale data sets. OWLIM [18] is a newly developed high performance 
repository and is packaged as a Storage and Inference Layer (SAIL) for Sesame. Re-
cently, IBM released its Integrated Ontology Development Toolkit [12], including an 
ontology repository (named Minerva), EMF based Ontology Definition Metamodel 
and a workbench for ontology editing. Here, we will evaluate these persistent ontol-
ogy repositories, DLDB-OWL, OWLIM (version 2.8.2) and Minerva (version 1.1.1).  

We will have a brief look at these systems so that we can understand the experi-
mental results better. DLDB-OWL [8] is a repository for processing, storing, and 
querying large amounts of OWL data. Its major feature is the extension of a relational 
database system with description logic inference capabilities. It uses the DL reasoner 
to precompute class subsumption and employs relational views to answer extensional 
queries based on the implicit hierarchy that is inferred. Minerva [12] completely im-
plements the inference supported by Description Logic Program (DLP), an intersec-
tion of Description Logic and Horn Logic Program. Its highlight is a hybrid inference 
method which uses Racer or Pellet DL reasoner to obtain implicit subsumption among 
classes and properties and adopts DLP logic rules for instance inference. Minerva 
designs the schema of the back-end database completely according to the DLP logic 
rules to support efficient inference. OWLIM is a high-performance semantic reposi-
tory, wrapped as a Storage and Inference Layer for the Sesame RDF database. 
OWLIM uses Ontotext’s TRREE to perform forward-chaining rule reasoning. The 
reasoning and query are conducted in-memory. At the same time, a reliable persis-
tence strategy assures data preservation, consistency and integrity.  

Our evaluation method is similar to the one used in [9]. Here, 6 test data sets are 
generated, Lite-1, Lite-5, Lite-10, DL-1, DL-5 and DL-10, where the alphabetic string 
indicates the type of the ontology and is followed by an integer indicating the number 
of universities. Each university contains about 20 departments and over 210,000 
statements. The most complex and largest data set, DL-10, includes over 2,200,000 
statements. Test queries are listed in the appendix of the paper, where 13 queries for 
OWL Lite tests and 3 more for OWL DL tests. Experiments are conducted on a PC 
with Pentium IV CPU of 2.66 GHz and 1G memory, running Windows 2000 profes-
sional with Sun Java JRE 1.4.2 (JRE 1.5.0 for OWLIM) and Java VM memory of 
512M. The following three metrics [9] are used for comparison. 

 Load time. The time for loading a data set into memory or persistence storage. It 
includes reasoning time since some systems do TBox or ABox inference at load 
time. 

 Query response time. The time for issuing a query, obtaining the result set and 
traversing the results sequentially.  

 Completeness and soundness. Completeness measures the recall of a system’s an-
swer to a query and soundness measures its precision. 
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3.2   Evaluation of OWL Ontology Systems 

 

Fig. 3. Load Time Comparison 

Figure 3 shows load time of Minerva and DLDB-OWL (hereinafter, DLDB denotes 
DLDB-OWL). Since OWLIM takes only 29 seconds to load Lite-1, it is too small to 
plot it in the figure. OWLIM is substantially faster than other two systems as reason-
ing is done in memory. But, OWLIM cannot complete forward-chaining inference on 
other data sets due to memory limitation. There are no results for DLDB on DL data 
sets as an exception was thrown out when loading OWL DL files. DLDB is faster 
than Minerva to load data sets because it does not conduct ABox materialization at 
load time. In fact, Minerva’s performance on loading and reasoning on OWL data is 
high, only about 2.5 hours for over 2.2M triples from Lite-10 data set. Its storage 
schema provides effective support for inference at load time. 

OWLIM does inference in memory. Therefore, it can answer queries more quickly 
than DLDB and Minerva. But its scalability is relatively poor. In most cases, Minerva 
outperforms DLDB in terms of query response time. The reason is that Minerva does 
all inference at load time and directly retrieves results using SQL queries at query time, 
whereas DLDB uses class views which are built based on inferred class hierarchy at 
load time to retrieve instances at query time. DLDB's view query (a view is equivalent 
to a query in relational database.) needs to execute union operations in runtime which 
is more expensive than select operations on pre-built index in most cases. The last 
three subfigures in Fig. 4 show the scalability of DLDB on Lite data sets and that of 
Minerva on both Lite and DL data sets, respectively. We observe that for most queries, 
the query time of DLDB grows dramatically with the increase of the size of the data 
set. But Minerva scales much better than DLDB. For some queries, such as queries 13 
and 15, the query time of Minerva is almost zero and does not change too much since 
there are few or no results. One may find that Minerva’s query time for query 8 in-
creases significantly on DL-10. The reason is that there are a large number of results. 
Since the query time includes time to traverse results sequentially (the original LUBM 
uses such a definition as well), it can be affected by the number of results.  

Our experiments have confirmed that all three systems are sound, i.e., the precision 
is 1. Table 4 shows query completeness results.  Compared with previous version, 
OWLIM 2.8.2 can answer all queries correctly. In this new release of OWLIM, more 
rules are added and inference is made configurable. As is known, OWL-Lite and 
OWL-DL reasoning cannot be implemented only by rules. That is, OWLIM currently 
conducts partial OWL DL TBox inference. This is different from DLDB and Minerva  
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Fig. 4. Query Response Time Comparison 

Table 4. Query Completeness Comparison  

Query Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 
OWLIM Lite-1 1 1 1 1 1 1 1 1 1 1 1 1 1 NA NA 

Lite-1 1 0.82 1 1 0 0 0 0 0 0.83 0 0.2 0.51 NA NA 
Lite-5 1 0.81 1 1 0 0 0 0 0 0.59 0 0.12 0.57 NA NA DLDB 
Lite-10 1 0.81 1 1 0 0 0 0 0 0.87 0 0.26 0.53 NA NA 
Lite-1 1 1 1 1 1 1 1 1 1 1 1 1 0.67 NA NA 
Lite-5 1 1 1 1 1 1 1 1 1 1 1 1 0.61 NA NA 
Lite-10 1 1 1 1 1 1 1 1 1 1 1 1 0.64 NA NA 
DL-1 1 1 1 1 1 1 1 1 1 1 1 1 0.90 0.96 0 
DL-5 1 1 1 1 1 1 1 1 1 1 1 1 0.88 0.97 0 

Minerva 

DL-10 1 1 1 1 1 1 1 1 1 1 1 1 0.88 0.95 0 

which depend on a DL reasoner for TBox inference. Coincidentally, the UOBM does 
not contain a query that needs subsumption inference not covered by existing OWLIM 
rules. This indicates that the UOBM should add more complex class definition and 
corresponding instances and queries. The inference capability of DLDB is relatively 
weak and it gives 100% complete answers to only 3 queries. Minerva is able to com-
pletely and correctly process 12 out of 13 queries. Inference on minCardinality needed 
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by query 13 is not currently supported in Minerva. These three persistence systems use 
rules for ABox inference. How to support more ABox rules on large-scale data sets 
which cannot be fit into memory directly deserves more efforts.  

3.3   Discussions 

From our preliminary experiments, we found some interesting problems about OWL 
ontology systems as well as some issues needed to be further investigated for a com-
plete OWL ontology benchmark. 

Native Storage vs DBMS based approaches. OWLIM can be considered as a native 
ontology repository since it is directly built on the file system. Compared with DBMS 
based systems (Minerva and DLDB), it greatly reduced the load time. On the other 
hand, database systems provide many query optimization features, thereby contributing 
positively to query response time. For OWLIM-like systems, efforts should be made 
for functionalities such as transactions processing, query optimization, access control 
and logging/recovery. A typical example is that in query 4, only an exchange of the 
order of two triples makes OWLIM’s response time about 21 times longer (0.6s vs 
13s). This suggests that we should leverage DBMS as much as possible. Of course, we 
also believe that the underlying database more or less affects the performance of ontol-
ogy systems. For example, DLDB’s performance may change when switching the 
back-end store from Access to SQL server. We are going to investigate such problems. 

TBox inference. Considering the modest size of real ontologies (excluding in-
stances), using mature DL reasoners for TBox inference could be a good choice. In 
fact, Minerva and DLDB leverages a DL reasoner (such as Pellet, FaCT) to under-
stand complete class subsumption. These illustrated that the combination of DL rea-
soners for TBox inference and rules for ABox inference is a promising approach.  

Query interface. SPARQL language is increasingly used for RDF graph query by 
both RDF(S) and OWL ontology systems [12,21-23]. But, OWL is different from 
RDFS. In OWL, it is possible to define new classes by logical expressions. In this 
sense, SPARQL is not an appropriate query language for OWL, since it imposes a 
substantial restriction on the users’ query choices. We should pay more attentions to 
OWL query interface, such as OWL-QL in [24].  

Instance generation. Currently, the extended benchmark provides users a number 
of parameters for scalable instance generation. In [20], Wang et al. proposed a learned 
probabilistic model to generate instance data set based on representative samples. The 
objective is to help the users find an ontology system which best fit their data envi-
ronment. It is worthwhile investigating what kind of parameters should be provided so 
that the generated instances set can best simulate user’s data. 

Tunable TBox. Currently, we do not find a class which is practically meaningful 
and needs cyclic definition in university domain. But in other domains, such as life 
sciences, realistic ontologies do include cyclic class definition. Therefore, to add 
cyclic class definition which may not have real meaning in university domain could 
be valuable. Furthermore, real ontologies vary tremendously in their average use of 
ontological constructs. To automatically create an ontology that is tunable by com-
plexity (not just at the level of OWL DL and OWL Lite, but also in terms of the quan-
tities of constructs that are used) is also valuable for users to use in their tests. This 
could be future research work for a compete benchmark. 
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Update Tests. A practical ontology system should deal with frequent update in an 
efficient manner. At the same time, system consistency should be guaranteed. We are 
intended to add update tests in the UOBM. 

4   Conclusions 

This paper presented important extensions to the Lehigh University Benchmark in terms 
of inference and scalability testing. The extended benchmark can characterize the per-
formance of OWL ontology systems more completely. Furthermore, a preliminary 
evaluation for several well-known ontology systems was conducted and some conclu-
sions were drawn for future research. Also, some issues worthy to be further investi-
gated for a complete OWL ontology benchmark were discussed and summarized. 
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Appendix 

Format: [Query No.] Query in form of SPARQL  
Description explains the meaning of queries and major inference rules involved.  
 
[Query 1]  SELECT DISTINCT ?x 

WHERE { ?x rdf:type benchmark:UndergraduateStudent . ?x benchmark:takesCourse 
http://www.Department0.University0.edu/Course0} 

Description: All undergraduate students who take course  http://www.Department0.University0.edu/Course0. 
It only needs simple conjunction 

[Query 2]  SELECT DISTINCT ?x 
WHERE { ?x  rdf:type benchmark:Employee } 
Description: Find out all employees 
Domain(worksFor, Employee), <a worksFor b> τ <a rdf:type Employee> 
Domain(worksFor,Employee), researchAssistant β ⏐worksFor.ResearchGroupτresearchAssistantβ Employee 

[Query 3]  SELECT DISTINCT ?x 
WHERE {?x rdf:type benchmark:Student . ?x benchmark:isMemberOf 

http://www.Department0.University0.edu } 
Description: Find out all students of http://www.Department0.University0.edu 
Range(takeCourse,Student) , GraduateStudent β ƒ1 takeCourse τ GraduateStudent β Student 

[Query 4]  SELECT DISTINCT ?x 
WHERE { ?x rdf:type benchmark:Publication . ?x benchmark:publicationAuthor ?y .  
?y rdf:type benchmark:Faculty . ?y benchmark:isMemberOf  http://www.Department0.University0.edu } 
Description:  All the publications by faculty of http://www.Department0.University0.edu 
SubClass: Faculty = FullProfessor 7 AssociateProfessor 7…7ClericStaff,  Publication=Article 7 …7 Journal 

[Query 5]  SELECT DISTINCT ?x 
WHERE { ?x rdf:type benchmark:ResearchGroup . ?x benchmark:subOrganizationOf 

http://www.University0.edu } 
Description: All research groups of http://www.University0.edu 
Transitive(subOrganizationOf), <a subOrganizationOf b>, <b subOrganizationOf http://www.University0.edu>  

τ <a subOrganizationOf http://www.University0.edu> 
[Query 6]  SELECT DISTINCT ?x 

WHERE { ?x rdf:type benchmark:Person .  http://www.University0.edu benchmark:hasAlumnus ?x } 
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Description: All alumni of http://www.University0.edu 
Inverse(hasAlumni, hasDegreeFrom), <a hasDegreeFrom b> τ <b hasAlumnus a> 

[Query 7]  SELECT DISTINCT ?x 
WHERE {?x rdf:type benchmark:Person . ?x benchmark:hasSameHomeTownWith 

http://www.Department0.University0.edu/FullProfessor0} 
Description: Those who has same home town with http://www.Department0.University0.edu/FullProfessor0 
Transitive(hasSameHomeTownWith), Symmetric(hasSameHomeTownWith), <a hasSameHomeTownWIth b>,  

<c hasSameHomeTownWIth b> τ < a hasSameHomeTownWith c> 
[Query 8]  SELECT DISTINCT ?x 

WHERE {?x rdf:type benchmark:SportsLover . http://www.Department0.University0.edu bench-
mark:hasMember ?x} 

Description: All sports lovers of http://www.Department0.University0.edu 
<x like y>, <y rdf:type Sports>, SportLoverβ⏐like.Sports τ <x rdf:type SportLover> 
subProperty(isCrazyAbout, like), SportFanβ⏐isCrazyAbout.Sportsτ SportFan β SportLover 

[Query 9]  SELECT DISTINCT ?x 
WHERE { ?x rdf:type benchmark:GraduateCourse . ?x benchmark:isTaughtBy ?y .  

?y benchmark:isMemberOf ?z .?z benchmark:subOrganizationOf http://www.University0.edu } 
Description: All Graduate Courses of http://www.University0.edu 
GraduateStudentη…takesCourse.GraduateCourse, <a rdf:type GraduateStudent>, <a takesCourse b> τ <b 
rdf:type GraduateCourse> 

[Query 10]  SELECT DISTINCT ?x 
WHERE { ?x benchmark:isFriendOf  http://www.Department0.University0.edu/FullProfessor0} 
Description: All friends of http://www.Department0.University0.edu/FullProfessor0 
Symmetric(isFriendOf), <a isFriendOf b> τ <b isFriendOf a> 

[Query 11]  SELECT DISTINCT ?x 
WHERE { ?x rdf:type benchmark:Person . ?x  benchmark:like ?y . ?z  rdf:type benchmark:Chair . 

?z benchmark:isHeadOf  http://www.Department0.University0.edu . ?z benchmark:like ?y} 
Description: All people who has same interest with the chair of http://www.Department0.University0.edu 
FunctionalProperty(isHeadOf), <a isHeadof b>, <c isHeadOf b) τ <a sameAs c>   // there are some same indi-

viduals of chair0 
[Query 12]  SELECT DISTINCT ?x 

WHERE {?x rdf:type benchmark:Student . ?x benchmark:takesCourse ?y 
.?y benchmark:isTaughtBy http://www.Department0.University0.edu/FullProfessor0 } 

Description: All students who take course taught by http://www.Department0.University0.edu/FullProfessor0 
GraduateStudent η …takesCourse.GraduateCourse 6 ƒ1.takesCourse, Domain(takesCourse, Student) τ Student τ 

GraduateStudent 
[Query 13] SELECT DISTINCT ?x 

WHERE { ?x rdf:type benchmark:PeopleWithHobby .  ?x benchmark:isMemberOf 
http://www.Department0.University0.edu} 

Description: All people who has some kind of hobbies in http://www.Department0.University0.edu 
Lite Cardinality: PeopleWithHobby(ƒ1like) τ SportLover,  <a like b> τ <a rdf:type PeopleWithHobby> 

 
Queries Only for DL 
[Query 8]: This query is the same as query 8 in lite, but in context of OWL DL, it will involve more inference 
rules 

Description: Inference rules: SwimmingLoverβ⏐like.{Swimming}τ SwimmingLover β SportsLover … 
[Query 14]  SELECT DISTINCT ?x 

WHERE { ?x rdf:type benchmark:Woman . ?x rdf:type benchmark:Student . ?x benchmark:isMemberOf ?y . 
?y benchmark:subOrganizationOf  http://www.University0.edu } 

Description: All woman students of http://www. University0.edu 
<a,isStudentof b>, <b rdf:type WomanCollege>, WomanCollege β…hasStudent.(⎯Man), disjoint(Man, 
Woman), Man7Woman η Person τ <a rdf:type Woman> 

[Query 15]  SELECT DISTINCT ?x 
WHERE {?x rdf:type benchmark:PeopleWithManyHobbies . ?x benchmark:isMemberOf 

http://www.Department0.University0.edu } 
Description: All people who has many hobbies in http://www. Department0.University0.edu 
PeopleWithManyHobbiesβƒ3like, <a like b1> … <a like bn>, all different(b1,b2…bn) τ <a rdf:type Peo-

pleWithManyHobbies> // nƒ 3 
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