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Abstract 
Significant progress has been made in the design and development of Grid middleware 
which, in its present form, is founded on web services technologies. However, we argue 
that present-day Grid middleware is severely limited in supporting projected next-
generation applications which will involve pervasive and heterogeneous networked 
infrastructures, and advanced services such as collaborative distributed visualisation. In 
this paper we discuss a new Grid middleware framework that features i) support for 
advanced network services based on the novel concept of pluggable overlay networks, ii) 
an architectural framework for constructing bespoke Grid middleware platforms in terms 
of ‘middleware domains’ such as extensible interaction types and resource discovery. We 
believe that such features will become increasingly essential with the emergence of next-
generation e-Science applications.  
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1. Introduction 
 
The Open Grid Services Architecture (OGSA) [1] has recently emerged as a ‘second 
generation’ distributed computing approach to Grid middleware. It augments generic web 
services standards by defining a specific abstract notion of ‘Grid service’; and also 
defines Grid-specific architectural elements such as: service factories and registries; 
naming and referencing conventions for service instances; support for stateful services; 
soft state-based garbage collection of service instances; event notification from services; 
and version management. However, despite these advances, Grid middleware is still 
deficient in many areas of distributed computing support that, we believe, are key to the 
successful hosting of large-scale, next generation, Grid applications. We are particularly 
concerned with next-generation applications that exhibit such properties as: high levels of 
heterogeneity in terms of both networking and end-systems; real-time interactive 
collaboration employing multiple media-types; large scale, complexity and dynamic (re-
)configuration; QoS-sensitivity, and adaptability to changes in environmental conditions. 
An illustrative example of such an application is a world-wide collaborative visualization 
session involving large numbers of scientists who join and leave the session dynamically 
and are connected by a variety of access networks and end-systems (including wireless 
networks/PDAs), and involving multiple media such as visualization data, live sensor 
output, vector graphics and video [2]. 
 We contend that such applications fundamentally over-stretch state-of-the-art 



Grid middleware. Next-generation applications will require sophisticated 
communications services beyond standard SOAP messaging in terms of, for example, 
QoS management, and, especially, different ‘interaction types’ (e.g. RPC, asynchronous 
RPC, reliable/ unreliable messaging, publish-subscribe, tuple-space-based interaction, 
peer-to-peer based interaction, media-streaming, reliable/ unreliable group interaction).  

In this paper we provide an overview of Gridkit, a configurable and dynamically 
reconfigurable middleware framework. which consists of an underlying pluggable 
overlays framework that supports an extensible set of higher-level middleware service 
domains. In particular, we examine how we apply a lightweight component-based 
technology to construct an extensible family of open, programmable and ‘pluggable’ 
overlay networks that underpin various domains of middleware functionality. For 
example, we support an extensible range of interaction types, such as those listed above, 
which can be made available and selected according to both the application domain 
and/or execution context. In addition, we facilitate dynamic re-configuration of 
communications (and other services) as context changes (e.g. to maintain a visualization 
session when an end user roams to a wireless network).  

In the remainder of the paper we first, in section 2 we present the overall 
architecture of Gridkit. Subsequently, we discuss the overlays framework in detail in 
section 3; and then in section 4 we discuss three key higher-level middleware service 
domains: interaction services, resource discovery and resource management. Finally, 
section 5 draws conclusions about the presented framework and indicates areas of future 
work. 
 

2. Gridkit: a Configurable and Reconfigurable Grid Middleware Framework 
 
As illustrated in figure 1, Gridkit is based on an ‘open overlays’ layer which abstracts the 
diversity of underlying communications support mechanisms in a consistent manner 
whether or not the underlying physical network supports a given communications service 
(e.g. multicast or QoS). On top of this is an extensible set of orthogonal domains of 
generic middleware support. These in turn support a Grid Services layer which, for 
reasons of compatibility with current Grid middleware practice, presents the Gridkit 
facilities to applications in terms of a web services API.  

We have so far identified the following middleware domains as central: 
 
1 Interaction Services. This domain provides sophisticated application-level 
communication services beyond SOAP: i.e., support for QoS management, and for 
different types of interaction such as those listed in section 1.  
2 Resource discovery. This provides for service, and more generally, resource, 
discovery. To maximise the flexibility available to applications, it supports the parallel 
use of multiple discovery technologies. Examples of alternative technologies are SLP or 
UPnP for more traditional service discovery, Globus MDS for CPU discovery in a Grid 
context, and P2P protocols for more general resource discovery. 
3 Resource management. This comprises both coarse-grained distributed resource 
management as currently provided by infrastructures such as GRAM, and the fine-
grained local resource management (e.g. of channels, threads, buffers etc) that is required 
to build end-to-end QoS. 
4 Grid security. This supports secure communication between participating nodes 



orthogonally to the interaction types in use.  
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Figure 1: Overall Gridkit Architecture. 

Gridkit follows Lancaster’s established approach [3] of building systems in terms of 
components (using our OpenCOM component model), component frameworks and 
reflection. In particular, each of the areas in figure 1 is implemented as a (reflective) 
component framework (hereafter, CF) that is configurable and dynamically 
reconfigurable by means of ‘plug-in’ components. Each CF can be made directly 
available to applications; or, alternatively, multiple CFs can be combined to provide more 
complex facilities. For example, Interaction Services combines with Grid Security to 
produce secure communication channels; and Resource Management combines with 
Resource Discovery to support the discovery and allocation of computational nodes. We 
do not discuss the Grid Security domain further in this paper: this will be the topic of a 
separate forthcoming paper. 
 
3. The Overlay CF 
 
Overlay networks are virtual communications structures that are ‘laid over’ an underlying 
physical network such as the Internet. They are typically implemented by deploying 
appropriate application-level routing functionality at strategic places in the physical 
network (in principle both the core and the edges). Overlays are primarily used for two 
reasons: i) to alleviate the effects of slow or sporadic deployment of new services in the 
Internet (e.g. application-level multicast) [4]; and ii) to directly provide application-level 
functionality that is out-of-scope for the underlying network (e.g. large-scale peer-to-peer 
file sharing) [5]. Examples of overlays are reliable multicast services (e.g. SRM), content 
dissemination networks, unstructured peer-to-peer search (e.g. Gnutella), distributed hash 
table-based routing (e.g. Chord), and routing in ad-hoc and sensor networks. 
 In current practice, overlays are usually deployed individually and used to support 
a single fixed application. However, we believe that in order to support the diverse 
communications requirements of next generation Grid applications in highly 
heterogeneous environments (from sensor networks to wireless networks to large scale 
fixed networks), a more flexible and dynamic approach is required. In particular, we see 
the need i) to dynamically instantiate new overlays on demand to support newly 
instantiated higher-layer software (middleware services and applications), ii) to operate 
multiple cooperating overlays in a coordinated manner (see examples below), and iii) to 
be able to configure and dynamically reconfigure overlays to meet the evolving needs of 
executing applications. 

It is the role of the Overlay CF (see figure 2) to address these issues. Overlays, 



which are themselves realised as small CFs, can be dynamically plugged into the 
framework and bound into existing topologies of overlays. Figure 2 illustrates how the 
CF supports multiple overlay configurations, and how different overlays can depend on 
each other. In particular, two overlays are shown depending on a Chord key-based 
routing (KBR) CF, whereas a keyword search overlay operates atop a separate overlay. 
Each overlay in the framework can expose its interface to the outside, allowing it to be 
used by higher-level services. The current configuration is driven by current application 
requirements (e.g. operating in ad-hoc or sensor networks, requiring group 
communication etc.). In addition, there is scope for the environmental context of the node 
to drive dynamic reconfiguration of overlays structures. Thus, for example, a streaming 
overlay can be dynamically added above the KBR to supplement an existing group 
overlay, or an existing implementation may be changed to a new or enhanced version. 

 
 

 
 

 
 

 

 

 

 

 

 

Figure 2: Architecture of the Overlay CF. 

 

The structure of each individual overlay plug-in is in terms of three sub-components [6]. 
These are: i) a ‘control’ part which cooperates with its peers to build and maintain a 
virtual network topology, ii) a ‘forwarding’ part that routes messages over the virtual 
topology, and iii) a ‘state’ part that encapsulates state such as nearest neighbours. Given 
this pattern, overlay implementations can quickly be developed by building on the 
individual sub-components of existing overlays. For example, we have an content-based 
routing overlay that can use the ‘control’ part of a number of different overlay types, but 
provides its own forwarding sub-component [7]. 

More detail on the Overlay CF is given in [6]. 
 
 
4. Three Example Middleware Domains 
 
4.1 The Interaction Services CF 
 
The Interaction Services CF facilitates the deployment and dynamic reconfiguration of 
multiple, simultaneously available, interaction or ‘binding’ types. These are used to 
support various kinds of interaction between distributed application components. some 
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examples of these were given in section 1. Further examples are SQL links between 
applications and databases; FTP links (including GridFTP); and bindings that encapsulate 
a workflow process involving multiple processing entities. These diverse forms of 
interaction are uniformly implemented as ‘pluggable’ binding types within the CF. This 
promotes the reuse of recurring interaction patterns and mechanisms, and allows the 
multitude of binding types found in Grid application scenarios to be uniformly handled.  

To illustrate the functioning of the CF we demonstrate how a publish-subscribe 
binding type is realised and underpinned by a particular overlay configuration (provided 
by the Overlay CF). The binding type (see figure 3) offers content-based event 
notification: events of a particular subject are disseminated in groups. Events are realised 
as XML messages wrapped in SOAP envelopes, and there are components to publish, 
subscribe and filter events of this structure.  

 
 
  
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 3: Component configuration for the Publish-Subscribe Binding Type. 

 
Figure 3 also demonstrates how the CF can adapt to meet changing environmental 
information. The publish-subscribe binding type exports a receptacle stating a 
requirement for group based message dissemination (IGroup). When the node is 
operating in an ad-hoc network environment an overlay implementing ‘probabilistic 
multicast’ is used; this is an unstructured overlay that intelligently floods messages. Each 
node receives all messages, discarding messages that are not from a member group, and 
then decides whether or not each message should be forwarded. The decision is based on 
previous messages that the node has received: if a large number of duplicates of a 
message have already been received, the probability that the message will be forwarded 
reduces; e.g., zero duplicates implies a probability of 1, whereas two duplicates implies a 
probability of 0.25. Alternatively, when the node is operating in a large-scale fixed 
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network, a Scribe-based [8] overlay is plugged in. Scribe builds a multicast overlay for 
events of a particular topic on top of the key based routing mechanism provided by an 
implementation of the Chord algorithm [9].  

The Interaction Services CF illustrates how our generalised overlays-based 
approach can be used to tailor application execution to particular networking contexts, so 
that bindings remain correctly supported in conditions of dynamic change. Furthermore, 
the CF adds the further capability of fine-grained reconfiguration. For example, the 
probabilistic multicast forwarder component can be replaced with different damping 
metrics; i.e. the probability can be decreased (to alleviate network traffic) based upon 
current network conditions. 
 
 
4.2 The Resource Discovery CF 
 
The purpose of the resource discovery CF is to provide a reconfigurable service and 
resource discovery facility that can uniformly perform ‘lookup’ operations using an 
extensible set of discovery protocols. An application developer or Grid service can 
uniformly discover resources that match their requirements, based upon matching 
resource type and attributes, irrespective of the discovery mechanism that is advertising 
it. Hence, services can be discovered if they have been advertised through traditional 
service discovery mechanisms such as UPnP, SLP and Jini; through P2P discovery 
technologies like JXTA and Gnutella; or through standard Grid resource discovery 
technologies like Globus MDS. 

To exemplify this we present a particular discovery technology integrated within 
the CF, namely RDFPeers [10]. In this discovery plug-in, RDF [11] is used to describe 
resources that are uniquely identified by URIs: each RDF description is a set of triples 
each of which consists of a subject, predicate and object. The subject is the resource 
being described and the predicate and object are a name-value description of a property 
of the resource. Our RDFPeers plug-in extracts these triples from a given description and 
stores the information in a distributed hash table overlay in such a way as to facilitate 
future lookup requests. More specifically, the plug-in hashes the resource three times for 
each of the triples: i.e. once for the subject key, once for the object key, and once for the 
predicate key. This in turn allows a comprehensive range of queries to be performed. For 
example, “given an object Oi and predicate Pi find a subject that matches this property”, 
and “given subject Si find its object and predicates”.  

To integrate this into the framework, the RDFPeers plug-in exports a requirement 
for distributed hash table behaviour (the IDHT receptacle in figure 4). For this purpose, 
we plug-in a DHT implementation operating in the overlay framework. In this case we 
have implemented a DHT overlay on top of the Chord KBR overlay that adds local hash 
table storage of data, and replication on top of the Chord KBR mechanism. 

The Resource Discovery CF illustrates a key benefit of our pluggable overlay 
approach, namely the re-use of existing overlay services to underpin multiple binding and 
discovery services that are operating concurrently. Similarly to the Interaction Services 
CF, multiple discovery protocols operate in parallel, and we have implementations of 
SLP, UPnP and Jini protocols that depend on one or more pluggable multicast overlays; 
hence, they require plug-ins similar to those provided in figure 3.  

More detail on the Resource Discovery CF is given in [12]. 
 



 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 4: Gridkit’s RDFPeers implementation. 
  
 
4.3 The Resource Management CF 
 
The function of Grid resource management middleware is to appropriately map 
applications to nodes according to their resource requirements, and to dynamically 
manage the resourcing of applications as they execute. Although successful, existing 
systems (e.g. Globus [13]) have a number of limitations. In particular, they are coarse-
grained in the sense that resource specifications tend to deal with whole machines (or at 
best processes) rather than with fine-grained resources such as threads, buffer pools, 
connections etc. In addition, existing systems don’t offer any consistent notion of an 
abstract resource: they deal exclusively with concrete entities such as CPUs, memory 
bytes etc. This makes it difficult to map from application-centric notions of resource (e.g. 
“I need 3 matrix containers of type X, 1 buffer pool of type Y, a scheduler for EDF 
threads, and a Java virtual machine”) to the notion of ‘resource’ that the system 
understands. And finally, existing systems lack support for run-time adaptation—the 
resources allocated at application launch-time cannot be adjusted during runtime.  

The goal of our Resource Management CF is to appropriately place the application’s 
constituent components on some specific set of physical computational nodes. It is the 
framework’s job i) to map components to nodes, ii) to ensure that each component’s tasks 
are adequately resourced by its supporting nodes, and iii) to maintain the resourcing of 
the application at runtime as resource needs and resource provision fluctuate. At the most 
abstract level, there are two parts to the CF: i) global resource management, which 
coordinates resource management over multiple computational nodes, and ii) local 
resource management, which manages resource allocation and usage in individual 
computational nodes. The local resource management part is heavily based on earlier 
work [14]. The CF is driven by an application description which is submitted for 
execution. This consists of the following: i) a set of top-level OpenCOM components that 
comprise the application, ii) a set of bindings (expressed in terms of specifications 
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understood by the Interaction Services CF) between interfaces and receptacles of these 
components that capture the abstract topology of the application, iii) a set of so-called 
tasks which, among other things, express the required QoS of different parts of the 
application, and iv) a mapping of tasks to components. 

Together, the set of top-level components and bindings comprise the compositional 
structure of the application. Both tasks (see below) and bindings are decorated with QoS 
annotations which are used later when the various components of the application are 
mapped to physical computational nodes. QoS annotations are expressed in terms of 
pluggable QoS ontologies which are defined by domain experts. Each QoS ontology is 
associated with a plug-in QoS mapper that understands how to derive resource 
requirements from a QoS specification expressed in the associated ontology. For 
example, a QoS ontology that was concerned with the application domain of media 
transcoding applications might define QoS parameters such as “throughput in frames per 
second”, “latency”, and “acceptable frame degradation”, together with mappings from 
these parameters to a resource ontology that comprehends concepts such as “buffer pool 
size”, “number of high-priority threads” etc.  

Tasks are abstractions of ‘activities’ or ‘units of work’ which are meaningful at the 
application level as a subject of QoS annotation. Crucially, the definition of the tasks that 
comprise an application is orthogonal to the structure of the application itself in terms of 
components. Thus, in some cases a single task may span a set of (cooperating) 
components, while in others a single component may host multiple independent tasks 
(also, tasks may overlap, as shown). Examples: i) a ‘transcode stream’ task could be 
realised as a set of components that cooperate to transcode a media stream (e.g. buffering, 
compressing, encoding etc.); ii) multiple instances of an ‘access database’ task could be 
encapsulated within a single component that deals with concurrent database access.  

The orthogonality of tasks and component structure facilitates QoS specification that 
is meaningful at the application level. Thus, in the ‘transcode stream’ case, the QoS 
specification is attached to the entire user-visible task rather than to microcosmic aspects 
such as buffering etc. This orthogonality also offers a useful separation of concerns 
between writing an application and specifying its QoS. Note that tasks, as well as serving 
as units of QoS specification, also have a runtime representation that is used in ongoing 
resource management during application execution.  

More detail on the Resource Management CF can be found in [15]. 
 

5. Conclusions and Future Work 

 
We have argued that existing Grid middleware is poorly equipped to support next-
generation Grid applications that are built on heterogeneous and complex networking 
infrastructures and which involve complex application level services (such as distributed 
collaborative visualisation). The Gridkit approach, which integrates middleware and 
overlay networking functionality, explicitly addresses the needs of such applications. In 
particular, its Interaction Services CF and Resource Discovery/ Management CFs allow 
multiple interaction types, discovery types, and resource management policies to be 
simultaneously hosted over multiple overlay network configurations.  

Our Gridkit implementation currently consists of three binding types (publish-
subscribe, and two RPC binding implemenations: SOAP and IIOP) and two discovery 
technologies (Service Location Protocol – SLP, and Universal Plug and Play - UPnP). 



We also have a collection of overlay networks implemenations as described previously 
(Chord key-based routing, Chord Distributed Hash Table, Scribe and Probabilistic 
Multicast). This involves a total of 47 OpenCOM components and component 
frameworks. We are currently in the process of extending this set with data streaming and 
OGSA-DAI-based data sharing as additional bindings; and UDDI, Jini and JXTA as 
additional resource discovery protocols. Finally, we are wrapping an existing tree-based 
multicast overlay [16] as an alternative multicast overlay plug-in. 

Future work is planned on two fronts: first we will exercise and evaluate our 
frameworks and plug-ins by using them to support a distributed visualisation scenario 
that has been developed at Oxford Brookes University. Second, we plan to explore the 
self-management of services and applications in Gridkit. This will build on the inherent 
openness of the (component-based) framework but will require additional CFs that deal 
with areas such as monitoring, recovery strategy selection, and recovery strategy 
deployment. We have carried out initial explorations in this area [17], but Gridkit will 
provide a challenging context for such ideas. 
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