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[1] The past decade has seen significant progress in characterizing uncertainty in
environmental systems models, through statistical treatment of incomplete knowledge
regarding parameters, model structure, and observational data. Attention has now turned to
the issue of model structural adequacy (MSA, a term we prefer over model structure
“error”). In reviewing philosophical perspectives from the groundwater, unsaturated zone,
terrestrial hydrometeorology, and surface water communities about how to model the
terrestrial hydrosphere, we identify several areas where different subcommunities can learn
from each other. In this paper, we (a) propose a consistent and systematic “unifying
conceptual framework” consisting of five formal steps for comprehensive assessment of
MSA; (b) discuss the need for a pluralistic definition of adequacy; (c) investigate how
MSA has been addressed in the literature; and (d) identify four important issues that require
detailed attention—structured model evaluation, diagnosis of epistemic cause, attention to
appropriate model complexity, and a multihypothesis approach to inference. We believe
that there exists tremendous scope to collectively improve the scientific fidelity of our
models and that the proposed framework can help to overcome barriers to communication.
By doing so, we can make better progress toward addressing the question “How can we use
data to detect, characterize, and resolve model structural inadequacies?”
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1. Introduction

[2] The literature of different modeling communities—
groundwater (GW), unsaturated zone (UZ), terrestrial hydro-
meteorology (THM), and surface water (SW)—suggests that
each applies seemingly different philosophical approaches to
dynamical modeling of the terrestrial hydrosphere. These
differences in philosophy are evident in the emphases placed
on different aspects of the modeling problem. For example,
a key step in the application of GW and UZ models is to
conceptualize the (one-, two-, or three-dimensional) hydro-
stratigraphy of the system, whereas SW and THM typically
use a one-dimensional model (often disaggregated into sub-
basins or tiles) with system structure specified in terms of
different stores of water, energy, and carbon.

[3] Such differences in philosophy are also evident in
the mathematical forms of the equations used. GW and UZ
models use deterministic/stochastic differential equations
(such as Richards’ equation and/or Darcy’s law) based ulti-
mately on the Navier-Stokes equations and/or the Buckingham
continuity requirement for describing flow through porous
media. Meanwhile SW and THM models use sets of loosely
coupled differential equations to describe the interdependent
hydrometeorological processes at the land surface and within
the soil.
[4] Even within each modeling community, there can be

disputes about the “appropriate” approach to model devel-
opment. Such disputes are acutely evident in SW, where
debates have raged on the relative merits, applicability, and
desirability of “physics-based” (sometimes called physically
based) models. More than 20 years ago, Beven [1989] and
Grayson et al. [1992] questioned whether physically based
SW modeling is even realistic. We follow Grayson et al. and
proceed with their arguments as follows (italicized com-
ments added):
[5] 1. Physically based SW models assume (incorrectly)

that the conditions under which their equations are derived
(a column of homogenous soil) are the same as those in the
field, and that the spatial variability of the catchment can be
(acceptably well) represented by distributed values of the
model parameters.
[6] 2. These assumptions are limiting because the mathe-

matics describing hydrological processes is poorly defined at
the model scale (hillslope, subcatchment, grid) and because
there is inadequate data to describe the spatial variability of
soil characteristics, even in highly instrumented catchments.
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[7] 3. As a result, physically based SW models use
“effective” parameters that implicitly represent the impact of
spatial variability at spatial scales that are smaller than the
model scale.
[8] Others have advanced analogous critiques of physics-

based modeling approaches [Beven, 2002; Kirchner, 2006]
and some in the SW community have argued the need for a
unified theory of hydrology at the catchment scale [Reggiani
et al., 1998, 1999; Sivapalan, 2005; Troch et al., 2009].
[9] Such differences in philosophy inevitably become

manifest as different interpretations of model structural error
(we prefer the term model structural adequacy—see
Appendix A), an issue now receiving considerable attention
in the context of system identification, data assimilation, and
quantification of prediction uncertainty. In SW, model
structural adequacy stems from both (a) selection of which
hydrologic state variables to represent and how to represent
them and (b) choice of equations to compute the hydrologic
fluxes. However, it is possible to simplify the representation
of storage and flux heterogeneity to the point that the flux
equations used become largely empirical guesses [Clark
et al., 2008a; Bulygina and Gupta, 2009]. In contrast,
model structural adequacy in GW is intimately linked to the
amount of detail used to represent the three-dimensional
hydrostratigraphy (hydrogeologic structure) of the system
[Koltermann and Gorelick, 1996; Hill, 2006; Hunt et al.,
2007; Ye et al., 2007; Ye and Khaleel, 2008], and the
underlying physics and driving boundary conditions are
usually assumed to be correct [National Research Council,
2001; Neuman, 2003; Neuman and Wierenga, 2003;
Bredehoeft, 2003, 2005, 2010]. Given this perspective,
Doherty and Welter [2010] argue that model structural
adequacy can be enhanced simply by inferring additional
parameters via calibration. Yet this approach is of limited
use in situations where forcing data errors play a significant
role. Lack of clarity about such differences in perspective
can make it difficult to have a meaningful discussion about
the sources and nature of model structural inadequacy.
[10] We suggest the need for a broader perspective.

Regardless of apparent differences in philosophy, the GW,
UZ, THM, and SW communities all share a common challenge
of improving process knowledge and reducing discrepancies
between models and the natural system. We present here
a systematic conceptual representation of model develop-
ment that shows how approaches to modeling the terrestrial
hydrosphere can be viewed within a common framework. By
recognizing and adopting a unified conceptual framework,
the communities can communicate more effectively in a
common language and jointly contribute to addressing the
fundamental question “How can we use data to detect, char-
acterize, and resolve model structural inadequacies?”
[11] To be clear about scope, this paper is not a compre-

hensive review of the literature on modeling of the terrestrial
hydrosphere. References cited are selected as examples rel-
evant to issues we wish to discuss. For pedagogical reasons
we refer only to the broad divisions of GW, UZ, THM, and
SW; this is not to ignore other elements of the terrestrial
hydrosphere but to help focus the discussion. Similarly, we
omit discussion of important issues such as data informa-
tiveness and of distinguishing between systematic data
errors and model structural deficiencies; we leave these for
later discussion.

[12] Section 2 introduces a conceptualization of the model
building process as a framework for discussing common
challenges faced by the community. In section 3, we point
to the need for a pluralistic definition of model structural
adequacy. Section 4 examines how model structural ade-
quacy has been addressed to date, with many of the steps
discussed in section 2 remaining poorly addressed. Section 5
discusses the implications of our framework and makes
several recommendations toward stimulating discussion and
progress. Finally, section 6 raises complementary issues that
need to be examined and discussed.

2. Systematic Conceptualization of the Model
Building Process

[13] Broadly speaking, there are generally considered to
be three formal stages to model building (although we will
later suggest that there are really five formal steps). Prior to
these is a preliminary, informal stage—development of a
“perceptual model” of the system—that involves a tight loop
of purely sensory perceptions coupled with interpretations of
the data. This perceptual/interpretive process can be strongly
influenced by prior concepts (ideas about reality), and
modified by new ones that form during the investigative
process (see Roman et al. [1998], Beven [2001], Neuman
and Wierenga [2003], and others). In our characterization,
this “perceptual model” exists only in the mind of the
investigator (being colored by mental concepts, it might
actually be called a “perceptual-conceptual”model). As such,
it cannot readily be subjected to formal analysis (since formal
analysis requires symbolic representation). At the formal
level, the three formal stages involve development of the
following:
[14] 1. Conceptual model: Summarizes our abstract state

of knowledge about the structure and workings of the system.
[15] 2. Mathematical model: Defines the computational

states, fluxes, and parameters of the system and the choices
regarding how system processes will be mathematically
handled.
[16] 3. Computational model: Provides numerical solutions

for specific initial states, material properties (parameters),
and boundary conditions.
[17] All of these stages have been discussed previously

[see Iliev, 1984; Beven, 2001; Anderson and Woessner,
2002; Neuman and Wierenga, 2003; Refsgaard et al.,
2006; Gupta et al., 2008; Clark and Kavetski, 2010;
Kumar, 2011], albeit with varied terminology. (For example,
Beven [2001] combines the perceptual and conceptual
models into one stage called the “perceptual model” and
refers to the mathematical model as a “conceptual model”
and the computational model as a “procedural model.” We
believe our terminology to be more precise, with less scope
for introducing confusion, and encourage its use by the
community.) However, previous formulations do not inves-
tigate each stage in depth, nor do they explicitly address how
these stages are manifest in different communities (including
commonalities and differences between them). While we do
not debate the critical importance of the development of
“perceptual” models, this paper will not dwell on them
because of their lack of explicit formal expression (theory
requires explicit expression using abstract symbols that can
be manipulated). To the extent that our expressions of the
perceptual models can be improved through the investigative

GUPTA ET AL.: ASSESSMENT OF MODEL STRUCTURAL ADEQUACY W08301W08301

2 of 16



process, this improvement takes form as modifications to the
consequent “conceptual models” which can be subject to
formal analysis. Here, we focus on the three formal stages,
whose investigation we seek to promote. Below we present a
more penetrating description of each formal stage, illustrated
with examples from GW, UZ, SW, and THM.

2.1. The “Conceptual” Model

[18] A model is a simplified representation of a system,
with twofold purpose to enable reasoning within an idealized
framework and to enable testable predictions of what might
happen under new circumstances (this paragraph closely
follows the ideas in Gupta et al. [2008]). Building upon our
(perceptual) understanding of the system, one or more
“conceptual models” emerge, represented usually as verbal
and pictorial descriptions. A complete conceptual model of a
system will include a clear specification of relevant system
boundaries, inputs and outputs, state variables (sometimes
called prognostic variables), physical and behavioral laws to
be obeyed (conservation of mass, momentum, etc.), facts to
be properly incorporated (e.g., spatiotemporal distribution of
“static” material properties such as soils), uncertainties to
be considered, and simplifying assumptions to be made. In
other words, the conceptual model characterizes the “archi-
tecture” of the system [Bulygina and Gupta, 2011]. Note that
relationships among elements need not be rigorously speci-
fied and investigated but are conceptually explained through
drawings, maps, tables, papers, reports, oral presentations,
etc.
[19] The conceptual model summarizes, and depends

upon, our abstract state of knowledge (degree of belief )
about the structure and workings of the system. Our
“degree of belief ”—i.e., our process understanding—
depends fundamentally on training and experience, including
the effectiveness of the dialog between field hydrologists and
modelers [Seibert and McDonnell, 2002]. Alternative con-
ceptual models can represent competing hypotheses about
the structure and functioning of an observed system, condi-
tioned on qualitative and quantitative observations, and on
prior facts, knowledge, and ideas. Of course, the conceptual
models may not be faithful expressions of the aforemen-
tioned perceptual model(s) and are often simplified expres-
sions of such. Such simplification can be due to lack of
knowledge, ideas, or imagination about how to express the
perceptual model in a proper way, but may also be due to
explicit decisions to build simplified expressions based on
assumptions regarding what is more important and less
important. Together, the conceptual model of the system and
the conditioning prior knowledge form the rudimentary
levels of “theory” about the system.
[20] To be more specific, development of the conceptual

model actually involves two steps, the order of which may
vary (or even be comingled) among disciplines:
[21] 1. A conceptual model of the physical structure of the

system in absence of water, energy, and/or other less solid
quantities whose storage, movement, and behaviors the
system mediates. In hydrology, this refers primarily to the
geology and topography of the porous (and not so porous)
media that constrain and direct the storage and movement of
water. This is mainly the soil matrix but can include other
aspects such as vegetation, engineered structures, etc. On the
other hand, for a model of atmospheric flows, the physical
structure refers mainly to the structural nature of the upper

and lower boundary conditions (land surface topography
including vegetation and engineered structures, ocean sur-
face, and so on), as well as other impediments, obstacles, or
structures the air must navigate.
[22] 2. A conceptual model of the process structure of

the system. This specifies the dominant processes that are
mediated by the physical structure of the system and,
importantly, how different factors affect the storage and
movement of water and energy through the system. For
example, our conceptual model of the process structure of
the system may include a description of the role of bedrock
topography in controlling the storage of water on hillslopes
and subsurface flow during storm events, and it may include
description of the heterogeneity in flow paths within a
catchment. More generally, the process structure of the sys-
tem arises as a consequence of interactions between water,
energy, and other mobile constituents, with the physical
structure. Underlying physical principles (physics) govern
interactions of the fluids with the physical structure, giving
rise to the characteristic behaviors of the system.
[23] In the longer term, the system processes can possibly

act to modify the physical structure of the system, which
can have profound implications for predictability [Peters
et al., 2007; Kumar, 2011]. However, under the stationarity
paradigm (now severely in question; see Milly et al. [2008]),
it is common to assume that the physical structure of the
system is not noticeably affected on time scales relevant to
the modeling study. Under this assumption, the “physical
structure” of the system is sometimes thought of as those
aspects that are (assumed to be) time-invariant over the period
of simulation. However, many other aspects ofmodel structure
can also be assumed time-invariant (process structure, spa-
tial variability structure, equation structure, etc., see below)
and the term “time-invariant” does not (by itself ) cover this
distinction well.
[24] The practical outcome of these two steps is a con-

ceptual model and a working definition of the “conceptual
states and fluxes” of the system. To be clear, this definition
does not require that (a) spatial and temporal “resolution” be
specified (including size/shape/extent of model elements and
temporal discretization of model fluxes, etc.) or (b) mathe-
matical equations be formally selected, although some
specification of physical laws may take place (conservation
of mass and momentum; laws of thermodynamics; fluid
flows governed by Navier-Stokes). Major decisions involve
the architecture (extent and structure) of the modeling
domain and which processes to include/exclude.
[25] This conceptual model, along with the numerical,

graphical, and other results generated using the computa-
tional model developed from it (discussed below), defines
the level at which communication actually occurs between
scientists, stakeholders, decision makers, policy analysts,
and others. Of course, the conceptual model can be updated
as new data and information become available.

2.2. The “Mathematical” Model

[26] The modeler next proceeds toward realization of a
mathematical model. In the past, when digital computing
was not readily available and/or the theory insufficiently
advanced, it was common to construct an actual physical
model of the system to perform the desired “computations”
(e.g., scale models of Dam systems designed to obey scaling
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laws). Today, it is common to construct a mathematical
model for use in analytical or digital computation.
[27] Development of the mathematical model also involves

two steps:
[28] 1. A mathematical model of the spatial variability

structure of the system. This specifies how horizontal and
vertical variability is represented in the model and (conse-
quently) determines the properties of the associated porous
and nonporous geohydrologic media.
[29] In GW the system is commonly treated as layered 2-D,

or fully 3-D, with some spatial resolution selected to repre-
sent the variability structure. Many UZ applications are 1-D
[Šimůnek and van Genuchten, 2008] since 2-D/3-Dmodeling
is only productive if a significant horizontal flow component
is observed. However, there is a trend for 2-D and 3-D
applications [Vesselinov et al., 2001a, 2001b; Vrugt et al.,
2001; Yeh et al., 2002; Vrugt et al., 2004; Ye and Khaleel,
2008; Klaus and Zehe, 2010], although more difficult than
in GW due to the increased computational cost of solving
variably saturated flow equations, and the challenge of
accurately representing the spatial variability of soil hydrau-
lic properties. Some recent efforts even have 3-D repre-
sentations from the bedrock to the top of the atmosphere
[Maxwell et al., 2011], effectively combing modeling
approaches from GW, SW, and THM. In THM, 1-D verti-
cally layered representations are typically assumed, with
grid cells disaggregated into land-cover categories and/or
elevation bands and horizontal resolution dictated by the
atmospheric model [Oleson et al., 2010; Krinner et al.,
2005; Wang et al., 2011]. In SW, where this is often called
catchment architecture, a wide range of approaches is used,
from spatially lumped/vertically layered (1-D bucket-style)
to spatially distributed/vertically layered (quasi 3-D) and
fully 3-D (so-called physically based).
[30] To be clear, while this step defines the kind of spatial

variability to be represented, the spatiotemporal resolution
for computing is not yet specified.
[31] 2. A mathematical model of the equation structure of

the system. This selects the equations used to represent the
dynamics of each process and their interactions. Sometimes,
this may involve decisions regarding whether temporal var-
iability is to be considered (as in steady state versus transient
state modeling). Since each equation will have parameters
representing the properties of the system, together with the
previous step this also defines the spatial variability structure
of system parameters.
[32] While in some cases (such as GW and UZ) the basis

for these equations will have been determined during con-
ceptual modeling (e.g., Darcy’s Law and Richards’ equation
are macroscopic solutions of Navier-Stokes; Neuman and
Wierenga [2003] call this conceptual-mathematical model-
ing), this step may still involve far-reaching simplifications
or approximations (such as neglecting pore-scale processes
and the effects of contact angle, dispersion, and/or diffusion
on saturated/unsaturated flow and perhaps most importantly
preferential flow). In other cases, the basis for selecting
equations may be less constrained by computational theory.
For example, SW, UZ, and THM commonly use macroscopic
solutions to the Navier-Stokes equations (e.g., Richards’ and
Boussinesq equations) to represent flow through soils and
plants and empirical parameterizations for interception.
[33] Nonetheless, the selected equation structure may be

some combination of ordinary differential equations (ODEs),

partial differential equations (PDEs), and/or stochastic
ODEs/PDEs, depending in part on decisions regarding spatial
variability structure.
[34] The practical outcome of these two steps is a working

definition of the “computational states, fluxes, and parameters”
of the system and a choice regarding how the “system
processes” will be mathematically handled. To be clear, (a) the
spatial variability structure of the system/model parameters
need not correspond to the spatial variability structure of the
states and fluxes (parameters can be treated as homogeneous/
lumped even if states and fluxes are treated as spatially dis-
tributed), and (b) the “computational resolution” is not
introduced explicitly at this stage. Major decisions involve
the method for representing spatial variability (spatial struc-
ture) and the equations used to model process dynamics
(“physics” of the system).
[35] This mathematical model forms a basis for discussion

among scientists; it is rare for stakeholders, decision makers,
and policy analysts to be intimately involved.

2.3. The “Computational” Model

[36] Implementation of the mathematical model results
in a computational model that, when realized as a com-
puter program, can provide numerical solutions for specific
initial states, material properties (parameters), and bound-
ary conditions. Here, the details include (a) selecting a
numerical formulation for representing the spatial rela-
tionships (finite difference or finite element), (b) defining the
spatial resolution for computations within the model domain,
and (c) selecting a procedure for time integration of the gov-
erning model equations.
[37] It is important to recognize that, in making these

choices, strong interactions can exist between choice of model
equations and choice of spatial and temporal scales [e.g.,
Clark et al., 2011a] because the decision to explicitly resolve
a given process will dictate a minimum spatial and temporal
resolution of computation. For example, Mott and Lehning
[2010] point out that explicit simulation of snowdrift forma-
tion requires a horizontal resolution of <5 m.
[38] The practical outcome of this stage is a “numerical

basis for solving the model equations.” The approach varies
somewhat with modeling community. In GW and UZ,
solutions are typically achieved using finite difference
[Harbaugh, 2005; Wang and Anderson, 1982] or finite ele-
ment methods [Pinder and Huyakorn, 1977; Lin et al.,
1996; Yeh, 1999], where the differential equations are
implemented using global solvers. In THM, solutions are
typically achieved via loose coupling of the differential
equations; many implementations decouple processes and
use a different local solver for each subprocess [see Oleson
et al., 2010]. While this allows the numerical strategy to be
tailored to the dynamics of each subprocess, it requires
arbitrary selection of the solution sequence and does not
properly account for sub-time-step interactions, and feed-
backs among subprocesses, that can give rise to numerical
errors or artifacts. In SW, many model codes use unreliable
numerical schemes that can unnecessarily complicate model
calibration, and cause parameter estimates to compensate
for numerical errors [Kavetski et al., 2003; Kavetski and
Clark, 2010; Schoups et al., 2010]. Overall, the computa-
tional strategy is a critical step in model development and
deserves as much scrutiny and care as the development of
conceptual and mathematical models.
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2.4. Common Challenges Faced by the Community

[39] Considering the steps in sections 2.1 and 2.2 to
deserve focused attention, we can now think of the model
building process as really having five formal steps (con-
ceptual physical structure, conceptual process structure,
spatial variability structure, equation structure, and compu-
tational structure). Figure 1 illustrates the typical amount of
attention given by different communities to each of these
aspects of model adequacy. The first two steps (conceptual
model) specify the architectural extent and topology of
the modeling domain and what processes to include/exclude,
resulting in a conceptual definition of the states and fluxes,
without concern for spatial or temporal resolution or equations
to be used. Whereas all models of the terrestrial hydrosphere
are based on these first two developmental steps, different
communities place different emphases on specific decisions
and so develop these conceptual components in different ways.
For example, GW may focus on the underlying (hydrostrati-
graphic) structure of the aquifer (confined or unconfined), UZ
may emphasize the properties of the porous medium (layering
and pore size distribution), while THM and SW may focus on
specifying the dominant surface and subsurface processes
(process structure). Nonetheless, the common challenge is that

of “epistemic uncertainty” arising from incomplete (due to lack
of knowledge) or inadequate characterization of the system
[Beven, 2008; Clark et al., 2008a, 2008b].
[40] The next two steps (mathematical model) specify the

spatial representation and form of the process equations,
resulting in explicit mathematical definitions of the states,
fluxes, and parameters and their spatial resolution. Although
different applications may call for different choices regarding
spatial configuration and parameterization, the development
of a mathematical model of variability and equation structure
follows essentially the same approach in all communities. In
regards to model adequacy, the challenge is in proper speci-
fication of “spatiotemporal detail” and “parameterization”
(degree of model complexity).
[41] The final step (computational model) expresses the

precise sequence of operations required to generate solutions.
It is rare for any stakeholder, decision maker, or policy analyst
to care about or be involved at this level, and computational
details are usually only the subject of discussion among
“nerds” who understand and care about the details of numer-
ical implementation.
[42] Of course, in any given modeling process, the deci-

sions required to implement these five steps can render them

Figure 1. Subjective assessment of the attention/emphasis (indicated by length of bars) given by different
modeling communities to various sources of model inadequacy; colors are used to distinguish between
THM, SW, UZ, and GW.
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(explicitly or implicitly) interdependent. Assumptions about
dominant processes/structures can imply assumptions about
the dimensionality of flow process and symmetry in the
system, which can in turn determine the choice of differen-
tial equations. Nonetheless, the point of breaking them out
into separate steps is to emphasize the differences (and
relationships) and further that the model development pro-
cess tends to be strongly directional through the steps as
indicated.

3. The Need for a Pluralistic Definition of Model
Structural Adequacy

[43] In constructing a model, how does one decide when
the model is structurally adequate? Arguably, this “evaluation-
of-structure” problem is commonly misunderstood, a key
reason being that it can be viewed from at least three somewhat
independent perspectives; we will call these the “engineering”
viewpoint, the “physical science” viewpoint, and the “systems
science” viewpoint. We discuss each in turn.

3.1. The “Engineering” Viewpoint

[44] The engineering view of model structural adequacy is
firmly focused on functional adequacy and usually takes a
decision-making perspective. It is often defined in the con-
text of a particular application, so that adequacy benchmarks
are necessarily usually defined by individual practitioners,
rather than agreed upon by the community. In this sense, an
adequate model structure is equivalent to a “valid” model as
defined by Oreskes et al. [1994] and Medlyn et al. [2005].
Deficiencies in structural adequacy are often expressed
as uncertainties relating to a risk analysis in the decision
making process. As long as the uncertainties are well char-
acterized, one can effectively and efficiently emulate the
system input-output behavior using nonphysically realistic
models (e.g., databased regressionmodels). Clearly, however,
this approach can cause problem in nonstationary systems.

3.2. The “Physical Science” Viewpoint

[45] This viewpoint defines model adequacy purely in
terms of consistency with the physical system. Model vari-
ables, states, and parameters should correspond to physical
quantities. Difficulties can arise when aspects of a model are
perceived to be physically representative but when no data to
support or falsify them is available.

3.3. The “Systems Science” Viewpoint

[46] This viewpoint is essentially a databased hybrid
of the first two. It stresses physical consistency to the extent
that it is observable in data and values the simplicity of the
engineering approach by stressing the principle of parsi-
mony. Typically, a simpler model structure that is consistent
with the physical system and performs as well as a more
complex model structure is preferred. This approach may
focus on techniques that quantify the information content of
data as a means to characterize which aspects of system
behavior are evident in observational data.

3.4. The Need for Community Attention
to This Problem

[47] Despite considerable progress in particular aspects of
model structure evaluation, it is clear that the hydrological
community as a whole is still far from any consensus

regarding a consistent methodology for model evaluation.
The development of consensually agreed benchmarks,
including the establishment of a “list of key characteristics” to
be reproduced, should, over time, help to characterize struc-
tural inadequacy and direct model improvement. While the
THM community has begun to recognize the benefits of this
approach (e.g., the International Land-Atmosphere Bench-
marking activity, www.ilamb.org), the process is still in its
infancy. Through discussion and debate it should be possible
to move toward a consensual, more pluralistic, and better
structured definition of model structural adequacy that
acknowledges multiple disciplines and viewpoints (engi-
neering, physical science, systems science) while recognizing
the common basis underlying model development (section 2).

4. How Model Structure Adequacy Has Been
Addressed to Date

[48] To examine how model structure adequacy chal-
lenges have been addressed in the literature, we examine the
steps in reverse order (arguably that of increasing difficulty).
We find that many of these steps remain poorly understood
and that only ad hoc approaches for dealing with them have
been proposed.

4.1. Numerical Error

[49] The problem of “numerical error” is easily avoided
by carefully applying robust numerical methods when con-
structing the computer code. Since it can sometimes be
necessary to compromise between numerical robustness
and computational efficiency, it is important that numerical
accuracy be assessed, characterized, and quantified, and the
implications for model predictions documented. Each com-
munity has literature dealing with this issue. We provide only
a few examples.
[50] In GW, Zyvoloski and Vesselinov [2006] illustrate the

effects of numerical resolution on Darcy Law computations
and point out “To keep numerical models computationally
efficient, compromises are frequently made in the model
development, particularly, about resolution of the computa-
tional grid and numerical representation of the governing
flow equation. The compromise is required so that the
model can be used in calibration, parameter estimation,
performance assessment, and analysis of sensitivity and
uncertainty in model predictions.” They show that use of
different grid resolutions can significantly impact parameter
estimates during inverse estimation, and that a control vol-
ume finite element approach may be superior to the finite
difference approach in terms of accuracy of the parameter
estimates for a given grid resolution. For other discussions of
numerical issues, see Lenhard et al. [1995], Zheng and
Bennett [2002], Wu et al. [2004], and Konikow [2011].
[51] In UZ and THM, a key consideration is the method

for solving Richards’ equation. While a number of iterative
and noniterative schemes are in use, the best way to improve
the numerical solution remains an active area of research.
The amount of numerical error depends on the system being
simulated and the number of nodes used to represent the
governing equations (e.g., Navier-Stokes and advection-
dispersion). UZ models are prone to significant numerical
errors (even with the mass-conservative scheme of Celia
et al. [1990]), particularly when simulating contaminant
and/or tracer transport, due to transient behaviors, high

GUPTA ET AL.: ASSESSMENT OF MODEL STRUCTURAL ADEQUACY W08301W08301

6 of 16



nonlinearity of the retention and hydraulic conductivity
functions, and the significant heterogeneity of soil. To limit
numerical error (particularly numerical diffusion), dense
discretization and hence a large number of nodes is required,
which poses significant computational challenges [Kollet
et al., 2010]. This makes it difficult to simulate complex 2-D
or 3-D subsurface (hydrogeological) systems. While approaches
such as particle tracking offer promise, each comes with its
own set of limitations [Roubinet et al., 2010]. In THM, Boone
and Wetzel [1996] and Lee and Abriola [1999] discuss the
impacts of low-dimensional implementations of Richards’
equation, and the sensitivity to infiltration parameterizations
and the representation of the lower boundary condition.
[52] In SW, poor numerical schemes have been shown to

result in incorrect evolution of spatiotemporal state/flux
trajectories (wrong numerical solutions, as opposed to
incorrect simulations of reality), and to result in high-
frequency oscillations of the Likelihood function, causing
severe problems during model identification [Kavetski et al.,
2003, 2006a, 2006b; Kavetski and Clark, 2010; Kavetski
and Kuczera, 2007; Schoups et al., 2010].

4.2. Adequacy of Equation Structure

[53] The problem of equation structure adequacy is com-
monly addressed using stochastic differential equations to
hedge against uncertainties associated with a precise deter-
ministic formulation. This approach is common in GW
[Unny, 1989; Serrano and Unny, 1987a, 1987b, 1988, 1990;
Gelhar, 1989; Dagan, 1989; Dagan and Neuman, 1997;
Zhang, 2002; Rubin, 2003] where an adequate description of
groundwater hydraulic head and solute concentration can be
given only in a stochastic sense, and the assessment of
uncertainty is integral to analysis and modeling (being as
important as the predictions themselves). In UZ, attention to
equation structure uncertainty is usually focused on the
mathematical forms of the water retention and hydraulic
conductivity functions, while soil moisture flow, root
water uptake, and infiltration are generally assumed to be
adequate. While various stochastic descriptions of the vadose
zone have been proposed [Dagan and Bresler, 1979; Jury,
1982; Yeh et al., 1985a, 1985b, 1985c; Destouni and
Cvetkovic, 1989, 1991; Harter and Yeh, 1996a, 1996b;
Harter and Zhang, 1999; Russo and Fiori, 2009], errors in
data, parameters, andmodel structure have only recently been
investigated [Vrugt et al., 2005b; Pan et al., 2009; Wöhling
and Vrugt, 2011].
[54] In SW, uncertainty in the equation structure is com-

monly represented via stochastic perturbations to the model
state variables and/or parameters [Vrugt et al., 2005a, 2006;
Moradkhani et al., 2005a, 2005b; Beven and Freer, 2001] or
by using stochastic time varying parameters [Kuczera et al.,
2006; Reichert and Mieleitner, 2009]. It is often argued that
the mean (or median) of a stochastic ensemble can provide
a better estimate than any individual ensemble member
because the ensemble better represents the nonlinear
behavior and subgrid variability characteristics of natural
systems. Further, Hollenbeck and Jensen [1998b] provide
experimental evidence that repeated experiments on the
same soil sample can result in quite different estimates of the
hydraulic parameters and functions, bringing into question
assumptions of both stationarity and determinism.

[55] Complementing the stochastic-equation approach is
the ensemble-equation approach that samples multiple
alternative equations for each process from a prespecified set
[Vrugt and Robinson, 2007; Clark et al., 2008a; Fenicia
et al., 2008; Niu et al., 2011]; we discuss ensemble con-
ceptual models later in section 3.4. The ensemble-equation
approach provides an opportunity to reject equation
hypotheses that are inconsistent with data and process
understanding, while retaining ones that provide plausible
representations of the natural system [Clark et al., 2011b].
Due to uncertainties in data and deficiencies in process
understanding, it is generally impossible to identify a single
set of model equations, and the ones not rejected by hypoth-
esis testing implicitly represent uncertainty in the equation
structure. The main problem is that due to epistemic uncer-
tainty this set of equations will generally be incomplete (not
fully span the space of viable equations), potentially resulting
in bias and inadequate characterization of uncertainty.
[56] In this context, an interesting approach is the attempt

to infer model equation structures directly from data (inverse
estimation of equation structure). This is common in SW
where streamflow recessions are analyzed to infer storage-
discharge relationships [Brutsaert and Nieber, 1977;Ambroise
et al., 1996; Atkinson et al., 2003; Rupp and Selker, 2006;
Clark et al., 2009; Harman et al., 2009; Kirchner, 2009].
Alternatively, the Bayesian Estimation of Structure approach
[Bulygina and Gupta, 2009, 2010, 2011] seeks to use data to
refine all of the equations in a model, not just those associated
with streamflow recessions. Beginning with a set of assumed
process equations, the approach represents them as a prior joint
probability density function (pdf), applies Bayesian Data
Assimilation to obtain a data-augmented posterior pdf, and
then extracts a “corrected” set of process equations. In a dif-
ferent approach, Young [1998, 2003], Young and Ratto [2008],
Young et al. [1996], and McIntyre et al. [2011] use databased
mechanistic modeling to progressively identify the nonlinear
forms of process equations from data. The approach detects
time and process dependent patterns of parameter variability
and modifies the relevant model equations to remove such
patterns, but essentially ignores a prior model concept. For
more complex models, equation structure inadequacies can be
detected and corrected by analysis of the spatiotemporal
properties of the state updates [Vrugt et al., 2005a; Vrugt and
Clark, 2006].
[57] In THM it is not common to infer model equation

structures from data. However, in GW the use of dimension-
less drawdown plots of pumping test data to infer structural
characteristics such as wellbore storage, leaky confining lay-
ers, penetrating hydraulic fractures, faults, stratified layers,
etc., has been common [Hantush, 1967; Neuman et al., 2004;
Mishra and Neuman, 2010], and in reactive transport mod-
eling, a recent trend is to identify structures of chemical
reactions from data [Matott and Rabideau, 2008].
[58] An interesting aspect of inferring model equations

directly from data, is that it attempts to deal with problems of
scale mismatch that arise when process equations derived at
one scale (e.g., the laboratory soil column) are applied at a very
different model scale (e.g., the hillslope, watershed, or grid).
While innovative solutions have been proposed to derive
model equations directly at the spatial scale of interest
[Reggiani et al., 1998, 1999], their general applicability has
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yet to be determined, and much uncertainty regarding this
issue remains [Beven, 2006].

4.3. Adequacy in Representation of Spatial Variability

[59] The representation of spatial variability is subtly dif-
ferent among different modeling communities. GW and UZ
typically use three-dimensional finite difference/element
representations of the spatial relationships between states
and fluxes, while variability of soil and vegetation properties
(parameters) is inferred from data by direct or inverse
methods. To account for the enormous heterogeneity in
aquifer properties, spatial parameter variability is considered
necessary and a significant portion of the literature deals
with methods for its estimation; Doherty and Welter [2010]
recently suggested that all the important GW modeling
uncertainties can be effectively resolved simply by adding
parameters to be estimated via inference. However, consid-
erable structural adequacy dangers can be associated with
adding unmeasurable parameters [Ginzburg and Jensen,
2004] and, as mentioned earlier, simply adding parameters
to capture spatial detail does not address errors associated
with boundary conditions and/or structural inadequacies of
the governing equations.
[60] While some SW and THM models use a fully 3-D

representation, a quasi 3-D approach that represents the
vertical movement of water and energy via multiple one-
dimensional columns (grids or subbasins) is more common
in these communities, with runoff fluxes routed separately
through an overland flow and channel network. In this
approach, the horizontal flow between different soil columns
is effectively ignored. A key decision is which processes to
represent explicitly (e.g., spatial variability in precipitation,
temperature, and solar radiation; spatial variability in the
interception capacity of vegetation), and which processes
to represent implicitly (e.g., via use of pdfs to simulate
aggregate impacts of unresolved processes). These decisions
regarding process complexity then determine the spatial scale
necessary for the model simulations [Clark et al., 2011a].
While some investigations have suggested the possibility of
an ideal model scale or representative elementary volume
for representing within-grid and between-grid variability
[Band and Wood, 1988; Blöschl et al., 1995], the notion of
an ideal model scale has proved difficult to implement in
practice. This may be because (a) various catchment pro-
cesses occur at different scales, and (b) it can be difficult to
implement models at the spatial scale for which the equations
were actually derived (e.g., the point scale as in Richards’
equation), due to both computational constraints and limited
knowledge regarding the spatial variability of parameters. In
practice, therefore, the spatial size of model units is com-
monly selected based on computational considerations and
data resolution, while attention is focused on the spatial
characterization of parameter variation.
[61] In THM, spatial parameter variability is typically

represented at regional scales based on soils and vegetation
data [Sen et al., 2001], whereas in SW it is usually inferred
from some combination of prior estimation using soils and
vegetation data [Koren et al., 2000; Samaniego et al., 2010]
and spatially regularized inverse estimation from rainfall-
runoff data [Pokhrel et al., 2008, 2009; Pokhrel and Gupta,
2010]. Methods for prior estimation of parameters are limited
by problems in conceptualizing the relationship of parameters
to data, and it has therefore been common to implement

parsimonious representations of parameter heterogeneity so
that inverse methods can be applied [Boyle et al., 2001; Feyen
et al., 2008; McMillan and Clark, 2009].
[62] An important, and common, problem arises when the

degree of spatial variability resolvable by inverse methods is
limited by the amount of information available in the avail-
able data. In GW and UZ studies, inadequate availability of
head and concentration measurement locations can make it
impossible to resolve the underlying spatial variability of the
aquifer and vadose zone [Konikow and Bredehoeft, 1992]
let alone distinguish between alternative conceptual models
[Refsgaard et al., 2006] (see sections 3.4 and 3.5). While
there has been much research on calibration of GW models,
the problem of evaluating competing representations of
spatial variability is not well understood [Wood, 2005].
Open questions remain regarding type and amount of data
needed to distinguish between alternative models and of how
to provide reliable estimates of model plausibility [Tsai and
Yeh, 2004; Tsai and Li, 2008; Ye et al., 2007; Ye and
Khaleel, 2008]. In SW, the damping/dispersive effects of
routing can cause catchment outlet hydrographs to become
insensitive to spatial variability in the parameter and rainfall
fields [Kirkby, 1975; Beven and Wood, 1983; Pokhrel and
Gupta, 2011]; consequently, basin-mean parameters can be
sufficient for simulating flows at the outlet (though not at
interior points). Meanwhile, such “lumping” can result in
severe parameter errors that diminish correlations between the
parameter estimates and catchment properties even when
theoretically strong relationships exist [Kling and Gupta,
2009]. Together, these issues seriously complicate attempts
at parameter regionalization necessary for predictions in
ungaged basins.

4.4. Adequacy in Conceptual Representation of Process
Structure

[63] Perhaps the most interesting source of model struc-
ture inadequacy arises from missing state variables and
processes. Put simply, how can we know if all of the
important states and processes are included (and included
correctly) in the model? In other words, how do we know
that our model resolves the correct dimensionality of the
state-space? A compelling recent example of this problem
comes from THM, where numerous groups have demon-
strated that simulations of land-atmosphere fluxes improve
when explicit representations of the water table are incor-
porated [Liang et al., 2003; Niu et al., 2007; Pan et al.,
2008], affecting the storage and transmission of water in
the unsaturated zone and providing a more complete repre-
sentation of system behavior.
[64] In general, the adequacy of conceptual representa-

tions of state and process structure is usually assessed by
comparing models of differing complexity. This can involve
comparing very different conceptualizations of the state-
space, in some cases with significantly different definitions
and/or dimensionality. THM has examined increasingly
complex representations of the land-atmosphere energy
balance [Desborough, 1999; Leplastrier et al., 2002; Pitman
et al., 2003; Xia et al., 2002; Hogue et al., 2006]. In SW, the
“top-down” approach to model development explores
increasingly complex representations applied at increasingly
finer time scales [Jothityangkoon et al., 2001; Atkinson
et al., 2003; Eder et al., 2003; Farmer et al., 2003; Bai
et al., 2009]. Assessments of state/process complexity have
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also been undertaken in experimental basins, where tracer
and groundwater levels data are used to identify the range
of processes to include in hydrologic models [Son and
Sivapalan, 2007; Fenicia et al., 2008].
[65] An increasingly popular approach to acknowledging

uncertainty in state/process representation, now widely used
in many fields, is the ensemble-model approach (distinct
from the ensemble-equation approach discussed in section 3.2)
in which multiple model formulations (each having a specific
set of selected state/process representations) are run to assess
prediction uncertainty. It can be shown theoretically that
(when the models of the ensemble are not calibrated) the mean
of the model ensemble can provide better average performance
than any individual ensemble member but only if the members
are selected to provide characteristically different simulations
[Winter and Nychka, 2009]. In SW, multimodel ensembles
have been shown to provide improved streamflow forecasts
when the set of models has sufficient diversity [Georgakakos
et al., 2004]. In THM, output from multiple land-surface
models has been used to provide estimates of global terrestrial
water and energy balance, with the spread among models used
as a metric to describe the uncertainty in representing energy
and water balance [Dirmeyer et al., 2006]. In GW, the Maxi-
mum Likelihood Bayesian Model Averaging (MLBMA)
approach assigns relative weights to eachmodel based on their
ability to explain the observed data [Neuman, 2003; Ye et al.,
2004, 2008a]; the relative weights can also be obtained using
other methods [Poeter and Anderson, 2005; Poeter and Hill,
2007; Tsai and Li, 2008]. Applications to UZ and SW have
demonstrated the superiority of Granger–Ramanathan aver-
aging [Granger and Ramanathan, 1984] for ensemble mod-
eling [Diks and Vrugt, 2010].
[66] However, while model averaging provides a framework

for explicitly considering (conceptual) model uncertainty, it
currently lumps all errors into a single misfit term and does not
provide insights into model structural adequacy. As such, it is
an engineering approach to resolving structural model uncer-
tainty; individual models are typically selected in an ad hoc
manner, without considering the extent to which the models
span the model hypothesis space [Clark et al., 2011b].

4.5. Adequacy in Conceptual Representation
of Physical Structure

[67] This final source of model structure inadequacy arises
from incorrect specification of the elements of physical system
structure upon which all subsequent steps are based. Put
simply, how can we know if all of the important physical
structures that constrain and mediate the movements of
water, energy, and chemicals through the system are included
and their spatiotemporal geometry properly represented? In
general, these elements include all impermeable (typically
rigid) and permeable boundaries, porous and potentially
deformable media, elements and composition of vegetation
(roots, stems, leaves, etc.), and even (in cases involving
reactive processes) biochemical properties of all of the above.
Adequate specification of these can be particularly difficult
when (as in modeling the subsurface) the structure of the
system is difficult to observe directly. For example, Bond
et al. [2007] and Ye et al. [2008b, 2010] demonstrate that
significant conceptual uncertainty is inherent in interpretation
of data related to subsurface geology. Clearly, much of the
discussion related to conceptual representation of process
structure also applies here; again detection of the existence

of epistemic uncertainty will be a major issue of concern,
along with characterization of its sources. Where appropri-
ate, system nonstationarity in the form of “processes that
change the physical structure” will also need to be incor-
porated [Kumar, 2011].

5. Implications to the Investigation of Model
Structure Adequacy

[68] The review presented above illustrates the problems
that exist in all stages of the development of models of ter-
restrial systems. While some of these may yield quickly to
improved mathematical approaches and/or improved avail-
ability of data, others are not so easily resolved. Although
one can simply judge model adequacy from the engineering
perspective of minimizing the risk in meeting some desired
decision goal, in looking to the future we must give suffi-
cient importance to the scientific perspective of advancing
knowledge so that model-based predictions are “right for the
right reasons” [Kirchner, 2006]. Only the latter is likely to
provide insight into pressing concerns such as system non-
stationarity [Milly et al., 2008] and the various types of
predictability problems (novel phenomena versus future
events [Kumar, 2011]).
[69] Given this perspective, we must be able to establish

whether a model structure is adequate to the task of simu-
lating system behaviors under past, current, and potential
future conditions for both similar and relatively different
locations and/or modeling conditions [Klemes, 1986], a ques-
tion that largely motivates the “Prediction in Ungaged Basins”
initiative [Sivapalan et al., 2003]. In particular, the epistemic
question regarding completeness and adequacy of our char-
acterization of the system “How can we knowwhen important
physical structures, states and processes, spatial variability,
and process interconnections are not included (or not
included correctly) in the model?” is of critical importance.
To address this, we must ask the following questions
regarding evaluation and diagnosis:
[70] 1. How can we know when the behaviors of states

and fluxes of interest are simulated with sufficient accuracy
and precision?
[71] 2. When deemed inadequate, what are the underlying

cause(s) of inadequate model performance?
[72] 3. When deemed adequate, how can we know when

models are not overly complex?
[73] In this context, we believe that the following issues

require detailed attention.

5.1. Model Evaluation Needs to Be Better Structured

[74] To address question 1 above requires a sufficiently
well posed basis for model evaluation. It is clear that any
single metric will not generally provide a sufficient basis for
characterizing all relevant aspects of model performance and
instead some combination of hydrological and statistical
metrics will be necessary. In this regard, what seems neces-
sary is a general hierarchical system of metrics that covers the
dimensions of space, time, state/process, and application.
Here, we must be concerned with which, and how many,
metrics are necessary and sufficient to characterize adequacy
in model performance. More specifically, we must be
concerned with designing such metrics to clarify the causes
of model inadequacy [Gupta et al., 2008; Clark et al.,
2011b]. While acceptance of a general system may be
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difficult to achieve across modeling communities (given their
diverse needs), we believe this to be an important goal worth
striving toward. As it stands, in using measures such as mean
squared error (MSE), cross-correlation coefficient, and other
similar statistics across virtually all modeling communities
we are already doing something like this, albeit crudely
(see discussion of MSE decomposition in Gupta et al.
[2009]), while to a large extent ignoring the very real pro-
blems associated with such poorly informative metrics.
[75] In this context, then, diversity seems important, as it

will make it more difficult to “win the game” via calibration,
by helping to ensure that models have a complete represen-
tation of system behavior. For example, bucket-style SW
models with limited representation of spatial variability
(both in the vertical and horizontal dimensions) are typically
unable to reproduce observations of internal states and
fluxes. Clearly, the ability to represent observable states and
fluxes should be required by a model used for simulating the
natural system.
[76] Finally, in any real-world application of models, we

must move beyond blind reliance on statistical metrics to
also consider contextual metrics specific to the problem at
hand; our vision of a hierarchical system of metrics does not
preclude (and even encourages) developments relevant and
specific to each area or problem.

5.2. Methods for Diagnosing Epistemic Cause
Must Be Developed

[77] Question 2 above points to the basis for improving
understanding by revealing where “gaps” in knowledge
exist. While numerical issues, deterministic bias in model
equations, insufficient detail in spatial variability structure,
and underlying random (aleatory) causes are receiving
attention, it is to the problem of underlying epistemic cause
(things we could in principle, but do not in practice, know)
that our collective brainpower, curiosity, and investigation
must be directed. While we are certainly not alone in saying
this, we point out that we specifically need to understand
how an epistemic cause can be detected and characterized by
“bringing the model up against the data.” Fundamentally,
this must be possible for any kind of structural problem that
has an impact on model behavior; if it has an impact then it
must be detectable; the challenges are in how to detect it,
characterize its impact, attribute its cause, and correct it.
[78] In this regard, methods from the fields of nonlinear

time series analysis [Kantz and Schreiber, 2004], Bayesian
belief networks [Pearl, 1986], graph theory [Gerasoulis and
Yang, 1993], information theory [Cover and Thomas, 2006],
and manifold learning [Costa and Hero, 2004] are likely to
prove useful. In particular, we conjecture that insights may
specifically be gained by comparing model-inferred and
data-inferred characteristic behaviors (signature patterns) to
detect when aspects of one are missing from the other
[Gupta et al., 2008].

5.3. Methods for Establishing Appropriate Model
Complexity Must Be Refined

[79] Question 3 above points to the basis for establishing
just how much model structural detail is relevant to the level
of performance adequacy desired. Clement [2011] poses this
as “How should we decide how much is enough?” Here one
seeks to balance increasing model complexity against
diminishing understandability and increasing uncertainty of

the conceptual physical and process structure during inverse
estimation. In this regard, it is common to start from simple
conceptual models and tools (mathematical and computa-
tional) and build detail. Clearly, perspective (engineering,
physical-science, systems-science) has an impact on the
decision.
[80] However, more difficult is the issue of whether

increasing model complexity has significant impacts on
simulations of important but unobserved system behaviors.
Information gained from modeling does not always increase
with the level of model complexity (or adequacy), especially
once a certain level of complexity is attained [see Clement,
2011, Figure 4]. This is relevant when aspects of a model
established based on prior information (theory and qualita-
tive observations of system properties other than inputs,
outputs, and state variables) cannot be quantitatively tested
against data; for example, “actual evapotranspiration” is
commonly unobserved. Similarly, this is always true of
model extrapolations such as projections into the future.
In this regard, sophisticated methods of sensitivity analysis
[Saltelli et al., 1999; Rosolem et al., 2012] have shown
promise in detecting when increasing model complexity
provides no tangible benefit. Further development and crea-
tivity is needed here.
[81] Additionally, it may be useful to consider model

adequacy (or complexity) from the Bayesian perspective in
terms of the probability that a model is either inadequate or
“more-than-adequate” (overly complex) given available data
(quantity and quality), information, knowledge, and project
objectives. To achieve this, one must understand what kinds
of data/information/knowledge can help to limit the devel-
opment of overly complex models and how model adequacy
can be improved. Clark et al. [2011b] note that assessment
of model adequacy “must be done thoughtfully, without
imposing simplistic solutions on complex problems,” as
practical issues of data availability and data quality inevitably
constrain our ability to meaningfully discriminate among
competing hypothesis of system behavior. The Bayesian
perspective naturally balances prior knowledge with data
uncertainty, as strong new evidence is required to invalidate
strong prior expectations. An advantage of model selection
based on the marginal likelihood value is that it helps to
prevent overfitting to the data used for model identification
and can objectively point to the most appropriate model (of a
set) given the information content of the data (Schoups, G.,
and J. A. Vrugt, Bayesian selection of hydrological models
using Sequential Monte Carlo sampling, Water Resour. Res.,
in review, 2012).
[82] Of course, in the context of decision-making, a

relevant question is “Who should decide how much is
enough [Clement, 2011]?” Here, we refrain from taking
sides between the engineering, physical-science, and systems-
science perspectives but suggest that if all of these perspectives
are suitably encapsulated in a hierarchical system of metrics
(as expressed above) then a moremeaningful (better informed)
answer to the model structural adequacy question can be
arrived at in any specific situation.

5.4. Methodological Approaches Must
Be Multihypothesis in Nature

[83] In learning from data, it seems clear that much
can be gained by combining “bottom-up” and “top-down”
approaches to progressive model development; see
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recommendations of the recent workshop on modeling of
complex systems for subsurface fate and transport [U. S.
Department of Energy, 2010]. Evolutionary science sug-
gests that any single diagnostic path along a model evolution
tree can lead prematurely to a dead end (locally optimal
solution), while some previously rejected branch of the tree
may ultimately lead to a more satisfactory solution. Top-
down investigations are therefore likely to achieve more
power by maintaining several parallel lines of investigation
beginning with multiple prior conceptualizations [Clark
et al., 2011b].
[84] In this regard, we risk stating the obvious fact that

when exploiting prior information we must be careful to not
become trapped by personal interpretations of such priors.
As models become progressively more complex relative to
the data (see need for hyperresolution models proposed by
Wood et al. [2011]), they become progressively harder to
falsify, both by becoming more correct (adequate) and by
requiring exponentially larger amounts and types of data to
be tested against. Unavoidably, therefore, the process of
testing will be unable to provide a “complete” test of the
model [Clark et al., 2011b]. Here again, a structured hier-
archy will help to establish the limits of testing, so that
diagnostic interpretations drawn from data are limited to
only those aspects of the model that the data can penetrate
(inform) and no further.

6. Concluding Remarks

[85] To conclude, we reiterate that a unifying framework
for representing model structural development, and a common
perspective on the problems of model structure adequacy, can
help provide a basis for collective progress toward answering
the question “How can we use data to detect, characterize
and resolve model structural adequacy?” We present a
framework, consisting of five formal steps, as a basis for
further discussion, and pose four research issues that require
immediate and in-depth investigation. Our hope is that this
will promote collaboration and catalyze rapid progress.
[86] From a practical perspective, as we move forward, it

will be important for each community to consider whether
or not it has become myopic in its perspective. Specifically,
are there some steps in the model building process that are
being given too much attention, while other areas are being
systematically ignored? In SW it is obvious and necessary
to question the continued use of “bucket-style” models,
given the limited ability of bucket-style models to represent
the myriad of hydrologic processes that occur in natural
catchments. In THM we may question whether improving
grid-scale representations of vertical hydro-meteorological
processes in land-surface models is the most critical current
research task as long as representations of spatial variability
remain so poor. In UZ we may question whether soil
hydraulic functions are the most important component of
structural uncertainty when issues regarding preferential
flow, the importance of hysteresis, and the validity of
Richards’ equation over the entire range of modeled soil
moisture values, need to be better addressed. In GW we
may question whether the spatial representation of hydro-
geological structure constitutes the most important source of
structural inadequacy, given that Darcy’s Law ignores pore-
scale processes and may not be applicable under all the flow
conditions to be simulated, and that preferential flow paths

can give rise to systematic model–data mismatch in aspects
such as tracer arrival and contaminant transport.
[87] Beyond all of this lies the critical issue of data ade-

quacy, a topic complementary (arguably dual) to that explored
in this paper. This issue will involve consideration of both
measurement noise and data informativeness (type, amount,
spatiotemporal resolution, support, and extent) and of the
related problem of designing adequate observational strate-
gies (the observational model) appropriate to the system and
problem at hand. As with model adequacy, the issue of data
adequacy must inevitably be pursued in an iterative manner.
[88] In conclusion, advancing the science of terrestrial

hydrology requires that we adopt a more comprehensive and
better-structured assessment of model adequacy. Since each
modeling community has tended to place different emphases
on different kinds of model adequacy, there exists tremen-
dous scope to learn from each other and to collectively
improve the scientific fidelity of our models. Ultimately, a
framework that adequately treats and encapsulates both
structural uncertainty and forcing data uncertainty must be
pursued. In doing so, a systematic characterization of dif-
ferent aspects of model structural adequacy will help by
explicitly recognizing the role of each aspect in shaping the
overall adequacy of the model.

Appendix A: Model Structural Error
Versus Adequacy

[89] The term “model structure error” has become com-
mon currency [e.g., Beven, 2005]. However, the term “error”
implies the existence of some “true” value from which the
difference can (in principle) be measured. Since any model
is necessarily a simplified and “analogous” representation of
reality, the notion of a “true model” (and its counterpart,
“model error”) is in some sense a contradiction in terms.
[90] A more coherent concept is “model structure ade-

quacy” where adequacy has two major attributes, structural
and functional. Structural adequacy can be discussed in terms
of how well the model emulates key “physical structures”
of the system, and functional adequacy in terms of how
well it simulates the spatiotemporal “dynamical” behaviors
of interest.
[91] The interesting scientific investigation, then, is to

what extent enhanced model structural adequacy corre-
sponds to enhanced functional adequacy. Since the goal of
modeling is often to maximize functional adequacy with
minimal structural representation (the principle of parsi-
mony), we need to be clear that the goal of consistency is
also important [Martinez and Gupta, 2011]. This means
that enhanced structural adequacy must imply not just the
representation of additional system features but also
increased consistency in the representation of existing system
features. This distinction is especially important for out-of-
sample prediction problems (such as in ungauged basins or
climate change scenarios), where the value of functional
adequacy (determined on existing data sets) can be consid-
erably less than the value of structural adequacy.
[92] Finally, in promoting the term “adequacy” we do not

mean the statistical notion of model adequacy used often in
evaluating regression models, defined below:

padeq ¼ 1� Q OFmin pð Þ;No � Np

� �
;
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where Q(�) is the c2 cumulative density function of the
weighted sum of optimized squared errors objective function
OFmin(p) for parameter vector p with No � Np degrees of
freedom, No being the number of observations, and Np being
the number of calibration parameters [Hollenbeck and Jensen,
1998a]. This statistical metric is sensitive to outliers, does not
differentiate between structural and functional adequacy, and
assumes the mismatch between model and data to originate
from model deficiencies only.
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