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Abstract

In this paper we describe an algorithmic framework for a multi-modal
logic arising from the combination of the system of modal (epistemic)
logic devised by Meyer and van der Hoek for dealing with nonmonotonic
reasoning with a deontic logic of the Jones and Pörn-type. The idea
behind this (somewhat eclectic) formal set-up is to have a modal frame-
work expressive enough to model certain kinds of deontic defeasibility, in
particular by taking into account preferences on norms. The appropriate
inference mechanism is provided by a tableau-like modal theorem proving
system which supports a proof method closely related to the semantics
of modal operators. We argue that this system is particularly well-suited
for mechanizing nonmonotonic forms of inference in a monotonic multi-
modal setting.

1 Introduction

In the last few years application of defeasible (nonmonotonic) reasoning meth-
ods to normative rules has become a major topic in the study of norms and
normative reasoning. Defeasible reasoning methods have been proven to be able
to cope with a variety of important issues. A number of different approaches to
formalizing defeasible deontic reasoning have been proposed and several frame-
works have been exploited (see e.g. [1, 2, 3, 4, 5, 6, 7]). It turns out, however,
that not much effort to account for deontic defeasibility in a computationally
oriented manner has been made until now. This can partly be traced to the
fact that usual nonmonotonic reasoning methods are not well-suited to com-
putational treatment. On the other hand, it has been argued (see [6]) that
computational approaches to deontic defeasibility, e.g. in a logic programming
setting, do not fit in with existing inference techniques from the field of non-
classical logic theorem proving. In this paper we shall present a computational
framework for deontic defeasible reasoning based neither on logic programming
nor on current nonmonotonic formalisms but on a system of modal (epistemic)
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logic devised by Meyer and van der Hoek [8] for dealing with nonmonotonic
reasoning by monotonic means. The interesting point is that we extend Meyer
and van der Hoek’s system to a multi-modal system which subsumes a deontic
logic of the Jones and Pörn-type [9, 10]. The idea behind this (somewhat eclec-
tic) formal set-up is to have a modal framework expressive enough to model
certain kinds of deontic defeasibility, in particular by taking into account pref-
erences on norms, and that can be easily housed in the computational setting
provided by the KEM theorem prover for (normal) modal logics presented in
[11]. The paper is organized as follows. In the next two sections we provide a
concise overview of Jones-Pörn’s and Meyer-van der Hoek’s logics. In section
4 we provide some hints about how represent defaults in Meyer van der Hoek’s
modal setting. In section 5 we shall outline the multi-modal system resulting
from combining the above logics. In section 6 we shall provide a brief descrip-
tion of the computational framework KEM . In sections 7, 8 and 9 we shall
show how all the above mentioned systems can be accommodated in KEM ’s
computational setting. Finally in section 10 we shall discuss reasoning with
preferences in such a setting.

2 Deontic Logic

The deontic basis of our system is provided by Jones and Pörn’s [9, 10] deontic
logic DL, an extension of standard deontic logic (SDL) which incorporates,
besides the normal deontic operators O

i and P
i, the deontic operators Os and

P
s. OiA and P

iA (at a world w) mean (as in SDL): A holds in all, respectively
some, of w’s deontically ideal versions. OsA and P

sA (at a world w) mean: A
holds in all, respectively some, of w’s “sub-ideal versions” (intuitively, a sub-
ideal version of w is a world where not everything that is ideal in w holds). DL
allows us to define the following notions:

• NDA =df (OiA ∧ OsA) (Deontic Necessity)

• OTA =df (OiA ∧ P
s¬A) (Ought).

Since DL is a straightforward extension of SDL both Oi,Pi and Os,Ps behave
as normal KD-modalities. A model for DL is thus a structure:

〈W,Ri, Rs, υ〉

where Ri, Rs ⊆ W × W are serial (non reflexive) relations on W (intuitive
reading: wRiv = v is an ideal version of w, wRsv = v is a sub-ideal version of
w), subject to the following conditions:

C1: Ri ∩ Rs = ∅;

C2: {〈w,w〉 : w ∈ W} ⊆ Ri ∪ Rs.

The meaning of C1 and C2 is that there cannot exist ideal worlds that are also
sub-ideal, and every world is either ideal or sub-ideal relative to itself (notice



that this amounts to introducing some form of reflexivity in the model). υ is
as usual with the following clauses for Oi and Os respectively:

|=w O
iA ⇔ ∀v ∈ W : wRiv, |=v A

|=w O
sA ⇔ ∀v ∈ W : wRsv, |=v A.

3 A Modal Logic for Defeasible Reasoning
(MDL)

Nonmonotonic reasoning is concerned with reasoning about and with defeasible
information. In [8] this is modelled by a system of modal logic incorporating,
besides the standard modal operators ✷ and ✸, n operators P1 . . . Pn which
refer to “preferred” subsets of the set W of (epistemically) possible worlds.
PiA (1 ≤ i ≤ n) means: A holds in all the i-preferred worlds (i.e. all the
worlds in the set Σi). Axiomatically, such a system is obtained by adding to
the standard S5 system the following axioms:

1. ✷PiA ≡ PiA

2. ¬Pi⊥ → (PiPjA ≡ PjA)

3. ¬Pi⊥ → (Pi✷A ≡ ✷A)

4. ✷A → PiA (1 ≤ i ≤ n).

It turns out that this system (Meyer and van der Hoek’s S5P(n), henceforth
referred to as MDL = modal default logic) is that of a multi-modal K45/S5
system with ✷ and ✸ behaving as S5 modalities and the Pi behaving as K45
modalities. A model for MDL is thus a structure

< W, Σ1, . . . ,Σn, R, R1, . . . , Rn, υ >

where Σi ⊆ W are subsets (possibly empty) of preferred worlds; R ⊆ W × W
is the standard S5 accessibility relation on W ; Ri = Σ × Σi ⊆ R is a K45 (i.e.
transitive and euclidean) accessibility relation on Σi; and υ is as usual with the
following additional clause:

|=w PiA ⇔ ∀v ∈ W : wRiv, |=v A, (1 ≤ i ≤ n).

4 Representing defaults in MDL

According to [8] default reasoning is treated by translating the usual default
rules in the MDL language as follows. Reiter’s classical rule A:B

C
is trans-

lated into A ∧ ✸B → PiC. This is read as “if A is true and B is consid-
ered possible, then C is preferred (practically believed)”. Similarly, normal
defaults become A ∧ ✸B → PiB, and multiple defaults A1 ∧ ✸B1 → P1C1,



A2 ∧ ✸B2 → P2C2. . . where P1 and P2 are preference operators which can be
associated either with the same cluster or with distinct preferred sets. In [8]
this representation is extended with a mechanism for belief revision to obtain
defeasibility. We propose a different solution, where defeasibility is obtained
by analyzing defaults and assigning indices to them, according to the following
definition. Let the input of our system be a knowledge base consituted of two
sets of formulas: a set F of facts, and a set D of normal defaults:

A : B

B
.

Let each default A:B
B

in D be translated as

✷(A → B)

that we abridge as
A ⇒ B.

Let D′ be the set of all such formulas and let S1, . . . , Sn be all maximal subsets
of D′ which are consistent with the facts (i.e. Si ∪ F is consistent and for
no Sj , Si ⊆ Sj). The key idea is that of introducing an operator Pi in the
consequent of every formula in Si, thus obtaining A ⇒ PiB for each formula
A ⇒ B in Si. Let our translated knowledge base be F∪DM , where DM denotes
the set of modal defaults resulting from D′ by assigning preferences.

As a result of this translation, we obtain that (a) the defaults included in
each set Si will be assigned the same preference index while defaults occurring
in different sets are assigned different preference indices (obviously defaults oc-
curring in every set will receive all indices); (b) every inconsistency is avoided,
since inconsistent defaults are assigned to different preferred sets. This ap-
proach recalls the treatment of prioritized defaults of Brewka [12, 13]. Note
that if F ∪ D′ is consistent, then DM = D′. Note also that in our translation
we no longer need the justification part of the default, which was modalized in
[8] as ✸B, since our mechanism for assigning preferences takes care of consis-
tency checks.

The above translation enables us to perform a kind of skeptical default
inference, as the following example shows.

Example 4.1

({p, q}, {
p : r

r
,
r : w

w
,
q : ¬w

¬w
}).

Given this knowledge base, our procedure gives rise to the following translation:

p, q, p ⇒ P{1,2}r, r ⇒ P1w, q ⇒ P2¬w.

Clearly, the above premises imply both P1w, and P2(¬w). Defeasibility is
obtained by revising indices after modifying the knowledge base. Let us assume
that a new fact w is added to our knowledge base, so that we obtain the set

({p, q, w}, {
p : r

r
,
r : w

w
,
q : ¬w

¬w
}).



Clearly, we have now just one set of defaults whose conclusion is consistent
with the facts, that is {p:r

r
, r:w

w
}. Therefore our translation simply gives:

p, q, w, p ⇒ P1r, r ⇒ P1w.

Note that the model just proposed can be extended with mechanisms for order-
ing single defaults, and/or for ordering sets of defaults, possibly on the basis of
the ordering over single defaults (on the combination of consistency check and
ordering, see [12, 13]. We will not consider such mechanisms, which have been
much discussed in the literature, but if such methods were adopted it would be
possible to restrict admitted set of defaults (and the corresponding preference
operators) just to the best (maximal) sets of defaults.

Let us consider a further example to illustrate our method.

Example 4.2 Acting in self-defence

The following knowledge base contains two conflicting rules, one saying that
committing a tort implies a responsibility, the and the other saying that acting
in self-defence implies no responsibility.

1a. John committed a tort.

2a. John acted in self-defence.

3a. People commiting a tort is responsible.

4a. People acting in self-defence is not responsible.

This situation is translated into the following knowledge base

1b. t

2b. d

3b.
t : r

r

4b.
d : ¬r

¬r
.

The corresponding modal translation is

1c. t

2c. d

3c. t ⇒ P1r

4c. d ⇒ P2¬r.

Clearly, this set safely implies the two consequences P1r and P2¬r.



5 A multi-modal MDL/DL system for
defeasible normative reasoning

The idea of treating defeasible deontic reasoning by combining an existing deon-
tic logic with an already existing nonmonotonic formalism has been suggested
by [4, 5]. Following this suggestion, in this section we shall combine MDL with
DL to obtain a formalism suited for dealing with defeasible rules in normative
reasoning. It is immediate to see that the combination of MDL with DL re-
sults in a multi-modal KD/K45/S5 system having ✷,✸, P1 . . . Pn, Oi,Pi,Os

and P
s as its (independent but interacting) modalities. For ease of reference

we shall call this system DDL (defeasible deontic logic). A models for DDL is
a mixed MDL/DL structure

〈W,Σ1, . . .Σn, R, Ri, Rs, R1, · · · , Rn, υ〉

where Σ1, . . .Σn, R, Ri, Rs and Rj , (1 ≤ j ≤ n) are as before. This means,
intuitively, that we have a semantic setting working with several kinds of worlds,
i.e.

• possible worlds

• preferred worlds

• deontic worlds

{

deontically ideal worlds
deontically sub-ideal worlds

for ✷, Pj ,ND,Oi,Os, respectively.
The resources available in DDL allow us to treat some cases involving de-

feasibility, and others appealing to the DL features. For example, the famous
Chisholm paradox can be solved without using defeasibility, but by simply
making use of DL.

Example 5.1 Chisholm Paradox

1. It ought to be that John does not impregnate Suzy Mae.

2. Not-impregnating Suzy Mae commits John to not-marrying her.

3. Impregnating Suzy Mae commits John to marrying her.

4. John impregnates Suzy Mae.

As it is well-known there have been proposed several formalizations of this
celebrated paradox (see [14]). Let us take the following default-like version:

1a. OT¬A

2a.
¬A : OT¬B

OT¬B



3a.
A : OTB

OTB

4a. A

Our F ∪ D′ translation being consistent we simply obtain

1b. OT¬A

2b. ¬A ⇒ P1(OT¬B)

3b. A ⇒ P1OTB

4b. A

which corresponds substantially to the formalization proposed by Jones and
Pörn [9]. In such a case we derive both OTB an OiOT¬B (meaning that in all
ideal situations there is the obligation OT¬B, although in the actual, sub-ideal
situation, it holds OTB).

Let us now consider the following example.

Example 5.2 Acting in different normative systems

1a. If Mustafa is muslim he can be poligamous.

2a. If Mustafa is Italian, he cannot be poligamous.

3a. Mustafa is both muslim and Italian.

This set has the following default–like representation:

1b.
m : P

ip

P
ip

2b.
i : ¬P

ip

¬P
ip

3b. m ∧ i.

The corresponding modal translation is

1c. m ⇒ P1P
ip

2c. i ⇒ P2¬P
ip

3c. m ∧ i.

From this we can derive that according to preference P1 (which gives priority to
religious prescriptions) Mustafa can be poligamous (P1P

ip), and according to
preference P2 (which gives preference to Italian law) he cannot be poligamous
(P2¬P

ip).
Let us finally consider an example which clearly involves not only a conflict,

but also the need to choose between different preferences.



Example 5.3 A question about table manners [2]

1a. A person must use knife and fork when eating.

2a. A person must not use knife and fork when eating asparagus.

3a. A person is eating asparagus.

This set is translated into

1b. e ⇒ P1OTf

2b. e ∧ a ⇒ P2OT¬f

3b. e ∧ a.

In such a case we need to add to our system a mechanism for comparing pref-
erences. Here the preference P2 should be chosen because it is more specific
than P1.

6 The computational framework KEM

In [11, 15] we presented a tableau-like proof system, called KEM which has
been proved to be able to cope with a wide variety of (normal propositional)
modal and multi-modal logics [16]. KEM is based on D’Agostino and Mon-
dadori’s [17] classical system KE, a combination of tableau and natural deduc-
tion inference rules which allows for a restricted (“analytic”) use of the cut rule.
The key feature of KEM , besides its being based neither on resolution nor on
standard sequent/tableau inference techniques, is that it automatically gener-
ates models and checks them for putative contradictions using a label scheme
to bookkeep “world” paths. In this section we shall present KEM in barest
outline. We first recall some basic notions.

Our base language will be a modal propositional language L defined in the
usual way. We shall use the letters A,B, C, ... to denote arbitrary formulas of
L. By a signed formula (S-formula) we shall mean an expression of the form SA
where S ∈ {T, F} and A is a formula of L (intended meaning: TA = A holds,
FA = A does not hold at a given word in some Kripke model). We shall denote
by X, Y, Z arbitrary signed formulas. As usual XC will be used to denote the
conjugate of a S-formula X, i.e. the result of changing S to its opposite (with
the exception of the following S-formulas: T✷A,F✸A,F✷A and F✸A which
also have T✸¬A,F✷¬A,F✸¬A, T✷¬A respectively as their conjugates). Two
S-formulas X, Z such that Z = XC , will be called complementary.

As we have just said KEM approach wants we work with “world” labels. A
“world” label is either a constant or a variable “world” symbol or a “structured”
sequence of world-symbols we call a “world-path”. Intuitively, constant and
variable world-symbols stand for worlds and sets of worlds respectively, while
a world-path conveys information about access between the worlds in it. We
attach labels to S-formulas to yield labelled signed formulas (LS-formulas), i.e.



pairs of the form X, i where X is a S-formula and i is a label. A LS-formula
SA, i means, intuitively, that A is true (false) at the (last) world (on the path
represented by) i. In the course of proof search, labels are manipulated in a
way closely related to the semantics of modal operators and “matched” using
a (specialized, logic-dependent) unification algorithm. That two world-paths i
and k are unifiable means, intuitively, that they virtually represent the same
path, i.e. any world which you could get by the path i could be reached by
the path k and vice versa. LS-formulas whose labels are unifiable turn out to
be true (false) at the same world(s) relative to the accessibility relation that
holds in the appropriate class of models. In particular two LS-formulas X, XC

whose labels are unifiable stand for formulas which are contradictory “in the
same world”. These ideas are formalized as follows.

6.1 Label formalism

Let Ln be a multi-modal language with n distinct operators. For the sake of
the following discussion let us assume that the semantics of Ln is given by a
structure M = 〈W, Σ1, . . . ,Σm, R1, . . . , Rn, υ〉 where W is a (non-empty) set
of possible worlds, Σi ⊆ W (1 ≤ i ≤ m) and Ri ⊆ W × W (1 ≤ i ≤ n). For
1 ≤ i ≤ n let Φi

C = {wi
1, w

i
2, · · ·} and Φi

V = {W i
1,W

i
2, · · ·} be (non empty) sets

respectively of constant and variable world-symbols. Let us define

ΦC =
⋃

1≤i≤n

Φi
C and

ΦV =
⋃

1≤i≤n

Φi
V .

The set ℑ of world-labels is now defined as

ℑ =
⋃

1≤i

ℑi where ℑi is :

ℑ1 = ΦC ∪ ΦV ;

ℑ2 = ℑ1 × ΦC ;

ℑn+1 = ℑ1 ×ℑn.

That is a world-label is either (i) an element of the set ΦC , or (ii) an element
of the set ΦV , or (iii) a path term (k′, k) where (iiia) k′ ∈ ΦC ∪ ΦV and (iiib)
k ∈ ΦC or k = (m′,m) where (m′,m) is a label. According to the above
informal explanation, we may think of a label i ∈ ΦC as denoting a (given)
world, and a label i ∈ ΦV as denoting a set or worlds (any world) in M . A
label i = (k′, k) may be viewed as representing a path from k to a (set of)
world(s) k′ accessible from k. For instance, (wi

2, (W
i
1, w

i
1)) represents a path

which takes us to a world wi
2 accessible via any world accessible from wi

1 (i.e.
accessible from the subpath (W i

1, w
i
1)) according to Ri (notice that the labels

are read from right to left). In what follows we shall use wj(Wj) to generically
refer to a given (any) world quite apart from its i. To facilitate reference we
shall sometimes use different names for different kinds of labels.



A bit of terminology. For any label i = (k′, k) we call k′ the head of i,
k the body of i, and denote them by h(i) and b(i) respectively. Notice that
these notions are recursive: if b(i) denotes the body of i, then b(b(i)) will
denote the body of b(i), b(b(b(i))) will denote the body of b(b(i)); and so on.
For example, if i is (w4, (W3, (w3, (W2, w1)))), then b(i) = (W3, (w3, (W2, w1))),
b(b(i)) = (w3, (W2, w1)), b(b(b(i))) = (W2, w1), b(b(b(b(i)))) = w1. We call each
of b(i),b(b(i)), etc., a segment of i. Let s(i) denote any segment of i (obviously,
by definition every segment s(i) of a label i is a label); then h(s(i)) will denote
the head of s(i). For any label i, we define the length of i, l(i), as the number
of world-symbols in i, i.e. l(i) = n ⇔ i ∈ ℑn. sn(i) will denote the segment of
i of lenght n, i.e. sn(i) = s(i) such that l(s(i)) = n. For any label i, l(i) > n,
we define the countersegment-n of i, cn(i) (i.e. what remains of i after deleting
sn(i)), as:

cn(i) = h(i) × (· · · × (h(sk(i)) × (· · · × (h(sn+1, w0) · · ·) · · ·)(n < k < l(i))

We shall call a label i restricted if h(i) ∈ ΦC , otherwise we call it unrestricted.
We shall say that a label k is i-preferred iff k ∈ ℑi where

ℑi = {k ∈ ℑ : h(k) is either wi
m or W i

m, 1 ≤ i ≤ n},

and that a label k is i-ground (1 ≤ i ≤ n) iff

1. ∀s(k) : h(s(k)) 6∈ Φi
V , and

2. if ∃sm(k) : h(sm(k)) ∈ Φi
V , then ∃sj(k), j < m : h(sj(k)) ∈ Φi

C .

6.2 Unification scheme

KEM ’s label unification scheme involves two kinds of unifications, respectively
“high” and “low” unifications. “High” unifications are meant to mirror spe-
cific accessibility constraints; they are used to build “low” unifications, which
account for the full range of conditions governing the appropriate accessibility
relation. We then begin by defining the basic notion of “high” unification. First
we define a substitution in the usual way as a function

σ : Φ0
V −→ ℑ−

: Φi
V −→ ℑi, (1 ≤ i ≤ n)

where ℑ− = ℑ − ΦV . For two labels i, k and a substitution σ, if σ is a unifier
of i and k then we shall say that i and k are σ-unifiable. We shall (somewhat
unconventionally) use (i, k)σ to denote both that i and k are σ-unifiable and
the result of their unification. On this basis we define several specialised, logic-
dependent notions of both σ “high” (or σL) and σ “low” (or σL) unification
(see [11]). For example, the notion of two labels i, k being σK−, σD−, and
σS5-unifiable is defined in the following way:



(i, k)σK = (i, k)σ ⇐⇒
at least one of i and k is restricted, and
for every s(i), s(k), l(s(i)) = l(s(k)), (s(i), s(k))σK

(i, k)σD = (i, k)σ

(i, k)σS5 = (h(i), h(k))σ.

For example, let i = (w3, (W1, w1)) and k = (W3, (w2, w1)) be two labels to
be unified. They σK-unify to (w3, (w2, w1)) according to the above definition
of σK-unification. Notice that they are also σD-unifiable (this preserves the
obvious relation between the K and D logics). Let us consider now two labels
i = (w3, (W1, w1)) and k = (W3, (W2, w1)). They σD-unify to (w3, (w2, w1))
according to the above definition of σD-unification. They are not, however,
σK-unifiable (according to the second condition of the above definition) since
the segments (W1, w1)), (W2, w1) are not σK-unifiable (by the first condition
of the above definition). The reason is that in the “non idealisable” logic K
the “denotations” of W1 and W2 may be empty (i.e. there can be no worlds ac-
cessible from w1), which obviously makes their unification impossible, while in
the “idealisable” logic D they are not empty, which makes them to be unifiable
“on” any constant. As to the notion of σS5-unification, take i = (w3, (W1, w1))
as before, and k = (W2, (W1, (w2, w1))). These labels σS5-unify to w3 accord-
ing to the above definition of σS5-unification, which for a label of the form
(m′,m) amounts to deleting m from the path to a world m′ (since, if access is
“ubiquitous”, then the “way to” m′ is irrelevant).

For L = K, D, S5 the notion of two labels i, k being σL-unifiable is defined
quite simply as:

(i, k)σK = (i, k)σK

(i, k)σD = (i, k)σD

(i, k)σS5 = (i, k)σS5.

Notice that in the simple cases above (i, k)σL = (i, k)σL (i.e. high and low
unifications are alike). For a more complex case see section 9 below.

6.3 Inference rules

The following formulation uses a generalized “α, β, νi, πi” form of Smullyan-
Fitting’s “α, β, ν, π” unifying notation.

α, i

α1, i

α, i

α2, i
(α)



β, i
βC

1 , k

β2, (i, k)σL

[(i, k)σL]

β, i
βC

1 , k

β2, (i, k)σL

[(i, k)σL] (β)

νi, i

ν0, (m, i)
[m ∈ Φi

V and new] (νi)

πi, i

π0, (m, i)
[m ∈ Φi

C and new] (πi)

X, i XC , i
[i restricted] (PB)

X, i
XC , k

×(i, k)σL

[(i, k)σL] (PNC)

Here the α-rules are just the familiar linear branch-expansion rules of the
tableau method, while the β-rules correspond to such common natural infer-
ence patterns as modus ponens, modus tollens, etc. (i, k,m stand for arbitrary
labels). The rules for the modal operators are as usual. “m new” in the proviso
for the νi- and πi-rule means: m must not have occurred in any label yet used.
Notice that in all inferences via an α-rule the label of the premise carries over
unchanged to the conclusion, and in all inferences via a β-rule the labels of the
premises must be σL-unifiable, so that the conclusion inherits their unification.
PB (the “Principle of Bivalence”) represents the (LS-version of the) semantic
counterpart of the cut rule of the sequent calculus (intuitive meaning: a for-
mula A is either true or false in any given world, whence the requirement that
j should be restricted). PNC (the “Principle of Non-Contradiction”) corre-
sponds to the familiar branch-closure rule of the tableau method, saying that
from the occurrence of a pair of LS-formulas X, i, XC , k such that (i, k)σL

(let us call them σL-complementary) on a branch we may infer the closure
(“×”) of the branch. The (i, k)σL in the “conclusion” of PNC means that the
contradiction holds “in the same world”.

6.4 Proof search

Let Γ = {X1, . . . , Xm} be a set of S-formulas. Then T is a KEM-tree for Γ
if there exists a finite sequence (T1, T2, . . . , Tn) such that (i) T1 is a 1-branch
tree consisting of {X1, i . . . ,Xm, i}, where i is an arbitrary constant label; (ii)
Tn = T , and (iii) for each i < n, Ti+1 results from Ti by an application of a rule
of KEM . A branch τ of a KEM -tree T of LS-formulas is said to be σL-closed
if it ends with an application of PNC, open otherwise. A KEM -tree T is said
to be σL − closed if all its branches are σL-closed. As usual with tableau meth-
ods, a set Γ of formulas is checked for consistency by constructing a KEM -tree
for Γ. It is worth noting that each KEM -tree is a (class of) Hintikka’s model(s)
where the labels denote worlds (i.e. Hintikka’s modal sets), and the unifica-
tions behave according to the conditions placed on the appropriate accessibility



relations. By a KEM − proof of a formula A we mean a σL-closed KEM -tree
for FA, i. Moreover we say that a formula A is a KEM-consequence of a set
of formulas Γ if A occurs in all the open branches of a KEM -tree for Γ. We
now describe a sistematic procedure for KEM . First we define the following
notions.

Given a branch τ of a KEM -tree, we shall call an LS-formula X, i E-
analysed in τ if either (i) X is of type α and both α1, i and α2, i occur in τ ;
or (ii) X is of type β and one of the following conditions is satisfied: (a) if
βC

1 , k occurs in τ and (i, k)σL, then also β2, (i, k)σL occurs in τ , (b) if βC
2 , k

occurs in τ and (i, k)σL, then also β1, (i, k)σL occurs in τ ; or (iii) X is of type
νi and ν0, (m, i) occurs in τ for some m ∈ ΦV not previously occurring in τ , or
(iv) X is of type πi and π0, (m, i) occurs in τ for some m ∈ ΦC not previously
occurring in τ .

We shall call a branch τ of a KEM -tree E-completed if every LS-formula
in it is E-analysed and it contains no complementary formulas which are not
σL-complementary. We shall say a branch τ of a KEM -tree completed if it
is E-completed and all the LS-formulas of type β in it either are analysed or
cannot be analysed. We shall call a KEM -tree completed if every branch is
completed.

At each stage of proof search (i) we choose an open non completed branch τ .
If τ is not E-completed, then (ii) we apply the 1-premise rules until τ becomes
E-completed. If the resulting branch τ ′ is neither closed nor completed, then
(iii) we apply the 2-premise rules until τ becomes E-completed. If the resulting
branch τ ′ is neither closed nor completed, then (iv) we choose an LS-formula
of type β which is not yet analysed in the branch and apply PB so that the
resulting LS-formulas are β1, i

′ and βC
1 , i′ (or, equivalently β2, i

′ and βC
2 , i′),

where i = i′ if i is restricted (and already occurring when h(i) ∈ Φh
C), otherwise

i′ is obtained from i by instantiating h(i) to a constant not occurring in i;
(v) (“Modal PB”) if the branch is not E-completed nor closed, because of
complementary formulas which are not σL-complementary, then we have to see
whether a restricted label unifying with both the labels of the complementary
formulas occurs previously in the branch; if such a label exists, or can be built
using already existing labels and the unification rules, then the branch is closed,
(vi) we repeat the procedure in each branch generated by PB.

The above procedure is based on on a (deterministic) procedure working for
canonical KEM -tree. A KEM -tree is said to be canonical if it is generated by
applying the rules of KEM in the following fixed order: first the α-, νi- and
πi-rule, then the β-rule and PNC, and finally PB. Two interesting properties
of canonical KEM -trees are (i) that a canonical KEM -tree always terminates,
since for each formula there are a finite number of subformulas and the number
of labels which can occur in the KEM -tree for a formula A (of L) is limited
by the number of modal operators belonging to A, and (ii) that for each closed
KEM -tree a closed canonical KEM -tree exists. Proofs of termination and
completeness for canonical KEM -trees are given in [16].



7 KEM for MDL

To extend KEM to MDL we introduce n sets Φi
C (1 ≤ i ≤ n) of preferred con-

stant world–symbols and as many sets Φi
V of preferred variable world–symbols.

Moreover we define the following specialised notions of σL- and σL-unification
for dealing with these sets.

(i, k)σMDL = (h(i), h(k))σ iff

i, or k is i-ground,1 ≤ i ≤ n, or

∃s(i), s(k) : h(s(i)), h(s(k)) ∈ Φi, and

(h(s(i)), h(s(k))σMDL.

On this basis we define the corresponding low unification as:

(i, k)σMDL = (i, k)σMDL.

Here we give an example proof of a characteristic axiom of MDL.

1. F¬Pi⊥ → (PiPjA ≡ PjA) w1

2. T¬Pi⊥ w1

3. FPiPjA ≡ PjA w1

4. FPi⊥ w1

5. F⊥ (wi
2, w1)

6. TPiPjA w1

8. FPjA w1

9. TPjA (W i
1, w1)

10. TA (W j
2 , (W i

1, w1))

11. FA (wj
3, w1)

12. × wj
3

7. FPiPjA w1

13. TPjA w1

14. FPjA (wi
4, w1)

15. FA (wj
5, (w

i
4, w1))

16. TA (W j
3 , w1)

17. × wj
5

The core of the proof is in the application of PB to (3) to obtain (6) and (7).
Is should also be noted that the label in (10) is i-ground due to the label in (5),
which allows us to close the branch ((10) and (11) are σMDL-complementary).
In the right branch the label of (15) is obviously i-ground, which makes the
branch to be closed ((15) and (16) are σMDL-complementary).

8 KEM for DL

In this section we show how to employ KEM to deal with MDL. We first
introduce three kinds of world symbols respectively for:

1. Universal deontic worlds: ΦN = {N1, N2, · · ·} and Φn = {n1, n2, · · ·}

2. Ideal worlds: ΦD = {D1, D2, · · ·} and Φd = {d1, d2, · · ·}

3. Sub–ideal worlds: ΦS = {S1, S2, · · ·} and Φs = {s1, s2, · · ·}.



We define
σ : ΦN → ℑd ∪ ℑs

In order to get the appropriate unifications we need the following substitution:

σ#ΦW = σΦW .

σ# : ΦN → Φd ∪ Φs

: ΦS → Φs

: ΦD → Φd

where
Φd = {ir : r = d} Φs = {ir : r = s}

(i, k)σW = (t × (b(s(i)), b(k))σJ ⇐⇒

l(k) > 1,∃s(i) : ∀s′(i), l(s′(i)) > l(s(i)),

(h(s′(i)), h(k))σ# = (h(s(i)), h(k))σ = t and

(b(s(i)), b(k))σJ otherwise, l(k) = 1

(i, k)σW = t

or

(i, k)σW = (t × (b(i), b(s(k)))σJ ⇐⇒

l(i) > 1,∃s(k) : ∀s′(k), l(s′(k)) > l(s(k)),

(h(i), h(s′(k)))σ# = (h(i), h(s(k)))σ = t and

(b(i), b(s(k)))σJ otherwise, l(i) = 1

(i, k)σW = t

where
(i, k)σJ = (i, k)σD or (i, k)σW .

We are now able to characterize DL by the following notions of σDL-, σDL-
unification:

(i, k)σDL =

{

(i, k)σD

(i, k)σW

and
(i, k)σDL = (i, k)σDL.

To complete the KEM characterization of DL we need the following additional
inference rules which are meant to capture the “meaning” of ND, C1 and C2

respectively:

FNDA, i

F (OiA ∧ OsA), i

X, (S, i)
X, (D, k)

X, (W, (i, k)σDL)
[(i, k)σDL]

νi, i
νC
0 , k

νi, j
r

νC
0 , jr

[(i, k)σDL = j]



where
ir = is if νi = TOiA (FP

iA)
ir = id if νi = TOsA (FP

sA)

and
ix = i : h(i) ∈ Φx, (x ∈ {d, s}).

Obviously each Φr
X ⊆ ΦX . Besides the usual closure rule we introduce the

following
i ∈ Φi, i ∈ Φs

×
.

stating that no world can be at the same time an ideal and a sub-ideal version
of itself.

What follows is an example proof of a characteristic theorem of DL.

1. F (OiA ∧ ¬A) → P
s¬A w1

2. TOiA ∧ ¬A w1

3. FP
s¬A w1

4. TOiA w1

5. FA w1

6. TOiA ws
1

7. FA ws
1

8. TA S1, w
s
1

9. ×

The steps leading to the nodes (1)–(5) are straightforward. The nodes (6)–(7)
come from the application of the rule for C2 since the world denoted by w1

is a sub–ideal version of itself. Closure follows immediately from (7) and (8),
which are σDL-complementary (their labels σDL-unify because of (S1, w

s
1)σ

#).

9 KEM for DDL

In order to extend KEM to deal with DDL we have only to define the following
special unifications:

(i, k)σDDL = (i, k)σS5 ⇐⇒

h(i) or h(k) ∈ Φ0
V

i, k are i-ground, and

(i, k)σS5 6∈ Φd ∪ Φs; otherwise

(i, k)σDDL = (h(i), h(k))σ × (s1(i), s1(k))σ

or

(i, k)σDDL = (cn(i), cm(k))σX where

w0 = (sn(i), sm(k))σDDL

where

(i, k)σX =

{

(i, k)σMDL

(i, k)σDL .



The rules of inference for DDL result now from the combination of the rules
for MDL and DL.

10 Dealing with preferences

In this section we show how the computational framework developed in the
preceeding sections can be used to solve contradictions in the way described in
section 4. As it well known, tableau methods, and in particular KEM , can be
used as model building systems [11]. In what follows we exploit the obvious
fact that the set of formulas in each branch τ of a KEM -tree is consistent (i.e.
it has a model) if τ is open, otherwise it is inconsistent. Since we check sets of
premises for consistency, we first run KEM on the given set and, finally, we
solve contradictions, on each closed branch, by assigning a different preference
to the consequents of the translated defaults implying contradictions. To use
practically this procedure we have to keep trace of dependencies according to
the following definition.

Definition 10.1

• Each formula depends on itself;

• a formula B depends on A either if it is obtained through an application of
the α- νi- and πi-rules or it is obtained through an application of KEM ’s
rules on formulas depending on A;

• a formula C depends on A,B if it is obtained through an application of a
β-rule where A,B are its premises;

• if C depends on A,B then C depends on A and C depends on B

In the course of model construction we shall only keep trace of the dependencies
from the premises, i.e. we avoid all the intermediate formulas. Obviously
in order to solve pairs of complementary formulas and to assign preferences
accordingly, we have to take into account only the premises which essentially
imply one of them.

Let A and B be two complementary formulas in a closed branch τ ; let CA

be the set of premises from which A depends; let CB be the set of premises
from which B depends; let D(CA ∪ CB) be the defaults in CA ∪ CB . Note that,
since facts are assumed to be consistent, the set D(CA ∪ CB), which we call a
culprit set, is responsible for the inconsistency,

We say that a set S ⊆ D is conflict free if it does not contain any culprit
sets. We use KEM inference procedure to find all the D(CA ∪ CB) ⊆ D, and
we use such information to build all maximal conflict free sets S of defaults.
Finally we assign preferences in such a way that all formulas in each S have
the same preference.

We give an example of how we establish consistent subsets and assign pref-
erences.



Example 10.2

Let us consider the following knowledge base (F,D), where F = {p} and D =
{p → q, p → r, p → s, p → (¬q ∨ ¬r) ∧ ¬s}.

1. T q 1
2. T r 2
3. T s 3
4. T (¬q ∨ ¬r) ∧ ¬s 4
5. T¬q ∨ ¬r 4
6. Fs 4
7. F q 2, 4
8. F r 1, 4

On the right column we wrote the dependencies (for the sake of economy we
have deleted the irrelevant steps). We obtain the following inconsistent sets
of defaults: {1, 2, 4} and {3, 4}. Therefore the maximal consistent subsets and
their associate preferences are:

P1 ❀ {1, 2, 3}

P2 ❀ {1, 4}

P3 ❀ {2, 4}.

It is worth noting that the ability of KEM to determine the inconsistent subsets
of a contradictory one is due to its inference rules, in particular PB and the
β-rules.

After assigning preferences, we can query the system whether a formula X is
a consequence of our knowledge base simply by running a refutation KEM -tree
for the set consisting of the premises and XC .

11 Final Remarks

It was not the objective of this paper to develop a theory of defeasible deontic
reasoning. Our motivation was rather practical. We sought for computationally
tractable and easily implementable theorem proving techniques suitable for
dealing with some pieces of normative reasoning involving defeasible rules. The
preceding discussion was thus mainly aimed at showing the potential scope of
application of the method. In effect, we believe that the method for solving
contradictions by assigning preferences outlined in section 10 nicely exploits the
computational and proof-theoretical advantages offerred by the modal theorem
proving system KEM . As we have argued elsewere this system enjoys most
of the features a suitable proof search system for modal (and in general non-
classical) logics should have. In contrast with (both clausal and non-clausal)
resolution methods, and in general “translation-based” methods [18, 19], it
works for the full modal language (thus avoiding any preprocessing of the input
formulas), and it is flexible enough to be extended to cover any setting having



a Kripke-model based semantics (this is clearly shown by our treatment of
Jones and Pörn logic DL where the rules specific for such a logic should take
care not only of the propositional and modal part but also of the structure of
the labels and the relationship between labels and formulas; for example we

added another closure rule i∈Φi,i∈Φs

× which states that no world can be at the
same time an ideal and a sub-ideal version of itself; this result is achieved by
determining when a deontic word is ideally (sub-ideally) reflexive (ir) by means
of another peculiar inference rule). From this perspective our methods is similar
to sequent or tableau proof methods ([20, 22]). Nevertheless, it has several
advantages over most tableau/sequent based theorem proving methods: being
based on D’Agostino an Mondadori’s classical proof system KE, it eliminates
the typical redundancy of the standard cut-free methods and, thanks to its label
unification scheme, it offers a simple and efficient solution to the permutation
problem which notoriously arises at the level of the usual tableau-sequent rules
for the modal operators. However, unlike e.g. Wallen’s [21] connection method,
it uses a natural and easily implementable style of proof construction, and
so it appears to provide an adequate basis for combining both efficiency and
naturalness. (As to the implementation the reader is referred to [15] where a
Prolog implementation is provided, and to [23] where some related issues are
discussed).
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