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ABSTRACT

Time is an important data dimension with distinct charac-
teristics that is common across many application domains.
This demands specialized methods in order to support proper
analysis and visualization to explore trends, patterns, and
relationships in different kinds of time-oriented data.

The human perceptual system is highly sophisticated
and specifically suited to spot visual patterns. For this reason,
visualization is successfully applied in aiding these tasks.
But facing the huge volumes of data to be analyzed today,
applying purely visual techniques is often not sufficient.
Visual analytics systems aim to bridge this gap by combining
both, interactive visualization and computational analysis.

In this paper, we introduce a concept for designing visual
analytics frameworks and tailored visual analytics systems
for time and time-oriented data. We present a number
of relevant design choices and illustrate our concept by
example.

1 MOTIVATION AND BACKGROUND

During the last decade, capabilities to both generate and
collect data have seen an explosive growth. Advances in
scientific and business data collection (e.g., from remote
sensors, from space satellites, or from retail and production
devices as well as growingly complex simulation systems)
have generated a flood of data and information. Advances in
data storage technology such as faster and cheaper storage
devices with higher capacity, better database management
systems, and data warehousing technology have allowed
us to transform this data into “mountains” of stored data.
Such volumes of data and information overwhelm most
traditional manual methods of data analysis such as spread-
sheets, ad-hoc queries, or simple visualizations. The need
for new methods and tools which can intelligently and
(semi-)automatically transform data into information and
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furthermore, synthesize knowledge are a core area of the
emerging field of Visual Analytics.

The basic idea of Visual Analytics (Thomas and Cook
2005) is the integration of the outstanding capabilities of
humans in terms of visual information exploration and the
enormous processing power of computers to form a powerful
knowledge discovery environment. Both visual as well
as analytical methods are combined intertwinedly to fully
support this process. Most importantly, the user is not
merely a passive element who interprets the outcome of
visual and analytical methods but she is the core entity who
drives the whole process.

Time is an important data dimension that is common
across many application domains, like transport, call cen-
ters, retail, production, health care, police, or financial
services as well as for research in medicine, biology, and
economics. Particularly, in the area of simulation systems,
time is central to simulating dynamic system behavior as
reflected by Robinson in his definition of computer-based
dynamic simulation as being “an imitation (on a computer)
of a system as it progresses through time” (Robinson 2004).
Exploring trends, patterns, and relationships are particularly
important tasks when dealing with time-oriented data and
information. In contrast to other quantitative data dimen-
sions that are usually “flat”, time has an inherent semantic
structure which increases its complexity dramatically. The
hierarchical structure of granularities in time, as for exam-
ple minutes, hours, days, weeks, months, is unlike most
other quantitative dimensions. Specifically, time comprises
different forms of divisions (e.g., 60 minutes resemble one
hour while 24 hours resemble one day) and granularities are
combined to form calendar systems (e.g., Gregorian, Julian,
Business, or Academic calendars). Moreover, time contains
natural cycles and re-occurrences, as for example seasons,
but also social–somehow irregular–cycles, like holidays or
school breaks. Therefore, time-oriented data need to be
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treated differently from other kinds of data and demand
appropriate visual and analytical methods to analyze them.

Conceptual frameworks and reference models exist for
both, interactive visualizations (e.g., Card, Mackinlay, and
Shneiderman 1998, Chi 2000, dos Santos and Brodlie 2004)
and analytical methods (e.g., Han and Kamber 2005). Due
to the fact that, on the one hand, reference models and
frameworks for analytical methods often degrade visualiza-
tion to a mere postprocessing activity to represent results
and, on the other hand, visualization reference models and
frameworks often consider analytical methods as side issues,
integrated approaches have been developed (e.g., Fayyad,
Grinstein, and Wierse 2001). However, the specifics of time
are often not reflected appropriately by treating time just
as any other quantitative dimension, both in visualization
and analysis. Usually, sequences of simple <time-point,
value> pairs resemble the data models used for analysis
and visualization. These systems and frameworks could be
improved by considering the specifics of the dimension time
in more depth, like for example support for time intervals
or built-in aggregations along time granularities. To com-
plement this, we propose a concept for the design of visual
analytics frameworks and tailored visual analytics systems
that emphasizes the special role of time. We consider both,
interactive visualization and analytical methods as equally
important and fully integrated parts.

First, we present a brief overview of the structure of
our conceptual framework. Then, we present a number of
relevant design choices for the three main parts (1) inter-
nal data structures, (2) analytical & mining components,
and (3) visualization & interaction components. Finally, a
practical example illustrates our conceptual framework.

2 A CONCEPT FOR DESIGNING A FRAMEWORK

By proposing a concept for the development of visual an-
alytics frameworks and tailored visual analytics systems
for time-oriented data, we want to layout a basis for fur-
ther discussion and implementation. However, we do not
intend to present a general, all-encompassing visual ana-
lytics framework. In the following, we will describe the
overall architecture along with the necessary components
and their functionality in detail. Note, that we do not pro-
pose a particular framework but describe the general steps
and functionality of the involved principal components.
The individual components can be integrated into various
application-specific (simulation) systems. To create a visual
analytics framework or system for time and time-oriented
data, three main tasks need to be performed:

1. Modeling of time and time-oriented data
2. Computational analysis of time-oriented data
3. Interactive visualization of time-oriented data
7

All these tasks are domain-specific and need to be de-
signed according to the data characteristics and the analysis
goals at hand. In the following, we will describe the basic
architecture of our framework including the interplay of its
main components.

2.1 Architecture

Figure 1 shows the basic blueprint of our conceptual frame-
work which combines visual and analytical methods. In
order to be able to support a seamless interplay of these
methods, an appropriate data model is needed. The used
internal data structures reflect this data model in terms
of data structures to store and retrieve time-oriented data
as well as associated metadata. External data structures
in various idiosyncratic formats have to be transformed in
order to comply with the framework’s time model. The
visualization & interaction components are responsible for
representing the stored time-oriented data visually and pro-
viding for suitable interaction possibilities. Both of these
primary functions strongly depend on users’ tasks, goals,
and background. Moreover, the parameterization of the
representation is vital for ensuring effective visualization.
Besides the visual components, non-visual elements are
part of our framework. As the component name implies,
they are in charge of analytical & mining tasks to be exe-
cuted on time-oriented data and are controlled by analytical
parameters.
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internal data 
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time-oriented 
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Figure 1: Architecture of visual analytics framework for
time-oriented data.

After presenting a rough overview of the architecture’s
components, we will now present each of the three major
tasks and their corresponding framework components in
detail. We focus on aspects relevant for modeling and
visually analyzing time and time-oriented data and give an
overview of the corresponding design spaces. An overview
of the complete design space is presented in Figure 3.
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2.2 Modeling of Time and Time-Oriented Data

A useful concept for modeling data and information along
cognitive principles is the pyramid framework (Mennis,
Peuquet, and Qian 2000). The model is based on the
three perspectives where (location), when (time), and what
(theme) on the level of data. Derived interpretations of
these data aspects form objects on the cognitively higher
level of knowledge, along with their classification (tax-
onomy; super-/subordinate relationships) and interrelation-
ships (partonomy; part-whole relationships).

Depending on the phenomena under consideration and
the analysis purpose, different points of view can be taken.
For example, considering distinct conceptual entities that
are related to time (objects in a discrete model) vs. the
observation of a continuous phenomenon, like temperature
over time (values in a continuous model). There cannot
be a single model that is ideal of all kinds of applications.
However, certain fundamental design alternatives can be
identified which characterize time-oriented data models.

First of all, it is important to make a clear distinction
between the physical dimension time and a model of time in
information systems. Many different theories for character-
izing the physical dimension time have been developed and
discussed over literally thousands of years in philosophy,
mathematics, physics, astronomy, or biology. The most
influential theories for natural sciences are probably New-
ton’s concepts of absolute vs. relative time, and Einstein’s
four-dimensional spacetime. What can be extracted as bot-
tom line across many theories is that time is unidirectional
(arrow of time) and that time gives order to events.

When modeling time in information systems, our goal
is not to perfectly imitate the physical dimension time, but to
provide a model that is best suited to reflect the phenomena
under consideration and support the analysis tasks at hand.
Frank presents a taxonomy of time (Frank 1998) which we
will use in a slightly modified and simplified form in order
to ensure practicability.

2.2.1 Modeling the Time Domain

In this section, we will describe the most important aspects of
the design space for modeling time in information systems.
The different aspects that have to be considered are (see
Müller and Schumann 2003 for details):

• Scale: ordinal vs. discrete vs. continuous time
• Scope: time points vs. intervals
• Structure: linear vs. cyclic time
• Viewpoints: ordered time vs. branching time vs.

time with multiple perspectives

What these four aspects do not cover is the hierarchical
nature of time. However, in the light of a visual analytics
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framework for time-oriented data, it is mandatory to let that
fact find its way into the framework design. Therefore, we
describe the fifth design criterion of granularities.

Granularities: none vs. single vs. multiple Ba-
sically, granularities can be thought of as (human-made)
abstractions of time in order to make it easier to deal with
time in every-day life (like minutes, hours, days, weeks,
months). More generally, granularities describe mappings
from time values to larger or smaller conceptual units. For
example, 60 consecutive seconds are mapped to one minute
or five time steps in a discrete simulation model might
relate to one second in physical time. Combining multiple
granularities leads to hierarchical structures that are often
referred to as “calendars” (see Figure 2 for an example of
time granularities and their relationships). Specifically in
simulation systems, the concept of granularity has to be
considered when describing the relationship between sim-
ulation time and physical time. In this regard, the design
space ranges from not considering granularities at all and
the simple case of a single granularity to modeling a fixed
or flexible set of multiple granularities.

After presenting the design space of modeling the time
domain itself, we now move on to the question of modeling
time-oriented data.

Time Domain
Discrete

Chronon
e.g., days

Granularity 1
Granule

e.g., weeks

Granule
e.g., fortnightsGranularity 2

{

C
al

en
da

r

Figure 2: Example of a discrete time domain with multiple
granularities. The smallest possible unit (chronon) is one
day. Based on this, the granularities weeks and fortnights
are defined.

2.2.2 Modeling Time-Oriented Data

As it is the case with modeling time, the design choices for
modeling time-oriented data are domain- and task-specific.
The available modeling approaches are manifold and range
from considering continuous to discrete data models. In
the prior case, time is seen as observational space and data
values that are given relative to it (e.g., time-series in form
of <time, value> pairs). For the latter, data is modeled as
objects or entities which have attributes that are related to
time (e.g., calendar events with attributes “begin” and “end”).
Moreover, certain analytic situations even demand domain
transformations, as for example from the time domain into
the frequency domain (Fourier Transformation).

On a general level, two decisive data aspects are the
number of variables and the frame of reference (Aigner et al.
2007b). In the first case, we differentiate between univariate
and multivariate data which influences the choice of appli-
cable visualization and analytical methods fundamentally.
Compared to univariate data, where many methods have
3
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been developed, the range of applicable methods shrinks
drastically in the case of multivariate data. What should
be considered besides this, is the question of the frame of
reference, that is whether the data are spatial (e.g., georef-
erenced) or abstract.

At this point, we do not go into further detail of char-
acterizing data themselves. Many useful modeling alterna-
tives and reference models have been developed and can be
adopted, as for example continuous models using scalars,
vectors, or tensors, etc. (Wright 2007) or discrete models
using structures like trees, graphs, etc. (Shneiderman 1996).

As already mentioned, we focus mainly on time-related
aspects of data modeling that are particularly important in
the areas of simulation and modeling and refer the inter-
ested reader to the large amount of data modeling literature
available to date. In this regard, we will now discuss the
two aspects of relation to time, and kind of data.

Relation to time: direct vs. indirect In the simplest
case, data values are directly associated to elements of the
time domain model. To be able to model more complex
data to time relationships, so-called temporal primitives
can be used that relate data to (non)continuous subsets of
time. Examples for such temporal primitives are instants
on varying granularities, explicitly modeled intervals (e.g.,
composed of two points in time or a time point and a dura-
tion), or even more complex elements modeling temporal
indeterminacies where time aspects are known only to a
certain degree (e.g., a one minute power outage happened
on May 23rd, 2007, but it is not known when exactly). In
principle, temporal primitives can be divided into anchored
and unanchored ones. Anchored primitives represent ele-
ments whose absolute position in the time domain is known
(e.g., September 14th, 2007) whereas unanchored temporal
primitives are relative amounts of time (e.g., 3 days).

Kind of data: events vs. states The third design
dimension refers to the question of whether events or states
are dealt with. Events, on the one hand, can be seen as
markers of state changes, like for example the departure
of a plane. States, on the other hand, can be characterized
as phases of continuity between events (e.g., plane is in
the air). As one can see, states and events are two sides
of the same medal. However, depending on the modeling
and analytical requirements, the one or the other, or even
a combination of both, might be better suited.

In the previous section, we presented the design space
of time and time-oriented data. All further components of a
visual analytics framework or system are grounded upon the
chosen model of time and time-oriented data. But neither
is it effective, nor possible to realize a general model that
encompasses each discussed aspect in its full depth. For
each specific case, the characteristics of the phenomena
under consideration, analysis and visualization tasks and
goals, as well as issues like memory usage or performance
aspects impose constraints upon applicable data models.
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Depending on these constraints, a system designer can use
the presented design dimensions as practical catalogue for
relevant design choices. An example for a specific time
model designed for the purpose of representing complex
temporal specifications including time indeterminacies is
used in PlanningLines (Aigner et al. 2005). Here, planning
activities are specified by a set of the six time attributes
earliest start, latest start, earliest end, latest end, minimum
duration, and maximum duration. Furthermore, relative
time attributes (e.g., “task A starts 3 days after the end of
task B”) and incomplete specifications are covered. In the
next section, we present a set of analytical tasks particularly
geared towards time-oriented data analysis.

2.3 Computational Analysis of Time-Oriented Data

Data Mining is commonly defined as the application of al-
gorithms to extract useful structures from large volumes of
data (Fayyad, Grinstein, and Wierse 2001, Han and Kamber
2005). It is a multidisciplinary field integrating work from
areas including statistics, machine learning, information re-
trieval, database technology, and neural networks. More
specifically, data mining is mainly concerned with the tasks
of clustering, classification, association-rule discovery, gen-
eralization, and prediction. To adhere to the special role of
time in data mining, the research branch Temporal Data Min-
ing has emerged. For the scope of this paper, we will follow
the grouping of temporal data mining tasks as presented
in Laxman and Sastry (2006): prediction, classification,
clustering, search & retrieval, and pattern discovery.

Prediction An important task in analyzing time-
oriented data is the prediction of likely future behavior by
inferring from data collected in the past and present.

Classification The goal of classification is to au-
tomatically determine which class or category a data set,
sequence, or subsequence belongs to. Examples for this
are speech recognition, gesture recognition, or genome se-
quence classification.

Clustering Clustering is concerned with grouping
data sets, sequences, or subsequences into clusters based on
their similarity. For example, in the analysis of financial data,
clustering could be used to group stocks that exhibit similar
behavior over time. In contrast to classification, where the
classes are known a priori, clusters are not defined upfront.

Search & retrieval This task encompasses searching
for a priori specified queries in possibly large volumes of
data and is often also referred to as “query-by-example”.
Search & retrieval can be applied to locate exact matches
for an example query or approximate matches. In the
latter case, similarity measures are needed that define the
degree of exactness or fuzziness of the search (e.g., to find
customers whose spending pattern over time are similar but
not necessarily equal to a given spending profile).
4
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Pattern discovery In contrast to the previously pre-
sented task of search & retrieval, pattern discovery is con-
cerned with automatically discovering interesting patterns
(without the need for predefining queries). Laxman and
Sartry define the term pattern as a local structure in the
data (Laxman and Sastry 2006). Often, frequently occurring
patterns are of interest, like for example to analyze whether
a TV commercial generally leads to an increase in sales. In
contrast to that, it is often also of interest to discover pat-
terns that occur very rarely because these occurrences can
reveal hostile behavior or failures (e.g., mining for patterns
of network security breaches).

Beyond the mentioned temporal data mining tasks, other
analytical methods, as for example statistical aggregation
operators, are very useful in the context of time-oriented
data. Examples for this are sum, average, min, max, mean,
or median that are applied along time granularities (e.g.,
weekly or monthly mean).

Again, the design and applicability of analytical & min-
ing components in a visual analytics framework or system
are application- and task-dependent. An example for such
a component is temporal data abstraction which can be
considered as classification task. Here, qualitative values
or patterns are derived from current and past situations, as
for example the quantitative variable of body temperature
can be abstracted to the qualitative value “moderate fever
during nighttime” if 37 < body temperature < 38.5 between
8pm and 6am. VIE-VENT (Miksch et al. 1996) is an ex-
ample for a temporal data abstraction system that goes far
beyond this and is applied in the medical domain to com-
pute context-sensitive and expectation-guided abstractions
of ICU measurements.

Note, that we do not aim to provide an exhaustive and
detailed listing of possible analytics or mining tasks, but
give a brief overview of major task groups in the analysis
of time-oriented data to aid system designers in assessing
analytical methods needed for the tasks and goals of users.
Apart from the presented techniques, other, mainly statistical
methods to analyze time-oriented data exist, as for example
extensions of principal component analysis (PCA) (Aigner
et al. 2007a). Next, we will discuss the third part of our
conceptual framework that is concerned with interactive
visualization.

2.4 Interactive Visualization of Time-Oriented Data

When building a visual analytics system for time-oriented
data, we have to deal with the aspects of visualizing and
communicating time, data related to time, analysis and
visualization parameters, as well as the analysis process.
While the first two tasks are quite obvious, visualization
and analysis parameters together with the analysis process
also need to be regarded appropriately in systems that aim
to fully integrate interactive visualizations and analytical
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methods. When we are using the term visualization in this
section, we always refer to interactive visualization that
facilitates active exploration and control by the user.

2.4.1 Visualizing Time and Time-Oriented Data

Visualizing Time First, the time domain itself must be
represented visually in order to create a reference system
with respect to which time-oriented data is visualized. To
make the abstract dimension time visible, some kind of
mapping has to be applied. For visual representation, two
fundamental ways of mapping exist:

1. Time → Space (e.g., 2D time-series plot)
2. Time → Time (e.g., animation)

When space is used to convey time, time-oriented data is
represented in static images that do not change automatically
over time. The most common choice is using position and
length on a common time scale that represents a certain
portion of the time domain. However, not only straight lines
(time axes) can be used, but also layouts in rows, columns,
or both (like the typical monthly calendar layout), circular
or spiral layouts, and other kinds of patterns as for example
in pixel-oriented visualizations (Keim 2000). Besides these
explicit positional layouts, time can also be represented
using other visual variables, as for example angle, slope, line
thickness, transparency, color, connection, or textual labels.
In contrast to that, representations that follow the second
mapping of time→time, use the physical dimension time
to convey the time dependency of the data (representations
that change automatically over time such as slide shows
or animations). Distinguishing between these mappings is
crucial for Visual Analytics, because different tasks and
goals are supported. Dynamic representations are well
suited to convey the dynamics of the general development
of the analyzed data over time. Static representations show
information of different points of time on one screen, which is
advantageous to fully concentrate on the data and to compare
different parts of the time domain directly. Both kinds of
mappings may provide means for interactive manipulation
as for example widgets to control animation speed or to
change cycle lengths in a spiral representation. Note that
there might also exist hybrid forms which combine both,
mappings of time→time and time→space.

Visualizing Data Related to Time Second, besides
defining an appropriate representation of time itself, visual-
izing the data that are related to time is a key concern. Here,
we have taken into account the characteristics of the data,
as referred to in Section 2.2.2. An example for this is the
distinction of qualitative and quantitative data that is particu-
larly interesting when designing and selecting visualization
methods. Qualitative data refers to data typically gathered
on nominal scales where no ordering or arithmetic can be
5
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applied. In this case, often layout algorithms are applied to
position elements corresponding to some defined criteria,
for example to avoid overlaps. A well-known example for
this kind of data are project plans that are visualized via
Gantt charts where individual project tasks are represented
as bars along time. Quantitative data values can be directly
mapped to visual variables such as position (e.g., time-series
plot), length (e.g., bar plot), and orientation (e.g., glyphs).

A design choice for visualizations that carries a lot
of implications upon implementation is whether 2D or 3D
presentation spaces are used (the dimensionality of the rep-
resentation). Again, whether or not it makes sense to exploit
three dimensions for visualization depends heavily upon the
data to be represented and the analysis tasks to be performed.

Interaction and the Role of the User Interaction
methods and navigation are essential to explore the data
as well as the parameter space. Moreover, it is important
that these methods are designed according to user’s de-
mands. Interacting directly with the visual representation
and the analytical & mining methods provides more con-
trol and tighter feedback for the human analyst. This must
also include interactive parameterization of both, visual and
analytical methods as discussed in the next section.

Navigation methods for large information spaces are
decisive for analysis environments that support exploration.
In parallel, they should allow for visual overviews as well as
the ability to drill down into areas of interest while preserving
orientation within the information space. A helpful principle
concerning user interaction tasks is Shneiderman’s “visual
information seeking mantra” overview first, zoom and filter,
then details-on-demand (Shneiderman 1996).

Moreover, user’s tasks and goals determine the adequate
choice of visualization methods. For example, if we want
to identify cycles in the data, suitable representations that
reinforce the visual detection of periodic behavior need to
be chosen. The SpiralGraph technique (Weber, Alexa, and
Müller 2001), for instance, maps time-oriented data onto a
spiral and uses interaction and animation to detect previously
unknown cycles in the data.

2.4.2 Visualizing Parameters and the Analysis Process

As discussed and shown in Aigner et al. (2007a), appropriate
parameterization is needed in order to ensure expressive and
effective visualizations. Similarly, parameters of analytical
methods have an immense influence on the generation of
meaningful outcome. Often, detailed knowledge about un-
derlying algorithms is necessary in order to be able to tune
these parameters properly. Obviously, this limits their us-
ability and poses a barrier for broader usage by non-experts
(i.e., people that are experts in their domain, as for example
criminal investigators, but are not experts in statistics or data
mining methods). Similarly, simulation system behavior is
determined by a set of input parameters that need to be
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configured appropriately. Suitable visual communication
and interaction methods regarding the management of these
parameters can enhance the usability of such systems. Be-
yond that, proper communication of the functionality of the
simulation or analysis process as a whole, beyond regarding
the system as black box, can greatly improve the knowledge
gain and understanding for the user.
A number of practical examples of visualization and interac-
tion methods for time- and time-oriented data can be found
in Aigner et al. (2007b), Müller and Schumann (2003), and
Silva and Catarci (2002). As it is the case with the described
data model and analytics components, it is neither feasible
nor desirable to include every mentioned aspect in a visual-
ization & interaction component. The application designer
has to assess the domain- and task-specific constraints adher-
ing to the problem under consideration and create or select
appropriate methods. An example for specific visualization
& interaction components are VisAxes (Tominski, Abello,
and Schumann 2004). VisAxes comprises implementations
of reusable visualization & interaction components for time-
oriented, axes-based visualizations. They provide means to
navigate through different time granularities (hierarchical
axis), select time intervals to display (scroll axis), or apply
Focus+Context views (focus within context axis).

2.5 Conceptual Visual Analytics Framework

To bring together the framework’s basic structure and the
discussed design aspects, Figure 3 summarizes our con-
ceptual visual analytics framework. With this conceptual
framework at hand, two goals have been achieved: First,
existing frameworks and applications can be characterized
systematically and second, the design and implementation
of specific components and frameworks is guided. Now, we
present a practical example by characterizing an existing
visual analytics system to illustrate the individual design
choices we have put forward.

3 EXAMPLE

To demonstrate the applicability of our conceptual frame-
work, we will systematically analyze the application Time-
Searcher (Buono et al. 2005). We have selected this appli-
cation because it covers all design dimensions (interactive
visual as well as analytical aspects), is well described,
and easily accessible (see <www.cs.umd.edu/hcil/
timesearcher/> for more information and a down-
loadable prototype). TimeSearcher is a visualization and
exploration tool for multiple time-series (see Figure 4). Its
goal is to identify and find familiar patterns in the inves-
tigated data. Three application scenarios, (1) stock price
data, (2) gene expression levels in DNA microarray exper-
iments, and (3) online auction data are discussed in related
publications. For brevity, we will focus on the first appli-
6
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analytical & mining components
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Figure 3: Design space of the conceptual visual analytics framework for time-oriented data.
cation scenario of stock price data in our discussion. In the
following, we will present how TimeSearcher instantiates
our conceptual framework.

3.1 Internal Data Structures: What Do the Models of
Time-domain and Time-oriented Data Look Like?

Scale: discrete Measurements are stored in a regular
temporal manner in form of <time-point, value> pairs.

Scope: point-based Each value corresponds only to
a certain moment in time (e.g., closing price of a stock at
a particular day) and nothing is known about the time in
between measurement time-points.

Structure: linear Time is structured linearly from
the past to the present.

Viewpoints: ordered Only one temporal perspective
is used (valid time).

Granularities: single Values are measured in defin-
able steps of days, weeks, months, or years that are also
used in the visual representation.

Number of variables: multivariate Multiple stocks
and multiple attributes per stock (e.g., opening and closing
prices) can be dealt with.

Frame of reference: abstract The modeled and
visualized data have no spatial attributes.
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Relation to time: direct Measurements are directly
related to values of the time domain (each measurement
belongs to a single value of the time domain).

Kind of data: state The state of the observed variable
is measured at discrete steps in time.

3.2 Analytical & Mining Components: What Kind of
Analytical Methods are Applied?

Temporal data mining tasks: search & retrieval
Basically, two options for data querying are offered by
TimeSearcher. First, the “TimeBox query” allows for the
specification of a rectangular query region that defines both,
a time period and value range of interest. All time-series
that comply to this query are shown whereas all others are
filtered out. Moreover, multiple timeboxes can be combined
to refine the query further. Second, using a “SearchBox
query” the user can highlight an interesting part (pattern)
of a selected time-series which is then searched for in all
other time-series (see Figure 4). In contrast to the first
query method, no restrictions are imposed on the position
and extent of the pattern in time but it is searched across
the full time and value range of each time-series. Moreover,
the tolerance of the pattern search can be defined by the
user and allows for varying degrees of matching exactness.
7
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Figure 4: (Buono, et al. 2005) TimeSearcher visualization
and exploration tool for multiple time-series. The screen-
shot shows a query-by-example of online auction bid data
over time. A query pattern is defined by the shaded red
box and the found instances of this pattern are highlighted
in red.

3.3 Visualization & Interaction Components: How are
Time and Data Visualized?

Mapping: space TimeSearcher uses a mapping of
time to space and represents data via time-series plots where
horizontal, linear time axes are used.

Type of data: quantitative Numerical values (float)
are dealt with in the application case of stock price data.

Dimensionality: 2D The visual representation uses
a two-dimensional representation space.

Visualizing and communicating analysis parameters
and the analysis process Analysis parameters for both
presented query methods (TimeBox and SearchBox) are set
via direct manipulation by the user. This also includes the
tolerance settings for matching exactness.

In the previous section, we have illustrated the applica-
bility of our conceptual framework via analyzing an exam-
ple system. Similarly, other visual analytics systems can be
characterized along these design dimensions. Furthermore,
application designers can use our conceptual framework as
guide when developing application-specific modeling and
simulation systems.

4 CONCLUSION AND FUTURE WORK

It is widely acknowledged that time is a unique data di-
mension with distinct characteristics. Many visualization,
analysis, and simulation systems deal with time-related as-
pects. However, these systems could be improved by con-
sidering the specifics of time and their implications in a
broader sense. On top of that, an improved integration of
interactive visualization and computational methods would
lead to more powerful and more usable methods.
728
We introduced a conceptual visual analytics frame-
work to give practical hands-on the most important issues
when designing visual analytics frameworks and systems.
Our main aim is to support the special characteristics of
time and time-oriented data. By developing our conceptual
framework, two goals have been achieved: First, to enable
a systematic characterization of existing frameworks and
applications, and second, to guide the design and imple-
mentation of specific components and frameworks. Note
that our conceptual framework outlines a broad design space
and mostly only subsets of the entire spectrum are relevant
for certain application-areas, data, and tasks.

Next steps to be done are the implementation of
the described components according to domain and task-
characteristics and their integration into simulation systems.
Each of the presented parts offers various opportunities for
further work and especially the fruitful and seamless integra-
tion of all components are big challenges. More powerful
and more usable data exploration and knowledge discovery
systems are the goal of these efforts.

As a matter of fact, powerful, human-centered knowl-
edge discovery environments, obtained from the integration
of the best of visual methods and analytical methods seem to
be not only challenging, but also a very promising approach.

ACKNOWLEDGMENTS

This work was partly supported by the program “FIT-IT
Visual Computing” of the Federal Ministry of Transport,
Innovation and Technology, Austria.

REFERENCES

Aigner, W., S. Miksch, W. Müller, H. Schumann, and
C. Tominski. 2007a. Visual Methods for Analyzing
Time-Oriented Data. IEEE Trans. on Visualization and
Computer Graphics. to appear.

Aigner, W., S. Miksch, W. Müller, H. Schumann, and
C. Tominski. 2007b. Visualizing Time-Oriented Data
- A Systematic View. Computers & Graphics 31 (3):
401–409.

Aigner, W., S. Miksch, B. Thurnher, and S. Biffl. 2005.
PlanningLines: Novel Glyphs for Representing Tem-
poral Uncertainties and their Evaluation. In Proc. of
the 9th Intl. Conf. on Information Visualisation (IV05):
IEEE Press.

Buono, P., A. Aris, C. Plaisant, A. Khella, and B. Shneider-
man. 2005. Interactive Pattern Search in Time Series. In
Proc. of the Conf. on Visualization and Data Analysis
(VDA 2005), 175–186: SPIE.

Card, S., J. Mackinlay, and B. Shneiderman. 1998. Readings
in Information Visualization: Using Vision to Think.
San Francisco, USA: Morgan Kaufmann Publishers Inc.



Aigner, Bertone, Miksch, Tominski, and Schumann
Chi, E. H. 2000. A Taxonomy of Visualization Techniques
Using the Data State Reference Model. In Proc. of the
IEEE Symp. on Information Vizualization 2000 (Info-
Vis’00), 69–76: IEEE Computer Society.

dos Santos, S., and K. Brodlie. 2004. Gaining Understand-
ing of Multivariate and Multidimensional Data through
Visualization. Computers & Graphics 28:311–325.

Fayyad, U., G. G. Grinstein, and A. Wierse. 2001. Infor-
mation Visualization in Data Mining and Knowledge
Discovery. San Francisco, USA: Morgan Kaufmann
Publishers Inc.

Frank, A. U. 1998. Spatial and Temporal Reasoning in Ge-
ographic Information Systems, Chapter Different Types
of “Times” in GIS, 40–62. New York, USA: Oxford
University Press.

Han, J., and M. Kamber. 2005. Data Mining: Concepts and
Techniques. San Francisco, USA: Morgan Kaufmann
Publishers Inc.

Keim, D. A. 2000. Designing pixel-oriented visualization
techniques: Theory and applications. IEEE Trans. on
Visualization and Computer Graphics 06 (1): 59–78.

Laxman, S., and P. Sastry. 2006. A Survey of Temporal
Data Mining. Sadhana 31:173–198.

Mennis, J. L., D. Peuquet, and L. Qian. 2000. A conceptual
framework for incorporating cognitive principles into
geographical database representation. Intl. Journal of
Geographical Information Science 14 (6): 501–520.

Miksch, S., W. Horn, C. Popow, and F. Paky. 1996. Utilizing
Temporal Data Abstraction for Data Validation and
Therapy Planning for Artificially Ventilated Newborn
Infants. AI in Medicine 8 (6): 543–576.

Müller, W., and H. Schumann. 2003. Visualization Meth-
ods for Time-dependent Data - an Overview. In Proc.
of Winter Simulation 2003, ed. S. Chick, P. Sanchez,
D. Ferrin, and D. Morrice. New Orleans, USA.

Robinson, S. 2004. Simulation: The Practice of Model
Development and Use. West Sussex, England: John
Wiley & Sons, Ltd.

Shneiderman, B. 1996, September 3–6. The Eyes Have
It: A Task by Data Type Taxonomy for Information
Visualizations. In Proc. of the IEEE Symp. on Visual
Languages, 336–343: IEEE CS Press.

Silva, S. F., and T. Catarci. 2002. Visualization of Lin-
ear Time-Oriented Data: a Survey. Journal of Applied
System Studies 3 (2): 454–478.

Thomas, J. J., and K. A. Cook. 2005. Illuminating the
Path: The Research and Development Agenda for Visual
Analytics. IEEE Computer Science.

Tominski, C., J. Abello, and H. Schumann. 2004. Axes-
Based Visualizations with Radial Layouts. In Proc. of
the ACM Symp. on Applied Computing (SAC04), 1242–
1247: ACM.

Weber, M., M. Alexa, and W. Müller. 2001, October. Vi-
sualizing Time-Series on Spirals. In Proc. of the IEEE
7

Symp. on Information Visualization 2001 (InfoVis01),
7–14.

Wright, H. 2007. Introduction to Scientific Visualization.
Springer.

AUTHOR BIOGRAPHIES

WOLFGANG AIGNER is scientific researcher at the
Department of Information and Knowledge Engineering,
Danube University Krems, Austria and lecturer at Vienna
University of Technology. He received his PhD from
Vienna University of Technology and his main research
interests include Visual Analytics, Information Visualiza-
tion, Human-Computer Interaction, and User Centered De-
sign. He can be contacted at <wolfgang.aigner@
donau-uni.ac.at>.

ALESSIO BERTONE is scientific researcher at the Depart-
ment of Information and Knowledge Engineering, Danube
University Krems, Austria. He is PhD candidate at
the Vienna University of Technology and his main re-
search interests include Visual Analytics, Information Vi-
sualization, Temporal Data Mining, Multirelational Data
Mining and Semantic Web. He can be contacted at
<alessio.bertone@donau-uni.ac.at>.

SILVIA MIKSCH is full professor and head of the Depart-
ment of Information and Knowledge Engineering at Danube
University Krems, Austria. Since 1998 she is head of the
Information and Knowledge Engineering research group,
Institute of Software Technology and Interactive Systems,
Vienna University of Technology. Her main research in-
terests include Information Visualization, Visual Analytics,
Plan Management, and evaluation of Knowledge-Based Sys-
tems in real-world environments (health care). She can be
contacted at <silvia.miksch@donau-uni.ac.at>.

CHRISTIAN TOMINSKI received diploma (MSc) and
doctoral degree (Dr.-Ing.) from the University of Ros-
tock in 2002 and 2006 respectively. Christian is work-
ing in a postdoctoral position at the same university. His
main interests concern visualization of multivariate data
in time and space, visualization of graph structures, and
visualization on mobile devices. He can be contacted at
<ct@informatik.uni-rostock.de>.

HEIDRUN SCHUMANN is full professor at the University
of Rostock. Since 1992 she is heading the Chair of Computer
Graphics at the Institute for Computer Science. Her research
profile covers aspects of Information Visualization and Vi-
sual Data Mining, Mobile Interfaces, Rendering, and Image
Presentation. She was the head of the cross-institutional
research project “MoVi - Visualization of Multimedia In-
formation on Mobile Computer Systems”, supported by the
German Research Foundation (DFG). She can be contacted
at <schumann@informatik.uni-rostock.de>.
29

mailto:wolfgang.aigner@donau-uni.ac.at
mailto:wolfgang.aigner@donau-uni.ac.at
mailto:alessio.bertone@donau-uni.ac.at
mailto:silvia.miksch@donau-uni.ac.at
mailto:ct@informatik.uni-rostock.de
mailto:schumann@informatik.uni-rostock.de

	MOTIVATION AND BACKGROUND
	A CONCEPT FOR DESIGNING A FRAMEWORK
	Architecture
	Modeling of Time and Time-Oriented Data
	  Modeling the Time Domain
	  Modeling Time-Oriented Data

	Computational Analysis of Time-Oriented Data
	Interactive Visualization of Time-Oriented Data
	  Visualizing Time and Time-Oriented Data
	  Visualizing Parameters and the Analysis Process

	Conceptual Visual Analytics Framework

	EXAMPLE
	Internal Data Structures: What Do the Models of Time-domain and Time-oriented Data Look Like?
	Analytical & Mining Components: What Kind of Analytical Methods are Applied?
	Visualization & Interaction Components: How are Time and Data Visualized?

	CONCLUSION AND FUTURE WORK

