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Abstract: Electrocardiogram signals acquired through a steering wheel could be the key to seamless,

highly comfortable, and continuous human recognition in driving settings. This paper focuses

on the enhancement of the unprecedented lesser quality of such signals, through the combination

of Savitzky-Golay and moving average filters, followed by outlier detection and removal based

on normalised cross-correlation and clustering, which was able to render ensemble heartbeats

of significantly higher quality. Discrete Cosine Transform (DCT) and Haar transform features

were extracted and fed to decision methods based on Support Vector Machines (SVM), k-Nearest

Neighbours (kNN), Multilayer Perceptrons (MLP), and Gaussian Mixture Models - Universal

Background Models (GMM-UBM) classifiers, for both identification and authentication tasks.

Additional techniques of user-tuned authentication and past score weighting were also studied.

The method’s performance was comparable to some of the best recent state-of-the-art methods (94.9%

identification rate (IDR) and 2.66% authentication equal error rate (EER)), despite lesser results with

scarce train data (70.9% IDR and 11.8% EER). It was concluded that the method was suitable for

biometric recognition with driving electrocardiogram signals, and could, with future developments,

be used on a continuous system in seamless and highly noisy settings.

Keywords: authentication; biometrics; continuous; electrocardiogram (ECG); identification;

off-the-person; outlier detection; signal denoising

1. Introduction

Biometric recognition is gradually becoming a part of our daily lives, as it replaces common

identification and access control systems based on keys, cards, codes, or passwords [1,2]. While these

can be lost, copied, or stolen, biometric systems are based on intrinsic traits that are always with the

person and ensure the correspondence between the subject’s and the credential’s identities [2,3].

The electrocardiogram (ECG), resulting from the electrical conduction through the heart needed

for its contraction, is one of the most recent traits to be explored for biometric purposes [4,5]. Despite

being far from as developed or widespread as face or fingerprint biometrics, the ECG offers unique

advantages in terms of universality, uniqueness, permanence, and liveness assurance, that attest its

potential for the recognition of individuals [5,6].

The use of the electrocardiogram as a biometric trait was first hypothesised in a 1977 US

military report [7]. Despite the noticeably lesser acquisition quality, when compared with current

measurement systems, ECG was nevertheless considered by this document as a very promising trait.
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Hoekema et al. [8] and van Oosterom et al. [9] strengthened this claim by studying in detail the

intersubject variability of the ECG.

Biel et al. [10] and Kyoso et al. [11,12], from 1999 to 2001, were the first researchers working

on this field. Biel et al. used features directly output by an ECG medical acquisition device, from

Lead I, and performed decisions using Principal Component Analysis (PCA) and Soft Independent

Modelling of Class Analogy (SIMCA), obtaining 100% identification rate (IDR) with 20 subjects.

Kyoso et al. extracted fiducial latency features from CM5 lead signals, and attained 99.5% and 94.2%

IDR (with three and nine subjects, respectively), using Mahalanobis distance and Linear Discriminant

Analysis (LDA).

In opposition to medical signals, off-the-person signals are quickly becoming commonplace.

This designation refers to ECG signals acquired on the fingers or palms of the subjects, using un-gelled

electrodes, for higher acceptability and comfort during acquisition, despite the increasing need to

overcome significant quality deterioration [13,14]. Chan et al. [15] were the first researchers to explore

these acquisition settings for biometrics, with metallic electrodes at the thumbs, obtaining 89% IDR.

Coutinho et al. [16] followed, by acquiring signals from the palms, using a conductive mat next to a

computer keyboard, and reaching 99.5% IDR. More recently, an off-the-person collection was developed

by a group of researchers from the University of Toronto [17] and was used by Louis et al. [18] for

authentication, rendering a 7.89% Equal Error Rate (EER) with 1012 subjects.

ECG, being a continuously available signal, opens possibilities for the development of continuous

or real-time recognition systems, which is especially advantageous for security or surveillance purposes.

Guennoun et al. [19] were the first to explore such systems, for authentication, using fiducial

features and Mahalanobis distance, and made decisions according to the individual matching of

35 consecutive heartbeats, obtaining 0.01% False Rejection Rate (FRR) and 0% False Acceptance Rate

(FAR). Matta et al. [20] pioneered continuous identification, assessing identity every five seconds with

75% IDR, using autocorrelation features and LDA.

Other aspects that have been explored in ECG biometrics pertain to the effects of heart rate

variability, different leads used, and long-term acquisitions. Pathoumvanh et al. [21] verified that the

performance (IDR) of their system, based on continuous wavelet transform features and euclidean

distance, decreased from 97% to 80% when using signals acquired after exercise. Ye et al. [22] observed

that the performance, using Discrete Wavelet Transform (DWT) and Independent Component Analysis

(ICA) features with Radial Basis Function (RBF) Support Vector Machines (SVM), on long-term signals

is consistently worse than short-term.

Fang et al. [23] and Zhang et al. [24] have concluded, respectively, that using one lead renders

significantly worse results than three leads, and that using limb leads such as I or II decreases the

performance relative to the use of chest leads V1 or V2. This proves the additional difficulty placed

upon off-the-person signals.

The state-of-the-art verifies a clear predominance of bandpass, highpass, lowpass, and/or notch

filters for preprocessing of the signals [5,13,14,18,25–34], with fewer researchers opting for line

fitting [35,36], DWT [37–41], or Discrete Cosine Transform (DCT) denoising [42]. Reference point

detection has been performed in most research works [18,31,33,36,43] as well as signal segmentation

in heartbeats [14,18,44] or fixed-size windows [20,30,45].

In what concerns features used, the most frequently extracted and successful were autocorrelation

coefficients [5,25,39,46], Fourier, cosine, or wavelet transforms’ coefficients [22,26,28,30,34,47],

Ensemble Empirical Mode Decomposition (EEMD) [48], averaged ensemble heartbeats [14,27,31,37,42],

and several combinations of fiducial amplitude and time measurements [11,12,20,31,49,50]. Decision

has been mainly performed through Nearest Neighbours or thresholding [5,14,28,32,35,36,51],

SVM [6,22,27,39], or Artificial Neural Networks [40,50,52].

Despite all the evolutions the field has experienced throughout the last two decades, there is still

much to overcome. The initiative described in this paper aims to take a leap forward in off-the-person

ECG biometrics in a driving environment, useful for automatic personalisation of settings, supervision
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of professional drivers in fleets, and modelling of driving patterns for detection of distraction moments

and fatigue-related accidents [53,54]. It achieved this by overcoming unprecedented noise and signal

loss hurdles, characteristic of signals acquired whilst driving, using electrodes embedded seamlessly in

a steering wheel cover. Through this, it also aimed to contribute towards reliable continuous ECG-based

biometric recognition, using signals acquired in more comfortable and seamless configurations.

2. Proposed Methodology

The devised method aimed for the development of a biometric system that works using ECG

signals to frequently recognise the driver. The signals used were acquired continuously and seamlessly

on the steering wheel surface of a car. While, in state-of-the-art research, the contact of the subject

with the sensor is guaranteed, the frequent hand movements required by the driving activity caused

frequent contact loss and saturation periods. These give the signals unprecedented lesser quality,

constituting a challenge for the recognition task (Figure 1).

CardioID SteeringWheel v1

Time (s)

Figure 1. Example excerpt of the signal used, acquired on the steering wheel whilst driving. It is

relevant to remark the evident and unprecedented predominance of noise over the signal, especially

the effect of varying impedance denoted by the frequent saturation periods, which pose significant

threats to the reliability of the recognition process.

After acquisition, the system ensured the relevance of the obtained signal by rejecting samples

acquired when the hands were not on the wheel (confirmed by a hardware lead-on detector).

Continuous contact periods were partitioned into segments of 5 s and overlap of 4 s, to allow for an

initial decision after just five seconds of contact with the wheel, and a renewal of the decision each

subsequent second.

Segmentation:

5 s segments with 4 s overlap

Signal Denoising:

Savitzky-Golay + Mov. Avg. Filter 

Signal Preparation

Feature Extraction:

DCT / Haar / Ensemble Heartbeats
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Amplitude Normalisation:

z-score

Outlier Detection:

Norm. Cross-Correlation Clustering
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Figure 2. Overview of the proposed method, from acquisition to recognition (left), and the detailed

process of the signal preparation block (right).
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The process applied to each five-second frame (Figure 2) is presented in detail over the following

subsections.

2.1. Signal Denoising

Common ECG signals used in prior art for biometrics come from either medical acquisitions or,

more recently, off-the-person settings. Both of these contaminate the signal with noise, however, it is

usually confined to 50/60 Hz (powerline interference) and 0–1 Hz (baseline wander from movement,

breathing, and others) [55,56]. Noise in the acquired driving signals is noticeably more dominant and

less predictable.

Thus, while methods like bandpass filters [14,18,25,27] or DCT denoising [42] have sufficed in the

past, these more adverse signals require methods that make less assumptions on the noise nature and

characteristics. The selected approach consisted of a combination of Savitzky-Golay with a moving

average filter.

Savitzky-Golay [57] is based on least-squares error minimisation, by fitting a smooth polynomial

line among the points in the neighbourhood of a sample and adjusting the latter’s amplitude to

the fitted line’s. This method has excelled, in diverse past applications, in smoothing the signal by

removing high frequency noise without causing distortion [35,58]. The moving average filter, based on

an implementation through convolution using a 1 s window with overlap, served to complement the

action of Savitzky-Golay, by removing low frequency noise, that the latter is unable to clean.

2.2. Signal Preparation

The process of denoising allowed for much cleaner signals. However, distortions like impedance

variations and sensor saturation effects (caused by drivers grabbing the wheel with varying tightness),

were not adequately removed by the previous phase.

Hence, the signal preparation step (Figure 2) served as intermediate process between denoising

and feature extraction, aiming to reject saturation or unacceptably noisy signal segments, which could

harm the recognition task.

2.2.1. R-Peak Detection

The fiducial detection required for the segmentation of heartbeats was performed using the

algorithm of Trahanias [59]. The algorithm is composed of a filtering phase, which computes the

average between the signal after opening followed by closing and the signal after closing followed by

opening. Then, a Peak-Valley Extraction (PVE) phase subtracts the signal after opening and closing

the filtered signal. This combination of morphological operations enhances the sharpest variations on

the signal, which are considered R-peak candidates. Among these, the R-peaks are selected through

adaptive thresholding.

2.2.2. Heartbeat Segmentation

The detected R-peaks were then used to obtain heartbeat segments. The segmentation was based

on a fixed-window cropping of the signal, 0.25 s before each R-peak and 0.40 s after, as an adaptation

of the successful approach proposed by Silva et al. [13]. For all heartbeats analysed during this work,

this technique guaranteed the inclusion of all complete waveforms, regardless of heart rate or the

duration changes it causes.

2.2.3. Amplitude Normalisation

After segmentation, a normalised version y of each heartbeat segment x is obtained through

z-score normalisation [30], by subtracting the segment’s mean amplitude (µ(x)), and dividing by the

standard deviation (σ(x)):

y[n] =
x[n]− µ(x)

σ(x)
(1)
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This method provides greater similarity between cleaner heartbeats in all their extension,

which benefited greatly the proposed method, especially in the step of the outlier detection.

Time normalisation would also be beneficial, due to the varying heart rates while driving. However,

it was discarded as it required the localisation of waveform onsets and offsets—highly unreliable in

these noisy signals.

2.2.4. Outlier Detection and Removal

For the task of identifying and rejecting outliers among the set of heartbeat candidates retrieved

from the five-second segments, a novel approach was devised based on clustering and normalised

cross-correlation.

Designated as NCCC (Normalised Cross-Correlation Clustering), the algorithm is centred on

the assumption that clean heartbeats of a certain subject, in a short period of time, are very similar

between themselves, while false or highly noisy heartbeats are random and different from both clean

heartbeats and other false beats.

NCCC consists of the following steps:

1. Compute the normalised cross-correlation between each template (xi) on the set and each of the

others (xj), with i, j = 1, ..., N. From all coefficients obtained, store in NCCij only the maximum.
2. Get the average normalised cross-correlation for each template:

Ai =
1

N

N

∑
j=1

NCCij; (2)

3. Arrange A in descending order, and set an initial cluster with the n first templates;
4. Get the mean m of the cluster, and compute ǫ = ǫ0 ∗ m2;
5. Add the next template to the cluster if m − Ai 6 ǫ ∧ Ai > 0.5;
6. Repeat steps 4 and 5 until a template is rejected.

In this specific application, n = 3 and ǫ0 = 0.1 were used. NCCC allowed the selection of only

the templates most correlated with the others and, thus, least likely to be an outlier.

2.2.5. Ensemble Construction

The process of signal preparation ends with the construction of an ensemble heartbeat, by

averaging the templates selected by NCCC.

2.3. Feature Extraction

Feature extraction aims to capture the individual information present in each ensemble heartbeat,

minimising the redundant information, to more efficiently discriminate between individuals. Towards

this goal, fiducial and time domain features have been widely chosen on the prior art [29,45,50,60,61].

However, given the variability and noise present in the signals, frequency domain features were

selected from the coefficients of DCT and Haar transforms.

• Discrete Cosine transform: The DCT coefficients were extracted from the ensemble heartbeats.

The coefficients selected correspond to the frequency range [0, 40] Hz (total of 52 features);
• Haar Wavelet transform: The set of detail coefficients of the second level of decomposition with

DWT using Haar wavelets was experimentally selected to serve as feature set for recognition

(total of 163 features).

2.4. Recognition

Given a feature vector, recognition models compute and output scores for the claimed identity

(for authentication tasks) or for each enrolled identity (for identification tasks). The models

explored were:
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• Support Vector Machines (SVM): SVM compute an optimal hyperplane dividing two classes,

ensuring maximum margin between this boundary and the nearest samples. Kernels can be

used to work with non-linearly separable datasets, and multiclass problems can be solved by

combining binary classifiers [62];
• k-Nearest-Neighbours (kNN): kNN is a non-parametric, non-linear classifier. Based on the location

of the object to be classified, kNN will find the k nearest train samples and predict the class most

frequently verified [63];
• Multilayer Perceptrons (MLP): Multilayer Perceptrons are composed by neurons, which apply

non-linear operations to their inputs. These are disposed in an input layer, which receives the

features; an output layer, which outputs class scores; and a variable number of hidden layers

in between. The connections between the neurons have their weights trained through error

backpropagation [63];
• Gaussian Mixture Models - Universal Background Models (GMM-UBM): GMM models the

distribution of the samples of each individual as a set of normal distributions, whose parameters

can be used to classify unknown objects. UBM offers advantages in scarce training situations, by

training the model with all samples first, and only then adapting for each subject [64].

Additionally, after the computation of scores by the decision methods mentioned above, in order

to enhance the performance of the system by taking advantage of the availability of a claimed identity

and the continuous nature of the data, two new techniques were proposed (Figure 2):

• User-tuned authentication: This technique was inspired by the notion of individuality

among subjects exposed on Biometric Menagerie [65,66]. As subjects are unique, user-tuned

authentication used a bespoke threshold/reference for acceptance/rejection for each enrolled

individual, instead of a single threshold shared by all;
• Past score weighting: Outliers are expected to be frequent in highly noisy settings. Past Score

weighting aims to reduce outlier influence by adjusting the most recent score using past scores,

weighted by their recency. With pi(xt) as the probability of the current sample belonging to class

i, the weighted score was computed through:

pw
i (xt) =

1

∑
N
n=0 wt−n

N

∑
n=0

wt−n pi(xt−n) (3)

In Equation (4), N denotes the number of past scores to consider, and score weights wt−n were

computed through a half-Gaussian function with tunable parameters:

wt−n = e
−

(tn−t0)
2

2σ2 (4)

3. Results and Discussion

The proposed method was evaluated with excerpts of a continuous ECG recording, acquired over

a period of approximately six days. Two excerpts, each with duration of 169–367 s, were randomly

selected from two trips of the six drivers and combined in succession to simulate frequent and quick

(15–25 s) driver swaps. The two trips of each driver were selected from different days, to maximise the

time interval between the excerpts, with the exception of one subject, that only performed one trip.

The signal was acquired with a steering wheel cover, including periods of highway and city

driving (higher activity), driver swaps, and idle periods. To the best of our knowledge, no ECG

collection in such settings is yet available for use in biometrics research.

3.1. Signal Denoising

The proposed combination of Savitzky-Golay with a moving average filter (SG + MAF) had

its performance compared with the most successful prior art methods: bandpass filters (BPF) with
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bands 1–40 Hz [18,25,26], 2–40 Hz [49,61], 1–30 Hz [27], and 2–30 Hz [16,29]; Savitzky-Golay (SG) [36];

Discrete Cosine Transform (DCT) [42]; and the combinations of Discrete Wavelet Transform with a

moving average filter (DWT + MAF) [55] and with a highpass filter (DWT + HPF) [40].

The proposed method excelled with both simulated (clean simulated ECG signals using

ECGSYN [67], contaminated with noise expected on driving settings, Figure 3) and real driving

signals (Figure 4), by smoothing the signals and avoiding distortion in the best way.

BPF 1-30

BPF 1-40

BPF 2-30

BPF 2-40

SG

SG+MAF

DCT

DWT+MAF

DWT+HPF

Denoising Performance

Average RMSE

Avg. time
0.58 ms

0.58 ms

0.57 ms

0.58 ms

0.64 ms

1.07 ms

0.06 ms

0.63 ms

1.17 ms

Figure 3. Root mean square error between the clean simulated signals and their versions after

contamination with expected noise and denoising with each method. The times required to perform

the denoising are also presented.
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Figure 4. Denoising results in two example five-second segments (the signals were z-score normalised

for visualisation; (a) first example segment; (b) first segment after denoising; (c) second example

segment; (d) second segment after denoising). The proposed combination of Savitzky-Golay and

moving average filter was able to adequately clean high frequency noise and baseline wander, despite

the persistence of saturation effects.

3.2. Outlier Detection and Removal

The proposed NCCC method was compared with DMEAN [68] in a total of thirty template

sets, extracted from segments 5 s to four minutes long, including six to 249 heartbeat templates each
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(Figure 5). The results were visually analysed, and the number of templates marked as outliers,

the evolution of standard deviation before and after rejection, and the percentage of outliers with

initial standard deviation between templates were recorded.

Despite DMEAN’s proven effectiveness with cleaner ECG signals, NCCC rejected more noisy and

false heartbeats, and more effectively reduced the variance between templates in the set, while keeping

most of the cleaner heartbeats. Nevertheless, it was consistently more computationally expensive

than DMEAN.

NCCC DMEAN

(a) (b)

(c) (d)

Figure 5. Comparison between DMEAN and NCCC, the proposed approach for outlier detection and

removal, with two example template sets (first row: first template set with NCCC (a) and DMEAN (b);

second row: second template set with NCCC (c) and DMEAN (d); dark lines: Selected heartbeats; light

grey lines: Templates rejected as outliers).

3.3. Features and Recognition

The proposed approach was tested for identification and authentication tasks (results presented,

respectively, in Figures 6 and 7), in two settings: the first, using 70% of the data of each subject for train

and 30% for testing, with cross-validation; and the second, using solely the first 30 s of data of each

subject for train.
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Figure 6. Identification rate (IDR, accuracy) results of the proposed method in identification tasks

(left: Results with 70-30 dataset split; right: Results with 30 s train, with and without past score weighting).
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Figure 7. Equal error rate (EER) results of the proposed method in authentication tasks, with and

without user-tuned thresholds (top: results with 70-30 dataset split; bottom-left: results with 30 s train;

bottom-right: results with 30 s train and past score weighting).

As stated in the proposed methodology, for DCT features, the coefficients that correspond to the

frequency range [0, 40] Hz were chosen, as this narrow range contains all useful ECG information.

As for Haar features, the detail coefficients of the various levels of decomposition were evaluated in

cross-validation identification tasks, individually and combined. The set of coefficients of the second

level was found to offer the best combination of better results and reduced dimensionality.

The first setting, 70-30, aimed to allow benchmarking with prior art methods. In both tasks, SVM

was the best option, with results similar to some of the best state-of-the-art methods. There was no

clear difference between using DCT or Haar features, neither in performance nor in extraction and

decision times.

For the scarce data setting, the results were expectedly worse. In authentication, SVM with DCT

features remained the best option, but GMM-UBM offered the best result for identification.

User-tuned authentication and Past Score Weighting brought, as shown, significant and consistent

improvements in the performance results. It is expected that, with the integration of robust

template/model update techniques, these results would experience further improvements.

4. Conclusions

The evident noise predominance over the ECG signals significantly decreased their quality.

Nevertheless, the denoising with Savitzky-Golay and a moving average filter and the signal preparation

process, that included the formulated Normalised Cross-Correlation Clustering outlier detection

algorithm, allowed for the attainment of clean ensemble heartbeats.

These, after feature extraction with Discrete Cosine Transform, and decision with SVM, allowed

for the overall best results in both identification and authentication. Moreover, the proposed

techniques of User-Tuned Authentication and Past Score Weighting significantly enhanced the

method’s performance.

Despite the need for further improvements, especially in continuous settings, this paper proves

the feasibility of off-the-person ECG biometrics in driving settings. Although there are currently no
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signal collections available on these conditions, and benchmarking is thus unreliable, the method

performed similarly to recent state-of-the-art approaches that used much cleaner signals, generally

from medical acquisitions. Thus, the method proved able to recognise individuals using driving ECG

signals, and it paved the way towards robust continuous ECG-based biometrics from seamless and

highly noisy acquisition settings.
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The following abbreviations are used in this manuscript:

BPF Bandpass Filter

DCT Discrete Cosine Transform

DWT Discrete Wavelet Transform

ECG Electrocardiogram

EEMD Ensemble Empirical Mode Decomposition

EER Equal Error Rate

FAR False Acceptance Rate

FRR False Rejection Rate

GMM Gaussian Mixture Models

HPF Highpass Filter

IDR Identification Rate

kNN k-Nearest Neighbours

LDA Linear Discriminant Analysis

MAF Moving Average Filter

MLP Multilayer Perceptron

NCCC Normalised Cross-Correlation Clustering

PCA Principal Component Analysis

RBF Radial Basis Function
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SIMCA Soft Independent Modelling of Class Analogy
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References

1. Agrafioti, F.; Gao, J.; Hatzinakos, D. Heart Biometrics: Theory, Methods and Applications. In Biometrics;

Yang, J., Ed.; InTech: Rijeka, Croatia, 2011; pp. 199–216.

2. Jain, A.K.; Ross, A.A.; Nandakumar, K. Introduction to Biometrics; Springer Science+Business Media, LLC:

New York, NY, USA, 2011.

3. Kaur, G.; Singh, G.; Kumar, V. A Review on Biometric Recognition. Int. J. Bio-Sci. Bio-Technol. 2014, 6, 69–76.

4. Abo-Zahhad, M.; Ahmed, S.M.; Abbas, S.N. Biometric authentication based on PCG and ECG signals:

Present status and future directions. Signal Image Video Process. 2014, 8, 739–751.

5. Agrafioti, F.; Bui, F.M.; Hatzinakos, D. Secure Telemedicine: Biometrics for Remote and Continuous Patient

Verification. J. Comput. Netw. Commun. 2012, 2012, 924791.



Sensors 2017, 17, 2228 11 of 14

6. Li, M.; Narayanan, S. Robust ECG Biometrics by Fusing Temporal and Cepstral Information. In Proceedings

of the 2010 20th International Conference on Pattern Recognition (ICPR), Istanbul, Turkey, 23–26 August 2010;

pp. 1326–1329.

7. Forsen, G.E.; Nelson, M.R.; Staron, R.J., Jr. Personal Attributes Authentication Techniques; Technical Report;

Pattern Analysis and Recognition Corporation, Rome Air Development Center: Rome, NY, USA, 1977.

8. Hoekema, R.; Uijen, G.J.H.; van Oosterom, A. Geometrical aspects of the inter-individual variability of

multilead ECG recordings. Comput. Cardiol. 1999, 26, 499–502.

9. van Oosterom, A.; Hoekema, R.; Uijen, G. Geometrical factors affecting the interindividual variability of

the ECG and the VCG. J. Electrocardiol. 2000, 33, 219–227.

10. Biel, L.; Pettersson, O.; Philipson, L.; Wide, P. ECG analysis: A new approach in human identification.

In Proceedings of the 16th IEEE Instrumentation and Measurement Technology Conference (IMTC/99);

Venice, Italy, 24–26 May 1999; Volume 1, pp. 557–561.

11. Kyoso, M.; Ohishi, K.; Uchiyama, A. Development of ECG Identification System. Jpn. J. Med. Electron.

Biol. Eng. 2000, 38, 392.

12. Kyoso, M.; Uchiyama, A. Development of an ECG identification system. In Proceedings of the 23rd

Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Istanbul, Turkey,

25–28 October 2001; Volume 4, pp. 3721–3723.

13. Silva, H.P.; Fred, A.; Lourenço, A.; Jain, A.K. Finger ECG signal for user authentication: Usability and

performance. In Proceedings of the 2013 IEEE Sixth International Conference on Biometrics: Theory,

Applications and Systems (BTAS), Arlington, VA, USA, 29 September–2 October 2013; pp. 1–8.

14. Carreiras, C.; Lourenço, A.; Silva, H.; Fred, A.; Ferreira, R. Evaluating Template Uniqueness in ECG

Biometrics. In Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics

(ICINCO 2014), Vienna, Austria, 2–4 September 2014; Revised Selected Papers; Filipe, J., Gusikhin, O., Madani, K.,

Sasiadek, J., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 111–123.

15. Chan, A.D.C.; Hamdy, M.M.; Badre, A.; Badee, V. Wavelet Distance Measure for Person Identification Using

Electrocardiograms. IEEE Trans. Instrum. Meas. 2008, 57, 248–253.

16. Coutinho, D.P.; Fred, A.L.N.; Figueiredo, M.A.T. One-Lead ECG-Based Personal Identification Using

Ziv-Merhav Cross Parsing. In Proceedings of the 2010 20th International Conference on Pattern Recognition

(ICPR), Istanbul, Turkey, 23–26 August 2010; pp. 3858–3861.

17. Wahabi, S.; Pouryayevali, S.; Hari, S.; Hatzinakos, D. On Evaluating ECG Biometric Systems:

Session-Dependence and Body Posture. IEEE Trans. Inf. Forensics Secur. 2014, 9, 2002–2013.

18. Louis, W.; Komeili, M.; Hatzinakos, D. Continuous Authentication Using One-Dimensional Multi-Resolution

Local Binary Patterns (1DMRLBP) in ECG Biometrics. IEEE Trans. Inf. Forensics Secur. 2016, 11, 2818–2832.

19. Guennoun, M.; Abbad, N.; Talom, J.; Rahman, S.M.M.; El-Khatib, K. Continuous authentication by

electrocardiogram data. In Proceedings of the 2009 IEEE Toronto International Conference on Science

and Technology for Humanity (TIC-STH), Toronto, ON, Canada, 26–27 September 2009; pp. 40–42.

20. Matta, R.; Lau, J.K.H.; Agrafioti, F.; Hatzinakos, D. Real-time continuous identification system using ECG

signals. In Proceedings of the 2011 24th Canadian Conference on Electrical and Computer Engineering

(CCECE), Niagara Falls, ON, Canada, 8–11 May 2011; pp. 1313–1316.

21. Pathoumvanh, S.; Airphaiboon, S.; Hamamoto, K. Robustness study of ECG biometric identification in heart

rate variability conditions. IEEJ Trans. Electric. Electron. Eng. 2014, 9, 294–301.

22. Ye, C.; Coimbra, M.T.; Kumar, B.V.K.V. Investigation of human identification using two-lead

Electrocardiogram (ECG) signals. In Proceedings of the 2010 Fourth IEEE International Conference on

Biometrics: Theory Applications and Systems (BTAS), Washington, DC, USA, 27–29 September 2010; pp. 1–8.

23. Fang, S.C.; Chan, H.L. Human identification by quantifying similarity and dissimilarity in electrocardiogram

phase space. Pattern Recognit. 2009, 42, 1824–1831.

24. Zhang, Z.; Wei, D. A New ECG Identification Method Using Bayes’ Theorem. In Proceedings of the TENCON

2006—2006 IEEE Region 10 Conference, Hong Kong, China, 14–17 November 2006; pp. 1–4.

25. Agrafioti, F.; Hatzinakos, D. ECG Based Recognition Using Second Order Statistics. In Proceedings of the 6th

Annual Communication Networks and Services Research Conference (CNSR 2008), Halifax, NS, Canada,

5–8 May 2008; pp. 82–87.

26. Belgacem, N.; Nait-Ali, A.; Fournier, R.; Bereksi-Reguig, F. ECG based human authentication using wavelets

and random forests. Int. J. Cryptogr. Inf. Secur. 2012, 2, 1–11.



Sensors 2017, 17, 2228 12 of 14

27. Lourenço, A.; Silva, H.; Fred, A. ECG-based biometrics: A real time classification approach. In Proceedings

of the 2012 IEEE International Workshop on Machine Learning for Signal Processing, Santander, Spain,

23–26 September 2012; pp. 1–6.

28. Matos, A.C.; Lourenço, A.; Nascimento, J. Biometric recognition system using low bandwidth ECG signals.

In Proceedings of the 2013 IEEE 15th International Conference on e-Health Networking, Applications

Services (Healthcom), Lisbon, Portugal, 9–12 October 2013; pp. 518–522.

29. Coutinho, D.P.; Silva, H.; Gamboa, H.; Fred, A.; Figueiredo, M. Novel fiducial and non-fiducial approaches

to electrocardiogram-based biometric systems. IET Biom. 2013, 2, 64–75.

30. Odinaka, I.; Lai, P.H.; Kaplan, A.D.; O’Sullivan, J.A.; Sirevaag, E.J.; Kristjansson, S.D.; Sheffield, A.K.;

Rohrbaugh, J.W. ECG biometrics: A robust short-time frequency analysis. In Proceedings of the 2010 IEEE

International Workshop on Information Forensics and Security, Seattle, WA, USA, 12–15 December 2010;

pp. 1–6.

31. Lourenço, A.; Silva, H.; Fred, A. Unveiling the Biometric Potential of Finger-based ECG Signals.

Intell. Neurosci. 2011, 2011, 5:1–5:8.

32. Porée, F.; Kervio, G.; Carrault, G. ECG biometric analysis in different physiological recording conditions.

Signal Image Video Process. 2016, 10, 267–276.

33. Waili, T.; Nor, R.M.; Rahman, A.W.B.A.; Sidek, K.A.; Ibrahim, A.A. Electrocardiogram Identification:

Use a Simple Set of Features in QRS Complex to Identify Individuals. In Recent Advances in Information

and Communication Technology 2016: Proceedings of the 12th International Conference on Computing and

Information Technology (IC2IT), Khon Kaen, Thailand, 7–8 July 2016; Meesad, P., Boonkrong, S., Unger, H., Eds.;

Springer International Publishing: Cham, Switzerland, 2016; pp. 139–148.

34. Tan, R.; Perkowski, M. Toward Improving Electrocardiogram (ECG) Biometric Verification using Mobile

Sensors: A Two-Stage Classifier Approach. Sensors 2017, 17, 410, doi:10.3390/s17020410.

35. Dar, M.N.; Akram, M.U.; Shaukat, A.; Khan, M.A. ECG Based Biometric Identification for Population

with Normal and Cardiac Anomalies Using Hybrid HRV and DWT Features. In Proceedings of the 2015

5th International Conference on IT Convergence and Security (ICITCS), Kuala Lumpur, Malaysia,

24–27 August 2015; pp. 1–5.

36. Molina, G.G.; Bruekers, F.; Presura, C.; Damstra, M.; van der Veen, M. Morphological synthesis of ECG

signals for person authentication. In Proceedings of the 2007 15th European Signal Processing Conference,
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