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Abstract Brain–Computer Interfaces (BCIs) allow a user

to control a computer application by brain activity as

acquired, e.g., by EEG. One of the biggest challenges in BCI

research is to understand and solve the problem of ‘‘BCI

Illiteracy’’, which is that BCI control does not work for a non-

negligible portion of users (estimated 15 to 30%). Here, we

investigate the illiteracy problem in BCI systems which are

based on the modulation of sensorimotor rhythms. In this

paper, a sophisticated adaptation scheme is presented which

guides the user from an initial subject-independent classifier

that operates on simple features to a subject-optimized state-

of-the-art classifier within one session while the user interacts

the whole time with the same feedback application. While

initial runs use supervised adaptation methods for robust co-

adaptive learning of user and machine, final runs use unsu-

pervised adaptation and therefore provide an unbiased mea-

sure of BCI performance. Using this approach, which does

not involve any offline calibration measurement, good per-

formance was obtained by good BCI participants (also one

novice) after 3–6 min of adaptation. More importantly, the

use of machine learning techniques allowed users who were

unable to achieve successful feedback before to gain

significant control over the BCI system. In particular, one

participant had no peak of the sensory motor idle rhythm in

the beginning of the experiment, but could develop such peak

during the course of the session (and use voluntary modula-

tion of its amplitude to control the feedback application).
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Introduction

Brain–Computer Interfaces (BCIs) systems aim to provide

users control over a computer application by their brain

activity (see Dornhege et al. 2007; Kübler et al. 2001;

Millán et al. 2004; Pfurtscheller et al. 2005; Wolpaw et al.

2002). In EEG-based BCIs, one of the biggest research

challenges is to understand and solve the problem of ‘‘BCI

Illiteracy’’, which is that BCI control does not work for a

non-negligible portion of users (estimated 15 to 30%), (c.f.

Dickhaus et al. 2009). In a screening study, N = 80 par-

ticipants performed motor imagery first in a calibration (i.e.,

without feedback) measurement and then in a feedback

measurement in which they could control a 1D cursor

application. Coarsely, we observed three categories of

users: participants for whom (I) a classifier could be suc-

cessfully trained and who performed feedback with good

accuracy; (II) a classifier could be successfully trained, but

feedback did not work well. It is known that there are

changes between the calibration and the feedback step that

can affect the EEG signals, making the feedback fail. In the

study with 80 users, the bias of the classifier was super-

visedly updated using the first 20 feedback trials (as in

Shenoy et al. 2006), but this strategy revealed not to be

sufficient for some of the participants; (III) no classifier with
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acceptable accuracy could be trained. Whereas participants

of Cat. II had obviously difficulties with the transition from

offline on online operation, users of Cat. III did not show the

expected modulation of sensorimotor rhythms (SMRs):

either no SMR idle rhythm was observed over motor areas,

or this idle rhythm was not attenuated during motor imag-

ery. Here we present preliminary results of a one-session

pilot study in which it was investigated, whether co-adap-

tive learning using machine-learning techniques could help

users of Cat. II and III to achieve successful feedback. Our

results show that adaptive machine learning methods suc-

cessfully helped participants who suffered from the BCI

illiteracy problem before, to gain control of the system.

Materials and Methods

Experimental Setup

The study consisted of a one-day session that immediately

started with BCI feedback using a pre-trained subject-

independent classifier, as in Vidaurre et al. (2007). Using

supervised and unsupervised techniques, the classifier was

adapted to the specific brain signals of the experimental

user during the session. Adaptation was performed during

three levels. While the feedback application itself stayed

the same for the whole experiment, the features on which

the classifier operated and the adaptation methods changed

from level to level as described below.

Methods

Eleven participants took part in the study. Six of them

belonged to Cat. I (for one novice user, no prior data was

available, but she turned out to be a Cat. I user), two further

participants belonged to Cat. II and three to Cat. III. All

users performed 8 feedback runs, each of them consisting

of 100 trials (50 trials of each class). The timing of the

trials was as follows: at time 0, the cue was provided in the

form of a small arrow over a cross placed in the middle of

the screen, one second later, the cross started to move to

provide feedback. Its speed was determined by the classi-

fication output (similar to Blankertz et al. (2007, 2008a)).

The task of the participant was to use motor imagery to

make the cursor move into a previously indicated target

direction. The feedback lasted for 3 s and was followed by

a short pause. Two different types of motor imagery,

chosen out of three possibilities (motor imagery of left

hand, right hand or foot) were selected in advance. For

seven users, previous data with motor imagery perfor-

mance was available which revealed which two motor

imagery tasks should be used. For the other four partici-

pants (three of Cat. III and one novice) no prior

information could be used and they were asked to select

two out of the three possible motor imagery tasks.

Throughout the whole session, all classifiers were based on

Linear Discriminant Analysis (LDA). When advisable due

to high dimensionality of features, the estimation of the

covariance matrix that is needed for LDA was corrected by

shrinkage (Ledoit and Wolf 2004; Vidaurre et al. 2009). In

order to define the adaptation schemes for LDA we use a

specific variant that is introduced here. For LDA the

covariance matrices of both classes are assumed to be equal

(assumption of linear separability) and it will be denote by

R here. Furthermore we denote the means of the two

classes by l1 and l2 , an arbitrary feature vector by x and

define:

DðxÞ ¼ b; w½ �>� 1; x½ � ð1Þ

w ¼ R�1 � ðl2 � l1Þ ð2Þ

b ¼ �w> � l ð3Þ

l ¼ l1 þ l2

2
ð4Þ

where DðxÞ is the difference in the distance of the feature

vector x to the separating hyperplane, which is described

by its normal vector w and bias b. Note that the covariance

matrices and mean values used in this paper are sample

covariance matrices and sample means, estimated from the

data. In order to simplify the notation and the description of

the methods, we will in the following use covariance

matrix instead of sample covariance matrix and mean

instead of sample mean. Usually, the covariance matrix

used in Eq. 2 is the class-average covariance matrix. But it

can be shown that using the pooled covariance matrix

(which can be estimated without using label information,

just by aggregating the features of all classes) yields the

same separating hyperplane. In this study we used the

pooled covariance matrix in Eq. 2. Similarly, the class-

average mean (calculated in Eq. 4) can be replaced by the

pooled mean (average over all feature vectors of all clas-

ses). This implies that the bias of the separating hyperplane

can be estimated (and adapted) in an unsupervised manner

(without label information). The restriction of the method

is to have an estimate of the prior probabilities of the 2

classes. If LDA is to be used as a classifier, observation x is

classified as class 1, if DðxÞ is less than 0, and otherwise as

class 2. But in the cursor control application we use the

classifier output DðxÞ as real number to determine the

speed of the cursor. Finally, we introduce the features and

classifiers that have been used in the three levels of the

experiment, including three on-line adaptation schemes:

the first two are supervised, i.e., they require information

about the class label (type of motor imagery task) of the

past trial in order to update the classifier. The last method
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updates the classifier without knowing the task of the past

trial (unsupervised adaptation).

Methods for Level 1 (runs 1–3)

The first run started with a pre-trained subject-independent

classifier on simple features: band-power in alpha (8–15 Hz)

and beta (16–32 Hz) frequency range in three Laplacian

channels at C3, Cz, C4. During these runs, the LDA classifier

was adapted to the user after each trial. The inverse of the

pooled covariance matrix (see Eq. 2) was updated for

observation xðtÞ using a recursive-least-square algorithm,

(see Vidaurre et al. 2006 for more information):

RðtÞ�1 ¼ 1

1� UC
Rðt � 1Þ�1 � vðtÞ � v>ðtÞ

1�UC
UC þ x>ðtÞ � vðtÞ

 !

ð5Þ

where vðtÞ ¼ R�1ðt � 1Þ � xðtÞ . Note, the term x>ðtÞ � vðtÞ
is a scalar and no costly matrix inversion is needed. In

Eq. 5, UC stands for update coefficient and is a small

number between 0 and 1. For the present study, we chose

UC = 0.015 based on a simulation using the data of the

screening study. To estimate the class-specific adaptive

mean l1ðtÞ and l2ðtÞ one can use an exponential moving

average:

liðtÞ ¼ ð1� UCÞ � liðt � 1Þ þ UC � xðtÞ ð6Þ

where i is the class of xðtÞ and UC was chosen to be 0.05.

Note that the class-mean estimation is done in a supervised

manner.

Methods for Level 2 (runs 4–6)

For the subsequent 3 runs, a classifier was trained on a

more complex composed band-power feature. On the data

of run 1–3, a subject-specific narrow band was chosen

automatically (Blankertz et al. 2008b). For this frequency

band, optimized spatial filters have been determined by

Common Spatial Pattern (CSP) analysis (Blankertz et al.

2008b). Furthermore, six Laplacian channels have been

selected according to their discriminability, which was

quantified by a robust variant of the Fisher score (mean

replaced by median). The selection of the positions was

constraint such that two positions have been selected from

each of the areas over left hand, right hand and foot. While

CSP filters were static, the position of the Laplacians was

reselected based on the Fisher score of the channels.

Channel selection and classifier were recalculated after

each trial using the last 100 trials. The classifier used here

was regularized version of LDC, with automatic shrinkage,

to account for the higher dimensionality of the features, as

in Vidaurre et al. (2009). The feature vector was the con-

catenation of log band-power in the CSP channels and the

selected Laplacians channels. The addition of the repeat-

edly selected Laplacian channels was included in order to

provide flexibility with respect to spatial location of mod-

ulated brain activity. During these three runs the adaptation

to the user was done again in a supervised way.

Methods for Level 3 (runs 7–8)

Finally for the last 2 runs, CSP filters have been calculated

on the data of runs 4–6 and a classifier was trained on the

resulting log band-power features. The bias of the classifier

in Eq. 3 was adapted by updating the pooled mean l after

each trial with UC = 0.05. The update rule for the pooled

mean was analogue to Eq. 6, but without distinction by

class labels. Note that this adaptation scheme is unsuper-

vised. For more information about unsupervised methods,

see Vidaurre et al. (2008).

Results

As a verification of the novel experimental design, we first

discuss the results for the six participants of Cat. I. Here,

very good feedback performance was obtained within the

first run after 20 to 40 trials (i.e., after 3–6 min) of adap-

tation and hit rates increased further in runs 2 and 3 and

stayed on that level in subsequent runs. This can be seen in

Fig. 1, where the grand average of feedback performance

within each run is displayed, according to the Category of

the participants. Note that all runs of one volunteer have

been recorded within one session. The challenge of the

experiment was the performance with the two participants

of Cat. II and three users of Cat. III. All those five par-

ticipants did not have control in the first three runs, but they

were able to gain it when the machine learning based

techniques came into play in runs 4–6: in the average

performance for Cat. II a sudden jump occurred from run 3

to run 4, and for Cat. III a continuous increase in runs –6.

According to Kübler et al. (2004) an accuracy of 70% is

assumed to be a threshold required for BCI applications

related to communication, such as cursor control.

Conclusion

Machine Learning based BCIs use EEG features of larger

complexity that can be fitted better to the individual char-

acteristics of brain patterns of each user (see Blankertz et al.

2007, 2008b; Dornhege et al. 2004, 2007; Müller et al.

2003, 2008). The down side of this approach is the need for
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an initial offline calibration. Furthermore, users are in a

different mental state during offline calibration than during

online feedback (c.f. Shenoy et al. 2006), which renders the

classifier that is optimized on the data of the calibration

suboptimal and sometimes even non-functional for feed-

back (see Sugiyama et al. 2007; von Bünau et al. 2009) for

a discussion of non-stationarities in BCI). Moreover, some

users have difficulties to properly perform motor imagery

for calibration due to the lack of feedback. Here, we have

presented a novel method for Machine Learning based

brain–computer interfacing which overcomes these prob-

lems. It replaces the offline calibration by a ‘coadaptive

calibration’, in which the mental strategy of the user and the

algorithm of the BCI system are jointly optimized. This

approach leads some users very quickly (3–6 mins) to

accurate BCI control. Other users, who could not gain BCI

control in the classic Machine Learning approach (i.e.,

belonging to Cat. II or II), could gain BCI control within

one session, see Fig. 1. In particular, one participant who

had no peak of the SMR idle rhythm in the beginning of the

measurement could develop such with our adaptive feed-

back training, (Vidaurre et al. in prep) This important

finding gives rise to the development of neurofeedback

training procedures that might help to cure BCI illiteracy.

Further studies with a larger number of participants will be

required in order to confirm these initial findings.
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