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An engineered nanoparticle may be de!ned as any intention-
ally produced particle that has a characteristic dimension 
from 1 to 100 nm and has properties that are not shared 

by non-nanoscale particles with the same chemical composition. 
Although the !rst part of this fairly broadly accepted de!nition1–4 
speci!es a size range, which is o"en the focal point in de!ning 
nanoparticles, we will argue that the second part is more relevant 
when considering the impact of nanoparticles on the environment 
and human health. #e central question is this: do nanoparticles 
have properties a$ecting either exposure or hazard that are funda-
mentally di$erent from those shown by larger particles of identical 
composition? #is remains an open question.

Although nanoparticles may be more easily taken up by 
organisms through ingestion, respiration or both, which potentially 
increases their residence time and exposure in environmental 
systems (see, for example, refs 5 and 6), these e$ects typically 
result from their small size (an extrinsic property) rather than a 
unique nanoscale property (an intrinsic property). New funda-
mental physics or theories beyond those encompassed by colloid 
chemistry are not necessarily needed to describe the interactions 
of particles in the 1–100-nm size range with other materials in the 
biosphere. However, the ‘non-bulk’ properties of nanoparticles, 
their atypical surface structure and their reactivity (the second part 
of the de!nition) may enhance processes such as dissolution, redox 
reactions or the generation of reactive oxygen species (ROS; see, 
for example, refs 7–9). Such properties may be accompanied by 
biological e$ects that would not be produced by larger particles of 
the same chemical composition. In these cases, new approaches are 
needed to systematically de!ne nanoparticles and their properties 
(for example, structural characterization) as a basis for ensuring 
the reproducibility of results, identifying underlying mechanisms 
of toxicity and predicting environmental behavior2,10,11.

We focus here on inorganic metal and metal oxide nanoparticles 
for which there is substantial interest in commercial development12–19 
as well as concerns surrounding their (eco)toxicological impacts6,20–29. 
We conclude that there is a critical size, considerably smaller than 
100 nm, for which these new properties typically appear (Fig. 1a). 
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#is critical size is strongly related to the exponential increase in 
the number of atoms localized at the surface as the size decreases 
(Fig. 1b) and delineates a smaller set of nanoparticles (typically with 
diameters less than 20–30 nm). #ese smaller nanoparticles have a 
size-dependent crystallinity that gives them properties drastically 
di$erent from the bulk material and they !t the two-part de!nition 
discussed above30–35.  #ese observations suggest that nanotoxico-
logical studies might be better focused on a smaller set of nanopar-
ticles that show unique nanoscale properties.

Size, crystallinity and thermodynamics
Nanoparticles below 20–30 nm in size are characterized by an excess 
of energy at the surface and are thermodynamically unstable36. 
Crystallographic changes (for example lattice contraction or defor-
mation, the appearance of defects, rearrangements of the surface 
atoms or changes in morphology)37–41 may occur to stabilize them. 
#ese unique nanoscale features a$ect the interfacial reactivity and 
the intrinsic properties of nanoparticles. #e size dependence of the 
optical and electronic properties of quantum dots provides a clear 
example. #e bandgap energy (corresponding to the %uorescence 
wavelength) abruptly increases as diameter decreases below 6–8 nm 
(Fig. 2a). #ese properties are attributed to lattice contractions42 that 
favour the con!nement of electrons and the existence of discrete 
electronic states that are virtually absent for larger particles43–45. 
Another example is the size dependence of thermal properties of 
nanoparticles46. #e melting point of indium and tin nanoparticles 
can be respectively reduced by 120 °C (ref. 47) and 80 °C (ref. 34) by 
decreasing their diameters from 100 nm to 10 nm, with an exponen-
tial drop for sizes below 15 nm (Fig. 2b). Moreover, the normalized 
heat of fusion, Hm, behaves in a similar way (Fig. 2b), whereas it is 
assumed to be constant in classical thermodynamics. #is enhance-
ment is attributed to an increasing fraction of lattice defects and 
irregularities in the crystalline structure of the nanoparticles48. 
Electric and magnetic properties are also known to be related to the 
size and the crystallinity49–51. For instance, size-dependent changes 
of the transition temperature — be it the Curie temperature for fer-
romagnetic particles (MnFe2O4 and MgFe2O4), the Néel temperature 
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for antiferromagnetic particles (BiFeO3)35,52–54 or the paraelectric-to-
ferroelectric transition temperature (for example in PbTiO3)55,56 — 
have been observed only for sizes less than 20–30 nm. In the case 
of PbTiO3 particles, the decrease in the transition temperature by 
about 20 °C (for sizes between 80 and 30 nm) is accompanied by 
a pronounced decrease in the ratio c/a (where c and a are the lat-
tice parameters), indicating a tetragonal distortion of the crystalline 
unit cell.

Most of the size e$ects are predictable in part from thermody-
namics, as this is a direct consequence of the Laplace equation, but 
they are strongly pronounced once the size is signi!cantly below 
100 nm (ref. 57). A distinctive feature of very small nanoparti-
cles (<30 nm) is that the surface tension, γ, depends on the size, r, 
and the derivative dγ/dr must be taken into account in thermody-
namic models57. For instance, this size dependence of γ is of great 
importance in two physicochemical processes (dissolution and 
phase transformation) that need to be accounted for or controlled 
in nanotoxicological studies58.

#e driving force for dissolution depends on the crystal solubility 
within a given environment (for example, in water with low ionic 
strength or in cellular nutritive solution), the concentration gradi-
ent between the particle and the solution, the speci!c surface area 
(SSA) and the aggregation state10,58. It is intuitive that for a given 
mass, the dissolution kinetics is proportional to the SSA, with 
faster dissolution predicted for nanoparticles than for larger parti-
cles. #e main question concerns the potential size dependence of 
the crystal solubility, Kb. From a thermodynamic point of view, Kb 
is assumed to be constant and is routinely approximated using the 
solubility product, Ksp, according to ln Kb = ln Ksp + c(γ/l), where 
l is the characteristic dimension of the crystal and c = 2τW/ρRT 
(τ is the geometrical factor of the nucleus, W is the molecular 
weight, ρ is the density, R is the gas constant and T is the absolute 
temperature). However, this approach fails to describe the solu-
bility of crystals smaller than 25 nm (ref. 59). Whereas replacing 
Kb with Ksp is a reasonable approximation when the particles are 
large, the size dependence of the morphology, γ and the activation 
energies of the dissolution process60 cannot be ignored in the case 
of very small nanoparticles59–61. #is will modify the chemical sta-
bility of nanoparticles smaller than 20–30 nm in solution and thus 

a$ect their toxicity. As with the dissolution process, solid-phase 
transitions of nanoparticles are also related to the size dependence 
of γ. If γ is increased, the pressure inside particles increases and 
the phase-transition temperature decreases57. For instance, as a 
ZrO2 particle decreases in size to 10 nm, the monoclinic form is 
transformed to the tetragonal one at room temperature, whereas a 
monoclinic–tetragonal modi!cation occurs on heating to 1,100 °C 
for bulk ZrO2. It was also shown that γ-Al2O3 (the phase observed 
for nanoparticles) is enthalpically more stable than -Al2O3, the 
thermodynamically stable phase of the larger particles62. It has 
also been proposed that the surface enthalpies of the three TiO2 
polymorphs (2.2 ± 0.2, 1.0 ± 0.2 and 0.4 ± 0.1 J m−2, respectively, 
for rutile, brookite and anatase) are su(ciently di$erent that 
crossover in thermodynamic stability can occur under conditions 
that preclude coarsening, with anatase and/or brookite stable at 
small size63,64.

Crystallinity and size-dependent interfacial properties
Recent studies provide strong evidence that nanoparticles can not 
only passively interact with cells20,26,28,65, but also actively engage 
and mediate molecular processes that are essential for regulating 
cell functions66. #e interfacial properties of inorganic nanoparti-
cles in solution, including the rates of reactions mediated on the 
surface, adsorption capacity and change of redox state67–69, are likely 
to a$ect the fate of nanoparticles in the environment and possibly 
toxicity in organisms. Hence, a size-dependent change in crystal-
linity related to the decrease in the excess of surface free energy 
for nanoparticles smaller than 20 nm can enhance the interfacial 
reactivity and modify their reactivity in the environment. Relating 
size-dependent modi!cations of the particles’ surface properties 
to associated changes in reactivity at the nanoscale remains an 
important challenge. In the following sections, the properties of 
di$erent nanoparticles are presented to illustrate the in%uence of 
the nanoscale on the interfacial reactivity.

Crystallinity and reactivity of Fe0. Crystalline particles have 
long-range order resulting from repeating unit cells. #ere are 
reported cases in which amorphous particles are more reac-
tive than their crystalline counterparts. For example, amorphous 

a b

Figure 1 | Below what size do nanoparticles show properties not seen in larger particles with the same chemical composition? a, The number of 
published papers (vertical axis) reporting non-bulk properties in nanoparticles below a certain size plotted against the size of the nanoparticles (horizontal 
axis). b, The percentage of atoms localized at the surface of a nanoparticle as a function of the nanoparticle diameter. We argue that non-bulk properties 
only emerge for diameters of less than 20–30 nm (red line).
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ribbons of metal–boron alloy were more reactive than crystalline 
ribbons with the same composition in the catalytic hydrogenation 
of carbon monoxide70. More recently, it was demonstrated that 
20–40-nm amorphous Fe0 particles possessed the ability to activate 
and use dissolved H2 for the aqueous-phase hydrodechlorination of 
trichloroethylene71. Particles annealed to a crystalline form lacked 
this ability. #e Fe0 nanoparticles studied, however, were X-ray 
amorphous (Cu K  source) and had a broad X-ray di$raction 
peak (2θ = 45°); the presence of -Fe0, with larger crystals would 
have produced a narrow peak. Closer examination of those par-
ticles (using dark-!eld tunnelling electron microscope imaging) 
indicated that there were -Fe0 crystallites on the order of 1–2 nm 
in size within the larger, apparently amorphous particles72. #us, 
although they are X-ray amorphous, the particles indeed have 
short-range order on the scale of a few unit cells (~64 unit cells per 
1-nm crystallite). #e high surface energy and high defect rate in 
these 1–2-nm -Fe0 crystallites most probably a$orded them an 
ability to activate and use H2, whereas 20–70-nm crystallites of Fe0 
cannot activate H2 (ref. 73).

Morphology and interfacial reactivity of boehmite. In the envi-
ronment, crystallized particles show di$erent faces that are more 
or less chemically active. A size-dependent change in morphol-
ogy can strongly in%uence the ratio between the crystallographic 
planes and modify the interfacial reactivity. #is was observed for 
boehmite (γ-AlOOH) particles ranging in size between 10 and 
100 nm (ref. 74). Particles of γ-AlOOH 100 nm in size are !bres 
or rods formed by aggregation of very small platelets (3 nm thick 
and 6 nm wide) with (100) lateral faces and (010) basal planes. 
Conversely, γ-AlOOH nanoparticles between 10 and 25 nm in size 
are diamond-shaped with (101) lateral faces as suggested by the 
angle of ~104° between the (101) and (10−1) distortions. Hence, 
when the size decreases, a change in the area ratio between the 
(100), (010) and (101) faces occurs as a result of modi!cations in 
the electrostatic surface charge density and in the surface energy36. 
#is is an important feature of γ-AlOOH particles because they are 

the precursor of γ-Al2O3, which is widely used as a catalyst support 
for metal75,76. As the thermal transformation γ-AlOOH → γ-Al2O3 
is topotactic (that is, it maintains the morphology of the parti-
cles), the control of the shape of the 10-nm γ-AlOOH particles 
enables the development of corresponding faces on γ-Al2O3 and 
therefore the adjustment of their interfacial reactivity towards a 
given reaction77.

Phase transformation and photocatalysis by titanium dioxide. 
As previously mentioned, solid-phase transformations may be size 
dependent38, re%ecting, for example, the size dependence of the 
photocatalytic activity of TiO2. #e anatase phase, which is greater 
for very small TiO2 particles, is more e$ective in the production 
of hydroxyl radicals and the subsequent decomposition of organic 
compounds than the rutile phase. It is interesting to note that this 
size-dependent photocatalytic activity does not increase monoton-
ically with decreasing size but rather passes through a maximum 
signi!cantly below 100 nm. #is size is ~7 nm for trichloroethyl-
ene78, ~11 nm for chloroform79 and ~25 nm for phenol80. #ese 
optimum sizes are thought to result from competing e$ects of the 
particle size on light absorption and scattering e(ciency, charge-
carrier dynamics and SSA.

Electronic structure and catalytic activity of gold. #e size-
dependent electronic and structural properties of metal particles 
on oxide supports are important features of heterogeneous cataly-
sis81. One of the most fascinating examples is gold particles82. 
Although gold is known to be inert at the macroscopic scale, 
when their size is reduced to a few nanometres gold nanoparti-
cles are extremely e$ective oxidation catalysts83–85. A threshold 
in size near 2 nm has been observed, above which gold particles 
are completely inactive as catalysts for the epoxidation of styrene 
by dioxygen86. #is reaction needed no initiator and the support 
medium was inert, so the e$ect seems to involve size-dependent 
changes in the properties of gold. Although the origin of this 
behaviour is not yet fully understood; the catalytic activity seems 
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Figure 2 | Size dependence of various physical properties of nanoparticles. a, The bandgap energy of PbSe, CdSe and CdS quantum dots as a function 
of diameter (adapted from refs 30–33). The bandgap energy of a system determines its electronic and optical properties. b, The melting temperature (Tm; 
green line) and heat of fusion ( Hm; blue line) of tin particles as a function of diameter (adapted from ref. 34). The grey areas correspond to the size range 
in which the properties change significantly. The bandgap changes greatly for diameters below about 6 nm, whereas the thermal properties start to change 
below about 15 nm.
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to arise from the size-dependent alteration of electronic structure. 
A shi" (of 1.1 eV) in the 4f7/2-electron apparent binding energy 
of gold nanoparticles was noted relative to larger gold particles. 
Moreover, independent of the support and only for nanoparticles 
smaller than 3 nm, decreasing particle size was associated with 
an increase in the 3d-electron density of the gold atoms and the 
onset of reactivity with oxygen in air87. #is suggests that the 

size-dependent alteration of electronic structure gives rise to unu-
sual catalytic properties.

Atomic rearrangement and adsorption by iron oxide. One 
approach to studying the distribution of the atoms at the surfaces 
of particles is to use speci!c chemical species to probe surface sites 
for size dependence of reactivity68,88,89. Arsenic has been used to 
probe the size-dependent surface properties of iron oxide parti-
cles. #e quantity of arsenic adsorbed per gram of iron oxide has 
been observed to increase from 0.02 to 1.8 mmol g−1 as particles 
size decreases from 300 to 11 nm (ref. 90). Much of this 100-fold 
increase of adsorption capacity can be attributed to a simple sur-
face-area e$ect74. However, a comparison of the adsorbed quantity 
per mass of particles reveals nothing about the chemical reac-
tivity or the relative a(nity. When normalized by SSA, 300-nm 
and 20-nm iron oxide particles are observed to adsorb similar 
amounts of arsenic (~6 mol m−2 or 3.6 atoms nm−2), suggesting 
that similar adsorption mechanisms are involved over this size 
range. Surprisingly, for particles smaller than 20 nm, the adsorp-
tion capacity increases, with 11-nm magnetite particles adsorbing 
three times more arsenic per square nanometre (~18 mol m−2 or 
11 atoms nm−2) than do 20-nm iron oxide particles90 (Fig. 3).

#ese large values cannot be solely attributed to the increase in 
the number of surface reactive sites, which is limited by the size 
of the atoms (the maximum number of molecules adsorbed onto 
the surface is estimated at ~4 atoms nm−2 (refs 91, 92)). Only a 
change in the surface structure leading to the appearance of new 
surface adsorption sites and a signi!cant decrease of the surface 
energy36,93 can explain the enhanced adsorption capacity. #is was 
observed for the !rst time at the surfaces of maghemite (γ-Fe2O3) 
particles40,68. As the size decreased, the occupancy of the tetrahe-
dral ([FeTd]) site decreased, creating unique and highly reactive 
adsorption sites in the crystal lattice position available to adsorb 
a large number of ions, for instance 8–10 As(iii) atoms per square 
nanometre68. Two mechanisms of As(iii) adsorption appear to 
dominate as a function of the surface coverage (Fig. 3). At low 
surface coverage, arsenic !lls the more reactive [FeTd] surface sites 
in an octahedral ring (As(iii) is surrounded by six [FeOh] atoms). 
When all of these sites are !lled, As(iii) !lls the less reactive [FeTd] 
sites and is adsorbed on a [FeOh] trimer through monodentate tri-
nuclear complexes in a lattice position. For larger γ-Fe2O3 parti-
cles, all [FeTd] sites are occupied, which decreases the number of 
possible adsorption sites. Moreover, it is interesting to note that 
the γ-Fe2O3 nanoparticles used in ref. 68 were obtained from acidic 
treatment of magnetite (Fe3O4) nanoparticles. #is transformation 
is facilitated at the nanoscale by an easy structural change allowing 
the complete desorption of Fe2+ ions from the nanoparticles94.

Interfacial properties and biological e"ects
In the context of risk assessment, novel size-dependent properties 
that in%uence nanoparticle reactivity are likely to a$ect both nan-
oparticle exposure and hazard. Sources of reactivity may include 
a(nity for electron uptake (perhaps from bacterial electron carri-
ers) and subsequent transfer to species in solution58, aggregation10 
and interfacial phenomena such as adsorption of pollutants68 or 
naturally occurring macromolecules66. It is likely that such factors 
can play an important part in the toxicity of inorganic nanopar-
ticles through mechanisms such as transformation of chemical 
species, the production of ROS and the release of toxic species 
into solution20,26,28,65.

Generation of ROS and oxidative stress. #e presence of active 
sites on nanoparticles that are able to generate ROS and arise 
from size-dependent di$erences in atomic and electronic struc-
ture suggests one possible origin of a size dependence in toxicity. 
Several authors have shown that the ROS generation is involved in 
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Figure 3 | Size dependence of the mechanisms of arsenic adsorption at 
the surface of iron oxide particles. The graph shows how the adsorption 
capacity of As(iii) at the surface of Fe3O4 nanoparticles (red line; 
adapted from ref. 90) and the surface free energy after saturation of all 
the adsorption sites at the surface (blue line; adapted from ref. 36) vary 
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the toxicity of nanoparticles (for example CeO2, TiO2, nC60, Fe3O4 
and Fe0). Direct relationships between the SSA, the generation of 
ROS and the in%ammatory e$ects induced by nanoparticles have 
been shown20. However, it is not clear whether size-dependent 
structural changes contribute to an increase of toxicity in a general 
sense (see, for example, refs 95, 96). For instance, for a given mass, 
20-nm anatase TiO2 nanoparticles are more toxic towards rats than 
are 250-nm anatase particles. For a given SSA, however, the toxic-
ity responses are similar for all the sizes studied6. A number of the 
present authors have demonstrated that, per unit mass, 7-nm CeO2 
nanoparticles induced stronger oxidative stress and greater damage 
to DNA and chromosomes in vitro than did 300-nm CeO2 particles7, 
but once normalized by the SSA no signi!cant di$erence exists. 
Hence, these examples do not suggest a size-dependent increase in 
biological e$ects.

However, other studies have reported anatase (present in greater 
proportions for TiO2 crystallites <15 nm in size) to be more bio-
logically active than rutile TiO2 in terms of cytotoxicity or oxidative 
DNA damage97,98. It has been shown99 that the bactericidal e$ects 
increase as the size of nanoparticles decreases from 30 to 15 nm 
and the mass fraction of anatase increases. Furthermore, it was 
recently demonstrated100 that 100% anatase nanoparticles, regard-
less of size, induce cell necrosis and membrane leakage, but they 
do not generate ROS. In contrast, the rutile nanoparticles initiate 
apoptosis through formation of ROS. #erefore, it seems that links 
between size and crystal structure may have a role in mediating 
nanoparticle toxicity.

Dissolution and release of toxic ions. #e importance of the 
chemical stability of metal or metal oxide nanoparticles on their 
toxicity in vitro has been demonstrated recently101. Chemically 
unstable nanoparticles can be oxidized, reduced and dissolved in 
biological media, leading to the release of toxic ions. Nanoparticles 
that show a higher solubility in cellular growth media (such as 
ZnO nanoparticles) show a stronger toxicity to mammalian cells 
than do nanoparticles with a low solubility (such as TiO2)102. #e 
biological impacts of ZnO nanoparticles in vitro result from the 
release of Zn2+ and Zn(OH)+ ions, which are the dominant spe-
cies in fresh water of moderate alkalinity and neutral pH103. #is 
is con!rmed by toxicity studies performed on the freshwater 
alga Pseudokirchneriella subcapitata, which reveal comparable 
toxicity of 30-nm ZnO and dissolved ZnCl2 salts104. #e toxicity 
attributed to CdSe quantum dots is also mediated by their intra-
cellular oxidation and the release of Cd2+ and Se2− ions. #is 
acute cytotoxicity is reduced when metal dissolution is limited by 
coating the surface105.

Particle dissolution processes known to a$ect the toxicity of 
non-nanoscale particles are not clearly applicable to nanopar-
ticles. Solubility is highly dependent on solvent properties (for 
example pH, ionic strength and the presence of adsorbing species) 
and on the particles properties (for example SSA, surface mor-
phology, surface energy and reactivity, and aggregation states)58. 
However, as previously discussed, the dissolution can be enhanced 
at the nanoscale as the result of size-dependent structural changes. 
It has been found that the bactericidal e$ect of silver nanoparticles 
between 1 and 100 nm in diameter was highest in the 1–10-nm 
range, where there are more highly reactive {111} surfaces106. #ese 
particles penetrate bacteria, strongly interact with sulphur- and 
phosphorus-containing compounds and release toxic silver ions.

Dose-response assessment per gram and per square nanometre. 
#e previous examples highlight the necessity of comparing the 
dose-response e$ects of di$erent sizes of nanoparticle in two ways: 
per unit of mass and per unit of surface area. A size dependence of 
toxicity induced by silver nanoparticles has been observed8 when 
the cytotoxicity data are mass weighted (Fig. 4). Once normalized 

by the SSA, the results are more surprising because as a function of 
the cytotoxic assays used, the 30-nm and 15-nm silver nanoparti-
cles remain more toxic than the 55-nm silver nanoparticles (Fig. 4). 
#is is in contradiction with other studies showing no size e$ect 
when the data are surface weighted6,107 or even mass weighted108, 
and it also highlights how little we know about the relationship 
between the size and the biological e$ect. All things considered, 
these examples illustrate that performing experiments with par-
ticles in the range 1–100 nm is not su(cient for the purposes of 
identifying biochemical mechanisms that may di$er from those 
observed with larger particles, because the relevant properties are 
likely to vary signi!cantly across this range of sizes. Moreover, in 
physiological media nanoparticles are likely to undergo signi!cant 
modi!cations (for example aggregation, surface passivation)10 that 
may obscure the relationship between their unique, size-depend-
ent properties and their biological e$ects.

In some cases, the intrinsic properties of the nanoparticles 
may be more closely related to processes that control nanopar-
ticle modi!cations or transformations to other chemical species 
present, rather than direct cellular e$ects by the nanoparticles 
themselves. #ese factors will complicate e$orts seeking to relate 
nanoparticle properties to biological e$ects using a quantitative 
structure–activity relationship (QSAR)-type approach as well as 
e$orts to ‘tune’ the toxicity of nanoparticles by chemical modi-
!cation of their surfaces. However, an understanding of nano-
particle toxicity must consider underlying changes in intrinsic 
properties that occur at the nanoscale as a basis for di$erenti-
ating these materials from their bulk counterparts. Focusing on 
size-related properties, rather than on size alone, has important 
implications for the design of research programmes to evaluate 
the safety of engineered inorganic nanoparticles. Indeed, ignor-
ing the di$erences between that which is merely small and that 
which is truly ‘nano’ may obscure the interpretation of experi-
mental results.

Conclusion
A de!nition of nanoparticles based on their non-bulk size-depend-
ent properties is needed to better focus future research e$orts in 
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lactate dehydrogenase leakage; adapted from ref. 8). The SSAs of the 
55-nm, 30-nm and 15-nm nanoparticles were estimated to be 10, 20 and 
40 m2 g−1, respectively.
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nanotoxicology, and to compare the results of studies performed 
on particles of identical composition. #e weight of evidence from 
the literature suggests that engineered nanoparticles are likely to 
be of concern owing to unique properties when they have diam-
eters of 30 nm or less. In this size range, many particles undergo 
dramatic changes in crystalline structure that enhance their inter-
facial reactivity (Fig. 5).

Although there are several examples of particle toxicity scaling 
with surface area6, it is not clear whether this is associated with 
unique properties of exposure or hazard that merit special consid-
eration in terms of mechanisms of activity and potential toxicity 
compared with larger particles. For instance, does the appearance 
of catalytic properties at the nanoscale interfere with the elec-
tronic transfers within the respiratory chain? Is a size-dependent 
generation of ROS able to enhance the breakage of DNA strands? 
Is the enhanced adsorption capacity of nanoparticles smaller than 
30 nm able to increase the adsorption or inactivation of proteins? 
Is there a size-dependence in the in%ammatory response and 
genotoxicity? To answer these questions, nanotoxicological studies 
should contrast particles that have novel size-dependent proper-
ties, particularly concerning their surface reactivity, and those 
particles that do not show these properties.
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