
Towards a Form Based Dynamic Database

Schema Creation and Modification System

Kunal Malhotra1, Shibani Medhekar1, Shamkant B. Navathe1,
and M.D. David Laborde2

1 College of Computing, Georgia Institute of Technology, Atlanta, Georgia, USA
{kmalhotra7,smedhekar3}@gatech.edu, sham@cc.gatech.edu

2 Iconic Data Inc, Atlanta, Georgia, USA
dlaborde@aya.yale.edu

Abstract. The traditional approach to relational database design starts
with the conceptual design of an application based schema in a model
like the Entity-relationship model, then mapping that to a logical design
and eventually representing it as a set of related normalized tables. The
project we present has been motivated by needs of healthcare-IT where
small group practices are currently in need of systems that will cater
to their dynamic requirements without depending on EMR (Electronic
Medical Record) systems. It is also relevant for researchers for mining
huge repositories of data such as social networks, etc. and create extracts
of data on the fly for data analytics. Based on user characteristics and
needs, the data is likely to vary and hence, a dynamic back-end database
must be created. This paper addresses a form-based approach to schema
creation and modification.

Keywords: Dynamic user interface, Schema modification, Dynamic form
generator, Schema evolution.

1 Introduction

It has been observed that a database schema frequently experiences a lot of
changes with time [13]. In most of the domains, there is a lack of a set of com-
mon data elements, that users would like to store in the database thus requiring
different database schemas. In such cases, a static database schema would pose
a problem. One approach to modifying the schema would be to have a database
administrator track the data elements and periodically modify the schema. This
would require a lot of manual labor and periodic updates would eventually delay
data entry. In most large organizations, the DBA staff has been entrusted with
dealing with schema management however the costs associated with database
management systems and other large-scale application systems such as EMR
(Electronic Medical Record) systems tend to be prohibitive for most “small-
business”, or start-up operations. For most small outfits dealing with a specialty
practice with a handful of physicians, adopting large generic systems is pro-
hibitive in adoption, training and maintenance costs. We propose an approach
in this paper to:

M. Jarke et al. (Eds.): CAiSE 2014, LNCS 8484, pp. 595–609, 2014.
c© Springer International Publishing Switzerland 2014



596 K. Malhotra et al.

1. Create schemas based on predefined forms
2. Update and customize schemas as per changing user needs
3. Align the back-end storage of data as the schemas evolve

Our primary goal is to reduce user intervention and to let the database “evolve”
consistently as time progresses. For developing a generically applicable system,
we base it on the relational model. Our approach to dynamic schema creation
and management has been described here in the context of healthcare just for
illustrative purposes. This project was motivated by our interaction with a local
neurosurgery practice through Dr.Laborde, a neurosurgeon, who convinced us
that there is merit to developing approached to “ad-hoc” database creation and
management for applications where elaborate and costly solutions like EMR and
EHR (Electronic Health Record) systems are an overkill.

We made some assumptions while developing the prototype. Our current im-
plementation has been designed to cater to clinical researchers and physicians
who want to use existing data for clinical trials and studies and want to add
some parameters of their own. Very little knowledge about database modeling
and query languages is assumed. The forms could then be made available to the
end users such as patients. The users (physicians, nurses, etc. but not patients)
are provided with predefined forms developed based on the underlying database
schema. These forms are automatically generated based on the metadata, which
is stored in a separate database. This process is discussed later in the paper.

The users can customize these existing forms by adding and deleting data
elements of their choice. As a result of this the tables in underlying database
will undergo appropriate schema modifications as discussed later in the paper. In
our test implementation, we have used a neurosurgery application database from
a local clinic called the ALIF (Anterior Lumbar Inter-body fusion) database [10].
We dealt with the ALIF data with Dr.Laborde’s expertise as a domain expert in
the specific specialty which deals with surgical procedures of the spine. The term
“user” will apply to physicians , nurses, researchers etc. who are knowledgeable
about the application domain, who can evaluate the suitability of existing forms
and who can be guided in their choices when they undertake to modify the forms.
Totally naive end users will not be a target audience for our approach.

2 Technical Challenges and Claims

One of the major challenges we faced while developing this system was to avoid
anomalies or inconsistencies at the back-end when the user makes changes to the
forms provided for entering the data. The traditional approach to constructing a
relational database application involves building a conceptual schema of the re-
lational database using a model like the extended entity-relationship model and
then constructing a relational database schema [12]. For most advanced applica-
tions the schema of the relational database changes during development. We are
interested in providing a solution to environments where the database schema
needs to be adjusted in real time keeping all constraints and rules of a relational
database intact while the user makes changes to the existing forms or creates



Form Based Dynamic Database Schema Creation and Modification System 597

new forms. This involves maintaining a metadata database to store metadata
about the forms (FORMS DATABASE) and a domain specific database (DSD)
to store the actual data entered by the user. The system also provides an easy
to use Form Field Selection feature, which can be used by novice users to build
their own forms.

A dialog based UI is designed to create a new database from scratch or modify
an existing one. It would gather information about the nature of the form field
(label in the form) being added which would in turn lead to appropriate changes
in the schema of the DSD. Addition of a form field leads to formation of a new
attribute in the appropriate table in the DSD. For the data which already exists
in the database before adding a new field, the system populates default values
for that particular field. Deletion of the form field does not lead to deletion of
the corresponding attribute from the schema. These deletions are tracked and
recorded in a metadatabase, and a customized form is presented to the user.
Modification of a form field does not modify the field name at the back-end.
Mappings are created between the field at the back-end and the ones in the UI.
A new user may choose from any of the existing customized versions of a form
and select the most appropriate one or he (henceforth we will use the pronoun
“he” for the user without any intended bias) may customize them further based
on his requirements. In order to ensure a smooth working of the system after
plugging in any DSD which stores the data entered via the forms, the FORMS
DATABASE stores the metadata of all forms and also the information about
what tables a form is connected to.

A user is typically shown all available forms, which guide the user to use one
that comes close to their requirements and to modify it. They are also given
the option to create a form from scratch. Our algorithms for storing metadata,
for defining the schema for the back-end, for storing actual data as well as
displaying user defined forms are generic. We propose the mechanism by which
a metadata layer called the FORMS meta-database is created to accommodate
the current form definitions and subsequent changes to it. In this approach, a
user can choose to display data elements that he would like to view together
without providing an SQL query. At the back-end the algorithm performs joins
between tables based on primary key-foreign key relationships and displays data
elements requested by the user. The user can also request the system to perform
aggregation operations on data elements, add conditions as well as sort the
results. This is particularly geared for researchers who would want to do studies
or clinical trials using patient treatment data related to a specific drug as the
DSD. They would then create a new database after appropriate aggregation to
define a cohort of patients.

3 Approach to Dynamic User Interface Management

The user interface of the system is a form-based UI since its functionality is
guided by a set of forms. The user is provided with two modes; one of them
deals with ‘Data Entry’ and the other with ‘Data Retrieval’. Data entry can be



598 K. Malhotra et al.

done by either using the existing template forms provided by default based on
the current state of the DSD, or the existing forms may be customized to suit
new requirements before being used to insert data. The users can also create
new forms if the requirements for the data they want to enter are not met.
These changes are automatically translated into appropriate modifications at
the schema level.

A large set of options is provided to the user as to what type of form field
he wants to create for his form. The options are Radio buttons, Checkboxes,
textboxes, dropdowns and buttons. Any of these options apply while modifying
existing forms or creating new forms. On creating a new form field, the user is
required to provide details about its data type, default value, ability to have
multiple values, etc. helping the system to make appropriate modifications in
the database. Similarly, creation of a new form requires some information from
the user which helps in creating a new table at the back-end. E.g. information
regarding its relationship with the existing forms, cardinality of the relationship,
etc. The UI has help buttons to describe the semantics of these questions in
simple language with examples.There may be a class of users such as researchers
that may use an existing large database, create a form using our tool and then
modify the form slightly to add some fields/attributes of their own using the
data entry function.

The other important feature of this system is ‘Data Retrieval’ which is used
for retrieving data by generating queries based on user input. The operations
currently handled by the system are ‘Select’, ‘Aggregation’, ‘Group By’, and
‘Having’. Appropriate selections may be made by the user and on doing so the
system builds the query and displays the results after validation. This feature
would be explained later in section 5. Figure 1 illustrates the process flow adopted
by the system.

3.1 Data Entry

The user is presented with template forms based on the underlying DSD. He has
a choice of either using the available forms to enter data or customize the forms
appropriately. In the latter case he uses the Form Field Panel which displays
the potential types of form fields available. A dialog is initiated with the user,
which requires him to provide details about the form field chosen. For example,
if a radio button is selected for a field ‘Gender’, then he is required to enter
the number of options he wants to keep for this field and their corresponding
labels. The new form field added to a form would become a new attribute in the
corresponding table having the rest of the form fields of that form after the user
provides information about this new attribute using an ‘Add New Form Field’
screen. This information consists of the label of the form field, it’s data type,
e.g Integer, String, etc. The user would also need to specify a default value of
the field which would be stored if the field is left blank while entering data. This
new field may have multiple values e.g If the new field which is getting added
is ’Symptoms’ then it may contain multiple values since a patient may have
multiple symptoms. This can be specified in the ‘Add New Form Field’ screen.



Form Based Dynamic Database Schema Creation and Modification System 599

Fig. 1. Process flow of the system

Each modified template form would be stored as a new version of the existing
template and will be annotated with the username of the user modifying it. E.g
‘Form A User1’ is ‘Form A’ modified by ‘User1’ and ‘Form A User2’ is ‘Form A’
modified by User2. All the versions of a template are shown to every user from
which he can select one for data entry.

The user may create a new form from scratch for which he would be required
to provide some information about the new type of data he would like to store
(See Figure 2). As mentioned before the ‘?’ marks alongside each label would
assist the user in filling this form. The ‘Form Name’ is the name of the new
form the user wants to create. The ‘Unique Form Field’ would be the field which
uniquely identifies an observation. This is equivalent to the key for that form.
Initially this field would be empty since it is a new form and no fields have
been added. The user would use the ‘Add New Form Field’ screen to add fields
to this form. The system allows selection of multiple fields for the cases when
a combination of more than one fields uniquely identifies an observation. The
‘Related to Form’ field would require the user to choose from a list of existing
forms to which this form is related to. As shown in the figure ‘Patient’ form
has a relationship with ‘Visits’ form in the context of patients having visits in a
hospital. The ‘Cardinality’ can have values 1:1, 1:N and M:N according to the
standard cardinality ratio concept in database modeling [3]. Based on the nature
of the relationship between the forms the user needs to select the cardinality.



600 K. Malhotra et al.

In the example shown in figure 2, the selected cardinality ‘M:N’ denotes that a
single patient may undergo multiple procedures and a procedure may be done
on multiple patients. The label ‘Is there any Attribute for the Relationship’
requires the user to specify attributes which are descriptive of the relationship.
E.g. ‘No. of Hours’ are the the number of hours that the patient undergoes a
particular procedure. It is neither an attribute of the ‘Patient’ since a patient
may undergo multiple procedures, each for a different amount of time nor of the
‘Procedure’ since each procedure may be done on different patients, each time
for a different number of hours. It is describing the instance of the relationship
‘undergoes’ between ‘Patient’ and ‘Procedure’. Multiple attributes are allowed
via the drop-down menu. Based on this information the schema of the DSD is
modified by adding a new table at the back-end and relating it to appropriate
tables based on the rules discussed in [3,7]. Appropriate changes are made in the
FORMS DATABASE simultaneously. These rules help creating a new table and
relate it to appropriate tables in the database maintaining consistency.

Fig. 2. New Form Screen

4 Approach to Dynamic Schema Management and
Maintenance

Our system has two databases, one is the DSD, which primarily stores the actual
data, that is entered by a user using the forms provided, and the other one is the
FORMS DATABASE that stores the metadata about the forms. The FORMS
DATABASE is the one primarily responsible for the dynamics of the system and
is explained in more detail in the following section.



Form Based Dynamic Database Schema Creation and Modification System 601

4.1 Meta-Database Schema

This database (see Figure 3) consists of all the information about the form
structure such as the form name, the fields it consists of, the label of each form
field, the type of form fields, etc. needed to build a form. The arrows in the fig-
ure stand for foreign-key to primary-key referential integrity constraints. In our
present implementation the users are provided with already existing form tem-
plates pertaining to the data for a local neurosurgery practice. The database we
used for our test was the already pre-populated ALIF database with information
about the template forms.

The table ‘Form’ records a list of all forms provided by the system by default
in a well-annotated format. Any new form created by the user gets added to
the list. The modified form gets stored as a new form and there is a record
of which form it originated from. This table is used to pull out all the forms
existing in the current state of the database for the user to choose from to fill
data or to select data elements to aggregate data as explained before. The table
’Form Field’ stores information about the different fields present in the form
along with the forms that they are a part of. It also stores the label of the form
fields and a detailed explanation of the field which would translate into a tool
tip description in the UI to assist the user in filling the data. The table ‘Form
Field Type’ is created where values such as textbox, radio-button, check-box,
drop-down,etc are stored. The table ‘Form Modifications’ is needed to keep a
record of modifications made to the existing form. If a form field is added or
deleted by a user to create his customized form then this table will keep track of
the changes and pull out the customized form fields for users. The ‘Form Field
Option’ table stores the enumerations of values for the aforementioned types of
form fields. For instance, the form field ‘Gender’ has options ‘Male’ and ‘Female’
which are stored in the ‘Form Field Option’ table.

The table ‘Table Information’ stores the tables, which are present in the actual
database holding the data, which in our case is the ALIF DATABASE. This table
is required for the purpose of aggregating data using the view creation mode
where users have an option of aggregating data elements, which they want to
view together. The table ‘Attribute Information’ stores all the attributes present
along with their data-types and default values in the actual database holding the
data. We also keep track of attributes which are primary keys or foreign keys in
a particular table. This enables the system to decide the table joins when user
selects data elements to be aggregated in the view creation mode explained in the
following sections. If a user selects some data elements from a set of tables, which
cannot be joined due to the absence of Primary Key-Foreign Key relationship
then the user is prompted against the action

This FORMS DATABASE is populated by acquiring the definition of the
underlying DSD, say as an SQL file, with CREATE TABLE statements. The
level of automation is being improved by providing this functionality. The system
currently has the ability to filter out attributes which need not be displayed
on the forms. Our strategy for dealing with schema evolution as the database
creation progresses is explained below. The algorithm can be used to modify an



602 K. Malhotra et al.

Fig. 3. Schema of the metadata database. The arrows show referential integrity con-
straints.

existing database at the back-end with the help of a dialog based UI or create
a new database from scratch. When modifying an existing database by adding
additional forms we already have the metadata database and the DSD at the
back-end contrary to the case when a new database is created. In the latter
case, an unpopulated metadata database exists at the back-end. As and when
the user creates forms at the front-end, the DSD gets developed. We explain our
approach for the 2 cases below:

Case 1: Database Schema Modification of the DSD
This is the case when a user chooses to modify existing forms to customize
based on his requirements in turn leading to modification of the DSD schema.
The modified form would be treated as a new form with a new ‘Form ID’.
The creation of this new form is recorded in the ‘Form’ table. In this table the
‘Form ID’ of the original form is stored, which was modified to create the new
form. The modifications would be stored separately in another table ‘Form Field
Modification’ where we store the form fields that were added or deleted from a
particular form to create a new form. Any form field which gets added to a form
first needs to be added to the ‘Form Field’ table, ‘Form Field Type’ table and
the ‘Form Field Option’ table appropriately. For every new form field which gets
added to a form, a corresponding attribute gets added to the existing table which
has other attributes corresponding to the other form fields of the form. This
requires population of the ‘Attribute Information’ table with all the information
about the new attributes. The ‘data entry’ feature is used to populate the table



Form Based Dynamic Database Schema Creation and Modification System 603

with data. If there is data already existing in the table corresponding to the
form being modified then default values of the newly added attributes would be
inserted for these existing observations.

Case 2: Database Schema Creation
This is the case when a user does not want to use any of the existing templates
and instead creates a new set of forms. This may occur if the data that the
user wants to store pertains to a different domain. He would be required to
create new forms from scratch which would guide the creation of a new domain
specific database. At the metadata level this involves populating the ‘Form’
table with information about the new forms. The ‘form modified’ field would be
‘NULL’ since we are not modifying any existing forms to create the new forms. In
this case we would also populate the ‘Table Information’ table with information
about the new tables that would be formed in the new DSD corresponding to
the new forms created. Subsequently the ‘Form DSD’ table and the ‘Attribute
Information’ table would also be populated as and when new form fields are
added in the forms. The process of creation of new form fields has been explained
in CASE 1.

In both cases, when adding a form field to a form if the form field is supposed
to have atomic values then the corresponding table in the DSD is updated but
if the form field is expected to have multiple values then a new table is created
in the DSD which references the original table corresponding to that form.

4.2 Guranteeing Consistencies during Schema Evolution

In our approach a lot of flexibility has been provided to the user in terms of
freedom of choice of creating new forms when the existing form templates do
not seem to be suitable. This can lead to a lot of redundancy at the back-end since
a user may choose to build a new form instead of modifying existing templates
even though his requirements differ from the existing forms by a small amount.
For example, a user needs only 8 out of 10 form fields of a particular form and
wants to add more fields of his own choice. We would assume that the user would
use our feature of modifying this form by deleting the two irrelevant fields and
adding the new extra fields. But instead it is possible that he creates a new form
and adds all the form fields he needs to this new form. At the back-end this would
result in an extra table in the DSD which would store data being entered via
this new form. Periodic reorganization of the DSD and the metadata database
is required. This would involve manually identifying such redundant tables and
integrating them into one table by performing a full outer join between them.
This would be done when the primary keys of the two tables which are getting
integrated are the same. The two keys may have different labels but if they have
the same semantics, we would go ahead with the join. Such merging would be
done only with human approval. If the keys are different then we would keep
the tables as they are. A full outer join may result in a lot of null values in
the integrated tables. Due to the increase in the volume of data and creation of
multiple redundant tables, the decision to go ahead with the integration would



604 K. Malhotra et al.

depend on the relative advantage of querying a single table with a lot of null
values over querying multiple tables to get the data.

5 Data Retrieval: Query Creation and Validation

The system also supports data retrieval by giving the user a choice of either
selecting existing result sets previously created by users or creating his own. The
user is presented with four types of operations namely ‘Select’, ‘Aggregation’,
‘Group By’ and ‘Having’ to build a query.

1. Select Operation
The user can select fields, which need to be displayed together in the result
set. This may be done by selecting a table from a drop down list and on
doing so the corresponding attributes of the selected table would be shown.

2. Aggregation Operation
The operation may be used by user to perform aggregate functions like
COUNT, MIN, MAX, AVG, etc on the fields.

3. Group By and Having Operation
If the user decides to use the Aggregation operation then the ‘Group By’ and
‘Having’ operations would be enabled. Using them the aggregated results
may be grouped with respect to certain fields which may or may not be
based on some condition.

The system maintains consistency of the user request as well as of the back-
end operations as follows. If the selected attributes belong to multiple tables
then the system would perform a join between those tables using the Primary
Key and Foreign Key constraints. A ‘Where’ clause is appended to the query
being created, to reflect the join. If there are any attributes that the user has
selected to group his result by then those attributes would be added to the
attribute selection list already created by the ‘Select’ Operation in the first step.
If the attributes that the user has selected require a join of tables, which cannot
be joined due to absence of a primary key-foreign key relationship, then the
user would be prompted to change the selection. If the user has selected some
attributes and is also performing aggregation then the system would remove the
selected attributes other than the ones he is grouping by from the SELECT
clause. The user would be prompted of this action. The system would also check
for validity of attributes selected for aggregation. E.g. Calculating ‘Average’ of
a non numeric attribute is prevented. After validation the query is executed and
the result is displayed. The user has the choice of saving the result set with a
description of the same. At the back-end the query is stored in the DSD along
with the description provided and can be executed again when selected by its
query label.

6 Related Work

Some research has been done in the area of dynamic schema modification with
respect to a clinical dental relational database [12]. Their approach primarily



Form Based Dynamic Database Schema Creation and Modification System 605

focuses on handling One-to-Many and Many-to-Many relationships between ta-
bles via concepts of ‘detail’ and ‘link’ tables. The user interface developed by the
authors is limited to the dental domain. In our approach the metadata database
remains unchanged and there exists a provision for plugging in any DSD which
in turn can be modified by users. Our application can also be used to create
a new database from scratch and store data while it is created in real time.
In addition to this, in [12] the interface to manage the addition of datasets re-
quires the user to be familiar with the dataset being loaded after which it is the
responsibility of the user to map it to an existing domain or create a new do-
main. In our approach the user is oblivious about the back-end structure. While
he creates new form fields or a whole new form, our application automatically
begins to modify the existing schema by creating new attributes or relations
respectively to accommodate the new data elements. In addition to the dynamic
schema modification approach, a feature of aggregating data and presenting the
results to the user, which he can store for future use is also supported by our
system. Palisser et al [1] discuss drawbacks of the systems called Orion [5] and
Encore [11]. The former constructs a version of the database state every time
any transformation in the schema takes place. This leads to the problem of man-
aging multiple versions. The latter focuses on versioning of object types when
design environment object types change in an object oriented database. In our
approach on the other hand the original schema is modified based on the changes
requested by the user but the user is kept unaware of these changes. For instance,
a user might modify an existing form to create a new customized version but
at the back-end the original schema accommodates the new data elements in an
appropriate manner to avoid resorting to versioning. Kim et al. [6] have handled
versioning of object types as well as schemas for single as well as multi-user de-
sign environment in Orion and also provided semantics of versioning the schema.
Ferran et al. [4] discuss an approach to handle schema and database evolution
in O2 object database system. The algorithm proposed by the authors automat-
ically makes the database consistent on any update operation performed on the
schema. However, depending on what the updates are, either immediate or de-
ferred transformations are made. Deferred transformations cause problems while
implementing complex conversion functions,that the user needs to specify if the
default functions do not suit their needs. Our approach on the other hand does
real time modification of the original schema based on the changes requested by
the user and avoids user intervention to a large extent.

7 Use Case

Let us describe the current interface for this prototype used by ALIF practition-
ers at a local neurosurgery practice.

1. Basic menu for user [Figure 4]: This figure shows the menu which will
be presented to the user after logging in. It consists of all the template
forms consisting of data elements currently in the back-end database. The
last bullet is “Create New Form” which would be explained ahead. It has a



606 K. Malhotra et al.

Fig. 4. Basic Menu

Fig. 5. View Creation Screen

‘Form Field Selection’ panel which the user can use when creating new form
fields when needed. The main menu also consists of a ‘Choose Patient’ option
which will help pulling up existing patients in the database when additional
data needs to be entered about them.

2. Ability to use existing forms : On choosing a particular template the
corresponding form is displayed for the user to fill in data. This data gets
saved in the appropriate tables at the back-end.

3. Creating / Updating forms : If the user feels the need to update existing
templates to accommodate data elements, which are not in the form, he
can modify the form using the ‘Add New Form Field’ feature. This creates
a new version of the existing form incorporating the changes requested by



Form Based Dynamic Database Schema Creation and Modification System 607

the user. The new form fields added get saved in the back-end database at
appropriate places. The “Create New Form” feature can be selected from
the screen shown in Fig. 4 to create a new form from scratch and add new
form fields.

4. View Creation [Figure 6]: The data retrieval feature allows users to select
the fields they wish to integrate together, perform aggregation operations on
them and also group the result set fields of their choice. The result set can
be saved for future use. All screens could not be shown for space reasons.

8 Discussion and Conclusion

8.1 Why not NoSQL?

A lot of organizations which collect vast amounts of customer, scientific, sales
data have traditionally stored data in a relational structure, but recently some of
these organizations are tending to use various types of non-relational databases
called NoSQL databases since they have been found to be efficient in handling
unstructured data where there is no fixed schema [8]. In our case we also have
a schema that is flexible since the user can modify it based on his requirement,
but we chose not to go for NoSQL due to the following reasons.

1. Consistency, availability, and partition tolerance are the three properties
taken into consideration when designing a database system. According to the
CAP theorem [2] it is only possible to have two out of these three properties
together in a database system at once. Traditional relational databases main-
tain consistency and availability but have trouble with partitions whereas
NoSQL databases are able to maintain either consistency or availability along
with partition tolerance. In our case the main goal of the system is provid-
ing the user with all the data in a consistent state and available in user’s
expected form.

2. The primary goal of our system is to add flexibility to existing schemas
and dynamically modify them. Since most of the healthcare databases have
a relational structure at the back-end, we formulated our approach using
relational databases.

8.2 Metadatabase Flexibility

The metadata database in our system plays an important role in driving the
dynamic nature of the DSD which stores tha actual content entered using the
forms. The schema of the metadata database is designed in such a way that
the DSD can be modified without any manual interference. It guides the UI
formation and the selection process of the different UI components other than
providing the forms with a particular structure under different circumstances.
The metadata also has the capability to form queries based on information en-
tered by the users along with verifying the correctness of those queries.



608 K. Malhotra et al.

8.3 Summary and Future Work

In this paper we proposed a UI and metadata based approach to dynamically
modify and create a database schema which would address the problem of dy-
namic data entry in data-rich environments where the schema can be “built”
incrementally as new data becomes available. It is intended for users with needs
for managing data for operational and research purposes but who have no ac-
cess to DBAs or database design experts. Template forms are provided to the
user but since there may be difference in requirements between users, the system
facilitates modification of existing forms or create new forms from scratch result-
ing in appropriate real time modifications in the database schema keeping the
user oblivious to the back-end The changes at the back-end involve adding new
attributes to existing tables, adding new tables, creating relationships between
these new tables and existing tables by assigning appropriate cardinality, etc.
Unlike other systems such as Encore and Orion, our approach does not create
versions of the schema whenever there is a change; instead it creates different
versions of a single form if needed after modifying the schema appropriately.
Our system also has a data retrieval feature which helps users to aggregate and
extract data from the database, perform aggregate operations on them and stor-
ing the result sets for future use. This feature does not require the user to write
queries instead it automatically generates and validates queries based on the
data elements selected.

There is still a lot of scope for improvement in this system like making the sys-
tem usable for novice users who do not have any knowledge of database modeling
concepts. Given a good domain ontology about synonyms such as WordNet [9]
we would like to automate the process of removing redundant tables. There is a
possibility that a user modifies a form to add a form field, which has semantic
equivalence with one of the existing fields in the form. This would result in re-
dundancy. To avoid such cases we would like to incorporate semantic validation
in the future. The paper represents preliminary work awaiting field experimenta-
tion with small group practices of physicians. It addresses the problems related
to relational schema evolution in real-time which opens up a lot of room for
improvement. We have been motivated for the need of such system in data-rich
environments with relatively limited volume such as medical practices. We are
addressing a large user population where the typical user is not very knowl-
edgeable about database concepts but would like to be able to create robust
databases on the fly. We would like to like to address the aforementioned ideas
of improvement before making it available to the medical community.

References

1. Andany, J., Leonard, M., Palisser, C.: Management of Schema Evolution. In:
VLDB, Barcelona, Spain (1991)

2. Brewer.E.A: Towards robust distributed systems (Invited Talk) Principles of
Distributed Computing, Portland, Oregon (July 2000)

3. Elmasri, R., Navathe, S.: Fundamentals of Database Systems, 6th edn. Addison
Wesley (2011)



Form Based Dynamic Database Schema Creation and Modification System 609

4. Ferrandina, F., Ferran, G.: Schema and Database Evolution in the O2 Object
Database System. In: VLDB, Zurich, Switzerland (1995)

5. Kim, W., Ballou, N., Chou, H.T., Garza, J.F., Woelk, D.: Features of the ORION
Object-Oriented Database System. In: Kim, W., Lochovsky, F.M. (eds.) Object-
Oriented Concepts, Databases and Applications. ACM Press Frontier Series, New
York (1989)

6. Kim, W., Chou, H.: Versions of schema for object oriented databases. In: VLDB,
Los Angeles (1988)

7. Kolp, M., Zimanyi, E.: Enhanced ER to relational mapping and interrelational
normalization. Informaton and Software Technology 42, 1057–1073 (2000)

8. Leavitt, N.: Will NoSQL Databases Live Up to Their Promise? Technology News
(February 2010), http://www.leavcom.com/pdf/NoSQL.pdf (retrieved)

9. Miller, G.A.: WordNet: A Lexical Database for English. Communications of the
ACM 38(11), 39–41 (1995)

10. Sasso, R.C., Reilly, T.M.: Anterior Lumbar Interbody Fusion: Threded Bone
Dowels Versus Titanium Cages. In: Resnick, D.K., Haid Jr., R.W., Wang, J.C.
(eds.) Surgical Management of Low Back Pain, 2nd edn. American Association of
Neurosurgeons, Rolling Meadows (2008)

11. Skarra, A., Zdonik, S.B.: The Management of Changing Types in an Object-
Oriented Database? In: OOPSLA, pp. 483–495 (1986)

12. Taylor, D.,Naguib, R. N. G., Boulton, S.: A Dynamic Clinical Dental Relational
Database. IEEE Transactions on Information Technology in Biomedicine 8(3)
(September 2004)

13. Zhou, L., Rundensteiner, E.A.,Shin, K.G: Schema Evolution for Real-Time Object-
Oriented Databases IEEE TKDE 9(6) (November 1997)

http://www.leavcom.com/pdf/NoSQL.pdf

	Towards a Form Based Dynamic DatabaseSchema Creation and Modification System
	1 Introduction
	2 Technical Challenges and Claims
	3 Approach to Dynamic User Interface Management
	3.1 Data Entry

	4 Approach to Dynamic Schema Management and Maintenance
	4.1 Meta-Database Schema
	4.2 Guranteeing Consistencies during Schema Evolution

	5 Data Retrieval: Query Creation and Validation
	6 Related Work
	7 Use Case
	8 Discussion and Conclusion
	8.1 Why not NoSQL?
	8.2 Metadatabase Flexibility
	8.3 Summary and Future Work

	References


