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Abstract 1 Introduction 

This paper focuses on a formal approach* for advanced 
database modeling and design. It is based on the IF02 
model, an extension of the semantic model IF0 defined by 
S. Abiteboul and R. Hull. It preserves the acquired 
strengths of the semantic approaches, whilst integrating 
concepts of the object paradigm. To model an IF02 
schema, the structural part of the model including concepts 
such as alternative, composition, grouping for building 
complex objects and semantic constraints is formally 
specified. Furthermore, the definitions of update facilities 
necessary to modify and perfect IF02 schemas are 
specified through change rules. Finally, in order to design 
a database schema, an IF02 schema is translated, in an 
automatical way, into an existing target (implementable) 
model. As an illustration, we present a translation from the 
IF02 model into the CQ one. The result is a new coherent 
and formal approach which is useful in overcoming some 
of the difficulties in the specification and design of object- 
oriented applications. 
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Modeling needs for new applications and flaws in the 
relational model have led to the definition of more 
powerful mod& which are extended relational [I] or 
object-oriented [5], [6] and [15]. The generic term for 
associated systems, of which certain prototypes are 
described in [26], is Advanced Database Management 
Systems. As a consequence, current research work is 
focusing on the definition of new modcling and design 
approaches able to satisfy the needs of both traditional and 
advanced applications [7], [l l] and 1131. The prcscntcd 
research work fits into this context: a new approach whose 
three main aspects are the following ones. Firstly, a formal 
object model IF02 1281 is defined for advanced database 
modeling as an extension of the semantic model IF0 
proposed by S. Abiteboul and R. Hull [2]. Its objective is 
actually to reconcile apparently opposed ideas: an optimal 
data representation and a complete real world modcling. 
IF02 attempts to preserve the acquired strengths of 
semantic approaches. whilst integrating concepts of the 
object paradigm [4]. Secondly, structural update 
primitives arc formally proposed through change functions 
to offer an incremental specification of IF02 schcmas. 
They are crucial for they assist the designer to take into 
account real world evolutions or to rectify a part of his 
schema without redefining the whole. They also play a 
part in the merging of existing sub-schcmas and so they 
may be seen as one important element in a vicw- 
integration process. Finally, in order to design object 
database schema, a set of transformation rules translates 
an IF02 schema into an implementable one 

The aim of this paper is to describe our approach in 
conuast with the related works and particulary to present: 

1. The structural part of the IF@ model. 
2. The associated structural update facilities through 

change rules. 
3. The formalization of the translation rules from an 

IF02 schema to an 02 one (according to the 
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cstablishcd 02 model [ 161) to justify (and illustrate) 
our approach. 

Finally, we briefly give some aspects of the 
implementation of the system. 

2 Related Works and Proposal 

Before presenting our approach and in order to highlight 
its contributions, it would be interesting to provide a brief 
survey of modeling and design approaches. Among them, 
there arc two main trends. 
The fit group involves semantic currents. They are based 
on conceptual (or semantic) mod& for real representation. 
Their principle is to offer the users concepts powerful 
enough to achieve, from the real world, the most complete 
specification possible. The resulting schema is then 
translated into a logical or implementable one. We may 
quote [Ill, [17], 1271 and [301. However, the classical 
models in this group generally suffer from the lack of 
concepls (object-identity, reusability,...) which are 
efficient for advanced application modeling. Furthermore, 
in this trend, structural updating capacities are not always 
proposed, and when they exist, they are described in an 
intuitive way. 
The second class encompasses object-oriented currents. 
Their major goal is to capture the dynamic aspects of 
applications [21] and [25]. In contrast with the fit class, 
&se approaches do not offer enough structural concepts 
(often limited to those of implementable object mod&) 
for a complete real world modeling. Generally, additional 
methods are used to express semantic structural 
constraints, These trends do not respect the indcpendcnce 
between the source and target models. Furthermore, they 
involve an optimized representation of data, i.e. type- 
oriented, when an attribute-oriented modeling is advisable 
for the conceptual level [13]. The implication for the 
database designer is the necessity of specifying 
preliminary representation choices. These choices 
sometimes cut off parts of the real world being modelled. 
The object models provide database evolution 
mechanisms (three trends have been defined in [3]) but 
they do not deal with conceptual schemas, and their 
objectives differ from ours. However, they are interesting 
for they pinpoint two levels to be taken into consideration: 
the IS-A hierarchy and the composition hierarchy. For 
instance, we may quote: the Mosaic0 system where 
algorithms are defined for type insertions into a lattice 
[ 191; the Esse project where algorithms ensure consistent 
updates of an 02 database schema 191 [32]; the Gemstone 
[22] and Orion [ 141 systems, the Sherpa [201, Farandole2 
[3] and Cocoon [29] projects: where rules for the schema 
evolution are stated. 

model objective is to integrate the object paradigm whilst 
retaining IF0 modeling strengths. It boosts modeling 
abilities and appears more suitable for advanced 
application design than object models. 
To modify and perfect an IF02 schema, formal structural 
update facilities are offered. These changes are formally 
taken into consideration through update functions [23]. 
When the schema seems to be complete for the designer, it 
would be carried out, automatically, into a target model, 
by using a transformation function. 

We assert that it is essential to have a really rigorous 
approach as IF02 The object paradigm allows and 
encourages a modular modeling of the real world. So, 
object modeling can sometimes look “anarchistic” and 
therefore difficult to handle 1311. In order to avoid such 
problems, a formal approach leads to a schema which is 
non-ambiguous, without omissions, modifiable and easily 
reusable. Moreover, it has the advantage of faciliting not 
only the comparison of different designs but also the 
verification of updates on specifications without further 
validations. 

First of all, we present the IFO;! model. Update facilities 
are then explained and defined through change rules. 

3 The IF02 Model 

IF02 adopts the philosophy of the semantic model IFO. 
Two main extensions are realized. Firstly, an explicite 
definition of the object identifier which is object value 
independent, is integrated. To achieve this, all 
manipulated elements of IF0 are re-defined to consider 
the object paradigm. Secondly, to fully meet our 
“conceptual” objectives, the modeling power of IF0 must 
be enhanced. Then, the concepts of alternative, 
composition and grouping for building complex objects 
have been intcgratcd. The connectivity and existency 
constraints are explicilly specified. 
In the next sections, we propose a part of formal 
definitions of the IF02 model. Instance and attached 
object concepts are not presented, the interested reader can 
rcfcr to [28]. Firstly, the object and type concepts are 
dcscribcd as well as the different constructors. The 
fragment notion and IF02 schema are then detailled. 

3.1 Object and Type 
In the IFOZ, model, an object has a unique identifier which 
is indcpcndant of its value. Furthermore, the domain of a 
type describes the possible values for its objects. The 
figure I shows the components of the type ‘Name’. 

We would suggest an approach based on the formal model 
IF02 which is both type and attribute oriented. The IFO;! 
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Object Type Type Domain 

\ \ 
Name String [20] 

0~7 (id N1. ‘JOCELYN’) ’ ~=(tdN2,‘HUGO’) 

Objects of Type 

Figure 1 - Object Type Example 

Defidlion 1: 70 is an infinite set of object types such 
that: 

V 1 E TO, Dom (r) is an infinite set of symbols, 
including the empty set, called the value domain of 
7, Did (7) is an infinite set of symbols called the 
identifier domain of ‘5. Objects of type ‘c are defined 
by a pair (id, value) such that: 

V o, o’ of type r, 3 (id, id) E Did(Q2, 3 (value, 
value’) E Dom (I)~ such that: if o=(id, value), 
o’=(id’, value’) and id # id’ then o f 0’. 

The infinite set of objects of type o is called Obj (‘5 ). 

3.1.1 Printable and Abstract Types 
There are three basic types (shown in the figure 2): 

1. A printable type (TOP), used for I/O application 
(Input/Output are therefore environment-dependent: 
String, Integer, Picture, Sound, . ..). which are 
comparable to attribute type of the Entity/Relationship 
model [27]; 
2. An abstract type (TOA) which would be perceived 
as entity in the Entity/Relationship model; 
3. A represented type (TOR), defined in the section 
3.1.3, which handles another type through the IS-A 
specialization link. This concept is particularly 
interesting when considering modularity and 
reusability goals. The designer may defer a type 
description or entrust it to somebody else, while using 
this type for modeling a part of the application schema. 

TOP ~powerl TOA @ TOR @ 

Figure 2 -Basic Type Examples 

Definitfon 2: Let TOP be an infinite set of printable 

rypes, let 7OA be an inftnite set of abstract types, two 
disjoint subsets of 70, such that: 

1. V ‘F E TOP, dom (z) is an Smite set of symbols: 
2.VTE 7OA,dom(r)= (0). 

An abstract type actually represents an entity without 
internal structure but nevertheless identifmble and having 
properties, hence its value domain is empty. 

3.1.2 Complex Types 
The IF02 model takes into account five type constructors 
and makes a distinction between an exclusive and a non- 
exclusive building. These constructors may be recursively 
applied according to specified rules for building more 
complex types. 
For example (see the figure 3). ‘Address’ is built up from 
‘Street’, ‘Number’ and ‘Zipcode’ types and ‘Wheels’ is 
composed with the ‘Wheel’ type obtained from ‘Axle’ and 
Tyre’ tyt?es. 

Notation : 

Aggregation Composition Collection Grouping Union type 

Figure 3 - Type constructors 

Aggregation and Composition Types 
Aggregation and composition represent the aggregation 
abstraction of semantic models 1121 defined by the 
Cartesian product. It is a composition, if and only if, each 
object of an aggregated type occurs only once in an object 
construction of aggregation type. 

Definition 3: Let ‘JO7& be an infinite set of 
aggregation types, let 70% be an infinite set of 
composition types, two disjoint subsets of 70, such that: 

V~sEOTAu7OX, 3 q,9 ,..., f,~TO,n>l, 
such that 

Dom (r) L; Obj (rl) x Obj (r2) x . . . x Obj ($), 
r is structurally dclined as: 
V o E Obj (r), 3 01 E Obj (71). o2 E Obj (r2), 
. . . . on E Obj (r,) such that: 

o = (id, lol,o2, . . . . on]); 
if r E ‘JO’J’C then V o’ E Obj(r) with o f o 
3 0'1 E Obj(rl), 0’2 E Obj(r2). . . . . O’n E 
Obj(rn) such that o’ = (id, 10’1.0’2, . . . . o’,]) 
with V i E [ l..nl, Oi 6 (0'1,0'2, ,.., Oln). 

Collection and Grouping Types 
They represent the set-of constructor of object models with 
an exclusivity constraint for the grouping. 



Definillon 4: Let 70SC be an infinite set of collecrion 

lypes, let 7OSci lx im infinite set of groupink, types, two 
disjoint subsc~s of 70. such that: 

Vre 7OSCu7OSa,3!r’~ 70suchthat: 
Dom (z) s P(Obj (r) where P(Obj (7’)) is the 

powerset of Obj (r), 
r is structurally defined as: 
V o E Obj (r), 3 01.02, . . . . On E Obj (r’) such that: 

0 = (id, (01.02, . . . . On)) 
ifre 70SathenVo’E Obj(r)witho#o 
3 0’1.0’2, . ..( o’, E Obj (2’) such that: 

0’ = (id’, (0’1.0’2. . ..) oln)) with V i E [l..n], 
Oi E (0’190’2, ..e, O’n). 

Alternative Types (Union Types) 
Stucturally different types can bc handled in a uniforme 
way through the alternative type concept. This constructor 
reprcscnts the IS-A generalization link enhanced with a 
disjunction constraint between the gcnemlizcd types. 

Definition 5: Let 7OU7 be an infinite set of union type 

types, a subset of 70, such that: 
V r E 7OU7, 3 rl, r2, . . . . rn E 70, n > 0 such thak 
Dom (r) s Dom (rl) u Dom (r2) u . . . u Dam (Q), 

r is structurally defined as: 
Vi,jE [l..n] if i+j then 
Obj (Ti) n Obj (rj) = 0, Obj (r) = Obj (q) u 

Obj (ri> u . . . u Obj (‘In), 
with V o E Obj (r), 3 ! k E [l..n] such that: 

0 = ok, ok E Obj (rk). 

3.1.3 Represented Types 
The definition of represented types takes into account the 
multiple inheritance since a represented type may have 
sevwaI sourcea. 

Deflnilion 6: Let 7OR be an infinite set of represented 

types, a subset of 70, such that: 
V r E 70% 3 rl, ‘52, ,.., r, E 70, n > 0 called 
source(s) of r such that , Obj (r) s Obj (‘rl) u Obj 
(r2) u . . . u Obj (rn) with V o E Obj (r), 3 oi E 
Obj (ri) such that o = Oi. 

3.1.4 Types 
From basic types and constructors, it is possible to dctine a 
type4 as a tree, in a general way. 

Deft&&m 7: A type T E 70 is a directed tree T = (ST, 
ET), where ET is a set of type edges. T is such that: 

1. The set of vertices ST is the disjoint union of eight 
sets 7OP, 70A, 7032,707A. 707c. 7osc. 

7osc& 7ou7. 
2.1fT~ 70athcnTisrootoftype. 
3. The leaves of the tree are printable or represcntcd 
QQCS. 

An abstract type cannot be used in a built type since its 
role is to describe a real world entity which is not defined 
by its internal structure but through its specified fragment 
properties. 

3.2 IF02 Fragment 
The types could be linked by functions (simple, complex 
(i.e. multi-valued), partial (O:N link) or total (1:N link)) 
through the fragment concept. The aim of the fragment is 
to describe properties (attributes) of the principal type 
called heart. The figure 4 describes the fragment of heart 
‘Person’ having ‘Name’, ‘Address’ and ‘Vehicle’ as 
propcrtics. For each vehicle associated to a person, them is 
a contract insurance number, this is called a nested 
fragment. First Names are not always known for a person. 

Notation: 
1 Insurance] 

b . . . . . . . . . . . . . . . (,* 

Total function Partial function Complex function 

Figure 4 - The Fragment ‘Person’ 

Conventions: we call Dartial a function in which some 
elements of the domain have no associated elements in the 
codomain. Otherwise, it is called &tt& The kind of 
handled graph is: G = (X, U) where the set of vertices X is 
the set of types T of 70 and the set of edges U is 
composed with: simple em (simple functions) and 
wmolex ew (functions applied on a 7OSC, called 
complex functions: an image of an object is a set). The 
edge is called either partial or total if the associated 
function is either partial or total. 
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Defmition 8: An IF02fragment is a graph F = (VF, LF), 

with VF the set of types T E ‘JO and LF the set of 

fragment links, defined such that: 
1. There is a direct tree H = (VF, A) such that: 

1 .I. The root of H is called heart of fragment. 
1.2. The source of an edge is either the heart 

root or the root of a target type of a complex edge 
whose source is the heart root. 

2. For each edge linking the heart to a represented 
type, there is a reciprocal total edge. 

The IF02 fragment is called by its heart. 

3.3 IF02 Schema 
An IF02 schema is composed of n IF02 fragments: FI, 

F2, . . . . F,, n > 0, related by IS-A links according to two 
rules. The figure 11 illustrates one IF02 schema made up 
with five fragments ‘Person’, ‘Employee’, ‘Vehicle’, ‘Car’ 
and ‘Engine’. They are linked with IS-A links through the 
represented types (‘VehicleYUsed’, ‘Employee’, ‘V-Car’, 
Truck-Engine’ and ‘Car-Engme’). 

3.3.1 Specialization Link 
The IS-A link in the IFO;! model is the specializnion link 
of the semantic models [12]. It represents either the 
subtyping (inheritance) if the target is a fragment heart or 
the client/supplier concept [IS]. 

Definition 9: Let ‘5’ be a type of ‘TOR and let T be a 

type of TO, such that it is the (or one) source of ‘5’ and a 
heart of a fragment, the link of head T and queue z’ is 
called an H-A link. T is called the source of the IS-A 
link and ‘I’ the target. 

The figure 5 illustrates the specialization link between 
‘Vehicle’ and ‘Vehicle-Used’. 

Vehicle 
Target 

Queue 

Figure 5 - Notation for Specialization Link 

3.3.2 IF02 schema 
Defmirion IO: An IF02 schema is defined as a graph CS 

= (Ss, Ls) with Ss the set of types T E ‘JO of the graph 
such thar 

1. Ls is the disjoint union of two sets Ls-A 

(fragment links) and Ls,IS-A (IS-A links). 
2. (Ss, L& is a forest of IF02 fragments, called 
the IF@ fragments for GS. 
3. (Ss, Ls IS A) follows these two schema rules: 

3.1. There is no IS-A cycle in the graph. 

3.2. Two directed paths of IS-A links sharing 
the same origin have to be cxtcndcd to a 
common vertex. 

The structural part of the IF02 model having now been 
formalized, we examine the supplied update facilities. 

4 Updates on IF02 Schema 

Due to space limitation, we just prcscnt updates on IF02 
schema in an informal way. The intercstcd rcadcr may find 
more details in [23] whcrc a functional approach is dclincd 
to formally ensure the structural consistency of IF02 
updates. 

4.1 Motivation 
The problem with schema updates can be summarizd by: 
how to modify a given schema whilst preserving a 
cohcrcnt reprcscntation? In other terms, our aim is to 
ensure that updates retain the schema consistency. In 
object model, consistency can bc classified in structural 
consistency which rcfcrs to the static part of the database 
and in behavioral consistency relating with the dynamic 
part [32]. In this paper, we only deal with the structural 
case. 

An IF02 schema is a couple (Ss. Ls) where Ls is 
composed by both fragment and IS-A links but not cvcry 
arbitrary couple (Ss, Ls) is a correct schema. Thus, WC 
have to make sure that the result of modifications is an 
updated schema which verifies the IF02 schema definition 
(correctness). Therefore, WC give a set of schema 
invarianls which arc conditions to be satisfied by any valid 
schema. A similar approach is adopted by models such as 
Orion, 02, Gemstone, Cocoon and Shcrpa. 
Some schema changes are quite simple whereas others 
need a complcle reorganization of the database The latter 
can often be decomposed into a sequcncc of more 
elementary changes. The following taxonomy, figure 6, 
prescnls the schema update primitives in IFO2, which is 
minimal and complete in the sen.sc that all possible schema 
transformation can be built up by a combination of these 
elementary operations (completeness). Such a taxonomy 
can be found in models like Orion, Shcrpa and Cocoon. 
The two former give three catcgorics of operations: 
changing class definitions, i.c. instance variable or 
methods, modifying the class lattice by changing the 
rcladonships bclwccn classes and adding or dclcting 
classes in the lattice. As the latter is based on type. 
function and classes, schema changes are rcspectivcly: 
type updates, function updates and class updates. 

All schema structure changes. as for instance a fragment 
insertion into the dircctcd acyclic graph, may bc cxprcsscd 
by a sequcncc of basic updates. For exam@. the fragmcnl 



insertion may be done by: ~(1.1) a type insertion, (3.1) 
zero or more IS-A link insertion and finally, (3.2) zero or 
more IS-A link d&don (in the cast of a node ins&on 
into the direct acyclic graph)>. The primitive (1.4) is 
necessary to preserve the schema in a valid state for it is 
not equivalent to the sequences c(1.2) (l.l)> or ~(1.1) 
(1.2)~ when the type has to be rclatcd to other ones. The 
consequence of applying such sequences may occur in a 
temporary invalid state: as instance, if we want to 
substitute a grouping component using <( 1.2) (1 .l)> or 
c(l.1) (1.2)>, the application of (1.2) (respectively (1.1)) 
carries out the schema in a forbidden state: a grouping 
without component (respectively a grouping with two 
components). 

$1) Types updates 
(l.l)Addancwtypc 
(1.2) Delete atype 
(1.3) Change II type 

(1.3.1) its name 
(1.3.2) its domain for 
printable type only 

J1.4) Subslitutc a type 

~1 

Figure 6 - Taxonomy of possible updates in IF02 

Intuitively, in IFO2, a schema update is either a type 
insertion or a type modification in a fragment. The former 
case is defined as a type insertion which must be related to 
the schema. WC can create a fragment, add a type to a 
fragment or relate a type to others. The latter is described 
with one or more operations on the concerned fragments 
which are themselves modifications on types. Operations 
like insertion of a sub-type into an existing one, deletion of 
a type and substitution of one type by another are thus 
possible. 

4.2 Presentation 
WC present the schema invariants that the transformation 
process must maintain, and the necessary rules to provide 
a guidelines for supporting schema modifications. As we 
have just discussed, two rule categories have to be taken 
into consideration: insertion and modification. 
In this section, we illustrate the introduced concepts using 
the following schema which is a subpart of the figure 11. 

4.2.1 Evolution Schema Invariants 
The following schema invariants ensure that the change 
does not leave the updated schema in an inconsistent state. 
If the change would violate the invariants, it is rejected. 

Initial Schema 

“y Doors 

Final Schema 

Figure 7 -An IF02 fragment creation example 

Invariants: 
1.1: a type T has to follow the definitions 1 to 7 of an IFO;! 

type* 
1.2: in the graph: 

1. There is no IS-A cycle. 
2. Two directed paths of IS-A links sharing the same 

origin have to be extended to a common vertex. 
1.3: the source of an IS-A link must be a fragment heart 

and the target a represented type. 
1.4: the source of an edge is either the heart root or the 

root of a target type of a complex edge whose 
source is the heart root and for each edge linking 
the heart to a represented type, there is a reciprocal 
total fragment edge. 

1.5: a fragment cannot be isolated (except if it is the 
unique one), i.e. it has to be related to other ones 
through IS-A links. 

For example, the typ insertion of a Wheel’s brother could 
not be possible because the invariant I.1 is not satisfied (a 
grouping has only one component). 

4.2.2 Insertion Rules 
A type insertion into a schema is either a fragment creation 
or a property insertion into an existing fragment. The 
insertion rules have LO respect the schema invariants and 
therefore, some insertions are forbidden. For instance, the 
addition of the type ‘Car’ without adding the IS-A link 
from ‘Engine’ to ‘Car-Engine’ violates the invariants I.3 and 
1.5. The fragment properties may often be modified, so the 
following rules provide a guideline for supporting changes 
into the fragment. 
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Rule 1: Addition of a type into a fragment 
R1.l: addition of the type (primitive 1.1). 
R1.2: addition of the fragment link relating the fragment 

heart to the type (primitive 2.1). 

Rule 2: Addition of a represented type or a type built 
up with represented types 
R2.1: addition of the type into the appropriate fragment 

(rule 1). 
R2.2: if the type is a represented one, addition of tbe 

reciprocal total fragment link (primitive 2.1). 
R2.3: addition of the IS-A link(s) whose reprcsentcd 

type(s) is&e) target(s) (primitive 3.1). 
R2.4: if the type is a represented one and a fragment hwn, 

addition of the IS-A link(s) which it is the source of 
(primitive 3.1). 

R2.5: if the type is a represented one and a fragment hcan, 
deletion of the IS-A link(s) relating the R2.3 source 
vertices to the R2.4 target vertices (primitive 3.2). 

For example, the type insertion of ‘Car’ has to connect the 
type ‘Car-Engine’ to ‘Engine’. As ‘Car’ is a leaf of the 
directed acyclic graph, there are no represented types 
whose source is ‘Car’ (rule 2). The schema components arc 
thus obtained as follows. The original set of schema 
vertices (Engine, Power, Reg-Number) is increased with 
the ‘Car’ vertices (Car, Car-Engine, Wheels, Wheel, Axle, 
Tyre, Body, Chassis, Doors, Door) applying the R.l.l 
statement. The fragment link set is not modified because 
the inserted type is a fragment heart. The application of 
R2.3 provides the IS-A link set composed by the link 
relating ‘Car-Engine’ to ‘Engine’. 
Now, the addition of ‘Car-regist’ as a ‘Car’ fragment 
property, following the rule 1, updates schema components 
such as: the type ‘Car-regist’ increases the set of schema 
vertices according to the R1.2 statement; the fragment link 
set is updated for ‘Car-regist’ is related to ‘Car’ and the 
IS-A link set is not modified because the inserted type is 
not a represented one. 

4.2.3 Modification Rules 
Schema invariant constraints can be violated by 
modifications. It is thus necessary to define rules to obtain 
a valid updated schema. 
The following rule is used to prevent that the invariant I.5 
is controlled. 

Rule 3: IS-A link deletion condition 
R3.1: an IS-A link can be deleted if and only it dots not 

carry out one isolated part in the resulting schema. 

Rule 4: Deletion of a type vertex 
R4.1: if the vertex is a represented type, deletion of IS-A 

link(s) which it is the target of (primitive 3.2) and 
(rule 3). 

R4.2: if the father is a grouping or a collection then 
deletion of the father vertex (rule 4) cise if the 
father is an aggregation, a type union or a 
composition & there is a unique brother then 
substitution of the father type by the brother one 
(primitive 1.4) else deletion of the type whose root 
is the VCIWX (primitive 1.2). 

Consider the deletion of the type Tyrc’. As ‘Wheel’ is a 
composition of two elements, the dclction of ‘Wheel’ 
would provide an inconsistent type (a composition of a 
unique clement violates the invariant 1.1). The updates 
have thus to be send back in the ‘Wheel’ father lcvcl 
substituting the father type by the Tyrc’s brother (R.4.2). 
The schema vertex set is thus dccreascd with (Wheel, 
Tyrc). The following figure shows the updated type: 

Wheel 

rs 

I Door 

Figure 8 - The mulling type u&r type deletion 

Rule 5: Deletion of a type into a fragment 
R5.1: dclction of its rclatcd types which arc not fragment 

heart (rule 4). 
R5.2: dclction of the fragment links relating it to the 

previous types R5.1 (primitive 2.2). 
R5.3: dclction of the fragment link relating the fragment 

heart to the type (primitive 2.2). 
R5.4: d&lion of the type (primitive 1.2). 

A type dciction provides necessary operations dclcting 
fragment links rclatcd to and rclatcd from the type (rule 5). 
For instance. the ‘Car-regist’ dclction needs to dclctc the 
fragment link from ‘Car’ to ‘Car-rcgist’ (R5.3) of the 
schcmn fragment link set. 

Rule 6: Deletion of a represented type or a type built 
up with represented types into a fragment 
R6.1: deletion of the IS-A link(s) whose rcprescntcd 

type(s) is/are target(s) (primitive 3.2). 
R6.2: if the type is a rcprcscnted one and a fragment heart, 

dclction of the IS-A link(s) which it is the source of 
(primitive 3.2) and (rule3). 

R6.3: if the type is a represented one and a fragment heart, 
addition of the IS-A link(s) relating the R6.1 source 
vcrticcs to the R6.2 target vertices (primitive 3.1). 
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R6.4: if the type is a represented one, deletion of the 
fragment links relating it to the fragment heart 
(primitive 2.2). 

R6.5: deletion of the type in the appropriate fragment 
(rule 5). 

When a type is a represented one or is built up with 
represented ones, its deletion changes the schema IS-A 
links. This is done through the rule 6. For example, the 
deletion of the type ‘Car’ has to delete the IS-A link 
between ‘Car-Engine and ‘Engine’ (R.6.1). 

As the IF02 model and its update capacities are now 
defined, we will examine the IF@ translation into the @ 
model [16]. 

5 Mapping an IF02 Schema to an 02 
Schema 

This mapping follows the same principle as the rcalizcd 
transformation from MORSE to 02 [7]. As this application 
of a principle frame is on the “whole-object” from the 
“source” model level, the ways of translation are different 
Therefore, we define checking methods and associated 
classes for composition, grouping and union type. We also 
consider multiple inheritance generically. 
The formalization of the mapping will be given after 
having introduced it through an example. 

5.1 Illustration 
An IF02 schema is translated into an 02 schema. Each 
fragment generates at least one @ class (more if they are 
composition, grouping or alternative types). 
WC translate a part of the IF@ schema described in figure 
11 into an 02 schema. Therefore, we work successively on 
the two fragments “Vehicle” and “Engine”. 
The “Vehicle” fragment is mapped into a particular class. 
It represents either a “Truck” element or a “Car” element. 
To do this, adopting a similar principle as in [8], we use 
two boolean attributes “is-Truck” and “is-Car” which 
indicate the object type. We also need to dctine the classes 
“C~Truck”. “C-Cab” and “C-Trailor” so that each object 
of these types has an identifier. Furthermore, a method 
checks the exclusive composition constraint in the class 
“C-Truck”. As the represented types are not fragment 
heart, they are translated using the 02 composition. 
Otherwise, the associated class has to inherit the generic 
class: for instance, the class employee inherits the class 
Person. 

class C-Vehicle 
public type tuple ( 

Vehicle : tuple ( 

is-Truck : boolean. Truck : C-Truck, 

is-V-Car : boolean. V-Car : C-Car). 
Capacity : integer) 

class C-Truck 
end, 

public type tuple ( 
Truck : tuple ( Cab : C-Cab. Trailor : C-Trailor, 

Truck-Engine : C-Engine)) 

method Check-Compo-Truck : boolean 

end; 

class C-Trailor 

public type tuplc (Trailor : string) end; 

class C-Cab 

public type tuplc (Cab : string) end; 

Figure 9 - The fragment “Vehicle” and the associated 02 
Classes 

The “Engine” fragment is translated into a class with two 
attributes: 

A 

class C-Engine 

public type (Power : string, 

Reg-Number : integer); 

Figure 10 - The fragment “Engine” and he associated 02 

Class 

5.2 Transformation Functions 
We suggest to define the transformation function which 
carries out an 02 schema from an IF@ schema. 

5.2.1 Transformation Function 
Definition 11: Let ‘S be lhe lransformation function 

from the IF02 model to the @ one: 
7: IFO2+ 02 

m 
7 (IF@ schema ) = u 7 (Fragment+ 

j=l 
where m is the fragment number of the IF@ schema. 
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This transformation uses a f function (with three 
parameters: the function source type, the function target 
type and the kind of function (simple (partial or total) or 
complex (partial or total)*) which translates each fragment 
edge into the 02 model. We adopt the following notation: 
for each t type of 70, C-t is a class name and t is an 
attribute name in the 02 model. 

Defurition 12: Let n be the edge number whose source is 
the fragment heart, 7 is defined as: 

1. 

2. 

3. 

0 

0 

0 

0 

7 (Fragment) = 

ifheartt 7OAu7Ok 
class C-heart 
public type tuple ( heart: f(heart, 0, 0) 

f( I, 0,O) = C-t’ /*t’tthc-ofIheIS~Alink*/ 

ht hasmsounxs: 
f(t. O,O)=C t *tbacrmmaoomd of IS-A links l / 

A class C-t inherit C tl, . . . . C-t, 
/* in CISC of name conllic~. 4 is rblc m rdvc it hy adding l pr&r m tbc 

Cllss name *I 

ifhCVtE 70A: 
class C-heart public type tuple ( 0 ift E7OA 

k 

ifhearto 7031: 
P I is tbc nombor of 1.9-A links */ 

class C-heart inherit C-t], ..,C-ts 
public type tuple ( 

f( I, 0, 0 ) = tuple ( ti: f(ti, 0, 0 )) 
i=l 

tUrg& F(heart, targeti, simplekomplex)) 
i=I 

0 ift E707A 
k-n 

f( 1, 0, 0 ) = tuple (ti: C-ti , y;(tf, 0, 0 )) 
i=l J’I 

P k is Be nomhor of lw811d lyp~l and n lbe number of TOOR 1~ l / 

if heart E 707C: 
method public Check-Compo-heart : boolean 

A k 
class C-ti public ly/E tuple ( ti: P(ti, 0, 0 ) 

i=l 

method public Check-Set-heart : boolean 
if heart E 7076: if ti E 707C: 

method public Check -Cotttpo-ti: boolean 

if ti E 707(;5: 
method public Check -Set-ti: boolean 

end; 

if targeti E 7OR A (targeti, heart, simple) 
method public Check-Simple-targeti,( 

F(t(targeti, 0. o ) ): boolean 

0 ift E707C: 
A (tatgeti, heart, complex): 
method public Check-Complex-targeti ( 

F(twgeti, 0, q ), integer): boolean 

f( I, 0, Cl ) = set (P(t’, 0, 0 )) Pt’i~Ihecoilecmd~ype*/ 

if targeti E 70713 
method public Check-Compo-targeti: boolean 

if targeti 15 707tZ: 
method public Check-Set -targeti : boolean 

0 ift E707f% 

ff 1, 0,o ) = /* I’ is tbc collcucd Iypc *I 
ift’o 7OR set ( Fft’, 0, 0 )) 

if t’ tz 70& set ( C-l’) 

class C-t’ public type tuple ( t’: Pft’, 0, 0 )I 

if t’ E 70% 

end; 
method public Check-Compo-t’: boolean 
if t’ E 707tZ: 

method public Check-Set-t’: boolean 
end; 

5.2.2 Types and Edges Transformation Function 
Definifim 13: The Ffunction translates fragment types 
either in @ type or in 02 class. It is dcfincd as: 

0 ift o7W: 

0 ift E 70R it hasonlyonesource: 
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if 1 E TOUT 

k k 
F( I , q I, CI ) = tuple (is-ti: boolean, ti: C-tt ) 

i=I i=l 

k 
A ClUSS C-ti Pkisthcnumherofmocirtedtypa*/ 

i=l 

public tyt~ tuple ( tt: F(tie q I, o )) 

if ti E TOTE 
method public Check-Compo-ti: boolean 

iftie Wm: 
method public Check-Set-ti: boolean 

end; 

F( heart, target, simple) = F( target, q , q ) 

For a complex edge, the target can be the source of p 
other edges (nested fragment) with target2i + heart V i 
E [ 1 . . ..p] (edges whose target is the heart, have already 
been translated): 

F( heart, target, complex) = 

set ( tuple( target: F( target, 0, 0 ), 

target2: F(target. target2i, simple1 complex))) 
i=l 

if F( heart, target, simple totallcomplex total) 
then aad an existence test for attribute target value in 
the Init heart method. 

F( target, target2, simple) = F( target2, 0, 0) 

F( target, target2, complex) = 

set( F( target2, 0, 0 )) 

if F( target, target2, simple totallcomplex total) 
then aad an existence test for attribute target2 value in 
the lnit heart method. 

5.2.3 Structures of Generated Methods 
This part describes the structure of some generated 
methods. These methods are added into classes as 
semantics constraint checkers. 

Generally, the method checking the exclusive constraint 
for composition of a type t E 7071: is: 

method body Check-Compo-t boolean in class C-t { 
~kbthonumbcmfcompauntt~*/ 

if (!(se@Test-compol(self> t.compol))) 
return fdse; . . . 

if (!(self -Test-compok(self Xcompok) return false; 

return true:}; 

The method verifying that one element belongs to an 
object of class C-Ckzss is *: 

method body Test-compoj (object: C-compoj): 
boolean in class C Classe 
{02 C-Classe obz ~nnnqi~r~en~ot~~t*/ 
02 boolean result= true; 

for (obj in C-Classe-s where obj->C-Classe.compoj 
== object) {result=false;}; return result:}: 

In the same way, the following method verifies the 
grouping of a type t whose collected type is t’: 

method body Check-Set t : boolean in class C-t 
{02 C-t obj, C-t’ obj-?; *rtir~&r~fti~t *I 
02 boolean result=true: 

for (obj in C t s) 
ifor (obj-trTn obj->t where obj-t’ in self->t ) 
{result =false;) ; 

return result;); 

The other checking methods are defined in the same way. 

6 Implementation 

In this section, we briefly indicate some aspects of the 
implementation of the IFO;! system. 
A first version of the IF02 editor is currently developped 
under Unix/XWindow (XllR5). with the help of the 
Aids/Masai (Release 1 S) programming environment, 
dcvelopped in object-oriented Le-Lisp (Release 15.24). 
This editor, as illustred in figure 11, is made up of three 
tools: 

1. A graphical view consisting of an editing panel, a 
tool panel and a workspace; 
2. A selection panel of object types and existing link 
types; 
3. An object editor enabling the textual representation 
of textual object as well as information which does not 
appear on the schema. 

l For I C-Clurc class. the C:Clrsrc-s value i Ihc insunces set of Ihc 
C-Clruc chr. For each new instance of C-Clane, it is nccasuy to modify 
the rc( which ia defii as: Name C-Claste~s: ut(C-Claue). 
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Figure I I - The IF02 editor 

The type definitions achieved with the editor are converted 
by a translator into 02 descriptions. The descriptions may 
thus be used in the 02 system. For instance, the methods 
described in the previous section have been implemented 
in the 02 Database Management System (Release 3.3). 
The following example shows some generated methods 
associated to the class C-Truck: 

method body Che&Compo_Truck: boolean in class C-Truck 
( if (!(self->Test-Cab(self->Truclc.Cab))) return false; 
if (!(self->Teat~Trailor(self->Truck.Trailor))) return false; 
if (!(self->Test_Truck_Engine(self->Truck.Truck~Engine))) 
retum false; return true; ); 
method body Test-Cab (object: C-Cab): boolean in class 
C-Truck 
( 02 C-Truck obj; 

02 boolean result=true; 
for (obj in C-Truck-s where obj->Truck.Cab == object) 

(result=false;); return result; ); 
/* named values declaration */ 
name C-Truck-s: set (C-Truck); 

7 Conclusion 

In this paper, we have formally defined an object model 
IF02 as well as its transformation into the 02 model. We 
have also presented the offered updates facilities in an 
informal way. As a conclusion, first of all we would like to 
highlight its contributions so as to indicate the prospects of 
this work. 
The first contribution, that of the IF@ whole-object. is the 
coherent and rigorous definition of the component 
elements of the model through the object identity concept. 

The second strength of the model is the integration of 
constructors which are indispensable to the development 
of advanced applications, such as composition and 
grouping. The latter enables the constituant sets to be 
“physically” taken into account. 
The most original aspect of IF@ is that it draws upon both 
elements which may be said conceptual. such as fragments 
and rcprcscnted types, and implementable such as object 
idcntificrs. The case of multiple inheritance is a special 
case given that, at the conceptual Icvcl, no conflicts arc 
involved while at the system icvcl, all conflicts gencratcd 
are explicitly processed. We have seen that IF02 
inheritance may be multiple but does not rquire any prior 
management. The conflicts are processed according to the 
target model while the translation rules are defined. 
Another advantage of IF@ is the way it can modulate and 
reuse parts of schema that have been dcvelopped, through 
the fmgment concept. Therefore, it is possible to focus on 
only one part of the schema while reusing, through 
represented types, the already dcfincd and validated 
components. 
The fragment concept represents another advantage of 
IFO2: namely the ease of integrating application dynamic 
through this structure. It cnablcs the behavior of the heart 
type to be described naturally and above all makes it 
possible for behavior to be inhcritcd through represcntcd 
types. 
Finally, IF02 is totally independent in relation to 
implementable models, while providing an ease of 
transformation rule definition towards different models 
due to its genericity. The translation of an IF@ schema 
into an @ one is a prime example of this. The formal rule 
definitions rcducc data-loss and misinterpretation. 
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The presented update capacities is a strength of our 
approach. They ensure the integrity of the updated 
schemas. The result is a cohcrcnt and formal approach. 
The ambiguities and contradictions are then detected and 
different schemas may be compared. Furthermore, in a 
reusability goal, the security obtained through the 
consistency of handled infonnations is crucial. 

The prospects of the presented work begin with the 
integration of modeling abilities for the application 
dynamic. The conceptual rules associated with the IF02 
model advocate an attribute-oriented modeling and are 
principally based on the object behavior. Moreover, 
through “process” specification associated with the 
fragment, the most suitable optimized representation can 
be determined. According to us, dynamic and behavior 
will be integrated in the model using a formal approach 
based on the temporal logic [ 101 and [24]. Such an 
approach automatically validates the specified constraints 
whilst being easily understood by the users. 
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