Towards a Formal Approach for Object Database Design

P. Poncelet M. Teisseire
University of Nice-Sophia Digital Equipment
Antipolis Ferney Voltaire

R. Cicchetti L. Lakhal
IUT Aix-en-Provence ESSTIN
University of Aix-Marseille Il University of Nancy [

I3S - CNRS - URA 1376 - 250 avenue A. Einstein -Sophia Antipolis - 06560 Valbonne - FRANCE
E-mail: poncelet@opaline.unice.fr - Tel: (33) 9294 26 22 - Fax: (33) 9294 28 98

Abstract

This paper focuses on a formal approach® for advanced
database modeling and design. It is based on the IFO
model, an extension of the semantic model IFO defined by
S. Abiteboul and R. Hull. It preserves the acquired
strengths of the semantic approaches, whilst integrating
concepts of the object paradigm. To model an IFO?2
schema, the structural part of the model including concepts
such as alternative, composition, grouping for building
complex objects and semantic constraints is formally
specified. Furthermore, the definitions of update facilities
necessary to modify and perfect IFO7 schemas are
specified through change rules. Finally, in order to design
a database schema, an IFO7 schema is translated, in an
automatical way, into an existing target (implementable)
model. As an illustration, we present a translation from the
IFO2 model into the O one. The result is a new coherent
and formal approach which is useful in overcoming some
of the difficulties in the specification and design of object-
oriented applications.

*

This work, supported by the PRC-BD3 and an Extemal European R h
Projoct in collsboration with Digital Equipment, comes within the scope of a larger
project whose aim is to realize an sided system for advanced application modeling
and design.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and the
title of the publication and its date appear, and nolice is given
that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
andlor special permission from the Endowment.

Proceedings of the 19th VLDB Conference,
Dublin, Ireland, 1993.

278

1 Introduction

Modcling nceds for new applications and flaws in the
relational modcl have led to the definition of more
powerful modcls which are extended relational [1] or
object-oriented [5], [6] and {15). The gencric term for
associated systems, of which certain prototypes are
described in [26], is Advanced Databasc Managcment
Systems. As a consequence, current rescarch work is
focusing on the definition of new modecling and dcsign
approaches ablc to satisfy the nceds of both traditional and
advanced applications {7}, [11] and [13]. The prescnted
rescarch work fits into this context: a new approach whose
three main aspects are the following ones. Firstly, a formal
object model IFO7 [28] is defined for advanced databasc
modeling as an extension of the semantic model 1IFO
proposed by S. Abiteboul and R. Hull [2]. Its objective is
actually to reconcile apparently opposed ideas: an optimal
data representation and a complete real world modcling.
1IFO7 attempts to preserve the acquired strengths of
scmantic approaches, whilst intcgrating concepts of the
object paradigm [4]. Secondly, structural update
primitives are formally proposcd through change functions
to offer an incremental specification of IFO2 schemas.
They are crucial [or they assist the designer to take into
account real world evolutions or to rectify a part of his
schema without redefining the whole, They also play a
part in the merging of existing sub-schemas and so they
may be seen as one important clement in a view-
integration process. Finally, in order to design object
database schema, a sct of transformation rules translatcs
an IFO2 schema into an implementable one.

The aim of this paper is to describe our approach in
contrast with the rclated works and particulary to present:
1. The structural part of the IFO2 model.
2. The associated structural update facilitics through
change rules.
3. The formalization of the translation rules from an
IFO2 schema to an O7 one (according o the



cstablished O model [16]) to justily (and illustrate)
our approach.
Finally, we bricfly give some aspects of the
' implementation of the system.

2 Related Works and Proposal

Before presenting our approach and in order to highlight
its contributions, it would be interesting to provide a brief
survey of modeling and design approaches. Among them,
there are two main trends.

The first group involves scmantic currents. They are based
on conceptual (or semantic) models for real representation.
Their principle is to offer the users concepts powerful
enough (o achieve, from the real world, the most complete
specification possible. The resulting schema is then
translated into a logical or implementable one. We may
quote [11], [17], [27] and [30]. However, the classical
models in this group generally suffer from the lack of
concepts (object-identity, reusability,...) which are
efficient for advanced application modeling. Furthermore,
in this trend, structural updating capacities are not always
proposed, and when they exist, they are described in an
intuitive way.

The second class encompasses object-oriented currents.
Their major goal is to capture the dynamic aspects of
applications [21] and [25]. In contrast with the first class,
these approaches do not offer enough structural concepts
(often limited to those of implementable object modcls)
for a complete real world modeling. Generally, additional
mcthods are used to express semantic structural
constraints, These trends do not respect the independence
between the source and target models. Furthermore, they
involve an optimized representation of data, i.e. type-
oriented, when an attribute-oriented modeling is advisable
for the conceptual level [13]. The implication for the
database designer is the necessity of specifying
preliminary representation choices. These choices
sometimes cut off parts of the real world being modelled.
The object models provide database evolution
mechanisms (three trends have been defined in [3]) but
they do not deal with conceptual schemas, and their
objectives differ from ours. However, they are interesting
for they pinpoint two levels to be taken into consideration:
the IS_A hierarchy and the composition hierarchy. For
instance, we may quote: the Mosaico system where
algorithms are defined for type insertions into a lattice
[19}; the Esse project where algorithms ensure consistent
updates of an O database schema [9] {32}; the Gemstone
{22] and Orion [14] systems, the Sherpa [20], Farandole2
{31 and Cocoon (29} projects where rules for the schema
evolution are stated.

We would suggest an approach based on the formal model
IFO2 which is both type and attribute oricnted. The IFO2

279

model objective is to integrate the object paradigm whilst
reaining IFO modcling strengths. It boosts modeling
abilities and appears more suitable for advanced
application design than object models.

To modify and perfect an IFO; schema, formal structural
update facilities are offered. These changes are formally
taken into consideration through update functions [23).
When the schema seems to be complete for the designer, it
would be carried out, automatically, into a target model,
by using a transformation function.

We assert that it is essential to have a really rigorous
approach as IFO2. The object paradigm allows and
encourages a modular modeling of the real world. So,
object modeling can sometimes look "anarchistic” and
therefore difficult to handle [31]. In order to avoid such
problems, a formal approach leads 10 a schema which is
non-ambiguous, without omissions, modifiable and easily
reusablc. Moreover, it has the advantage of faciliting not
only the comparison of different designs but also the
verification of updates on specifications without further
validations.

First of all, we present the IFO2 model. Update facilities
are then explained and defined through change rules.

3 The IFO2 Model

IFO» adopts the philosophy of the semantic model IFO.
Two main extensions are realized. Firstly, an explicite
definition of the object identificr which is object value
independent, is integrated. To achieve this, all
manipulated elements of IFO are re-defined to consider
the object paradigm. Secondly, to fully meet our
"conceptual” objectives, the modeling power of IFO must
be enhanced. Then, the concepts of alternative,
composilion and grouping for building complex objects
have becn integrated. The connectivity and existency
constraints are explicitly specified.

In the next sections, we propose a part of formal
dcfinitions of the IFO2 model. Instance and attached
object concepts are not presented, the interested reader can
refer to [28]. Firstly, the object and type concepts are
described as well as the different constructors. The
fragment notion and IFO7 schema are then detailled.

3.1 Object and Type

In the IFO) model, an object has a unique identificr which
is independant of its value. Furthermore, the domain of a
type describes the possible values for its objects. The
figure 1 shows the components of the type 'Name'.



Object Type Type Domain

™S

Name String [20]
=(i ' =(id _,'HUGO'
oF (id . TOCELYN) Q.- @ N2 )

-~

Objects of Type
Figure 1 - Object Type Example

Definition 1: TO is an infinite set of object types such
that:
V 1 € 70, Dom (t) is an infinite set of symbols,
including the empty set, called the value domain of
7, Did (1) is an infinite set of symbols called the
identifier domain of . Objects of type 1 are defined
by a pair (id, value) such that:
V 0, 0 of type 1, 3 (id, id’) € Did(t)2, 3 (value,
value') € Dom (‘c)2 such that: if o=(id, valuc),
o'=(id’, value') and id # id' theno # 0.
The infinite set of objects of type t is called Obj (t).

3.1.1 Printable and Abstract Types

There are three basic types (shown in the figure 2):
1. A printable type (TOP), used for 1/O application
(Input/Output are therefore environment-dependent:
String, Integer, Picture, Sound, ...), which are
comparable to attribute type of the Entity/Relationship
model [27]; '
2. An abstract type (TOA) which would be perceived
as entity in the Entity/Relationship model;
3. A represented type (TOR), defined in the section
3.1.3, which handles another type through the IS_A
specialization link. This concept is particularly
interesting when considering modularity and
reusability goals. The designer may defer a type
description or entrust it to somebody else, while using
this type for modeling a part of the application schema.

TOP TOA TOR [ Car-
Powel’ Engine

Figure 2 - Basic Type Examples

Definition 2: Let TOP be an infinite set of printable
types, let TOA be an infinite set of abstract types, two
disjoint subsets of TO, such that:
1. V 1 € TOP, dom () is an infinite set of symbols;
2.V 1€ JOA, dom (1) = {D).

An abstract type actually represents an entity without
internal structure but nevertheless identifiable and having
properties, hence its value domain is empty.

3.1.2 Complex Types

The IFO2 model takes into account five type constructors
and makes a distinction between an exclusive and a non-
exclusive building. These constructors may be recursively
applied according to specified rules for building more
complex types.

For example (sce the figure 3), 'Address’ is built up from
‘Strect’, 'Number' and Zipcode' types and ‘Whecels' is
composed with the "Wheel' type obtained from "Axle’ and
Tyre' types.

Address

[ Street} | Number] | Zipcode]

Notation :

¥R DO

Aggregation Composition Collection Grouping Union type
Figure 3 - Type constructors

Aggregation and Composition Types
Aggregation and composition represent the aggregation
abstraction of semantic models [12] dcfined by the
Cartesian product. It is a composition, if and only if, cach
object of an aggregated type occurs only once in an object
construction of aggregation type.

Definition 3: Let TOTA be an infinite sct of
aggregation types, let TOTC be an infinite set of
composition types, two disjoint subsets of JO, such that:
V1e TOTA UTOTC, 3 17,17, ... Ty € TO,n> 1,
such that:
Dom (1) ¢ Obj (t1) x Obj (17) x ... x Obj (ty),
1 is structurally defined as:
V 0 € Obj (1), 307 € Obj (1), 07 € Obj (1),
.. O € Obj (1) such that:
o =(id, [0}, 07, .., Op]);
if 1€ TOTC then V o' € Obj(t) witho #0
3 0'y € Obj(ty),0'7 € Obj(13), ... 0'p €
Obj(t,) such thato' = (id', [0'}, 0'p, ..., O'y])
withVie [1.n],0; ¢ {0'1,0, .., 0}

Collection and Grouping Types
They represent the set-of constructor of object models with
an exclusivity constraint for the grouping.



Definition 4: Let TOSC be an infinite set of collection
types, let TOSQG be an infinite sct of grouping types, two
disjoint subscts of JO, such that:
V1€ TOSC L TOSA, 3! 1’ € TO such that:
Dom (1) ¢ P(Obj (1) wherc P(Obj (") is the
powerset of Obj (1),
1 is structurally defined as:
V oe Obj(t), 3 0y,07,...,0q € Obj () such that:
o= (id, {07,097, ..., 0p})
if Te TOSG then V o' € Obj (1) witho#o0
3 0'1,0', ..., 0'p € Obj (t') such that:
o'=(id, {0'1, 09, ..., 0'p}) with Vie [1.n],
o; € (0'1,0, ...,0'}-

Alternative Types (Union Types)
Stucturally different types can be handled in a uniforme
way through the alternative type concept. This constructor
represents the IS_A generalization link enhanced with a
disjunction constraint beiween the generalized types.

Definition 5: Let TOUT be an infinite set of union type
types, a subset of TO, such that:
Ve TOUT, 3 11,12, ... Ty € TO,n> 0 such that:
Dom (1) £ Dom (t}) U Dom (tp) U ... v Dom (T,
1 is structurally defined as:
Vi, je [l.n] if i#j then
Obj (t;) N Obj ('tj) =@, 0bj (1) = Obj(tp) v
Obj (19) L ... U Obj (ty),
with V o € Obj (), 3! k €[1..n] such that:
0 = 0, Ok € Obj ().

3.1.3 Represented Types

The definition of represented types takes into account the
multiple inheritance since a represented type may have
several sources.

Definition 6: Let TOR be an infinitc set of represented
types, a subset of 70, such that:
Vte TOR, 3 11,72, ..., Ty € TO, n> O called
source(s) of © such that , Obj (t) ¢ Obj (1) L Obj
(t9) U ... L Obj (1) withV o€ Obj(t), 3 o;€
Obj (t;) such that 0= 0;.

3.1.4 Types

From basic types and constructors, it is possible to dcfine a
type, as a tree, in a general way.

Definition 7: A type T € TO is a directed tree T = (ST,
ET), where ET is a set of type edges. T is such that:

281

1. The sct of vertices ST is the disjoint union of eight
scts TOP,TOA,TOR,TOTA, TOTC, TOSC,
TOSG, TOUT.

2.IfT € TOA then T is root of type.
3. The leaves of the tree are printable or represcented
types.

An abstract type cannot be used in a built type since its
role is to describe a real world entity which is not defined
by its internal structure but through its specified fragment
properties.

3.2 1FO2 Fragment

The types could be linked by functions (simple, complex
(i.e. multi-valued), partial (O:N link) or total (1:N link))
through the fragment concept. The aim of the fragment is
to describe properties (attributes) of the principal type
called heart. The figure 4 describes the fragment of heart
'Person’ having 'Name', 'Address’ and 'Vehicle' as
properties. For cach vehicle associated to a person, there is
a contract insurancc number, this is called a ncsted
fragment. First Names are not always known for a person.

I First I
.@ Name

= Name
Person
Address

Street Number| | Zipcode]

Vehicle

Used
Contract-

. Insurance
Notation:
—_— (e

Total function  Partial function Complex function
Figure 4 - The Fragment ‘Person’

Conventions: we call partial a function in which some
clements of the domain have no associated elements in the
codomain. Otherwise, it is called total. The kind of
handled graph is: G = (X, U) where the set of vertices X is
the set of types T of TO and the set of edges U is
composed with: simple edges (simple functions) and
complex edges (functions applied on a TOSC, called
complex functions: an image of an object is a set). The
edge is called either partial or total if the associated
funciion is either partial or total.



Definition 8: An IFO2 fragment is a graph F = (VE, Lp),
with VE the set of types T € TO and L the set of
fragment links, defined such that:
1. There is a direct tree H = (VE, A) such that:
1.1, The root of H is called heart of fragment.
1.2. The source of an edge is either the heart
root or the root of a target type of a complex edge
whose source is the heart root.
2. For each edge linking the heart to a represented
type, there is a reciprocal total edge.
The IFO9 fragment is called by its hcart.

3.3 1FO2 Schema

An IFO2 schema is composed of n IFO2 fragments: Fy,
Fy, ..., Fp, n >0, related by IS_A links according to two
rules. The figure 11 illustrates one IFO7 schema made up
with five fragments 'Person’, 'Employee', 'Vehicle', 'Car’
and ‘Engine’. They are linked with IS_A links through the
represenied types ('Vehicle_Used', 'Employee’, 'V_Car',
Truck_Engine' and ‘Car_Engine’).

3.3.1 Specialization Link

The IS_A link in the IFO2 model is the specialization link
of the semantic models [12]. It represents either the
subtyping (inheritance) if the target is a fragment heart or
the client/supplier concept [18].

Definition 9: Let T'be a type of TOR and let T be a

type of TO, such that it is the (or oric) source of 1’ and a
heart of a fragment, the link of head T and queuc 1’ is
called an IS A link. T is called the source of the IS_A
link and 7' the target.

The figure 5 illustrates the specialization link betwcen
'Vehicle' and 'Vehicle_Used'.

Source Target
Vehicle @
Head Queue

Figure 5 - Notation for Specialization Link

3.3.2 IFO2schema
Definition 10: An IFO) schema is defined as a graph Gg
= (Sg, Lg) with Sg the set of types T € TO of the graph

such that:
1. Lg is the disjoint union of two sets Lg A

(fragment links) and Lg_1g A (IS_A links).

2.(Ss, Ls_p) is a forest of IFO2 fragments, called

the IFO) fragments for Gg.

3.(Ss,Ls_1g A) follows these two schema rules:
3.1. There isno IS_A cycle in the graph.

282

3.2. Two directed paths of IS_A links sharing
the same origin have to be extended o a
common vertex.

The structural part of the IFO9 model having now been
formalized, we examine the supplied update facilitics.

4 Updates on IFO2 Schema

Duc to space limitation, we just present updates on IFOp
schema in an informal way. The interested reader may find
more details in [23] where a functional approach is defined
to formally cnsure the structural consistency of 1FO2
updatcs.

4,1 Motivation

The problem with schema updates can be summarized by:
how to modify a given schema whilst prescrving a
coherent representation? In other terms, our aim is (o
ensurc that updates retain thc schema consistency. In
objcct model, consistency can be classificd in structural
consistency which refers to the static part of the database
and in bchavioral consistency relating with the dynamic
part [32]. In this paper, we only dcal with the structural
case.

An IFO2 schema is a couple (Sg, Lg) where Lg is
composcd by both fragment and IS_A links but not every
arbitrary couple (Sg, Lg) is a corrcct schema. Thus, we
have to make sure that the result of modifications is an
updated schema which verifies the IFO7 schema definition
(correctness). Thercfore, we give a sct of schema
invariants which are conditions to be satisficd by any valid
schema. A similar approach is adopted by models such as
Orion, O), Gemstone, Cocoon and Sherpa.

Some schema changes are quite simplce, whereas others
need a complete reorganization of the database. The latter
can often be decomposed into a sequence of more
elementary changes. The following taxonomy, figure 6,
presents the schema update primitives in 1FO2, which is
minimal and complete in the sensc that all possible schema
rransformation can be built up by a combination of these
clementary operations (completeness). Such a taxonomy
can be found in models likc Orion, Sherpa and Cocoon.
The two former give threc categorics of operations:
changing class definitions, i.c. instance variable or
mcthods, modifying the class latticc by changing the
rclationships between classes and adding or delcting
classes in the latticc. As the lauter is bascd on type,
function and classcs, schema changes are rcspectively:
type updates, function updates and class updates.

All schema structurc changes, as for instance, a fragment
insertion into the directed acyclic graph, may be expressed
by a sequence of basic updates. For example, the fragment



inscrtion may be donc by: <(1.1) a type insertion, (3.1)
zcro or more IS_A link inscrtion and finally, (3.2) zcro or
morc IS_A link deletion (in the casc of a node inscrtion
into the dircct acyclic graph)>. The primitive (1.4) is
nccessary 10 prescrve the schema in a valid state for it is
not equivalent to the scquences <(1.2) (1.1)> or <(1.1)
(1.2)> when the type has to be related to other ones. The
conscquence of applying such sequences may occur in a
tcmporary invalid state: as instance, if we want to
substitute a grouping component using <(1.2) (1.1)> or
<(1.1) (1.2)>, the application of (1.2) (respectively (1.1))
carries out the schema in a forbidden state: a grouping
without component (respectively a grouping with two
components).

()] "l'j_ypes updates

(1.1) Add a new type

(1.2) Delete a type

(1.3) Change a type
(1.3.1) its name
(1.3.2) its domain for
printable type only

(1.4) Substitute a type

(2) Fragment link updates (3) IS A link updates
(2.1) Add a new fragment link (3.1) Add a new IS_A link
(2.2) Delete a fragment link (3.2) Delete an IS_A link
(2.3) Change the sort of fragment

link

Figure 6 - Taxonomy of possible updates in IFO2

Intitively, in IFO7, a schema update is cither a type
insertion or a type modification in a fragment. The former
case is defined as a type insertion which must be related to
the schema. We can create a fragment, add a type to a
fragment or relate a type to others. The latter is described
with one or more operations on the concerned fragments
which are themsclves modifications on types. Operations
like insertion of a sub-type into an existing one, deletion of
a type and substitution of one type by another are thus
possible.

4.2 Presentation

We present the schema invariants that the transformation
process must maintain, and the necessary rules to provide
a guidelines for supporting schema modifications. As we
have just discussed, two rule categories have to be taken
into consideration: insertion and modification.

In this section, we illustrate the introduced concepts using
the following schema which is a sub-part of the figure 11.

4.2.1 Evolution Schema Invariants

The following schema invariants ensure that the change
does not leave the updated schema in an inconsistent state.
If the change would violate the invariants, it is rejected.

283

| Power |

Initial Schema

Final Schema
Figure 7 - An IFO) fragment creation example

Invariants:

I.1: a type T has to follow the dcfinitions 1 to 7 of an IFOp
Lype.

1.2: in the graph:

1. There is no IS_A cycle.
2. Two directed paths of IS_A links sharing the same
origin have to be extended to a common vertex.

1.3: the source of an IS_A link must be a fragment heart
and the target a represented type.

1.4: the source of an edge is cither the heart root or the
root of a target type of a complex edge whose
source is the heart root and for each edge linking
the heart to a represented type, there is a reciprocal
total fragment cdge.

1.5: a fragment cannot be isolated (except if it is the
unique one), i.e. it has to be related to other ones
through IS_A links.

For example, the type insertion of a Wheel's brother could
not be possible because the invariant 1.1 is not satisfied (a
grouping has only one component).

4.2.2 Insertion Rules

A type insertion into a schema is cither a fragment creation
or a property insertion into an existing fragment. The
insertion rules have to respect the schema invariants and
therefore, some insertions are forbidden. For instance, the
addition of the type 'Car' without adding the IS_A link
from 'Engine' to 'Car-Engine’ violates the invariants 1.3 and
1.5. The fragment properties may often be modified, so the
following rules provide a guidecline for supporting changes
into the fragment.



Rule 1: Addition of a type into a fragment

R1.1: addition of the type (primitive 1.1).

R1.2: addition of the fragment link relating the fragment
heart to the type (primitive 2.1).

Rule 2: Addition of a represented type or a type built

up with represented types

R2.1: addition of the type into the appropriatc fragment
(rule 1).

R2.2: if the type is a represented one, addition of the
reciprocal total fragment link (primitive 2.1).

R2.3: addition of the IS_A link(s) whose represented
type(s) is(are) target(s) (primitive 3.1).

R2.4: if the type is a represented one and a fragment hcart,
addition of the IS_A link(s) which it is the source of
(primitive 3.1),

R2.5: if the type is a represented one and a {ragment hcart,
deletion of the IS_A link(s) rclating the R2.3 source
vertices to the R2.4 target vertices (primitive 3.2).

For example, the type insertion of 'Car' has to connect the
type 'Car-Engine’ to 'Engine’. As 'Car’ is a lcaf of the
directed acyclic graph, there are no represented types
whose source is 'Car (rule 2). The schema componcnts arc
thus obtained as follows. The original set of schema
vertices {Engine, Power, Reg-Number) is increased with
the "Car’ vertices {Car, Car_Engine, Wheels, Whecl, Axle,
Tyre, Body, Chassis, Doors, Door} applying the R.1.1
statement. The fragment link set is not modificd because
the inserted type is a fragment heart. The application of
R2.3 provides the IS_A link set composed by the link
relating 'Car-Engine’ to 'Engine’.

Now, the addition of 'Car-regist’ as a 'Car' fragment
property, following the rule 1, updates schema componcnts
such as: the type 'Car-regist’ increases the set of schcma
vertices according to the R1.2 statement; the fragment link
set is updated for 'Car-regist' is related to ‘Car' and the
IS_A link set is not modificd because the inserted type is
not a represented one.

4.2.3 Modification Rules

Schema invariant constraints can be violated by
modifications. It is thus necessary to define rules o obtain
a valid updated schema.

The following rule is used to prevent that the invariant 1.5
is controlled.

Rule 3: IS_A link deletion condition
R3.1: an IS_A link can be deleted if and only it docs not
carry out one isolated part in the resulting schema.

Rule 4: Deletion of a type vertex

R4.1: if the vertex is a represented type, deletion of IS_A
link(s) which it is the target of (primitive 3.2) and
(rule 3).

284

R4.2: if the father is a grouping or a collection then
deletion of the father vertex (rule 4) clse if the
father is an aggregation, a typc union or a
composition angd there is a unique brother then
substitution of the father type by the brother one
(primitive 1.4) clse deletion of the type whose root
is the vertex (primitive 1.2).

Consider the dcletion of the type 'Tyrc'. As ‘Wheel' is a
composition of two elcments, the deletion of 'Wheel'
would provide an inconsistent type (a composition of a
unique clement violates the invariant 1.1). The updates
have thus to be send back in the 'Wheel' father lcvel
substituting the father type by the Tyre's brother (R.4.2).
The schema vertex sct is thus decreascd with {Wheel,
Tyre}. The following figure shows the updated type:

Figure 8 - The resulting type after type deletion

Rule 5: Deletion of a type into a fragment

R5.1: deletion of its rclated types which are not fragment
heart (rule 4).

R5.2: delction of the fragment links relating it to the
previous types RS.1 (primitive 2,2),

R5.3: dcletion of the fragment link rclating the fragment
heart to the type (primitive 2.2).

R5.4: deletion of the type (primitive 1.2),

A type dclction provides necessary opcrations dclcting
fragment links related to and related from the type (rule S).
For instance, the 'Car-regist' delction needs to delete the
fragment link from 'Car' to ‘Car-regist’ (R5.3) of the
schema fragment link sct.

Rule 6: Deletion of a represented type or a type built

up with represented types into a fragment

R6.1: deletion of the IS_A link(s) whosc represented
type(s) is/are target(s) (primitive 3.2).

R6.2: if the type is a represented onc and a fragment heart,
delction of the IS_A link(s) which it is the source of
(primitive 3.2) and (rule3),

R6.3: if the type is a represented one and a fragment heart,
addition of the IS_A link(s) relating the R6.1 source
vertices 1o the R6.2 target vertices (primitive 3.1).



R6.4: if the type is a represented one, deletion of the
fragment links relating it to the fragment heart
(primitive 2.2).

R6.5: deletion of the type in the appropriate fragment
(rule 5).

When a type is a represented one or is built up with
represented ones, its deletion changes the schema IS_A
links. This is done through the rule 6. For example, the
deletion of the type 'Car' has to delete the IS_A link
between 'Car_Engine' and 'Engine’ (R.6.1).

As the IFO2 model and its update capacitics are now
defined, we will examine the IFO7 translation into the O
model [16].

5
Schema

This mapping follows the same principle as the realized
transformation from MORSE 1o O7 [7]. As this application
of a principle frame is on the "whole-object” from the
"source” model level, the ways of translation are different.
Therefore, we define checking methods and associated
classes for composition, grouping and union type. We also
consider multiple inheritance generically.

The formalization of the mapping will be given after
having introduced it through an example.

5.1 Illustration

An IFO3 schema is translated into an O schema. Each
fragment generates at least onc O class (more if they are
composition, grouping or alternative types).

We translate a part of the IFO7 schema described in figure
11 into an 02 schema. Therefore, we work successively on
the two fragments "Vehicle" and "Engine”.

The "Vehicle" fragment is mapped into a particular class.
It represents either a "Truck" element or a "Car” element.
To do this, adopting a similar principle as in [8], we use
two boolean attributes "is_Truck" and "is_Car" which
indicate the object type. We also need to define the classes
"C_Truck", "C_Cab" and "C_Trailor" so that each object
of these types has an identifier. Furthermore, a method
checks the exclusive composition constraint in the class
"C_Truck". As the represented types are not fragment
heart, they are translated using the O2 composition.
Otherwise, the associated class has to inherit the generic
class: for instance, the class employee inherits the class
Person.

Mapping an IFO2 Schema to an 02

285

class C_Vehicle
public type tuple (
Vehicle : tuple (
is_Truck : boolean, Truck : C_Truck,
is_V_Car : boolean, V_Car : C_Car),
Capacity : integer)

class C_Truck end;

public type tuple (
Truck : tuple ( Cab : C_Cab, Trailor : C_Trailor,
Truck-Engine : C_Engine))

method Check_Compo_Truck : boolean

end;

class C_Trailor

public type tuple (Trailor : string) end;

class C_Cab

public type tuple (Cab : string) end;

Figure 9 - The fragment "Vehicle" and the associated 02
Classes

The "Engine” fragment is translated into a class with two
attributes:

Power

Engine

Reg-Number
’ class C_Engine
_public type (Power : string,
Reg-Number : integer);
Figure 10 - The fragment "Engine” and the associated 02
Class

5.2 Transformation Functions
We suggest to define the transformation function which
carries out an O schema from an IFO7 schema.

5.2.1 Transformation Function

Definition 11: Let T be the transformation function
from the IFO9 model to the O one:
T:IFO2 - O)
m
T (IFO2 schema )=uU T (Fmgmentj)
j=1
where m is the fragment number of the IFO7 schema.



This transformation uses a ¥ function (with three
parameters: the function source type, the function target
type and the kind of function (simple (partial or total) or
complex (partial or total)*) which translates each fragment
edge into the O model. We adopt the following notation:

for each t type of TO, C_t is a class name and t is an 0

5.2.2 Types and Edges Transformation Function
Definition 13: The ¥ function translates fragment types
cither in 07 type or in Q7 class. It is defincd as:

ift € TOP:

attribute name in the O2 model.

Definition 12: Let n be the edge number whose source is
the fragment heart, T is defined as:
T (Fragment) =

1.  if heart ¢ TOA U TOR:
class C_heart
public type tuple ( heart: F(heart, 0, O)

2.  if heart € TOA:
class C_heart public type tuple (

3.  ifhearte TOR:
/* 3 is the numbes of IS_A links */

class C_heart inherit C t],..C_ts
public type tuple (

F(e,0,0)=dom(t)

ift € TOR A thas only one source:
F(e,00)=Ct

/%1’ is the source of the IS_A link */

At has m sources:
F(¢,D,0)= C__l * there are m sources of IS_A links */
Aclass C_tinherit C t;, ..., C_ty,

/* in case of name conflict, Oy is able 10 solve it by adding a prefix to the
class name */

ift € TOA:

k
F(1,0,0)=wple(1;:F(1;,0,0))

i=1 /* K is the number of relatod types */

0 ift € TOTA:
0 n k-n n
» ’ = l ". { L] .: " )
target;: ¥ (heart, target;, simplelcomplex)) F(1.0.0) = tuple (if_f 1 €4 ;/= If 4, 0.0))
i=l /* k is the number of aggregated Lypes and n the number of TOR types */
0 if heart e TOTC: Nk
method public Check_Compo_heart : boolean class C_t; public type wuple (1;: ¥(1;, 0,0 )
Ny
0 if heart € TOTG: if t; € TOTC:
method public Check_Set_heart : boolean method public Check _Compo_t;: boolean
. . ift; € TOTG:
0 if target; € TOR A (target;, heart, simple) t ; .
method public Check_Simple_target; ( mne‘;hod public Check _Set_t;: boolean
Ftarget;, O, Q) ): boolean end:
0 ift € TOTC:

A (target;, heart, complex):
method public Check_Complex_target; (

F(e,0,0)=set(F(', 0, O )) /*isthe coliectod type */

Flarget;, O, O), integer): boolean 0 ift € TOTG:

. F(,o0,0)= 1* ¢ is the collected type */
0 ifrget; € T0TC ifre TOR: set(F(r,0,0))

method public Check_Compo_target;: boolean ifre TOR: set(C 1)

0 if target; € TOTG:

A
class C_t’ public type tuple (¢:F(,0,0))

method public Check_Set _target; : boolean ift e TOTC:
method public Check_Compo_t': boolean
0 end: ift' e TOTG:
method public Check_Set_t": boolean
* For the generul case, partial and total tarms will be omitied. end;

286



0 ift € TOUT:
k k

F(t,0,0) = wple (is_t;: boolean, t;. C_t;)

i=1 i=1

k
class C_i;
i=1

public type tuple ( t;: F(y;,0,0))
if t; € TOTC:
method public Check_Compo_t;: boolean
if ; € TOTG:
method public Check_Set_t;: boolean
end;

A /* k is the number of associated types */

F( heart, target, simple) = ¥( target, 0, D)

For a complex edge, the target can be the source of p
other edges (nested fragment) with target2; # heart Vi

€ [1,..,p] (edges whose target is the heart, have alrcady
been translated):

¥( heart, 1arget, complex) =
set ( tuple( target: ¥(target, 0, O ),
p
targe2;: F(warget, target2;, simple| complex)))
i=l

if F( heart, target, simple totallcomplex total)
then add an existence test for attribute target value in
the Init heart method.

F( target, targer2, simple) = ¥( targei2, 0, 0)
¥( target, targer2, complex) =
sel( ¥(arget2, 0, 0 )

if F( target, target2, simple totallcomplex total)
then add an existence test for attribute target2 value in
the Init heart method.

5.2.3 Structures of Generated Methods

This part describes the structure of some generated
methods. These methods are added into classes as
semantics constraint checkers.

Generally, the method checking the exclusive constraint
for composition of a type t € TOTC is:
method body Check_Compo_t boolean in class C_t {
/* & is the number of component types */
if (/(self->Test_compo j(self->t.compo})))
return false; ...

287

if (/(self->Test_compoy(self->t.compoy) return false;
return true;};

The method verifying that one element belongs to an
object of class C_Class is *.

method body Test_compo j (object: C_compoj):
boolean in class C_Classe
{ 02 C_Classe Obj,' " compo; is 3 component of type t ¥/

02 boolean result=true;
for (obj in C_Classe_s where obj->C_Classe.compoj
== object) {result=false;}; returnresult;};

In the same way, the following method verifies the
grouping of a type t whose collected type is t":

method body Check_Set_t : boolean in class C_t
{02 C _t obj, C _t'0bj t'; testmember of the set *
02 boolean result=true;
for (objinC t s)
{for (obj _t' in obj->t where obj t’' in self->t )
{result=false;};
return result.};

The other checking methods are defined in the same way.

6 Implementation

In this section, we briefly indicate some aspects of the
implementation of the IFO) system.
A first version of the IFO7 editor is currently developped
under Unix/XWindow (X11RS), with the help of the
Aida/Masai (Release 1.5) programming environment,
developped in object-oriented Le-Lisp (Release 15.24).
This editor, as illustred in figure 11, is made up of three
tools:
1. A graphical view consisting of an editing panel, a
tool pane! and a workspace;
2. A selection panel of object types and existing link
types;
3. An objcect editor enabling the textual representation
of textual object as well as information which does not
appear on the schema.

* For a C_Classe class, the C Classe_s valuc is the instances set of the
C_Classe class. For each new instance of C_Classe, it is necessary to modify
the set which is defined as: Name C_Classe_s: set(C_Classe).



S
3
5

f

=
3

o

IFO2 GRAPHIC EDITOR

[ Tt 1 R A Y. SR i a2 Complet Scramg iy N

Tk TR DAL BT SN (18

OFRO;

o o o o o o o

Q) B D @] [®
e

i

7.0. IFO2 Editor
)ect Type.
‘ type

Vehicle-Uned
tor

Lanks,
jassatiated 1.0. Person (tos)

[Tstreer [ Wamwer ] |__Tipoess ]

..................

(m)

lisherited fren Vehicle (tout)

The type definitions achieved with the editor are converted
by a translator into O descriptions. The descriptions may
thus be used in the O7 system. For instance, the methods
described in the previous section have been implemented
in the O2 Databasc Management System (Release 3.3).
The following example shows some generated mcthods
associated to the class C_Truck:

method body Check_Compo_Truck: boolean in class C_Truck
{ if (}(self->Test_Cab(self->Truck.Cab))) return false;
if (1(self->Test_Trailor(self->Truck.Trailor))) return false;
if ({(self->Test_Truck_Engine(self->Truck.Truck_Engine)))
return false; return true; };
method body Test_Cab (object: C_Cab): boolean in class
C_Truck
{ 02 C_Truck obj;

02 boolean result=true;

for (obj in C_Truck_s where obj->Truck.Cab == object)
{result=false; }; return result; };
/* named values declaration */
name C_Truck_s: set (C_Truck);

7 Conclusion

In this paper, we have formally defined an object model
IFO7 as well as its transformation into the O2 model. We
have also presented the offered updates facilities in an
informal way. As a conclusion, first of all we would like to
highlight its contributions so as to indicate the prospects of
this work.

The first contribution, that of the IFO2 whole-object, is the
coherent and rigorous definition of the component
elements of the model through the object identity concept.

288

Figure 11 - The IFO? editor

The second strength of the model is the integration of
constructors which are indispensable to the development
of advanced applications, such as composition and
grouping. The latter enables the constituant scts to be
"physically” taken into account.

The most original aspect of IFQ3 is that it draws upon both
elements which may be said conceptual, such as fragments
and represented types, and implementable such as object
identifiers. The case of multiple inheritance is a special
case given that, at the conceptual level, no conflicts arc
involved while at the system level, all conflicts gencrated
are explicitly processed. We have secn that IFOp
inheritance may be multiple but does not require any prior
management. The conflicts are processed according to the
target model while the translation rules are defined.
Another advantage of IFO2 is the way it can modulate and
reuse parts of schema that have been developped, through
the fragment concept. Thercfore, it is possible to focus on
only one part of the schema while reusing, through
represented types, the already defined and validated
components.

The fragment concept represcnts another advantage of
IFO2: namely the ease of integrating application dynamic
through this structure. It cnables the behavior of the heart
type 10 be described naturally and above all makes it
possible for behavior to be inherited through represented
types.

Finally, IFO7 is totally independent in relation to
implementable models, while providing an ease of
transformation rule definition towards different modcls
due to its genericity. The translation of an IFO2 schema
into an O7 one is a prime example of this. The formal rule
definitions reduce data-loss and misinterpretation.



The presented update capacities is a strength of our
approach. They cnsure the integrity of the updated
schemas. The result is a cohcrent and formal approach.
The ambiguities and contradictions are then detected and
different schemas may be compared. Furthermore, in a
reusability goal, the security obtained through the
consistency of handled informations is crucial.

The prospects of the presented work begin with the
integration of modeling abilities for the application
dynamic. The conceptual rules associatcd with the IFO7
model advocate an attribute-oriented modeling and are
principally based on the object behavior. Moreover,
through “"process” specification associated with the
fragment, the most suitable optimized representation can
be determined. According to us, dynamic and behavior
will be integrated in the model using a formal approach
based on the temporal logic [10] and [24]. Such an
approach automatically validates the specified constraints
whilst being easily understood by the users.

8 References

i Abiteboul S., Fischer P. C. and Schek H.-J. (Eds) - Nested
relations and complex objects in databases. LNCS, Vol. 361,
Springer-Verlag, 1989.

Abiteboul S. and Hull R. - [FO: A Formal Semantic Database
Model. ACM Transaction on Database Systems, Vol. 12, N° 4,
December 1987, pp. 525-565.

Andany J., Léonard M. and Palisscr C. - Management Of Schema
Evolution in Databases - Proceedings of the 17th Intemational
Conference on Very Large Data Bases, Barcclona, Scpiember
1991, pp. 161-170.

Atkinson M.P., Bancilhon F., DeWitt D., Diurich K., Maier D.
and Zdonik S. - The Object-Oriented Database System Manifesto.
Proceedings of the First Deductive and Object-Oriented Database
- DOOD89 Conference, Kyoto, Japan, December 1989, pp. 223-
240.

Banerjee J., Chou H.-T., Garza J.F., Kim W., Woelk D., Ballou
N. and Kim H. J. - Data Model Issues for Object-Oriented
Applications. ACM Transactions on Office Information Systems,
Vol. 5, N° 1, January 1987, pp. 3-26.

Bertino E. and Martino L. - Object-Oriented Database
Management Systems: Concepts and Issues. Computer IEEE, Vol
24, N°, April 1991, pp. 33-47.

Bouzeghoub M., Métais E., Hazi F. and Leborgne L. - A Design
Tool for Object Databases. LNCS, Vol. 436, Stcinholtz B.,
Solvberg A. and Bergman L. (Eds.), proceedings of the Second
Conference on Advanced Information Sysicms Engineering,
Springer-Verlag, 1990, pp. 365-392.

Collet C. and Brunel E. - Définition et manipulation de
formulaires avec FO2. TSI Technique et science informatique,
Vol. 10, N° 2, 1991, pp. 97-124.

Coen-Porisini A., Lavazza L. and Zicari R. - The ESSE Project.
An Qverview. Proceedings of the 2nd Far-East Workshop on
Future Database systems, Kyoto, Japan, April 26-28, 1992, pp.
28-37,

Fiadeiro J. and Semadas A. - Specification and Verification of
Database Dynamics. Acia Informatica, Vol. 25, 1988, pp. 625-
661.

Heuer A. - A Data Model for Complex Objects Based on a
Semantic Database Model and Nested Relations. In [AbFi89), pp.
297-311.

2

Bl

“l

(8]

®l

(0

0]

289

112}

(3]
(14

[15]

(6]

nm

g
9

21
122)

(23

1241

i25]

2n
(28]

129

{30)

B1

132)

Ilull R. and King R. - Semantic Database Modelling: Survey,
Applications, and Research Issues. ACM Computing Surveys,
Vol. 19, N° 3, September 1987, pp. 201-260.

Hull R, - Four Views of Complex Objects: A Sophisticate's
Introduction. In [AbFi89), pp. 87-116.

Kim W., Bertino E. and Garza, J.F. - Composite Objects
Revisited. Proceedings of the ACM SIGMOD Conference, June
1989, pp. 337-347.

Kim W. - Object-Oriented Databases: Definition and Research
Directions. 1EEE Transactions on Knowledge and Data
Engineering, Vol. 2, N° 3, September 1990, pp. 327-341.

Lécluse C., Richard P. and Velez F. - 02, An Object-Oriented
Data Model. Proceedings of the ACM SIGMOD Conference,
June1988, pp. 424-433.

Lyngback P. and Vianu V. - Mapping a Semantic Database
Model 10 the Relational Model. Sigmod Record, Vol. 16, N° 3,
December 1987, pp. 132-142.

Meyer B. - Object-Oriented Software Construction - Prentice Hall
Intemational series in Computer Science, 1988.

Missikoff M. and Scholl M. - An Algorithm for Insertion into a
Lattice: Application to Type Classification. Foundations of Data
Organization and Algorithms, LNCS, Vol. 367, Springer-Verlag,
1989, pp. 64-82.

Nguyen G.T. and Rieu D. - Schema Evolution in Object-Oriented
Database Systems. Data&Knowledge Engineering (North
Holland) 4, 1989, pp. 43-67.

Pemici B. - Objects with Roles. Conference on Office Information
Systems, Cambridge, April 1990, pp. 205-215.

Penney D.J. and Stein J. - Class Modification in the Gemstone
Object-Oriented DBMS. OOPSLA'87, Proceedings, October
1987, pp. 111-117.

Poncelet P. and Lakhal L. - Consistent Structural Updates for
Object Database Design. LNCS, proceedings of the Fifth
Confercnce on Advanced Information Systems Engineering,
Paris, June 1993, to appear.

Saake G. - Descriptive Specification of Database Object
Behaviour. Data & Knowledge Engineering (North Holland) 6,
1991, pp. 47-73.

Sakai H. - An Object Behavior Modeling Method. Proceedings of
the 1st International Conference on Database and Expen Systems
applications, 1990, pp. 42-48.

Stonchraker M. (Ed.) - Special Issue on Database Prototype
Systems. IEEE Transaclions on Knowledge and Data
Enginecring, Vol. 2, N°1, March 1990.

Teorey T. J.(Ed.) - The Entity-Relationship Approach. Morgan
Kaufmann Publishers, 1990.

Teisseire M., Poncelet P. and Cicchetti R. - A Tool Based on a
Formal Approach for Object-Oriented Database Modeling and
Design. Proceedings of the 6th Intemational Workshop on
Computer-Aided Software Enginecring (CASE'93), IEEE
Publisher, Singapore, July 1993, 10 appear.

Tresch M. and Scholl M.H. - Meta Object Management and its
Application to Database Evolution. Proceedings of the 11th
Iniemational Confcrence on the Entity-Relationship Approach,
LNCS N°645, Karlsruhe, Germany, October 1992, pp. 299-321.
Twine S. - Mapping between a NIAM conceptual schema and
KEE frames. Data & Knowledge Engineering, Vol. 4, N° 4,
December 1989, pp. 125-155.

Unland R. and Schlageter G. - Object-Oriented Database
Systems: Concepts and Perspectives. Database Sysiems of the
90s, LNCS, Vol. 466, Springer-Verlag, 1990, pp. 154-197.

Zicari R. - A Framework for Schema Updates in an Object-
Oriented Database System. Proceedings of the 7th IEEE Data
Engineering Confercnce, Kobe, Japan, April 8-12, 1991, pp. 2-13.




