
Towards a Formal Approach for Object Database Design

P. Poncelet M. Teisseire R. Cicchetti L. Lakhal
University of Nice-Sophia Digital Equipment IUT Aix-en-Provence ESSTIN

Antipolis Ferney Voltaire University of Aix-Marseille II University of Nancy I

13s - CNRS - URA 1376 - 250 avenue A. Einstein Sophia Antipolis - 06560 Valbonne - FRANCE
E-mail: poncelet@opaline.unice.fr - Tel: (33) 92 94 26 22 - Fax: (33) 92 94 28 98

Abstract 1 Introduction

This paper focuses on a formal approach* for advanced
database modeling and design. It is based on the IF02
model, an extension of the semantic model IF0 defined by
S. Abiteboul and R. Hull. It preserves the acquired
strengths of the semantic approaches, whilst integrating
concepts of the object paradigm. To model an IF02
schema, the structural part of the model including concepts
such as alternative, composition, grouping for building
complex objects and semantic constraints is formally
specified. Furthermore, the definitions of update facilities
necessary to modify and perfect IF02 schemas are
specified through change rules. Finally, in order to design
a database schema, an IF02 schema is translated, in an
automatical way, into an existing target (implementable)
model. As an illustration, we present a translation from the
IF02 model into the CQ one. The result is a new coherent
and formal approach which is useful in overcoming some
of the difficulties in the specification and design of object-
oriented applications.

*
Thix wok. xuppod by the PRC-BD3 and WI Extawl Euntpean Rorslmh

hjxol in coR&0doo with Digital Bquipnau, amnoa wilbin Ih uq4 of a larger
pmjsct whas aim is to realize m aided system for l dvumcd rppliutioo modeling
and dcsip.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed far
direct commercial advantage. the VLDB copyright notice and fhe
title of the publication and its date appear, and notice is given
that copying is by permission of the Very Large Data Base
Endowment.‘To copy otherwise, or to republish, requires a fee
an&or special permission from the Endowment.

Proceedings of the 19th VLDB Conference,
Dublin, Ireland, 1993.

Modeling needs for new applications and flaws in the
relational model have led to the definition of more
powerful mod& which are extended relational [I] or
object-oriented [5], [6] and [15]. The generic term for
associated systems, of which certain prototypes are
described in [26], is Advanced Database Management
Systems. As a consequence, current research work is
focusing on the definition of new modcling and design
approaches able to satisfy the needs of both traditional and
advanced applications [7], [l l] and 1131. The prcscntcd
research work fits into this context: a new approach whose
three main aspects are the following ones. Firstly, a formal
object model IF02 1281 is defined for advanced database
modeling as an extension of the semantic model IF0
proposed by S. Abiteboul and R. Hull [2]. Its objective is
actually to reconcile apparently opposed ideas: an optimal
data representation and a complete real world modcling.
IF02 attempts to preserve the acquired strengths of
semantic approaches. whilst integrating concepts of the
object paradigm [4]. Secondly, structural update
primitives arc formally proposed through change functions
to offer an incremental specification of IF02 schcmas.
They are crucial for they assist the designer to take into
account real world evolutions or to rectify a part of his
schema without redefining the whole. They also play a
part in the merging of existing sub-schcmas and so they
may be seen as one important element in a vicw-
integration process. Finally, in order to design object
database schema, a set of transformation rules translates
an IF02 schema into an implementable one

The aim of this paper is to describe our approach in
conuast with the related works and particulary to present:

1. The structural part of the IF@ model.
2. The associated structural update facilities through

change rules.
3. The formalization of the translation rules from an

IF02 schema to an 02 one (according to the

278

cstablishcd 02 model [161) to justify (and illustrate)
our approach.

Finally, we briefly give some aspects of the
implementation of the system.

2 Related Works and Proposal

Before presenting our approach and in order to highlight
its contributions, it would be interesting to provide a brief
survey of modeling and design approaches. Among them,
there arc two main trends.
The fit group involves semantic currents. They are based
on conceptual (or semantic) mod& for real representation.
Their principle is to offer the users concepts powerful
enough to achieve, from the real world, the most complete
specification possible. The resulting schema is then
translated into a logical or implementable one. We may
quote [Ill, [17], 1271 and [301. However, the classical
models in this group generally suffer from the lack of
concepls (object-identity, reusability,...) which are
efficient for advanced application modeling. Furthermore,
in this trend, structural updating capacities are not always
proposed, and when they exist, they are described in an
intuitive way.
The second class encompasses object-oriented currents.
Their major goal is to capture the dynamic aspects of
applications [21] and [25]. In contrast with the fit class,
&se approaches do not offer enough structural concepts
(often limited to those of implementable object mod&)
for a complete real world modeling. Generally, additional
methods are used to express semantic structural
constraints, These trends do not respect the indcpendcnce
between the source and target models. Furthermore, they
involve an optimized representation of data, i.e. type-
oriented, when an attribute-oriented modeling is advisable
for the conceptual level [13]. The implication for the
database designer is the necessity of specifying
preliminary representation choices. These choices
sometimes cut off parts of the real world being modelled.
The object models provide database evolution
mechanisms (three trends have been defined in [3]) but
they do not deal with conceptual schemas, and their
objectives differ from ours. However, they are interesting
for they pinpoint two levels to be taken into consideration:
the IS-A hierarchy and the composition hierarchy. For
instance, we may quote: the Mosaic0 system where
algorithms are defined for type insertions into a lattice
[191; the Esse project where algorithms ensure consistent
updates of an 02 database schema 191 [32]; the Gemstone
[22] and Orion [141 systems, the Sherpa [201, Farandole2
[3] and Cocoon [29] projects: where rules for the schema
evolution are stated.

model objective is to integrate the object paradigm whilst
retaining IF0 modeling strengths. It boosts modeling
abilities and appears more suitable for advanced
application design than object models.
To modify and perfect an IF02 schema, formal structural
update facilities are offered. These changes are formally
taken into consideration through update functions [23].
When the schema seems to be complete for the designer, it
would be carried out, automatically, into a target model,
by using a transformation function.

We assert that it is essential to have a really rigorous
approach as IF02 The object paradigm allows and
encourages a modular modeling of the real world. So,
object modeling can sometimes look “anarchistic” and
therefore difficult to handle 1311. In order to avoid such
problems, a formal approach leads to a schema which is
non-ambiguous, without omissions, modifiable and easily
reusable. Moreover, it has the advantage of faciliting not
only the comparison of different designs but also the
verification of updates on specifications without further
validations.

First of all, we present the IFO;! model. Update facilities
are then explained and defined through change rules.

3 The IF02 Model

IF02 adopts the philosophy of the semantic model IFO.
Two main extensions are realized. Firstly, an explicite
definition of the object identifier which is object value
independent, is integrated. To achieve this, all
manipulated elements of IF0 are re-defined to consider
the object paradigm. Secondly, to fully meet our
“conceptual” objectives, the modeling power of IF0 must
be enhanced. Then, the concepts of alternative,
composition and grouping for building complex objects
have been intcgratcd. The connectivity and existency
constraints are explicilly specified.
In the next sections, we propose a part of formal
definitions of the IF02 model. Instance and attached
object concepts are not presented, the interested reader can
rcfcr to [28]. Firstly, the object and type concepts are
dcscribcd as well as the different constructors. The
fragment notion and IF02 schema are then detailled.

3.1 Object and Type
In the IFOZ, model, an object has a unique identifier which
is indcpcndant of its value. Furthermore, the domain of a
type describes the possible values for its objects. The
figure I shows the components of the type ‘Name’.

We would suggest an approach based on the formal model
IF02 which is both type and attribute oriented. The IFO;!

279

Object Type Type Domain

\ \
Name String [20]

0~7 (id N1. ‘JOCELYN’) ’ ~=(tdN2,‘HUGO’)

Objects of Type

Figure 1 - Object Type Example

Defidlion 1: 70 is an infinite set of object types such
that:

V 1 E TO, Dom (r) is an infinite set of symbols,
including the empty set, called the value domain of
7, Did (7) is an infinite set of symbols called the
identifier domain of ‘5. Objects of type ‘c are defined
by a pair (id, value) such that:

V o, o’ of type r, 3 (id, id) E Did(Q2, 3 (value,
value’) E Dom (I)~ such that: if o=(id, value),
o’=(id’, value’) and id # id’ then o f 0’.

The infinite set of objects of type o is called Obj (‘5).

3.1.1 Printable and Abstract Types
There are three basic types (shown in the figure 2):

1. A printable type (TOP), used for I/O application
(Input/Output are therefore environment-dependent:
String, Integer, Picture, Sound, . ..). which are
comparable to attribute type of the Entity/Relationship
model [27];
2. An abstract type (TOA) which would be perceived
as entity in the Entity/Relationship model;
3. A represented type (TOR), defined in the section
3.1.3, which handles another type through the IS-A
specialization link. This concept is particularly
interesting when considering modularity and
reusability goals. The designer may defer a type
description or entrust it to somebody else, while using
this type for modeling a part of the application schema.

TOP ~powerl TOA @ TOR @

Figure 2 -Basic Type Examples

Definitfon 2: Let TOP be an infinite set of printable

rypes, let 7OA be an inftnite set of abstract types, two
disjoint subsets of 70, such that:

1. V ‘F E TOP, dom (z) is an Smite set of symbols:
2.VTE 7OA,dom(r)= (0).

An abstract type actually represents an entity without
internal structure but nevertheless identifmble and having
properties, hence its value domain is empty.

3.1.2 Complex Types
The IF02 model takes into account five type constructors
and makes a distinction between an exclusive and a non-
exclusive building. These constructors may be recursively
applied according to specified rules for building more
complex types.
For example (see the figure 3). ‘Address’ is built up from
‘Street’, ‘Number’ and ‘Zipcode’ types and ‘Wheels’ is
composed with the ‘Wheel’ type obtained from ‘Axle’ and
Tyre’ tyt?es.

Notation :

Aggregation Composition Collection Grouping Union type

Figure 3 - Type constructors

Aggregation and Composition Types
Aggregation and composition represent the aggregation
abstraction of semantic models 1121 defined by the
Cartesian product. It is a composition, if and only if, each
object of an aggregated type occurs only once in an object
construction of aggregation type.

Definition 3: Let ‘JO7& be an infinite set of
aggregation types, let 70% be an infinite set of
composition types, two disjoint subsets of 70, such that:

V~sEOTAu7OX, 3 q,9 ,..., f,~TO,n>l,
such that

Dom (r) L; Obj (rl) x Obj (r2) x . . . x Obj ($),
r is structurally dclined as:
V o E Obj (r), 3 01 E Obj (71). o2 E Obj (r2),
. . . . on E Obj (r,) such that:

o = (id, lol,o2, on]);
if r E ‘JO’J’C then V o’ E Obj(r) with o f o
3 0'1 E Obj(rl), 0’2 E Obj(r2). O’n E
Obj(rn) such that o’ = (id, 10’1.0’2, o’,])
with V i E [l..nl, Oi 6 (0'1,0'2, ,.., Oln).

Collection and Grouping Types
They represent the set-of constructor of object models with
an exclusivity constraint for the grouping.

Definillon 4: Let 70SC be an infinite set of collecrion

lypes, let 7OSci lx im infinite set of groupink, types, two
disjoint subsc~s of 70. such that:

Vre 7OSCu7OSa,3!r’~ 70suchthat:
Dom (z) s P(Obj (r) where P(Obj (7’)) is the

powerset of Obj (r),
r is structurally defined as:
V o E Obj (r), 3 01.02, On E Obj (r’) such that:

0 = (id, (01.02, On))
ifre 70SathenVo’E Obj(r)witho#o
3 0’1.0’2, . ..(o’, E Obj (2’) such that:

0’ = (id’, (0’1.0’2. . ..) oln)) with V i E [l..n],
Oi E (0’190’2, ..e, O’n).

Alternative Types (Union Types)
Stucturally different types can bc handled in a uniforme
way through the alternative type concept. This constructor
reprcscnts the IS-A generalization link enhanced with a
disjunction constraint between the gcnemlizcd types.

Definition 5: Let 7OU7 be an infinite set of union type

types, a subset of 70, such that:
V r E 7OU7, 3 rl, r2, rn E 70, n > 0 such thak
Dom (r) s Dom (rl) u Dom (r2) u . . . u Dam (Q),

r is structurally defined as:
Vi,jE [l..n] if i+j then
Obj (Ti) n Obj (rj) = 0, Obj (r) = Obj (q) u

Obj (ri> u . . . u Obj (‘In),
with V o E Obj (r), 3 ! k E [l..n] such that:

0 = ok, ok E Obj (rk).

3.1.3 Represented Types
The definition of represented types takes into account the
multiple inheritance since a represented type may have
sevwaI sourcea.

Deflnilion 6: Let 7OR be an infinite set of represented

types, a subset of 70, such that:
V r E 70% 3 rl, ‘52, ,.., r, E 70, n > 0 called
source(s) of r such that , Obj (r) s Obj (‘rl) u Obj
(r2) u . . . u Obj (rn) with V o E Obj (r), 3 oi E
Obj (ri) such that o = Oi.

3.1.4 Types
From basic types and constructors, it is possible to dctine a
type4 as a tree, in a general way.

Deft&&m 7: A type T E 70 is a directed tree T = (ST,
ET), where ET is a set of type edges. T is such that:

1. The set of vertices ST is the disjoint union of eight
sets 7OP, 70A, 7032,707A. 707c. 7osc.

7osc& 7ou7.
2.1fT~ 70athcnTisrootoftype.
3. The leaves of the tree are printable or represcntcd
QQCS.

An abstract type cannot be used in a built type since its
role is to describe a real world entity which is not defined
by its internal structure but through its specified fragment
properties.

3.2 IF02 Fragment
The types could be linked by functions (simple, complex
(i.e. multi-valued), partial (O:N link) or total (1:N link))
through the fragment concept. The aim of the fragment is
to describe properties (attributes) of the principal type
called heart. The figure 4 describes the fragment of heart
‘Person’ having ‘Name’, ‘Address’ and ‘Vehicle’ as
propcrtics. For each vehicle associated to a person, them is
a contract insurance number, this is called a nested
fragment. First Names are not always known for a person.

Notation:
1 Insurance]

b (,*

Total function Partial function Complex function

Figure 4 - The Fragment ‘Person’

Conventions: we call Dartial a function in which some
elements of the domain have no associated elements in the
codomain. Otherwise, it is called &tt& The kind of
handled graph is: G = (X, U) where the set of vertices X is
the set of types T of 70 and the set of edges U is
composed with: simple em (simple functions) and
wmolex ew (functions applied on a 7OSC, called
complex functions: an image of an object is a set). The
edge is called either partial or total if the associated
function is either partial or total.

281

Defmition 8: An IF02fragment is a graph F = (VF, LF),

with VF the set of types T E ‘JO and LF the set of

fragment links, defined such that:
1. There is a direct tree H = (VF, A) such that:

1 .I. The root of H is called heart of fragment.
1.2. The source of an edge is either the heart

root or the root of a target type of a complex edge
whose source is the heart root.

2. For each edge linking the heart to a represented
type, there is a reciprocal total edge.

The IF02 fragment is called by its heart.

3.3 IF02 Schema
An IF02 schema is composed of n IF02 fragments: FI,

F2, F,, n > 0, related by IS-A links according to two
rules. The figure 11 illustrates one IF02 schema made up
with five fragments ‘Person’, ‘Employee’, ‘Vehicle’, ‘Car’
and ‘Engine’. They are linked with IS-A links through the
represented types (‘VehicleYUsed’, ‘Employee’, ‘V-Car’,
Truck-Engine’ and ‘Car-Engme’).

3.3.1 Specialization Link
The IS-A link in the IFO;! model is the specializnion link
of the semantic models [12]. It represents either the
subtyping (inheritance) if the target is a fragment heart or
the client/supplier concept [IS].

Definition 9: Let ‘5’ be a type of ‘TOR and let T be a

type of TO, such that it is the (or one) source of ‘5’ and a
heart of a fragment, the link of head T and queue z’ is
called an H-A link. T is called the source of the IS-A
link and ‘I’ the target.

The figure 5 illustrates the specialization link between
‘Vehicle’ and ‘Vehicle-Used’.

Vehicle
Target

Queue

Figure 5 - Notation for Specialization Link

3.3.2 IF02 schema
Defmirion IO: An IF02 schema is defined as a graph CS

= (Ss, Ls) with Ss the set of types T E ‘JO of the graph
such thar

1. Ls is the disjoint union of two sets Ls-A

(fragment links) and Ls,IS-A (IS-A links).
2. (Ss, L& is a forest of IF02 fragments, called
the IF@ fragments for GS.
3. (Ss, Ls IS A) follows these two schema rules:

3.1. There is no IS-A cycle in the graph.

3.2. Two directed paths of IS-A links sharing
the same origin have to be cxtcndcd to a
common vertex.

The structural part of the IF02 model having now been
formalized, we examine the supplied update facilities.

4 Updates on IF02 Schema

Due to space limitation, we just prcscnt updates on IF02
schema in an informal way. The intercstcd rcadcr may find
more details in [23] whcrc a functional approach is dclincd
to formally ensure the structural consistency of IF02
updates.

4.1 Motivation
The problem with schema updates can be summarizd by:
how to modify a given schema whilst preserving a
cohcrcnt reprcscntation? In other terms, our aim is to
ensure that updates retain the schema consistency. In
object model, consistency can bc classified in structural
consistency which rcfcrs to the static part of the database
and in behavioral consistency relating with the dynamic
part [32]. In this paper, we only deal with the structural
case.

An IF02 schema is a couple (Ss. Ls) where Ls is
composed by both fragment and IS-A links but not cvcry
arbitrary couple (Ss, Ls) is a correct schema. Thus, WC
have to make sure that the result of modifications is an
updated schema which verifies the IF02 schema definition
(correctness). Therefore, WC give a set of schema
invarianls which arc conditions to be satisfied by any valid
schema. A similar approach is adopted by models such as
Orion, 02, Gemstone, Cocoon and Shcrpa.
Some schema changes are quite simple whereas others
need a complcle reorganization of the database The latter
can often be decomposed into a sequcncc of more
elementary changes. The following taxonomy, figure 6,
prescnls the schema update primitives in IFO2, which is
minimal and complete in the sen.sc that all possible schema
transformation can be built up by a combination of these
elementary operations (completeness). Such a taxonomy
can be found in models like Orion, Shcrpa and Cocoon.
The two former give three catcgorics of operations:
changing class definitions, i.c. instance variable or
methods, modifying the class lattice by changing the
rcladonships bclwccn classes and adding or dclcting
classes in the lattice. As the latter is based on type.
function and classes, schema changes are rcspectivcly:
type updates, function updates and class updates.

All schema structure changes. as for instance a fragment
insertion into the dircctcd acyclic graph, may bc cxprcsscd
by a sequcncc of basic updates. For exam@. the fragmcnl

insertion may be done by: ~(1.1) a type insertion, (3.1)
zero or more IS-A link insertion and finally, (3.2) zero or
more IS-A link d&don (in the cast of a node ins&on
into the direct acyclic graph)>. The primitive (1.4) is
necessary to preserve the schema in a valid state for it is
not equivalent to the sequences c(1.2) (l.l)> or ~(1.1)
(1.2)~ when the type has to be rclatcd to other ones. The
consequence of applying such sequences may occur in a
temporary invalid state: as instance, if we want to
substitute a grouping component using <(1.2) (1 .l)> or
c(l.1) (1.2)>, the application of (1.2) (respectively (1.1))
carries out the schema in a forbidden state: a grouping
without component (respectively a grouping with two
components).

$1) Types updates
(l.l)Addancwtypc
(1.2) Delete atype
(1.3) Change II type

(1.3.1) its name
(1.3.2) its domain for
printable type only

J1.4) Subslitutc a type

~1

Figure 6 - Taxonomy of possible updates in IF02

Intuitively, in IFO2, a schema update is either a type
insertion or a type modification in a fragment. The former
case is defined as a type insertion which must be related to
the schema. WC can create a fragment, add a type to a
fragment or relate a type to others. The latter is described
with one or more operations on the concerned fragments
which are themselves modifications on types. Operations
like insertion of a sub-type into an existing one, deletion of
a type and substitution of one type by another are thus
possible.

4.2 Presentation
WC present the schema invariants that the transformation
process must maintain, and the necessary rules to provide
a guidelines for supporting schema modifications. As we
have just discussed, two rule categories have to be taken
into consideration: insertion and modification.
In this section, we illustrate the introduced concepts using
the following schema which is a subpart of the figure 11.

4.2.1 Evolution Schema Invariants
The following schema invariants ensure that the change
does not leave the updated schema in an inconsistent state.
If the change would violate the invariants, it is rejected.

Initial Schema

“y Doors

Final Schema

Figure 7 -An IF02 fragment creation example

Invariants:
1.1: a type T has to follow the definitions 1 to 7 of an IFO;!

type*
1.2: in the graph:

1. There is no IS-A cycle.
2. Two directed paths of IS-A links sharing the same

origin have to be extended to a common vertex.
1.3: the source of an IS-A link must be a fragment heart

and the target a represented type.
1.4: the source of an edge is either the heart root or the

root of a target type of a complex edge whose
source is the heart root and for each edge linking
the heart to a represented type, there is a reciprocal
total fragment edge.

1.5: a fragment cannot be isolated (except if it is the
unique one), i.e. it has to be related to other ones
through IS-A links.

For example, the typ insertion of a Wheel’s brother could
not be possible because the invariant I.1 is not satisfied (a
grouping has only one component).

4.2.2 Insertion Rules
A type insertion into a schema is either a fragment creation
or a property insertion into an existing fragment. The
insertion rules have LO respect the schema invariants and
therefore, some insertions are forbidden. For instance, the
addition of the type ‘Car’ without adding the IS-A link
from ‘Engine’ to ‘Car-Engine’ violates the invariants I.3 and
1.5. The fragment properties may often be modified, so the
following rules provide a guideline for supporting changes
into the fragment.

283

Rule 1: Addition of a type into a fragment
R1.l: addition of the type (primitive 1.1).
R1.2: addition of the fragment link relating the fragment

heart to the type (primitive 2.1).

Rule 2: Addition of a represented type or a type built
up with represented types
R2.1: addition of the type into the appropriate fragment

(rule 1).
R2.2: if the type is a represented one, addition of tbe

reciprocal total fragment link (primitive 2.1).
R2.3: addition of the IS-A link(s) whose reprcsentcd

type(s) is&e) target(s) (primitive 3.1).
R2.4: if the type is a represented one and a fragment hwn,

addition of the IS-A link(s) which it is the source of
(primitive 3.1).

R2.5: if the type is a represented one and a fragment hcan,
deletion of the IS-A link(s) relating the R2.3 source
vertices to the R2.4 target vertices (primitive 3.2).

For example, the type insertion of ‘Car’ has to connect the
type ‘Car-Engine’ to ‘Engine’. As ‘Car’ is a leaf of the
directed acyclic graph, there are no represented types
whose source is ‘Car’ (rule 2). The schema components arc
thus obtained as follows. The original set of schema
vertices (Engine, Power, Reg-Number) is increased with
the ‘Car’ vertices (Car, Car-Engine, Wheels, Wheel, Axle,
Tyre, Body, Chassis, Doors, Door) applying the R.l.l
statement. The fragment link set is not modified because
the inserted type is a fragment heart. The application of
R2.3 provides the IS-A link set composed by the link
relating ‘Car-Engine’ to ‘Engine’.
Now, the addition of ‘Car-regist’ as a ‘Car’ fragment
property, following the rule 1, updates schema components
such as: the type ‘Car-regist’ increases the set of schema
vertices according to the R1.2 statement; the fragment link
set is updated for ‘Car-regist’ is related to ‘Car’ and the
IS-A link set is not modified because the inserted type is
not a represented one.

4.2.3 Modification Rules
Schema invariant constraints can be violated by
modifications. It is thus necessary to define rules to obtain
a valid updated schema.
The following rule is used to prevent that the invariant I.5
is controlled.

Rule 3: IS-A link deletion condition
R3.1: an IS-A link can be deleted if and only it dots not

carry out one isolated part in the resulting schema.

Rule 4: Deletion of a type vertex
R4.1: if the vertex is a represented type, deletion of IS-A

link(s) which it is the target of (primitive 3.2) and
(rule 3).

R4.2: if the father is a grouping or a collection then
deletion of the father vertex (rule 4) cise if the
father is an aggregation, a type union or a
composition & there is a unique brother then
substitution of the father type by the brother one
(primitive 1.4) else deletion of the type whose root
is the VCIWX (primitive 1.2).

Consider the deletion of the type Tyrc’. As ‘Wheel’ is a
composition of two elements, the dclction of ‘Wheel’
would provide an inconsistent type (a composition of a
unique clement violates the invariant 1.1). The updates
have thus to be send back in the ‘Wheel’ father lcvcl
substituting the father type by the Tyrc’s brother (R.4.2).
The schema vertex set is thus dccreascd with (Wheel,
Tyrc). The following figure shows the updated type:

Wheel

rs

I Door

Figure 8 - The mulling type u&r type deletion

Rule 5: Deletion of a type into a fragment
R5.1: dclction of its rclatcd types which arc not fragment

heart (rule 4).
R5.2: dclction of the fragment links relating it to the

previous types R5.1 (primitive 2.2).
R5.3: dclction of the fragment link relating the fragment

heart to the type (primitive 2.2).
R5.4: d&lion of the type (primitive 1.2).

A type dciction provides necessary operations dclcting
fragment links rclatcd to and rclatcd from the type (rule 5).
For instance. the ‘Car-regist’ dclction needs to dclctc the
fragment link from ‘Car’ to ‘Car-rcgist’ (R5.3) of the
schcmn fragment link set.

Rule 6: Deletion of a represented type or a type built
up with represented types into a fragment
R6.1: deletion of the IS-A link(s) whose rcprescntcd

type(s) is/are target(s) (primitive 3.2).
R6.2: if the type is a rcprcscnted one and a fragment heart,

dclction of the IS-A link(s) which it is the source of
(primitive 3.2) and (rule3).

R6.3: if the type is a represented one and a fragment heart,
addition of the IS-A link(s) relating the R6.1 source
vcrticcs to the R6.2 target vertices (primitive 3.1).

284

R6.4: if the type is a represented one, deletion of the
fragment links relating it to the fragment heart
(primitive 2.2).

R6.5: deletion of the type in the appropriate fragment
(rule 5).

When a type is a represented one or is built up with
represented ones, its deletion changes the schema IS-A
links. This is done through the rule 6. For example, the
deletion of the type ‘Car’ has to delete the IS-A link
between ‘Car-Engine and ‘Engine’ (R.6.1).

As the IF02 model and its update capacities are now
defined, we will examine the IF@ translation into the @
model [16].

5 Mapping an IF02 Schema to an 02
Schema

This mapping follows the same principle as the rcalizcd
transformation from MORSE to 02 [7]. As this application
of a principle frame is on the “whole-object” from the
“source” model level, the ways of translation are different
Therefore, we define checking methods and associated
classes for composition, grouping and union type. We also
consider multiple inheritance generically.
The formalization of the mapping will be given after
having introduced it through an example.

5.1 Illustration
An IF02 schema is translated into an 02 schema. Each
fragment generates at least one @ class (more if they are
composition, grouping or alternative types).
WC translate a part of the IF@ schema described in figure
11 into an 02 schema. Therefore, we work successively on
the two fragments “Vehicle” and “Engine”.
The “Vehicle” fragment is mapped into a particular class.
It represents either a “Truck” element or a “Car” element.
To do this, adopting a similar principle as in [8], we use
two boolean attributes “is-Truck” and “is-Car” which
indicate the object type. We also need to dctine the classes
“C~Truck”. “C-Cab” and “C-Trailor” so that each object
of these types has an identifier. Furthermore, a method
checks the exclusive composition constraint in the class
“C-Truck”. As the represented types are not fragment
heart, they are translated using the 02 composition.
Otherwise, the associated class has to inherit the generic
class: for instance, the class employee inherits the class
Person.

class C-Vehicle
public type tuple (

Vehicle : tuple (

is-Truck : boolean. Truck : C-Truck,

is-V-Car : boolean. V-Car : C-Car).
Capacity : integer)

class C-Truck
end,

public type tuple (
Truck : tuple (Cab : C-Cab. Trailor : C-Trailor,

Truck-Engine : C-Engine))

method Check-Compo-Truck : boolean

end;

class C-Trailor

public type tuplc (Trailor : string) end;

class C-Cab

public type tuplc (Cab : string) end;

Figure 9 - The fragment “Vehicle” and the associated 02
Classes

The “Engine” fragment is translated into a class with two
attributes:

A

class C-Engine

public type (Power : string,

Reg-Number : integer);

Figure 10 - The fragment “Engine” and he associated 02

Class

5.2 Transformation Functions
We suggest to define the transformation function which
carries out an 02 schema from an IF@ schema.

5.2.1 Transformation Function
Definition 11: Let ‘S be lhe lransformation function

from the IF02 model to the @ one:
7: IFO2+ 02

m
7 (IF@ schema) = u 7 (Fragment+

j=l
where m is the fragment number of the IF@ schema.

285

This transformation uses a f function (with three
parameters: the function source type, the function target
type and the kind of function (simple (partial or total) or
complex (partial or total)*) which translates each fragment
edge into the 02 model. We adopt the following notation:
for each t type of 70, C-t is a class name and t is an
attribute name in the 02 model.

Defurition 12: Let n be the edge number whose source is
the fragment heart, 7 is defined as:

1.

2.

3.

0

0

0

0

7 (Fragment) =

ifheartt 7OAu7Ok
class C-heart
public type tuple (heart: f(heart, 0, 0)

f(I, 0,O) = C-t’ /*t’tthc-ofIheIS~Alink*/

ht hasmsounxs:
f(t. O,O)=C t *tbacrmmaoomd of IS-A links l /

A class C-t inherit C tl, C-t,
/* in CISC of name conllic~. 4 is rblc m rdvc it hy adding l pr&r m tbc

Cllss name *I

ifhCVtE 70A:
class C-heart public type tuple (0 ift E7OA

k

ifhearto 7031:
P I is tbc nombor of 1.9-A links */

class C-heart inherit C-t], ..,C-ts
public type tuple (

f(I, 0, 0) = tuple (ti: f(ti, 0, 0))
i=l

tUrg& F(heart, targeti, simplekomplex))
i=I

0 ift E707A
k-n

f(1, 0, 0) = tuple (ti: C-ti , y;(tf, 0, 0))
i=l J’I

P k is Be nomhor of lw811d lyp~l and n lbe number of TOOR 1~ l /

if heart E 707C:
method public Check-Compo-heart : boolean

A k
class C-ti public ly/E tuple (ti: P(ti, 0, 0)

i=l

method public Check-Set-heart : boolean
if heart E 7076: if ti E 707C:

method public Check -Cotttpo-ti: boolean

if ti E 707(;5:
method public Check -Set-ti: boolean

end;

if targeti E 7OR A (targeti, heart, simple)
method public Check-Simple-targeti,(

F(t(targeti, 0. o)): boolean

0 ift E707C:
A (tatgeti, heart, complex):
method public Check-Complex-targeti (

F(twgeti, 0, q), integer): boolean

f(I, 0, Cl) = set (P(t’, 0, 0)) Pt’i~Ihecoilecmd~ype*/

if targeti E 70713
method public Check-Compo-targeti: boolean

if targeti 15 707tZ:
method public Check-Set -targeti : boolean

0 ift E707f%

ff 1, 0,o) = /* I’ is tbc collcucd Iypc *I
ift’o 7OR set (Fft’, 0, 0))

if t’ tz 70& set (C-l’)

class C-t’ public type tuple (t’: Pft’, 0, 0)I

if t’ E 70%

end;
method public Check-Compo-t’: boolean
if t’ E 707tZ:

method public Check-Set-t’: boolean
end;

5.2.2 Types and Edges Transformation Function
Definifim 13: The Ffunction translates fragment types
either in @ type or in 02 class. It is dcfincd as:

0 ift o7W:

0 ift E 70R it hasonlyonesource:

286

if 1 E TOUT

k k
F(I , q I, CI) = tuple (is-ti: boolean, ti: C-tt)

i=I i=l

k
A ClUSS C-ti Pkisthcnumherofmocirtedtypa*/

i=l

public tyt~ tuple (tt: F(tie q I, o))

if ti E TOTE
method public Check-Compo-ti: boolean

iftie Wm:
method public Check-Set-ti: boolean

end;

F(heart, target, simple) = F(target, q , q)

For a complex edge, the target can be the source of p
other edges (nested fragment) with target2i + heart V i
E [1p] (edges whose target is the heart, have already
been translated):

F(heart, target, complex) =

set (tuple(target: F(target, 0, 0),

target2: F(target. target2i, simple1 complex)))
i=l

if F(heart, target, simple totallcomplex total)
then aad an existence test for attribute target value in
the Init heart method.

F(target, target2, simple) = F(target2, 0, 0)

F(target, target2, complex) =

set(F(target2, 0, 0))

if F(target, target2, simple totallcomplex total)
then aad an existence test for attribute target2 value in
the lnit heart method.

5.2.3 Structures of Generated Methods
This part describes the structure of some generated
methods. These methods are added into classes as
semantics constraint checkers.

Generally, the method checking the exclusive constraint
for composition of a type t E 7071: is:

method body Check-Compo-t boolean in class C-t {
~kbthonumbcmfcompauntt~*/

if (!(se@Test-compol(self> t.compol)))
return fdse; . . .

if (!(self -Test-compok(self Xcompok) return false;

return true:};

The method verifying that one element belongs to an
object of class C-Ckzss is *:

method body Test-compoj (object: C-compoj):
boolean in class C Classe
{02 C-Classe obz ~nnnqi~r~en~ot~~t*/
02 boolean result= true;

for (obj in C-Classe-s where obj->C-Classe.compoj
== object) {result=false;}; return result:}:

In the same way, the following method verifies the
grouping of a type t whose collected type is t’:

method body Check-Set t : boolean in class C-t
{02 C-t obj, C-t’ obj-?; *rtir~&r~fti~t *I
02 boolean result=true:

for (obj in C t s)
ifor (obj-trTn obj->t where obj-t’ in self->t)
{result =false;) ;

return result;);

The other checking methods are defined in the same way.

6 Implementation

In this section, we briefly indicate some aspects of the
implementation of the IFO;! system.
A first version of the IF02 editor is currently developped
under Unix/XWindow (XllR5). with the help of the
Aids/Masai (Release 1 S) programming environment,
dcvelopped in object-oriented Le-Lisp (Release 15.24).
This editor, as illustred in figure 11, is made up of three
tools:

1. A graphical view consisting of an editing panel, a
tool panel and a workspace;
2. A selection panel of object types and existing link
types;
3. An object editor enabling the textual representation
of textual object as well as information which does not
appear on the schema.

l For I C-Clurc class. the C:Clrsrc-s value i Ihc insunces set of Ihc
C-Clruc chr. For each new instance of C-Clane, it is nccasuy to modify
the rc(which ia defii as: Name C-Claste~s: ut(C-Claue).

287

Figure I I - The IF02 editor

The type definitions achieved with the editor are converted
by a translator into 02 descriptions. The descriptions may
thus be used in the 02 system. For instance, the methods
described in the previous section have been implemented
in the 02 Database Management System (Release 3.3).
The following example shows some generated methods
associated to the class C-Truck:

method body Che&Compo_Truck: boolean in class C-Truck
(if (!(self->Test-Cab(self->Truclc.Cab))) return false;
if (!(self->Teat~Trailor(self->Truck.Trailor))) return false;
if (!(self->Test_Truck_Engine(self->Truck.Truck~Engine)))
retum false; return true;);
method body Test-Cab (object: C-Cab): boolean in class
C-Truck
(02 C-Truck obj;

02 boolean result=true;
for (obj in C-Truck-s where obj->Truck.Cab == object)

(result=false;); return result;);
/* named values declaration */
name C-Truck-s: set (C-Truck);

7 Conclusion

In this paper, we have formally defined an object model
IF02 as well as its transformation into the 02 model. We
have also presented the offered updates facilities in an
informal way. As a conclusion, first of all we would like to
highlight its contributions so as to indicate the prospects of
this work.
The first contribution, that of the IF@ whole-object. is the
coherent and rigorous definition of the component
elements of the model through the object identity concept.

The second strength of the model is the integration of
constructors which are indispensable to the development
of advanced applications, such as composition and
grouping. The latter enables the constituant sets to be
“physically” taken into account.
The most original aspect of IF@ is that it draws upon both
elements which may be said conceptual. such as fragments
and rcprcscnted types, and implementable such as object
idcntificrs. The case of multiple inheritance is a special
case given that, at the conceptual Icvcl, no conflicts arc
involved while at the system icvcl, all conflicts gencratcd
are explicitly processed. We have seen that IF02
inheritance may be multiple but does not rquire any prior
management. The conflicts are processed according to the
target model while the translation rules are defined.
Another advantage of IF@ is the way it can modulate and
reuse parts of schema that have been dcvelopped, through
the fmgment concept. Therefore, it is possible to focus on
only one part of the schema while reusing, through
represented types, the already dcfincd and validated
components.
The fragment concept represents another advantage of
IFO2: namely the ease of integrating application dynamic
through this structure. It cnablcs the behavior of the heart
type to be described naturally and above all makes it
possible for behavior to be inhcritcd through represcntcd
types.
Finally, IF02 is totally independent in relation to
implementable models, while providing an ease of
transformation rule definition towards different models
due to its genericity. The translation of an IF@ schema
into an @ one is a prime example of this. The formal rule
definitions rcducc data-loss and misinterpretation.

288

The presented update capacities is a strength of our
approach. They ensure the integrity of the updated
schemas. The result is a cohcrcnt and formal approach.
The ambiguities and contradictions are then detected and
different schemas may be compared. Furthermore, in a
reusability goal, the security obtained through the
consistency of handled infonnations is crucial.

The prospects of the presented work begin with the
integration of modeling abilities for the application
dynamic. The conceptual rules associated with the IF02
model advocate an attribute-oriented modeling and are
principally based on the object behavior. Moreover,
through “process” specification associated with the
fragment, the most suitable optimized representation can
be determined. According to us, dynamic and behavior
will be integrated in the model using a formal approach
based on the temporal logic [101 and [24]. Such an
approach automatically validates the specified constraints
whilst being easily understood by the users.

References

Abiteboul S.. Fischer P. C. and Schek H.-J. (Edr) - Nested
rclatiom and complex objecrs in darabrses. LNCS, Vol. 361.
Springer-Verlag, 1989.
Abitebcnrl S. and Hull R. - IFO: A Formal Semanlic Database
Model. ACM Transaction on Database Syrremr, Vol. 12. N” 4.
DcceInber 1987, pp. 525-56s.
An&y J.. I&mud M. and Palisscr C. - Management O/Schema
Evolution in Data&sea - proceedings of rbc 17th Inlcmational
Conference on Very Large Dara Baser. Barcelona. September
1991. pp. 161.170.
Alkin~on M.P., Bancilhon F.. DeWiu D., Diurich K., Maicr D.
and 2ihik S. - The Object-Oriented Data&e System Manifesto.
Pmceedlng~ of the First Deductive and Objccr-Oriented Daubare
- DOOD89 Conference, Kyoto. Japan, December 1989, pp. 223-
240.
Bane+ J.. Chou H.-T., Garza J.F., Kim W.. Woelk D., Ballou
N. and Kim H. J. - Data Model issues for Object-Oriented
Appiicatio~. ACM Tru~~~ction~ on Office Informalion Sy~twns,
l&l. 5. No 1, January 1987, pp. 3-26.
Beriino E. and Madno L. - Object-Oriented Database
Management Syrletnr: Concepts atihsnes. Computer Il:.BE. Vol
24. N04, April 1991, pp. 3347.
Bouzeghoub M.. M&ah E., H~zi F. and Lebqne L - A Design
Tool for Object Databases. LNCS, Vol. 436, Slcinhollr. B.,
.%lvberg A. and Bergman L (Eds.), proceedings of rhe Second
Conference on Advanced Informariun Systems Engineering,
Springer-Verlag. 1990, pp. 365-392.
Collet C. and Brunei E. - Dtffinition et mattipulalion de
formdaires avec FO2. TSI Technique et science informatique,
Vol. 10, N”2, 1991, pp. 97.124.
Coen-Poririni A., lmrur L and Zicari R. - The ESSE Project:
An Overview. Proceedings of the 2nd Far-East Workshop on
Fumre Da&are IYI(WIII. Kyoto, Japan, April 26-28, 1992. pp.
28-37.
Fiadelro 1. and Semadas A, - Specification and Verificalion of
Database Dynamics. Acu Informdca, Vol. 25,1988, pp. 625
661.
Heuer A. - A Data Mtniel for Complex Objects Based on a
Semantic Database Model and Nested Relations. In IAbFi891, pp.
297-311.

Hull R. and King R. - Semantic Database Modelling: Survey,
Applications, and Research Issues. ACM COmpIIli~lg Surveys,
Vd. 19, No 3, Sepmbcr 1987, pp. 201-260. -
Hull H. - Four Views of Complex Obiects: A Soohisticatef
Ietrodt&tm. In lAbFi89i. pp. 87-l 16. -
Kim W.. Be&o e. and- Garza. J.F. - Composite Objects
Revisited. Procdinnr of the ACM SIGMOD Conference. June
1989, pp. 337-347. -
Kim W. - Object-Oriented Databases: Defiiition and Research
Directions. IEEB Transacrions on Knowledge and Dora
Engineering. Vol. 2. No 3. September 1990. pp. 327-341.
Ucluse C.. Richard p. and Vclez F. - 02, An Object-Oriented
Duta Modal. Proceedings of the ACM SIGMOD Conference.
June1988, pp. 424-433.
Lyngback p. and Vianu V. - Mapping a Semantic Database
hi&l to the Relational Model. Sigmod Record, Vd. 16. N” 3.
December 1987. pp. 132-142
Meyer B. - Objecr-Orianed Software Consttucticn - Prenrice Hall
Inremarional series in Cornpurcr Science, 1988.
Mirrikoff M. and Scholl M. - An Algorithm for Insertion into a
Lattice: Application to Type Claps&ation. Foundations of Data
Organir&m and AlgoriLms, LNCS. Vol. 367. Springer-Verlag.
1989. pp. 64-82.
Nguyen G.T. and Rieu D. - Schernrr Evdtiion in Object-Oriented
Database Systems. Data&Knowledge Engineering (North
Holland) 4,1989. pp. 4367.
Pemici B. - Obiects with Roles. Conference on Office Informaticn
Syorems. Gmbtidge. April 1990. pp. 295-215.
Penney D.J. and Stein J. - Class Modification in the Gemstone

Object-Oriented DBMS. OOPSLA’87. Proceedings, Ocrobcr
1987.~~. 111-117.
Ponceler p. and Lakhal L. - Consistent Structural Up&es for
Object Database Design. LNCS. proceedings of le Fifth
Conference on Advanced Informalion Sysrems Engineering,
Paris. June 1993. lo appear.
Saake G. - Descriptive Specification of Database Object
Bchaviour. Data & Knowledge Engineering (North Holland) 6.
1991, pp. 47-73.
Sakai H. - An Object Behavior Modcling Method. h’OCCdng1 of
he 1 sl International Conference on Database and Expcn Sysrems
applications. 1990, pp. 42-48.
Sronehrakcr M. (Ed.) - Special Issue on Database Prototype
Sysrems. IEEE Transacrions on Knowledge and Data
Engineering, Vol. 2, No1 , March 1990.
Teorey 1’. J.(Fd.) - The Entity-Reladonship Approach. Morgan
Kaufmann Publishers, 1990.
Teisseim M.. Ponccler P. and Ciccheui R. -A Tool Based on a
Formal Approach for Object-Oriented Database Modeling and
Design. proceedings of lhe 6rh International Workshop on
Computer-Aided Sofrwarc Engineering (CASE’93), IEEE
Publisher. Singapore, July 1993. ro appear.
Trcsch M. and Scholl M.H. - Meta Object Management and its
Application to Database Evolution. proceedings of the lllh
lnlcmalional Conference on rhe Entity-Relationship Approach,
LNCS NW5. Karlsruhe. Germany. October 1992. pp. 299-321.
Twine S. - Mapping between a NIAM conceptual schema and
KE,!I frames. Data k Knowledge Engineering. Vol. 4. N” 4,
December 1989. pp. 125-155.
Unland R. and Schlageler G. - Object-Oriented Database
Systems: Concepts and Perspectives. Database Sysrcms of the
9Or, LNCS. Vol. 466, Springer-Verlag, 1990, pp. 154-197.
L&xi R. - A Framework for Schema UpaWes in an Object-
Oriented Database System. Proceedings of rhe 71h IEEE Dam
Engineering Conference, Kobe, Japan, April 8-12, 1991, pp. 2-13.

289

