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Abstract. Ontologies in nowadays are widely used in the process of development of modern information systems 

(IS), since they are suitable to represent application domain knowledge. However, some aspects of ontology-based IS 
required to be developed. We propose a formal method for ontology axioms transformation into application domain 
rules, making them an important and integral part of each application domain and used to constrain or direct different 
aspects of business. Such rules can be consecutively transformed into an executable form and implemented in a 
software system of an IS. We propose to use the Z notation for formalisation of previously authors’ introduced 
ontology-based semi-formal method for development of application domain rules. 

 
 

1. Introduction 

In the information systems (IS) development con-
text, researchers use ontology for conceptual data 
modelling mainly, since a conceptual data model and 
ontology are closed in some aspects. I.e., both include 
concepts, relationships between them and rules (in 
ontology – axioms). The main reasons of applying 
ontology for IS development are reducing the cost of 
conceptual analysis, the ontological adequacy of the 
IS [1, 2, 3], sharing and reusing application domain 
knowledge across heterogeneous software platforms 
[1, 4], and cognizing of application domain. However, 
it is typically the case that in ontology-based concep-
tual data modelling approaches, a process of develop-
ing application domain rules is skipped or not defined 
in a formal manner in quite rare cases of using.1 

The importance of rules in IS development process 
is discussed and motivated by a number of researchers 
[5, 6, 7], etc. Rules make an important and integral 
part of each application domain by expressing const-

                                                           
1  The work is supported by Lithuanian State Science and 

Studies Foundation according to High Technology 
Development Program Project “Business Rules Solutions 
for Information Systems Development (VeTIS)” Reg. No. 
B-07042 

raints on concepts, their interpretation, and/or relation-
ships in application domain. A number of methods 
were proposed to develop rule models: UML with 
OCL [7, 8, 9], [10], Demuth et al method [11], the 
Ross method [12], CDM RuleFrame [13] etc. But 
none of the proposed languages or methods has been 
accepted as technology standard yet, since they are not 
suitable for modelling all types of rules [14]. Only a 
few of them deal with reuse of knowledge acquired in 
the analysis of some particular application domain and 
automatic implementation of rules. 

We consider that domain ontology should be used 
in the process of application domain rules modelling 
for reasons as follows: 
a. Domain ontology is about concepts and properties 

(intrinsic and relational ones) organised in a 
(taxonomic, mereological) structure, but it is also 
about excluding unintended interpretations, 
named as consolidation axioms [15] that can be 
made on this structure. 

b. A widespread design criterion for domain ontolo-
gies is the use of competence questions. Deriva-
tion axioms are used to answer the set of compe-
tence questions by showing that the information 
necessary to answer these questions is encoded in 
the ontology. 
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c. Thus, ontology axioms such as Consolidation and 
Derivation axioms can be used to model specific 
types of application domain rules. 

d. Finally, as stated in [2], ontology axioms (and 
ontology as a whole) are typically expressed in a 
formal way. For this reason, they can in principle 
be transformed to application domain rules 
automatically. 

We use the Z notation to formalise the approach 
for mapping ontology axioms to application domain 
rules previously presented in [16]. 

The paper is structured as follows. Related works 
are analysed in Section 2. Our formal characterisation 
of ontology and conceptual data model using Z are 
proposed in Section 3. Section 3 also presents the 
formal transformation rules developed to transform 
ontology axioms to application domain rules. Section 
4 describes the implementation of the proposed 
method into a developed prototype. Finally, Section 5 
concludes the paper. 

2. Implementing Rules in IS 

Since we address the automatic implementation of 
application domain rules, they are here analysed at 
three different abstraction levels. 

• At the business system level that can be under-
stood as OMG’s MDA computation independent 
(CIM) level [17], rules are statements that define 
or constrain some aspects of a particular business 
domain in a declarative manner. For example, a 
customer could not buy more than her / his credit 
limit permits. 

• At the IS level that can be understood as OMG’s 
MDA platform independent (PIM) level [17], rules 
are statements that define information processing 
rules using a rule-based language, like OCL [9] 
etc. Expressions of information processing rules 
are very precise, e.g. terms used in expressions are 
taken from the particular data model [18]. For 
example, the following formal OCL expression 
“context c: Company inv  
enoughEmployees: c.numberOfEmployees > 
50” constrains the number of employees in the 
Company that must always exceed 50. 

• At the software system level that can be under-
stood as OMG’s MDA platform specific (PSM) 
level [17], rules are statements represented using 
language of a specific execution environment, like 
Oracle 10g [19], Microsoft SQL Server 2008 [20], 
ILOG JRules [21], etc. 

Figure 1 presents rules at different abstraction levels. 
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Figure 1. Application domain rules at different abstraction levels2

                                                           
2  Note: Figure 1 presents implementation of rules only by SQL assertions/checks, triggers and views; however, languages of 

other execution environments can be used for implementation of rules. 

At business system level, application domain rules 
can be classified into: 
• Structural rules (terms, definitions, facts, and in-

tegrity constraints), which can be implemented by 
a conceptual data model of an application domain, 
e.g., entity-relationship or UML class model (for 
the sake of simplicity, implementation of terms, 
definitions and facts is not shown in Figure 1). 

Therefore, terms, definitions, facts can be regarded 
as concepts in ontology and not as rules. Integrity 
constraints can be implemented by conceptual data 
model integrity constraints, like referential integri-
ty constraints, cardinality constraints, and manda-
tory constraints, and in case of UML models 
expressed as OCL invariants. At software system 
level, integrity constraints can be implemented like 
SQL assertions, checks, and foreign keys. 
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• Dynamic rules, which can be expressed by ECA 
rules and implemented, like SQL triggers and SQL 
views (for the case of some derivation rules). 
o A dynamic constraint restricts transitions from 

one state of the application domain to another. 
o A derivation rule creates new information 

from existing information by calculating or 
logical inference from facts. 

o A reaction rule evaluates a condition and upon 
finding it true performs a predefined action. 

Since implementation of structural rules is defined 
quite precisely (it can be seen from the precise defi-
nitions of integrity constraints in a conceptual data 
model, like CHECK, DOMAIN, NOT NULL, referen-
tial integrity and other constraints), we concentrate our 
research on the implementation of dynamic rules. 
Therefore, the case of domain ontology axioms is 
analysed in depth.  

According to the observation in [2, 22, 23, 24, 25] 
papers, ontology defines the basic concepts, their 
definitions and their relationships comprising the 
vocabulary of an application domain and the axioms 
for constraining relationships and interpretation of 
concepts. Some authors, like [25], distinguish proper-
ties from concepts also. In the simplest case [2], an 
application domain ontology describes a hierarchy of 
concepts related by particular relationships (e.g., is-a, 
part-of, etc.). In more sophisticated cases, constraints 
are added to restrict the values of concepts and rela-
tionships, like cardinality constraints, possible length, 
etc. In the most sophisticated cases, suitable axioms 
are added in order to express and restrict complex 
relationships between concepts and to constrain their 
intended interpretation. 

In field of mathematics [26], an axiom is any 
starting assumption from which other statements are 
logically derived. It can be a sentence, a proposition, a 
statement or a rule that enables the construction of a 
formal system. Axioms cannot be derived by prin-
ciples of deduction, because they are starting assump-
tions. 

From application domain perspective, axioms are 
constraints of an application domain, which are in 
force in all possible situations of interest. 

Following the terminology used in [15] and [25], 
axioms in ontology can be classified in epistemologi-
cal, consolidation, and derivation axioms. Episte-
mological axioms are defined to show constraints 
imposed by the way concepts are structured. These 
include all axioms which can be directly included by 
the use of modelling primitives and relations that are 
used in a structural specification of ontology (e.g., is-a 
relation, part-of relations, cardinality constraints). An 
example of epistemological axioms imposed by the 
most basic form of a part-whole relation is: if there 
exists x and y and x is a part of y, then y is not a part 
of x (∀x,y partOf(x,y)→ ¬partOf(y,x)). Con-
solidation axioms impose constraints that exclude 
unintended interpretations over the structure of the 

ontology specification. An example of the consoli-
dation axiom from a software quality ontology 
presented in [27] is: if a product quality characteristic 
(qc) is decomposed in subcharacteristics (qc1), then 
these subcharacteristics should also be a product qua-
lity characteristic ((∀qc,qc1)(subqc(qc1,qc) ∧ 
prodqc(qc) → prodqc(qc1))(C1)). Finally, 
derivation axioms allow new knowledge to be derived 
from the previously existing knowledge represented in 
the ontology. Typically, derivation axioms are created 
in order to derive information which can be used to 
answer the ontology competence questions. An 
example of a derivation axiom from [27] states that “if 
there is not a paradigm to which a quality characteris-
tic qc is applicable, than qc is paradigm-independent” 
((∀qc) ¬(∃p)(applicability(qc,p) → pdgIn
d(qc)). 

If it is necessary, the fourth type of axioms can be 
defined in addition. They are definitional axioms that 
define the meaning of concepts in ontology. 

However, the analysis of ontology development 
tools, like Protégé [28], from the implementation pers-
pective shows that epistemological axioms are imple-
mented by structuring concepts in an ontology; con-
solidation and derivation axioms are not distinguished 
and they are implemented using some languages 
suitable for this purpose, like Protégé Axiom Lan-
guage (PAL) [29] or OWL [30]. Some consolidation 
and definitional axioms are implemented by restricting 
definition of concepts in a particular ontology. 

Therefore, the following conclusions, which relate 
domain ontology axioms and application domain 
rules, can be drawn: 
• Consolidation axioms can be modelled by dynamic 

constraints and/or reaction rules. 
• Derivation axioms can be modelled by derivation 

rules. 
• Epistemological axioms can be modelled by 

structuring the concepts in a conceptual data 
model. 
Figure 2 presents ontology axiom-based model-

ling of application domain rules. 
Since application domain ontology including 

axioms can be formalised using some suitable 
language, like OWL [30], it is reasonable to use this 
formalisation for automatic transformation of 
ontology axioms to information processing rules or 
even to executable rules, like SQL triggers. 

The proposed transformation of ontology axioms 
to application domain rules can be formalised using 
predicate logic, description logic, denotational 
semantics, etc.  

We use the Z notation [31] in this research to 
formalise the mapping between ontological axioms 
and application domain rules that was earlier proposed 
in [16]. The Z notation is purposed for the formal 
specification of computer-based systems. It is based 
on set theory and predicate calculus, and has been 
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accepted as the ISO standard in 2002 [32]. We have 
chosen Z, because it is language independent. E.g. we 
can define mapping of two distinct families of meta-
models disregarding languages, which can be used to 
express those meta-models (like UML, ORM, OWL, 
etc.). Moreover, the resulting mapping can be 
implemented by a number of languages, like Java, 
C++, ATL [33], etc. 

Ontology 
Axiom

Consolidation 
axiom

Derivation 
axiom

Epistemological 
axiom

Derivation 
rule

Structuring of 
conceptsReaction rule

Dynamic constraint
 

Figure 2. Ontology axiom-based modelling of 
application domain rules 

3.  The Method for Transformation of 
Ontology Axioms to Application Domain 
Rules Using Z notation 

Based on the results of analysis of the related 
works, we propose the following expression of onto-
logy using Z (Figure 3). 

The Ontology schema consists of a part above the 
central dividing line, in which some variables are 
declared, and a part below the line, which gives a 
relationship between values of the defined variables, 
e.g. extra constraints between the defined variables in 
the form of predicates. 

It is important to highlight that this is a syntactic 
characterisation of an ontology as a specification and 
one which has been simplified for the specific 
purposes of this paper. For an in-depth study on issue 
how ontologies as a specific kind of specification 
relates to other classes of models such as meta-mo-
dels, or application-specific conceptual data models 
(i.e., the real-world semantics of ontologies), one 
should refer to [34]. 
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Figure 3. The expression of Ontology using Z 

For a formal semantics of many ontological primi-
tives such as different sorts of concept categories or 
different sorts of mereological relations, one should 
refer to [35]. 

Now we would like to introduce main concepts 
used in the paper. CONCEPTO = {conceptO

i | i:N} is a 
set of concepts in an ontology. A concept (conceptO

i) 
represents real-world things and is expressed as a 
word, which is a set of sequences of characters (P (Z × 
CHAR))3. A concept is restricted to be a noun or noun 
phrase, for example, customer. N is a set of positive 
integers. VOCO = {vocabularyO

i | i:N} is a set of de-
finitions. PROPERTYO = {propertyO

i | i:N} is a set of 
properties in an ontology, where a property 

                                                           
3  (P (Z × CHAR)) expression denotes a set of sequences of 

characters in all cases in the paper. 

(propertyO
i) represents property types of real-world 

things, for example, customer-credit-rating-code. 
RELO = {relO

i | i:N} is a set of relationships. A 
relationship (relO

i) is a word denoting a relationship 
between concepts. Some examples of relationships 
can be is-a, synonym, part-of, has, etc. VALUEO 
= {valueO

i | i:N} is a set of all possible values in an 
ontology. For example, value female or a set of values 
{Mon, Tues, Wed, Thurs, Fri}. We do not define a type 
of values. It can be a character, a real number (Q), etc. 

DEFAXIOMO = {defaxiomO
i | i : N} is a set of 

definitional axioms in ontology. A definitional axiom 
(defaxiomO

i) restricts a definition of the particular con-
cept. In general, one concept may have more than one 
definition. However, in a particular application do-
main each concept has one particular definition. 
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EAXIOMO = {eaxiomO
i | i:N} is a set of epistemo-

logical axioms in ontology. An epistemological axiom 
(eaxiomO

i) associates concepts with a relationship 
(relO

i (P (Z × conceptO
i))) or concepts and properties 

with a relationship (conceptO
i → (P (Z × propertyO

i))). 
For example, is-a (bus, vehicle) means that a bus is a 
vehicle; student → studentID means that the concept 
student has the property studentID. In general, one 
concept can be associated with more than one concept 
and can have a property or a set of properties. 

DOMAINO = {domainO
i | i : N} is a set of domains 

in an ontology. A domain (domainO
i) is a set of 

possible values (valueO
i) of properties (propertyO

i) and 
relationships (relO

i). 
STATO = {statementO

i | i : N} is a set of statements 
in an ontology about the domain of interest. They are 
used to define some types of axioms. A statement 
(statementO

i) is built up of concepts (conceptO
i) and 

relationships (relO
i) or concepts (conceptO

i), properties 
(propertyO

i) and relationships (relO
i). An example of a 

statement is dolphin is-a mammal, where there are two 
concepts (dolphin and mammal) and one relationship 
(is-a). In some cases, values of properties can be used 
to aggregate the statement. 

DAXIOMO = {daxiomO
i | i : N} is a set of deriva-

tion axioms in an ontology. A derivation axiom 
(daxiomO

i) derives new knowledge (at the right-hand 
side of the arrow) from existing knowledge (at the 
left-hand side of the arrow). 

CAXIOMO = {caxiomO
i | i : N} is a set of 

consolidation axioms in an ontology. A consolidation 
axiom (caxiomO

i) consists of a combination (set) of 
statements, which are connected using logical 
connectives (LC) and quantifiers (QUANT). 

The bottom half of the schema introduces the 
following extra constraints. Consolidation axioms and 
derivation axioms are of the form condition-state. In 
the case of a derivation axiom, a condition defines 
some possible predicate of an application domain, 
which allows deriving some new state (knowledge) of 
an application domain. For example, if customer buys 
goods for more than 3000 $, it is a gold customer. 
Condition (if-part) indicates some possible state of the 
purchasing application domain. When this condition is 
satisfied, it allows deriving the information about gold 
customer (new state of customer). 

For the completeness of the observation we choose 
the definition of a conceptual data model from [3] and 
[36]. Conceptual data modelling (or semantic data 
modelling) focuses on capturing and representing 
certain aspects of human perceptions of the real-world 
so that these aspects can be incorporated into an IS 
[3]. Most conceptual data modelling approaches are 
concerned with essential concepts, associations among 
concepts and constraints of a domain [36]. 

We propose the following expression of a concep-
tual data model using Z (Figure 4). Once more, the 
model presented below is a syntactic definition of a 

conceptual data model focused on the characteristics 
which are suitable for the purposes of this paper.  

ENTCM = {entityCM
i | i:N} is a set of entities in a 

conceptual data model. An entity (entityCM
i) represents 

types of real-world things, like person, car, etc. It is 
restricted to be a noun or noun phrase. N is a set of 
positive integers. ATTRIBCM = {attributeCM

i | i:N} is a 
set of attributes representing property types of real-
world things, like name, age, etc. RELCM = {relCM

i | 
i:N} is a set of relationships, like is-a, part-of, etc. A 
relationship (relCM

i) denotes relationships between 
entities (P (Z × entityCM

i) or an entity and a set of 
attributes (entityCM

i and P (Z × attributeCM
i)), e.g. 

entities are related in a conceptual data model and 
entities have a particular set of attributes (representing 
properties). For example, customer → {SSN, first_ 
name, second_name, birth_data} means that the entity 
customer has the following attributes {SSN, first_ 
name, second_name, birth_data}; make (customer, 
order) means that the relationship make associate two 
entities customer and order (in natural language, 
customer makes an order). 

INTEGCONSTCM = {integconstCM
i | i : N} is a set 

of integrity constraints, like mandatory constraints 
(such as must have, must be, must be in list, must not 
have, must not be, must not be in list or prerequisite 
relationship (for example, an order must have an 
order-data)), temporal constraints (for example, 
reservation precedes tour [23]), mutually-inclusive 
constraints (for example, to travel to a foreign country 
a VISA is required, based upon citizenship [23]), 
mutually-exclusive constraints (for example, a cruise 
cannot be listed as being sold out and have 
availability at the same time [23]), etc. 

VALUECM = {valueCM
i | i:N} is a set of values in a 

conceptual data model. For the sake of simplicity, we 
do not define a type of values. It can be a character, 
like Jone, a real number (P (Z × Q)), like 18, etc. 
DOMAINCM = {domainCM

i | i:N} is a set of domains in 
a conceptual data model. A domain (domainCM

i) is a 
set of possible values (valueCM

i) of attributes 
(attributeCM

i). CARDCONSTCM = {cardconstraintCM
i | 

i : N} is a set of cardinality constraints of in a 
conceptual data model. A cardinality constraint 
(cardconstraintCM

i) assigns values (valueCM
i) to 

relationships (relCM
i). RCCM = {ruleclCM

i | i : N} is a set 
of rule clauses in a conceptual data model. They are 
used to define dynamic rules. A rule clause (ruleclCM

i) 
is of the form ((entityCM

i ∨ attributeCM
i ∨ valueCM

i ∨ P 
(Z × valueCM

i) ∧ relCM
i ∧ ((entityCM

i ∨ attributeCM
i ∨ 

valueCM
i ∨ P (Z × valueCM

i)) (see (von Halle, 2002)). 
DERRULECM = {derruleCM

i | i:N} is a set of 
derivation rules in a conceptual data model, which 
allows to derive new entity, attribute, value or a set of 
values from the existing rule clause or a set of rule 
clauses. The rule clause at the left-hand side should be 
true to derive some new information, otherwise it is 
not applied. RRULECM = {rruleCM

i | i:N} is a set of 
reaction rules in a conceptual data model, which test a 
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condition at the left-hand side and perform an action 
defined at the right-hand side, which depends on the 
results of the condition evaluation. The action can be 
inserting new value, updating or deleting of existing 
values. DYNCONSTCM = {dynconstCM

i | i:N} is a set of 
dynamic constraints in a conceptual data model, which 
test a condition at the left-hand side and, if it is true, 
allow changing of the state of an application domain. 

Otherwise the changing of the state of an application 
domain is forbidden. Note: integrity constraints 
(INTEGCONSTCM), the domain (DOMAINCM) and 
cardinality constraints (CARDCONSTCM) in the 
Conceptual Data Model schema belong to structural 
rules (Figure 1); derivation rules (DERRULECM), 
reaction rules (RRULECM) and dynamic constraints 
(DYNCONSTCM) belong to dynamic rules (Figure 1). 
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Figure 4. Expression of a Conceptual Data Model using Z 

The analysis of the Ontology and the Conceptual 
Data Model schemas allows us to state that conso-
lidation axioms can be used to model dynamic const-
raints or reaction rules, derivation axioms can be used 
to model derivation rules, definitional axioms can be 
used to define the meaning of concepts, epistemolo-
gical axioms can be used to model the structuring of 
entities in the conceptual data model. 

Now we can define the transformation of ontology 
axioms (consolidation and derivation axioms) to 
application domain rules (dynamic constraints, 
derivation and reaction rules) (Figure 5). The schema 
of transformation contains only the description of 
transformation of ontology axioms to conceptual data 
model rules, since the main topic of this paper is 
ontology axioms and their transformation to 
application domain rules. 

The Axiom Transformation schema defines the 
transformation of derivation axioms to derivation rules 
and consolidation axioms to reaction rules or dynamic 
constraints. The transformation of definitional axioms 
is not presented in the Axiom Transformation schema, 
since definitions of entities are presented in a concep-
tual data model as comments of entities. The trans-
formation of epistemological axioms is not presented 
in the Axiom Transformation schema, since they are 
transformed to the structure of a conceptual data 
model. 
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Figure 5. The Axiom Transformation schema  

defined using Z 

Since ontology is a source of the transformation, 
the Ontology schema inclusion (ΞOntology) is used to 
add all the components of ontology schema to the 
Axiom Transformation schema. Since a conceptual 
data model is a target of the transformation, the 
Conceptual Data Model schema is also included 
(ΞConceptualDataModel) to the same schema. It is 
used to define the outcome of the transformation. A set 
of axioms is an input (a variable ending with a 
question mark (?)) or a source of the transformation. 
These axioms are transformed into rules of a 
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conceptual data model, which are output (target) (a 
variable ending with an exclamation mark (!)) of the 
transformation. 

Extra constraints of the transformation process are 
the following. Since axioms consist of statements 
(statementO

i) and dynamic assertions consist of rule 
clauses (ruleclCM

i), statements from ontology axioms 
should be transformed to the particular rule clauses of 
a conceptual data model. Examples of aggregation of 
rules from rule clauses are presented in [6]. For 
example, the rule “if customer buys goods for more 
than 3000 $, it is a gold customer” can be expressed in 
the following way: IF Total_Value > 3000, THEN 
Customer_Type = “gold”. This rule is composed of 
two rule clauses: “Total_Value > 3000” and 
“Customer_Type = “gold””. 

The method for the transformation of ontology 
axioms to application domain rules is defined as 
follows: 
1. Choose an application domain ontology. 
2. Check if axioms are in the ontology.  

Note that this step warranties that axioms are in the 
selected ontology. Otherwise, a user should define 
axioms.  
3. Choose an axiom. 
4. Transform the axiom to a dynamic constraint, a 

derivation rule or a reaction rule: 
4.1. determine the type of the selected axiom – is 

it consolidation or derivation axiom? 

4.2. in the case of a consolidation axiom – 
transform the consolidation axiom to the 
corresponding dynamic constraint.  

Note that in particular cases a consolidation axiom 
can be transformed to a reaction rule, when it is not 
only important to permit or forbid a transition from 
one state of the application domain to another, but it is 
necessary to perform a predefined action. 

4.3. in the case of a derivation axiom – transform 
the derivation axiom to the corresponding 
derivation rule. 

5. End of the transformation. 
The transformation of ontology axioms to applica-

tion domain rules is presented in Figure 5. The ap-
plication of the proposed method is presented in the 
next section (Section 4). 

4. A Case Study for Transformation of 
Protégé Ontology Axioms 

The ontology for a particular application domain 
(Newspaper [28]), was chosen to illustrate how onto-
logy axioms can be transformed to information pro-
cessing rules and consequently into executable rules. 
We have chosen Protégé because it allows to install 
the open source software locally. A free version of the 
software provides all features and capabilities required 
for the present research as well as being user-friendly. 
 

Table 1. Examples of EZPal constraints for the Newspaper ontology (CA – consolidation axiom, DA – derivation axiom, EA – 
epistemological axiom) 

No. Axiom representation in a natural 
language EZPal constraint Classifier 

1.  
The salary of an editor should be 
greater than the salary of any 
employee for which the editor is 
responsible for. 

For every instance I1 of Class Editor, if the value of Slot 
responsible for: Class Editor has instance I2 of class Staff, 
then Slot salary: Class Editor of I1 has a value > to Slot 
salary: Class Staff of I2. 

CA 

2.  
Every advertisement on the same page 
must be authored by a different 
salesperson. 

Every Instance of Class Advertisement that share the same 
value in Slot page_number: Class Advertisement must not 
share values in Slot salesperson : Class Advertisement. 

CA 

3.  
Author cannot be Editor of the same 
Article. 

For every instance of Class Article, Slot author: Class Article 
and Slot editor: Class Article cannot have the same value. 

CA 

4.  
The Newspaper should not include 
Article, which expiration date 
(expiration_date) is before (less) then 
Newspaper‘s date 

For every instance I1 of Class Article, if the value of Slot 
published_in: Class Article has instance I2 of class 
Newspaper, then Slot expiration_date: Class Article of I1 has 
a value less than Slot date: Class Newspaper of I2. 

CA 

5.  
No two distinct Articles have the same 
headline. 

Every instance of Article: Class Article has a unique Slot 
headline : Class Article. 

CA 

6.  
The new salary of a reporter equals to 
the 1.1*old salary of a reporter, if 
he/she writes more then 16 articles per 
year. 

There is no a template for the implementation of this 
derivation axiom. Therefore, a template base should be 
extended by a new template for calculating vales of slots 
from existing values. 

DA 
(mathematical 
calculation) 

 
The axioms are implemented in Protégé ontology 

by the Protégé Axiom Language (PAL) constraints 
[29]. PAL is a superset of the first-order logic, which 
is used for writing strong logical constraints [29]. The 
EZPal Tab plug-in [37] is used to facilitate acquisition 

of PAL constraints without having to understand the 
language itself. Using a library of templates based on 
reusable patterns of previously encoded axioms, the 
interface allows users to compose constraints using a 
“fill-in-the-blanks” approach. Table 1 presents some 
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examples of EZPal constraints and their classification 
according to Figure 2. 

The detailed analysis of PAL constraints shows 
that they can be directly transformed to executable 
rules. Therefore, formal transformation proposed in 
Section 3 was adopted as follows in this section. 

According to [38], we define Protégé ontology 
using Z in the following way (Figure 6). 

CLASSPO = {classPO
i | i:N} is a set of the main 

concepts in Protégé ontology. A class (classPO
i) is a 

real-world thing. CLASSPO of the Protégé Ontology 
schema implements CONCEPTO of the Ontology 
schema. N is a set of positive integers. 
SLOTPO = {slotPO

i | i:N} is a set of slots presenting 
properties of classes and their relationships with other 
classes. SLOTPO of the Protégé Ontology schema 
implements PROPERTYO and a part of RELO (not is-a, 
inverse and has relationships) of the Ontology schema. 
RELPO = {relPO

i | i:N} is a set of relationships. They 
are is-a, inverse or has, where is-a is used to present 
the hierarchical relationship between classes, inverse 
is used to present the inverse relationship between 
slots, and has is used to present slots of a class. RELPO 
of the Protégé Ontology schema implements 
EAXIOMO of the Ontology schema. Some EAXIOMO 
of the Ontology schema can be implemented by some 
elements (representing relationships between classes) 
of SLOTPO of the Protégé Ontology schema. VOCO 
= {documentationPO

i | i:N} is a set of class definitions.  

Documentation (documentationPO
i) gives a particular 

description to the class. A class description is a set of 
sequences of characters (P (Z × CHAR)). VOCPO of 
the Protégé Ontology schema implements 
DEFAXIOMO of the Ontology schema. Each class has 
one particular definition.  

VALUEPO = {valuePO
i | i:N} is a set of values in an 

ontology. A value can be string, symbol, class, etc. 
VALUEPO of the Protégé Ontology schema 
implements VALUEO of the Ontology schema. 

DOMAINPO = {domainPO
i | i : N} is a set of do-

mains in Protégé ontology. A domain (domainPO
i) is a 

set of possible values (valueO
i) of slots (slotPO

i). 
DOMAINPO of the Protégé Ontology schema imple-
ments DOMAINO of the Ontology schema. 

STATPO = {statementPO
i | i:N} is a set of statements 

in Protégé ontology about the domain of interest. They 
are used to define axioms. A statement (statementPO

i) 
is composed of a class (classPO

i) or a slot (slotPO
i) 

associated by a relationship (relO
i) with some class 

(classPO
i) or some slot (slotPO

i) or some value 
(valuePO

i). STATPO of the Protégé Ontology schema 
implements STATO of the Ontology schema. 

There is not distinguish between derivation and 
consolidation axioms in Protégé. They are just imple-
mented by PAL constraints. We have defined the PAL 
constraints of Protégé ontology by Z in a separate 
schema to simplify and improve the understanding of 
their definition (Figure 7). 

ProtégéOntology

)))(()((::|:

)(::|:

:|:

))((::|:

))):():():((

|)((::,|:

)(::|:

|))((::|:

OP
i

PO
j

PO
j

PO
i

PO
i

PO
i

PO
i

POPO
i

PO
i

PO
i

PO
i

POPO
i

POPO
i

PO
i

PO
i

POPO
i

PO
j

PO
i

PO
j

PO
i

PO
j

PO
i

PO
i

POPO
i

PO
i

POPO
i

PO
i

POPO
i

valueslo tclassrelslotclassstatementNiSTATstatement

valueslotdomainNiDOMAINdomain

NiVALUEvalue

CHARZPclassiondocumentatNiVOCiondocumenta t

slotclasshasslotslotinverseclassclassais

hasinverseaisrelNjiRELrel

CHARZPslotNiSLOTslot

NOUNCHARZPclassNiCLASSclass

∨∨∧∧∨∧

→∧

×→∧

→∧→∧→−

∨∨−∧

×∧

×∧

 
Figure 6. The Protégé Ontology schema defined using Z 
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Figure 7. The Protégé Ontology Axiom schema defined using Z 

The PAL constraint schema defines the Protégé 
ontology axioms (PAL constraints). The Protégé 
Ontology schema is included (ΞProtegeOntology) to 
the PAL constraint schema, since its components are 

used to define PAL constraints. First of all, 
components of PAL constraints are defined as follows. 
PALNAMEPO = {palnamePO

i | i:N} is a set of labels for 
PAL constraints. Each label is a set of sequences of 
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characters (P (Z × CHAR)). PALDOCUMPO 
= {paldocumPO

i | i:N} is a set of a natural language 
descriptions of PAL constraints. PALRANGEPO 
= {palrangePO

i | i:N} is a set of local and global 
variables that appear in the statement or arrange of the 
PAL constraint. It is a set of classes (classPO

i). 
PALSTATEMENTPO = {palstatementPO

i | i:N} is a 
sentence of the PAL constraint. It is a set of statements 
(statementPO

i), which are connected using logical 
connectives (LC) and/or quantifiers (QUANT). 
AXIOMPAL = {axiomPAL

i | i:N} is a set of PAL 
constraints in Protégé ontology. An axiom (axiomPAL

i) 
consists of a PAL-name (palnamePO

i), PAL-documen-
tation (paldocumPO

i), PAL-range (palrangePO
i) and 

PAL-statement (palstatementPO
i).  

An additional constraint is that a PAL-statement 
(palstatementPO

i) is of the form condition-state. E.g., a 
state defines a particular admissible state of an 
application domain, which can be achieved if a 
condition is satisfied. Some PAL constraints do not 
have conditions. They define only admissible state. 
Moreover, all types of axioms (consolidation and 
derivation) are defined by PAL constraints in the same 
manner (see Table 1). Epistemological axioms are 
implemented by structuring concepts of Protégé 
ontology. 

The definition of SQL triggers was adopted from 
the Conceptual Data Model schema in the following 
way (Figure 8). 
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Figure 8. The SQL Trigger schema defined using Z 

The SQL Trigger schema presents SQL triggers. 
The Data Model schema is included into the SQL 
Trigger schema to represent a particular data model, 
part of which SQL triggers are. The Data Model 
schema presents a particular physical data model, 
which is an implementation of a conceptual data 
model defined by the Conceptual Data Model schema. 
Therefore, the Conceptual Data Model schema is also 
included into the SQL Trigger schema. For the sake of 
simplicity, the Data Model schema is not described in 
details in this paper and is going to be defined in 
future works. 

The elements of SQL trigger schema in Figure 8 
are described as follows. SQLTRIGGERCOMM 
= {sqltriggercomM

i | i:N} is a set of natural language 
descriptions of SQL triggers. They are sets of 
sequences of characters (P (Z × CHAR)). SQLTRIG-
GERNAMEM = {sqltriggernameM

i | i:N} is a set of 
names of SQL triggers. SQLTABLEM = {sqltableM

i | 
i:N} is a set relations to which SQL triggers are 
attached. sqltableM

i implements a particular entity 
from the Conceptual Data Model schema (entityCM

i). 
SQLATTRIBM = {sqlattribM

i | i : N} is a set of 
attributes, which are used to define SQL triggers. 
sqlattribM

i implements a particular attribute from the 

Conceptual Data Model schema (attributeCM
i). 

SQLSTATSQL = {sqlstatSQL
i | i : N} is a set of 

statements expressed using SQL. They are used to 
define SQL triggers. A statement (sqlstatSQL

i) is 
composed of attributes (sqlattribM

i) or an attribute 
(sqlattribM

i) and a value (valueSQL
i), which are 

associated by a mathematical operator (matopSQL
i) or a 

keyword (is or is not). An example of a statement is 
employee.salary is not null, where salary is an 
attribute and null is a possible value of this attribute. 
Note that for each attribute in SQL statement the 
context or table, to which it belongs, is specified 
before this attribute. In the previous example, the 
salary attribute is taken from the employee table. 

SQLEVENTM = {sqleventM
i | i:N} is a set of events 

activating SQL triggers. They are insert, update, 
delete or select. SQLIFM = {sqlifM

i | i:N} is a set of 
conditions in a SQL trigger, which have to be checked 
and evaluated when a SQL trigger is activated. It is a 
set of statements (sqlstatSQL

i), which are connected 
using logical connectives (LC) and/or quantifiers 
(QUANT). SQLTHENM = {sqlthenM

i | i:N} is a set of 
actions of a rule, which have to be executed after the 
condition is evaluated. If SQL trigger implements a 
dynamic constraint from the Conceptual Data Model 
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schema (dynconstCM
i), there are two possible actions: 

(i) if a condition is satisfied, to admit (commit) the 
transition from one state of the system to another, (ii) 
if a condition is not satisfied, to forbid (rollback) the 
transition from one state of the system to another. If a 
SQL trigger implements a reaction rule form the 
Conceptual Data Model schema (rruleCM

i), an action 
can be insert, update or delete. If a SQL trigger 
implements a derivation rule from the Conceptual 
Data Model schema (derruleCM

i), an action is a SQL 
select statement. 

SQLTRIGGERM = {sqltriggerM
i | i:N} is a set of 

SQL triggers. A SQL trigger (sqltriggerM
i) consists of 

a comment (sqltriggercomM
i), a name (sqltrigger-

nameM
i), a table (sqltableM

i), an event (sqleventM
i), a 

condition (sqlifM
i) and an action (sqlthenM

i). E.g., it 
has the structure of ECA rule. 

The bottom half of the schema introduces the extra 
constraint for the SQL Trigger schema that a SQL 
trigger should have the form as presented. 

The PAL SQL Transformation schema is adapted to 
the Protégé ontology with PAL constraints and SQL 
triggers as follows (Figure 9). 

The PAL SQL Transformation schema defines the 
transformation of PAL constraints to SQL triggers. 
Since PAL constraints are the source of the 
transformation, the PAL constraint schema (ΞPAL-
constraint) is included to the PAL SQL Transformation 
schema. Since SQL triggers are the target of the 
transformation, the SQL Trigger schema is also in-
cluded (ΞSQLTrigger) into the same schema. It is then 
used to define the output of the transformation. A set 
of PAL constraints (axiomPAL

i) is input (a variable 
ending with a question mark (?)) or a source of the 
transformation. Those PAL constraints are transformed 
to SQL triggers, which are the output (target) (a 
variable ending with an exclamation mark (!)) of the 
transformation. 
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Figure 9. The PAL SQL Transformation schema 

defined using Z 

Extra constraints of the transformation are the fol-
lowing. PAL-name (palnamePO

i) should be transfor-
med to SQL trigger name (sqltriggernameM

i). PAL-
documentation (paldocumPO

i) should be transformed 
to comments of SQL trigger (sqltriggercomM

i). PAL-

range (palrangePO
i) should be transformed to SQL 

table (sqltableM
i). An SQL event is insert, update, 

delete or select. PAL-statement (palstatementPO
i) 

should be transformed to SQL if (sqlifM
i). SQL then 

(sqlthenM
i) is commit, rollback, insert, update, delete 

or select. 
A prototype of the AxiomTransformation plug-in 

was developed to carry out the experiment of auto-
matic transformation of ontology PAL constraints to 
SQL triggers. In this prototype it is necessary to 
specify a file, where SQL triggers will be stored and 
all axioms are then automatically transformed to SQL 
triggers. 

At the moment plug-in is suitable for the imple-
mentation of dynamic constraints only. Therefore, in 
the future it should be extended to cover also the 
transformation of derivation axioms to derivation 
rules. 

Table 2 as example presents results of a transfor-
mation of a PAL constraint to the corresponding SQL 
trigger. 

Some corrections should be made to SQL triggers 
obtained so that they can be implemented in specific 
ADBMS. The user should choose an activation time 
(FOR|AFTER|INSTEAD OF) and an event of triggering 
([DELETE] [,][INSERT][,][UPDATE]). The user 
should also link the generated SQL triggers with 
particular databases, since some names of attributes or 
tables may vary depending on implementation details. 

The next step of the research is extending the 
developed prototype. Firstly, it is necessary to extend 
the prototype for the transformation of all types of 
axioms that we discussed in this paper; secondly, the 
proposed schemas of Z should be extended and re-
fined according to the results of observations obtained. 

5. Conclusions 
The analysis of the related works in the field of 

knowledge-based information systems development 
using the domain ontology shows that application 
domain rules are part of knowledge represented in 
such ontology. Rules are represented in the ontology 
by axioms and defined using ontology concepts. How-
ever, the topics of using ontology axioms for applica-
tion domain rules modelling and consequently imple-
mentation in software systems are not investigated 
enough before now. 

According to the detailed analysis of ontology 
axioms and application domain rules, we propose the 
method for transformation of ontology axioms to ap-
plication domain rules and define such transformation 
in formal way using Z notation. The formal definition 
of the method is based on the syntactic expressions of 
ontology concepts, conceptual data model and the 
developed formal rules for transformation of ontology 
axioms into rules of an application domain. We sug-
gested to use consolidation axioms for modelling of 
dynamic constraints, derivation axioms – for model-
ling of derivation rules, epistemological axioms – for 
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modelling of structuring of concepts, and finally to 
use definitional axioms for modelling of the concepts 
meaning. 

In order to illustrate the presented approach and 
prove that it is implementable, transformation rules 
obtained and defined using Z were applied to trans-
form the Protégé ontology with axioms (PAL const-
raints) to the rules implemented by SQL triggers. 

The prototype of a software system was deve-
loped. Using it, the experiment with the automatic 
transformation of ontology consolidation axioms to 
SQL triggers (class of dynamic constraints) was 
carried out. The experiment shows that the suggested 
method can be implemented and used for the auto-
mation of the ontology knowledge transformation into 
the components of software system of an information 
system. 

Table 2. Transformation of a PAL constraint to a SQL trigger 
PAL constraint 
([newspaper_00000] of %3APAL-CONSTRAINT 
(%3APAL-NAME "editor-employees-salary-constraint") 
(%3APAL-DESCRIPTION "The salary of an editor should be greater than the salary 

of any employee which the editor is responsible for <=> For every instance I1 of 
Class Editor, if the value of Slot responsible for : Class Editor has instance I2 
of class Staff, then Slot salary: Class Editor of I1 has a value > to Slot salary: 
Class Staff of I2.\n\n") 

(%3APAL-RANGE "(defrange ?editor :FRAME Editor)\n 
(defrange ?employee :FRAME Employee responsible_for)") 
(%3APAL-STATEMENT "(forall ?editor (forall ?employee\n  

(=> (and \n (responsible_for ?editor ?employee)\n  
(own-slot-not-null salary ?editor)\n  
(own-slot-not-null salary ?employee))\n  
(> (salary ?editor) (salary ?employee)))))")) 

SQL trigger 
/* Documentation */  
/* The salary of an editor should be greater than the salary of any employee 

which the editor is responsible for <=> For every instance I1 of Class Editor, if 
the value of Slot responsible for : Class Editor has instance I2 of class Staff, 
then Slot salary: Class Editor of I1 has a value > to Slot salary: Class Staff of 
I2. */ 

CREATE TRIGGER editor-employees-salary-constraint 
ON {editor|employee} 
{FOR | AFTER | INSTEAD OF} 
{[DELETE] [,] [INSERT] [,] [UPDATE]}  
AS 
FOR EACH ROW 
IF (editor.responsible_for=employee.responsible_for AND editor.salary is not 

null AND employee.salary is not null) AND (editor.salary>employee.salary) 
BEGIN 
 COMMIT TRANSACTION 
 PRINT ''Transaction is committed.' 
END 
ELSE 
 RAISERROR ('Rule is violated. The salary of an editor should be greater than 

the salary of any employee which the editor is responsible for.') 
 ROLLBACK TRANSACTION 
END 
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