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Institut für Informatik/PST

Universität München
stoerrle@informatik.uni-muenchen.de

Jan Hendrik Hausmann
Institut für Informatik
Universität Paderborn

hausmann@upb.de

Abstract: The new version 2.0 of the Unified Modeling Language (UML) was targeted
at improving expressiveness and semantic precision. These developments are particu-
larly evident in activity diagrams which have not only acquired many new features, but
a completely new metamodel and semantic foundation. The UML contains some hints
that Petri-nets are the inspirational source for the new semantics. In this paper we will
investigate how strong the alignment of UML’s activity diagrams to Petri-nets really
is. We start by providing a mapping of the basic elements of activity diagrams to Petri-
nets and discuss the problems arising when trying to extend this approach to some of
the advanced features of activity diagrams, namely exceptions, traverse-to-completion,
and streaming. This examination raises several syntactic and semantic questions con-
cerning activities. We conclude that for basic activities, the analogy works pretty well,
but for higher-level constructs, no such intuitive connection exists.

1 Introduction

Activity diagrams have been added to the UML rather late. They have always been poor-
ly integrated, lacked expressiveness, and did not have an adequate semantics. In UML
2.0, several new concepts and notations have been introduced, e.g., exceptions, collection
values, streams, loops, and so on. The intended range of applications spans from the mo-
deling of high-level business processes down to the description of basic computations. The
semantics of these constructs is described in natural language by token flow rules inspi-
red by Petri-Nets: “Activities are redesigned to use a Petri-like semantics” (cf. [OMG03,
p. 292]). Thus activity diagrams promise to integrate high-level constructs with a precise
and formal semantics. But the specification never substantiates the promise of this integra-
tion by providing either a precise formulation of the flow rules or a mapping to Petri-nets.

In [Stö04b], a semantic mapping of basic activities to P/T-nets has been proposed (see
Figure 1 for an overview of this mapping). Figure 2 (a-b) provides an example of this
mapping. Obviously, the mapping for the basic constructs is rather straightforward and
appeals to intuition. But does this mapping in particular and the mapping to Petri-Nets in
general hold for more complicated constructs of activities as well? We tried to answer this
question by closely examining possible semantics for some characteristic constructs and
concepts in UML Activities, namely exceptions, streaming and traverse-to-completion.

Figure 2 (c) also shows an ad-hoc translation of UML activities into the process algebra
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Abbildung 1: Intuition of semantic mapping from activity diagrams to Petri-nets.

CCS (cf. [Mil89]). Obviously, the visual quality of activity diagrams is lost immediately.

1.1 Related work

Concerning UML 2 activity diagrams, [BG03] examines the semantics of pins very briefly.
Also, there is a series of articles by C. Bock on UML 2 Activities (see [Boc03a, Boc03b,
Boc04a, Boc03c, Boc04b]). While being far more explicit and complete than the standard,
these articles lack formal precision. Given that the author has participated in the OMG’s
standardization process of the UML 2 Activities, the interpretations provided should be
considered, even if they are mere individual opinions and not part of the standard proper.
Formalizations of several aspects of UML 2.0 activities have been proposed in [Stö04a,
Stö05, Stö04b, Stö04c, Stö04d].

2 Exceptions

One of the most prominent additions in UML 2.0 Activities are exceptions. Consider the
example in Figure 3 (adapted from the standard). It is supposed to be interpreted as fol-
lows: While processing the part of the activity that is enclosed by the dashed line (a so
called “InterruptibleActivityRegion”), the reception of an “Order cancel request” event
triggers the preemptive abortion of this part of the activity, and continues execution with
the “Cancel Order”-Action.

There are a couple of problems with this interpretation that require substantial semantic
clarification. For instance, what happens to a parallel thread (i.e., “Send Invoice” etc.) out-
side the InterruptibleActivityRegion? Also, what happens if the JoinNode is outside the
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Abbildung 2: Example for the semantic mapping of Fig. 1, and comparison of Petri-nets to CCS as
a semantic domain.

InterruptibleActivityRegion? Should such an activity diagram be considered syntactically
correct, and how would such a syntax check be performed without computing the seman-
tics first?

But there is also another, more fundamental question: Exceptions are a prime example of
non-local behavior. Abstractly speaking, raising and handling an exception means swit-
ching from one of a number of specified program states (read: Action) to some other
state in a single step, i.e. a kind of multi-goto. In Petri-nets, on the other hand, states
(“markings”) are distributed over the whole net, and state changes are local. So, how can
non-local behavior like an exception be modeled using Petri-nets? There is a couple of
technical problems to be solved.
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Abbildung 3: Beispiel für eine InterruptibleActivityRegionim Standard.

2.1 Number of preemptable states

First of all, observe that preempting one of several states means that there are several
markings, all of which must be removed in the case of an exception raising event. But
the number of such markings may grow exponentially when there is concurrency within
the image of the InterruptibleActivityRegionunder [[ ]].1 Now, there are two ways how the
relevant set of markings may be removed.

First, one might compute the reachable set of markings during a compile run, and create
one transition to remove each of them. That is, in order to translate an Activity A into
a Petri-net [[A]], the resulting Petri-net [[A]] must be executed. Obviously, this is slightly
inconvenient.

Second, one might create some net structure that ensures that all possible distributions of
tokens over places are covered, not just the reachable markings. This in turn could be done
in either of three ways (see Figure 4).

1. For simplicity, assume that we are dealing with 1-safe nets, that is, there can always
be at most one token on each place. Then, by introducing one transition for each
subset of the places in the net-fragment representing the InterruptibleActivityReg-
ion, we are sure to be able to remove all possible markings, including the reachable
ones. However, the number of transition grows exponentially with the size of the Int-
erruptibleActivityRegion, and also, one would have to introduce priorities between
transitions to make sure that all tokens that are removable are actually removed: in
Figure 4 (a), Preempt1 might fire, even if Preempt2 is also activated.

2. Another approach might be to introduce constructs like flush arcs, i.e., arcs that are
capable of removing all tokens from a place irrespective of their number. In Figure 4
(b), the asterisk on the arcs is used to denote a flush arc.

1For the remainder of this discussion, we assume, that there is a semantic function [[ ]] : A → Petri-net
along the lines of the semantic function defined in [Stö04b], where A is an Activity or fragment of an Activity.
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3. Yet another approach is to resort to high-level nets in general, and model the required
kind of behavior using the capabilities of some clever inscription language. A typical
pattern would be to use “list of tokens” rather than “tokens” as the color (i.e., type)
of such places (see Figure 4 (c), [] is used to denote the empty list).

Either way, the nice and direct correspondence between Activities and Petri-nets is lost. All
three approaches would also increase the expressive power of the underlying type of Petri-
nets to being Turing-equivalent. The third solution would also lose some concurrency.
So, summing up: all possible solutions have their drawbacks. The solution proposed in
[Stö04c], on the other hand, avoids all of these drawbacks—at the cost of resorting to a
customized and rather arcane net formalism.
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Abbildung 4: Possibilities for preempting a subnet: an individual transition for each marking (a),
flush-arcs (b), and high-level nets with list-typed markings (c).

2.2 Size of the InterruptibleActivityRegion

A problem more related to the standard proper rather than the semantic domain is: where
is the boundary of an InterruptibleActivityRegion? Consider again the net in Figure 5.
Doubtlessly, the tokens in those places that are colored in dark gray (p1, p2, and p7) should
be removed when the trigger to the exception arrives. But what about the tokens in those
places colored in light gray (p0, p3, p6, p8, and p9)? They might be considered too, for
different reasons.

It makes no sense to preempt tokens in p0 from an application point of view. But the
initial state of an Activity is not really a state as such but an adornment of the Action
it is leading to, expressing, that this is the first action to be executed. So, what does it
mean to have the initial state outside the InterruptibleActivityRegion? Or rather, when
does an Activity start—when it executes its first action, or when it is instantiated? For
doubtlessly, the metaclass Activity should be instantiated to represent a concrete behavior,
as the Metamodel-Architecture of the UML suggests.

A similar argument applies to fork and join nodes, i.e., p3, p6, and p9: when exactly is
the flow of control split and merged again? Yet another, and even more problematic case
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Abbildung 5: Naive Petri-net semantics of the exception example in Figure 3.

is posed by p8: if it is not considered part of the InterruptibleActivityRegion, an excepti-
on might result in an unfinished thread of control when the final state is reached. Is this
admissible? If so, how will the dangling token in p8 be removed?
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3 Streaming

As a third probe, consider streaming (see Figure 6 for an introductory example). A naive
translation according to Fig. 1 leads to several problems. The first problem is ordering.
The intuition of a stream suggests that the ordering of the elements of a stream is to re-
main stable. In a plain Petri-net, however, places are unordered bags of tokens. In order to
preserve the order among them, the place would have to be turned into a FIFO-buffer. This
could be done either by adding FIFO-places as a native construct (i.e., by extending the
net formalism, again), by using lists to represent streams as in Figure 7 (a), or by using ex-
plicit counters to ensure the right sequence as in Figure 7 (b). The second solution would
loose some degree of concurrency, and both would require high-level nets—another net
formalism again.

The second problem with streaming is isolation: if several streams are passing through an
Activity, should these streams be isolated from each other, or should they interact? And
how do we achieve either?

Consider a family of streams S being processed by some Activity A. At any point during
processing, the set of stream elements currently processed by A contains at most one such
element for each stream. Call this set a slice of S. Isolation is thus the question whether
the elements of a slice may influence each other.

If an Action is refined in a macro-expansion way, there is no isolation, and arbitrary inter-
actions may occur. Consider the example of Figure 6: inputing several streams of frames
at the same time to Audio/Video processing may result in arbitrary order-preserving se-
lection and interleaving of frames. Completely forbidding all interactions is no solution
either, since this would disallow even the simplest of operations like split AV and join
AV. So, one might introduce additional constraints that prevent interference where it is not
wanted, as proposed in [Stö04d] (see Figure 8). A macro-expansion, however, would loose
the intuition of a transition as an atomic entity.

4 Traverse-to-completion semantics

A characteristic syntactic property of Petri-nets is that they are represented by bipartite
graphs of places and transitions. Activity diagrams also distinguish between two types of
nodes: Executable and Object nodes both which may hold tokens on the one hand, and
control nodes on the other hand, which cannot hold a token but just determine the way
tokens flow between Executable and Object nodes. Control nodes can, however, also be
connected to other control nodes. A single token flow might thus entail traversing nume-
rous control nodes and their connecting edges.

To still retain a ”Petri-like“ synchronization mechanism, the semantics of activity dia-
grams follow the traverse-to-completion principle (ttc) [Boc04a]. According to ttc, tokens
will only leave their current position and move on to another node if the whole path to
the destination node is open. A path is called ”open“ if the conditions for token flow im-
posed by all elements forming the path are satisfied by the token (i.e., all edge guards
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Abbildung 6: Example of streaming activities.
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Abbildung 7: Different Petri-net semantics for streaming: streams as lists (a), streams by sequence
numbering (b).

are true, buffers have capacities, etc.). The evaluation of the path is described by the term
”offering“. A token is offered to the adjacent edges of its current position and these of-
fers spread through the activity graph until one of them is accepted. In situations with
token competition (e.g., multiple outgoing edges from an object node), the first accepted
offer determines which way the token moves. With ttc the whole path (though constructed
form numerous elements) acts like a single Petri-net transition. If a token can only move
down one way, this semantics presents no observable difference to a stepwise token pas-
sing (unless you take external concurrent influences on guard conditions into account). In

124



Input
Stream

INT

1`0

INT

INT

1`0

Output
Stream

split stream

join stream

Region

Item

Item

(x,i)

i

i

(x,i)

x

x

x

x

i

i

i+1

i+1

E

1`e

e

e

Abbildung 8: A more complex semantical approach to streaming: only a single stream is channeled
into the region.

situations with token competition however (e.g., multiple outgoing edges from an object
node) ttc prevents token from getting stuck in the middle of a path since the token moves
down the first path that can accept it completely. In the example in Fig. 9 a token provided
by action B will thus never flow toward the join node unless actions A and X can provide
tokens as well.

In combination with forks and joins, ttc presents some problems. According to the adopted
UML 2.0 specification, fork nodes can only pass tokens, if all outgoing paths can accept
the token. Join nodes require all incoming edges to offer tokens before firing. If we regard
the example activity diagram in Fig. 9 we can observe that under this semantics the left
hand part of the diagram has no valid execution due to the following circular dependency:
the fork node requires the join node to accept a token, the join node requires a token to
be offered from action X which it can only do if the fork node provides its input token.
Due to this observation, the semantics of the fork node will presumably be relaxed in the
finalization process (cf. [OMG04, issue 7221]) to require only one outgoing path to accept
its token. Copies of the passing token will be stored for the non-successful outgoing edges.

If we perform an intuitive element-wise mapping of activity diagrams to Petri-nets (as
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Abbildung 9: Example activity diagram demonstrating the ttc-problem.

described in Figure 1) we are faced with the dilemma that Petri-nets have a strictly local
synchronization, but ttc semantics require synchronization beyond this scope. There are
two possible ways out of this dilemma: either we do map whole structures to single transi-
tions or we use—once again—a semantically richer Petri-net variant, e.g., Zero-safe nets
(cf. [BM]).

As already stated above, whole structures in activity diagrams behave like single transiti-
ons in Petri-nets. We could thus discard the simple mapping presented above and devise
a more complicated compilation approach which evaluates the different possible flows
through a control structure of an activity diagram and maps these to simple Petri-net
transitions (synchronising all inputs and outputs). But to actually provide such a gene-
ral compilation mechanism, all possible feature interactions in activity diagrams have to
be understood. That is, we have to know the precise semantics for all cases and embed that
knowledge in the transformation. We cannot assume such a knowledge a priori.

Zero-safe nets provide a notion of transactions over parts of a net by distinguishing bet-
ween so called stable places and zero places. A marking in which all tokens are on stable
places is called a stable marking and is supposed to represent an observable state of the
net. From such a stable marking, tokens may flow according to the usual rules on either
stable or zero places. Markings with some tokens resting on zero places represent internal
states. A commit rule ensures that all tokens for stable places produced from internal mar-
kings are placed at once and only if no more tokens rest on any zero place. The net thus
has a notion of transactions between the stable markings, which is internally specified by
a number of transitions between internal states.
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While a detailed mapping of activity diagrams to zero-safe nets has not yet been done,
it seems obvious that a) these nets provide the kind of mechanism needed to express ttc
and that b) most control nodes would have to map to zero places. Thus irrelevant of the
actual details of such a mapping, we are once again faced with the situation to not only
choose a new or extended semantics domain but also to modify out intuitive mapping. This
is especially harmful for the case of ttc since it is a general semantic principle which is
supposed to hold for all activity diagrams. Since there are cases in which there exists an
observable difference between ttc and the interpretation given by our basic mapping, we
need to be aware that the basic mapping itself is not entirely precise.

5 Conclusions

In this paper we have examined some semantic questions concerning UML activities by
trying to provide a mapping from activities to Petri-nets. Summarizing our investigation
we have to state that while the mapping of basic UML activity diagrams to elementary
Petri-nets is quite simple and intuitive, this is not the case for exceptions, streaming and
traverse-to-completion. Not only do these three cases require different Petri-net variants as
their semantics domain, but they also impose modifications to the basic mapping, thereby
breaking the basic intuitions to a certain extent.

Furthermore, it is not obvious that combining all the various target domains is trivial. In
particular data-flow and procedure calling (cf. [Stö04a] and [Stö04b], respectively) also
need to be taken into account. Even if the construction of such a unified formalism was
possible, no analysis tools or theoretic results would be readily available for it.

For other semantical domains (e.g. CCS and algebraic approaches in general), even the
basic mapping is unintuitive (cf. Figure 2). A translation from activities directly into, say,
partial words or transition systems would cover a huge distance between syntax and se-
mantics, thus suffering from the same problem. A more specialized semantic domain (as
e.g. proposed in [BG04]) might reduce this distance.

Different conclusions can be drawn from this result: On the one hand we could state that
the problem lies with the semantic foundations, that is, the formal methods as we know
them now. Thus, further scientific work might be necessary to find a semantical domain
which is able to express the semantics of UML activity diagrams in a concise and intuitive
way. A special unified Petri-Net variant or other formalisms might serve this way. Howe-
ver, such a formalism would be a kludge, and the original appeal of Petri-nets is lost, so
what is the point in demanding a “Petri-like” semantics in the first place?

Then again, one might raise the question whether the misalignment of activity diagrams to
Petri-Nets is not a shortcoming of the standard. If Petri-Nets are indeed supposed to serve
as an intuitive semantic domain, the authors of the UML should at least make sure that a)
this mapping is being made explicit and that b) high-level extensions must be compatible
to the degree that they do not break the intuition provided in the basic mapping. Without
these measures, the claimed alignment of activity diagrams to Petri-Nets remains rather
superficial and does not yield any benefit.
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