
Towards a framework for detecting advanced Web bots

Christos Iliou
Information Technologies Institute,

CERTH
Thessaloniki, Greece

Dept. of Computing and Informatics,
Bournemouth University

Bournemouth, United Kingdom
iliouchristos@iti.gr

Theodoros Kostoulas
Dept. of Computing and Informatics,

Bournemouth University
Bournemouth, United Kingdom
tkostoulas@bournemouth.ac.uk

Theodora Tsikrika
Information Technologies Institute,

CERTH
Thessaloniki, Greece

theodora.tsikrika@iti.gr

Vasilis Katos
Dept. of Computing and Informatics,

Bournemouth University
Bournemouth, United Kingdom
vkatos@bournemouth.ac.uk

Stefanos Vrochidis
Information Technologies Institute,

CERTH
Thessaloniki, Greece

stefanos@iti.gr

Yiannis Kompatsiaris
Information Technologies Institute,

CERTH
Thessaloniki, Greece

ikom@iti.gr

ABSTRACT

Automated programs (bots) are responsible for a large percentage
of website traffic. These bots can either be used for benign pur-
poses, such as Web indexing, Website monitoring (validation of
hyperlinks and HTML code), feed fetching Web content and data
extraction for commercial use or for malicious ones, including, but
not limited to, content scraping, vulnerability scanning, account
takeover, distributed denial of service attacks, marketing fraud,
carding and spam. To ensure their security, Web servers try to
identify bot sessions and apply special rules to them, such as throt-
tling their requests or delivering different content. The methods
currently used for the identification of bots are based either purely
on rule-based bot detection techniques or a combination of rule-
based and machine learning techniques. While current research has
developed highly adequate methods for Web bot detection, these
methods’ adequacy when faced with Web bots that try to remain
undetected hasn’t been studied. For this reason, we created and
evaluated a Web bot detection framework on its ability to detect
conspicuous bots separately from its ability to detect advanced
Web bots. We assessed the proposed framework performance us-
ing real HTTP traffic from a public Web server. Our experimental
results show that the proposed framework has significant ability
to detect Web bots that do not try to hide their bot identity using
HTTP Web logs (balanced accuracy in a false-positive intolerant
server > 95%). However, detecting advanced Web bots that present
a browser fingerprint and may present a humanlike behaviour as
well is considerably more difficult.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ARES ’19, August 26ś29, 2019, Canterbury, United Kingdom

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7164-3/19/08. . . $15.00
https://doi.org/10.1145/3339252.3339267

CCS CONCEPTS

· Information systems → Web log analysis; Traffic analysis; ·
Computing methodologies→ Supervised learning by classi-

fication.

KEYWORDS

Web bot detection, Evasive Web bots, Advanced Web bots, human-
like behaviour

ACM Reference Format:

Christos Iliou, Theodoros Kostoulas, Theodora Tsikrika, Vasilis Katos, Ste-

fanos Vrochidis, and Yiannis Kompatsiaris. 2019. Towards a framework

for detecting advanced Web bots. In Proceedings of the 14th International

Conference on Availability, Reliability and Security (ARES 2019) (ARES ’19),

August 26ś29, 2019, Canterbury, United Kingdom. ACM, New York, NY, USA,

10 pages. https://doi.org/10.1145/3339252.3339267

1 INTRODUCTION

The vast amount of content hosted on the Internet has rendered the
use of Web bots necessary. Web bots are programs that automate
the browsing process and perform specific commands on behalf
of the author. Popular uses of Web bots include Web indexing,
Website monitoring (validation of hyperlinks and HTML code),
data extraction for commercial purposes and feed fetching Web
content. To perform these actions, bots visit Web servers repeatedly
and, in some cases, for a prolonged period of time [10].

However, allowing bots unrestricted access to Web server con-
tent and services is not a good practice. This is because bots are a
powerful tool that has often been abused for malicious purposes,
such as Web content scraping, vulnerability scanning, marketing
fraud, carding, account takeovers, spamming, denial of service at-
tacks and more [10]. Furthermore, it is possible to operate bots from
mobile phones and IoT devices (usually without the device owner’s
knowledge or consent) which makes them a low cost mechanism
for distributed attacks [10]. Moreover, advanced Web bots can also
avoid detection by imitating humanlike behavior [10]. As a result, in
addition to being a crucial part of the infrastructure of the Internet,
Web bots have become a ubiquitous threat.

https://doi.org/10.1145/3339252.3339267
https://doi.org/10.1145/3339252.3339267

ARES ’19, August 26–29, 2019, Canterbury, United Kingdom Iliou, et al.

The need to mitigate this threat has inspired a whole new area
of research. Once a visitor is identified as a Web bot the process is
straightforward − websites simply need to place special restrictions,
so that bots cannot perform malicious acts. To detect Web bots,
current state of the art approaches both in academia [13, 15, 31] and
in commercial solutions [1, 10] propose, besides the rule-based Web
bot detection techniques, the use of machine learning to distinguish
bots from human visitors. Such approaches rely on the collection
of Web server logs that contain both human and Web bot sessions.
These data can be used for modelling human and bot activity.

Current research on machine learning based Web bot detec-
tion performs automatic annotation of the extracted sessions from
Web logs to create the ground truth needed to generate such mod-
els [25, 26]. Such approaches do not consider that the bots may
try to hide their bot nature and/or try to imitate humanlike be-
haviour [10]. Thus, we performed a more in depth analysis of the
Web bot detection problem by examining the detection accuracy
of machine learning based algorithms in terms of identifying con-
spicuous Web bots separately from its performance in detecting
advanced Web bots which try to hide their bot nature.

We created a Web bot detection framework which examines
HTTP Web logs from a public Web server. The log data were split
in three categories: (i) simpleWeb bots which do not try to hide their
bot nature, (ii) advanced Web bots which use a browser fingerprint
and may present a humanlike browsing behaviour and (iii) human
sessions which we assume to be all the sessions that do not belong
to the above categories. Furthermore, differentiating from relevant
literature, we studied the behaviour of our framework in a false-
positive intolerant Web server. We opted to do this because in
a real-world case scenario miscategorising human visitors is not
desirable since it will affect the browsing experience of visitors.

The main contributions of this paper are:

• The proposal of a modular machine learning based Web bot
detection framework that (i) can be easily combined with
any HTTP Web server and (ii) can effortlessly incorporate
new machine learning-based Web bot detection algorithms.

• The identification of the unique challenges when state-of-
the-art Web bot detection techniques are utilised for detect-
ing advanced bots as opposed to simple bots

• The identification of the most important features among the
ones proposed in literature for the detection of simple and
advanced Web bots.

The remainder of this paper is structured as follows: Section 2
provides the background on the Web bot detection problem and
covers the related work. Section 3 describes the Web bot detection
framework. Section 4 presents our evaluation methodology and
experimental setup and Section 5 contains the evaluation results.
Finally, Section 6 discusses the significance of our results to the
Web bot detection problem and Section 7 summarizes our work and
examines the future evolution of this framework.

2 BACKGROUND AND RELATED WORK

The Web bot detection problem poses the question of how we
can accurately distinguish whether a Web visitor is a bot or a
human. Researchers have further categorised bots based on their
functionality [12] or purpose (benign/malicious) [4, 23, 31].

In the past, to detect Web bots, it used to be common to exam-
ine the signature of the visitor’s request, i.e. the request headers,
and whether JavaScript, cookies, and Web sessions are supported.
However, tools, such as the selenium1, provide APIs that allow bots
to mimic the signature and support the majority of the features
of most common browsers, including the support of JavaScript,
cookies and sessions.

Currently, the most famous techniques for Web bot detection
are based on the CAPTCHA (i.e. Completely Automated Public
Turing test to tell Computers and Humans Apart) [28] such as the
reCAPTCHA2 offered by Google. The CAPTCHA is a Turing test
that is based on a visual challenge, accompanied with an aural
one for the visually impaired. The test uses the assumption that
a human can extract letters from either a distorted image or the
audio file or select an object in an image, while a Web bot cannot.

However, a variety of techniques have been proposed to by-
pass some of the most popular CAPTCHA challenges, such as the
use of public online speech to text engines to bypass Google’s re-
CAPTCHA [6]. Finally, the CAPTCHAhas received a lot of criticism,
especially from people with disabilities who sometimes struggle
with fulfilling this request and people who feel that their everyday
work is slowed down.

To solve the aforementioned problems, current research focuses
on the use of machine learning based detection techniques to dis-
tinguish Web bots from humans, rather than solely relying on rule-
based detection techniques. The first step in generating machine
learning models that can be used for the detection ofWeb bots is the
extraction of sessions from Web logs [5, 18, 22, 24, 25]. After that,
several features are extracted from each session and used to identify
whether the visitors are bots or humans. These features include
the access frequency of Web pages [27], the type of Web content
accessed (i.e. HTML, text, JavaScript, image, css, etc.) [13, 22], the
access patterns [3] and the HTTP errors produced [5, 27]. These
features are used as input to generate machine learning models.

The most popular machine learning based Web bot detection
problems that appear in research are the classification [25, 26] and
clustering [2, 9, 27]. The detection can take place either off-line
(i.e. decide after the end of the sessions whether it is from a bot),
or online by performing an estimation during the session [8, 21].
In both cases, a ground truth of human and Web bot sessions is
required. In most recent research, the annotation process relies
on comparing each visitor’s agent name [26] and IP address [5,
7, 13, 22, 25] with the agent names and IPs of known web bots
according to lists hosted on external servers. Such lists mostly
contain identifiers for bots which are benign in nature, like, for
example, search engine bots, although some malicious bots can
be found there as well. Furthermore, some researchers examine
whether the visitors access a text file which instructs Web robots
which Web pages to crawl/scrape3 [15, 27, 31].

Although the aforementioned techniques show promising re-
sults, they do not address a key aspect of the Web bot detection
problem, which is the identification of Web bots which try to evade
detection via, for example, presenting a humanlike fingerprint and,
in some cases, behaviour. More specifically, such bots can simply

1http://www.seleniumhq.org/
2http://www.google.com/recaptcha
3The robots text file (robots.txt) that is located in the root folder of a Web server.

Towards a framework for detecting advanced Web bots ARES ’19, August 26–29, 2019, Canterbury, United Kingdom

Figure 1: The Web bot detection framework

use a browser-like agent name, randomize their IPs and not access
the robots text file. The techniques that have been proposed by
literature mislabel these bots. Even worse, in the less likely sce-
nario where an advanced Web bot presents human-like behaviour,
it could be mislabeled even from human annotators.

ThereforeWeb bot detection needs to be treated as a multifaceted
problem. To this end, we isolated the advanced Web bots so as to
accurately assess the performance of our detection framework in
terms of detecting advanced Web bots separately from simple Web
bots. To achieve that, we propose a novel annotation technique
which combines the list of known Web bot agent names (proposed
in literature) with an external honeypot to examine whether the
visitor’s IP has shown activity on that honeypot. Specifically, instead
of checking whether the visitor’s IP is a known Web bot’s IP, we
check whether this IP has shown activity on a honeypot server.
The interaction with the honeypot indicates bot activity, since no
human user would have visited that server. We made this choice
because several bots in our dataset were already labeled as bots in
the honeypot, but were not yet in the list of known Web bots.

3 THE WEB BOT DETECTION FRAMEWORK

In this section we present the Web bot detection framework that we
created to examine howwell commonWeb bot detection algorithms
perform in detecting simple and advanced Web bots under various
configurations. This framework is based on and combines the most
prevalent techniques that have been proposed in literature for Web
bot detection using supervised machine learning [25, 26].

The architecture of the Web bot detection framework is shown
in Figure 1. The input of the framework is a directory path in which
the HTTP logs from the Web server are stored. The framework uses
a regular expression to extract the relevant content from HTTP
logs. Thus, the process of applying different log files as input is
trivial, since any new format of interest can be incorporated by
only adapting this regular expression rule.

After the successful connection of the framework with the HTTP
server log files, the session extraction procedure takes place, where
HTTP log data are split into sessions (Section 3.1). For each session,
a feature vector is created using a set of features proposed in lit-
erature (Section 3.2). After that, each session is annotated as Web

bot or human using an automated way (Section 3.3). Furthermore,
the importance and effectiveness of each feature is evaluated and a
subset is selected (Section 3.4). Finally, the selected feature vectors
are used to create the classification models (Section 3.5).

In the testing phase, the previously created classification models
are used to identify Web bot sessions in new unseen data. When
new data are available, their sessions and features are extracted
accordingly (Sections 3.1 and 3.2). Each classifier uses a unique
subset of the available features which consists of the ones that were
deemed most important during their training stage (Section 3.4).
The trained classifiers take the new data as input and determine
whether each visitor is a bot or a human (Section 3.5).

3.1 Session extraction

The first step in identifying whether a visitor is a human or a
Web bot is the extraction of the visitor’s session(s) from the log
files. Since several visitors (including bots and humans) might
share the same IP, considering only the IP field to extract ses-
sions initiated from different visitors is insufficient. For this rea-
son, current research proposes the combination of the IP with the
browser agent name for the creation of a unique identifier per
visitor [5, 13, 15, 22, 25].

The aforementioned technique will not necessarily result in dis-
tinguishing all users from each other, since there might be two users
with the same IP and agent name or one user changing several agent
names in rotating order. To this end, relative research proposed
more advanced fingerprinting techniques, such as browser-based
characteristics (e.g. ActiveX support, Flash enabled, language enu-
meration, etc.), OS and applications features (e.g. OS and kernel
version, Windows registry, etc.) and hardware features (e.g. screen
resolution) [19]. However, since this information was not available
in the log data that we used, we followed the default approach of
identifying separate sessions by the combination of a unique IP -
agent name pair [5, 13, 15, 22, 25].

To define when a user session has ended, current research uses
a 30 min threshold [5, 13, 15, 22, 25]. More specifically, when a
session id stays idle for more than 30 minutes, a new session is
created upon a new request. Furthermore, sessions that have a total
number of HTTP requests lower than a threshold k were not taken

ARES ’19, August 26–29, 2019, Canterbury, United Kingdom Iliou, et al.

Table 1: Attributes calculated for each session.

Id Feature Short description Literature

1 Total requests Total number of HTTP requests that the agent issued during the session. [2, 11, 25ś27, 31]
2 Total session Bytes The sum of all requested pages’ size (in Bytes) in a session. [2, 7, 21, 27, 31]
3 HTTP GET requests Total number of HTTP GET requests issued during the session. [3, 4, 7, 25, 31]
4 HTTP POST requests Total number of HTTP POST requests issued during the session. [4, 7, 25, 31]
5 HTTP HEAD requests Total number of HTTP HEAD requests issued during the session. [4, 7, 11, 21, 25ś27, 31]
6 % HTTP 3xx requests The percentage of HTTP requests that led to an HTTP 3xx code response. [3, 7, 31]
7 % HTTP 4xx requests The percentage of HTTP requests that led to an HTTP 4xx code response. [3, 7, 11, 21, 26, 27, 31]

8 % image requests
The percentage of HTTP requests that requested an image. This feature
searches for all known image formats’ ending.

[13, 22, 25]

9 % pdf requests The percentage of HTTP requests that requested a pdf file. [11, 13, 26, 27]
10 % css file requests The percentage of HTTP requests that requested a css file. [22]
11 % js requests The percentage of HTTP requests that requested a JavaScript file. [13, 22]

12 HTML-to-image ratio
The number of the requested HTML files divided by the number of requested
image files in a session.

[11, 26, 31]

13
% requests with unsigned
referrers

The percentage of total HTTP requests that had no refer. [4, 7, 11, 25ś27]

14 Search engine refer
Binary. If a session has at least one request with a known search engine
refer.

[4]

15 Unknown refer Binary. Refer exists, but not from the aforementioned search engines. [4]
16 Depth SD Standard deviation of requested pages’ depth (i.e. number of ’/’ in URL path). [26, 27, 31]
17 Max requests per page The maximum number of requests to the same page in a session.

18 Average requests per page The average number of requests per page in a session.

19
Max number of consecutive
sequential HTTP requests

The maximum number of HTTP requested URLs that contain the
previously requested URL as a subpart page

[31]

20
% of consecutive sequential
HTTP requests

The percentage of HTTP requested URLs that contain the previously
requested URL as a subpart.

[11, 26, 27]

21 Session time
The total time (in seconds) between the first and the last HTTP request of
the session.

[2, 3, 21, 25, 31]

22 Browsing speed The ratio of the total number of requested pages over time (in seconds). [3]
23 SD of inter-request times Standard deviation of time between successive requests. [3]

into consideration because it is not feasible to distinguish bots and
humans based on only a few HTTP requests [22].

3.2 Feature composition

The information included in each session is encoded into measur-
able values and used as input to train the classification models. To
decide which measurable "properties" or "characteristics" (features)
to consider, we accumulated the most promising features that have
been proposed over the past 5 years. These features are presented in
Table 1, along with a short description for each feature and relevant
literature. In short, to distinguish Web bots from humans we can
examine the method and response code of the HTTP request, the
type of file(s) requested and the browsing behaviour.

3.3 Automatic annotation

The extracted sessions that are used for training the classifiers are
annotated as "bot visitor sessions" or as "human visitor sessions".
Bot visitor sessions contain two different types of sessions; (i) those
in which the Web bots are conspicuous, i.e. they are not trying to
hide the fact that they are bots, and (ii) those in which the Web bots

are inconspicuous, i.e. they replace one or more of their normal bot
characteristics with those of a human visitor to remain undetected.

The annotation process which we followed is depicted in Figure
2 and is a two step process. The first step is to identify simple Web
bots by examining whether their agent name is a browser one, while
the second one is to identify, to the best of our ability, Web bots
that present a browser fingerprint and, in some cases, a humanlike
behaviour by using an external honeypot. Initially, we used the API
provided by Useragentstring4, a server that classifies agent names
in several categories such as "browser", "crawler", "library", "link
checker". After that, we used the API provided by the GreyNoise5,
a server that collects and analyzes untargeted, widespread, and
opportunistic scans and attacks or malicious activities, to check
whether the IPs have been found to perform any of the above.

The main idea behind our approach is that it is not common for
a human visitor to change the agent name of their browser. Thus, if
a session has a non-browser agent name, it can be safely annotated
as Web bot. However, all sessions that have a browser agent name

4http://useragentstring.com/
5https://greynoise.io/

Towards a framework for detecting advanced Web bots ARES ’19, August 26–29, 2019, Canterbury, United Kingdom

session

simple bot

IP has shown

malicious activity2

has browser

agent name1

yes

no

yes

no

human

advanced bot

[1] useragentstring.com

[2] greynoise.io

Figure 2: Automatic annotation process

are not necessarily from human visitors, since bots might change
their agent name to present a browser-like fingerprint [10, 16, 30].

3.4 Feature analysis and selection

Feature selection is described as a method whereby specific fea-
tures are selected from the set of all available features. In machine
learning, and more specifically, classification problems, some fea-
tures might result in the decrease of the models’ accuracy. For this
reason, feature selection is widely used in machine learning based
problems and has also been used in security related tasks that use
machine learning techniques [9].

The framework supports the analysis of all the available features
and the selection of the most important ones. Two selection modes
are supported, one which selects the most promising features based
on the feature analysis regardless of the classification algorithm
employed and one that is classifier dependent. In both cases, each
classifier is accompanied by a boolean array that indicates which
features are to be used from all the available features for its training.
The same features are used in the testing process.

3.5 Classification

The classification process consists of two phases, the training phase
and the testing phase. In the training phase we feed the framework
with known Web bot and human sessions as input to create the
classification models. These models are stored into the framework
so that they can be used for the testing process.

The testing process is similar to the training one. The new (un-
seen by the classifiers) Web sessions are used as input to the frame-
work and the classifiers generate the respective label (Web bot or
human). To evaluate the framework, the labels of the sessions used
for testing are known (but kept secret). However, in a real case
scenario, the nature of these sessions would be unknown.

4 EVALUATION

To assess the effectiveness of the proposed framework in terms
of identifying Web bot sessions from HTTP log files, a series of
experiments were conducted using real HTTP traffic collected from
a public Web server. This section describes the evaluation methodol-
ogy (Section 4.1), the dataset (Section 4.2), the feature analysis and
selection process (Section 4.3), the evaluation metrics considered
(Section 4.4) and, finally, the classification algorithms tested and
their configuration (Section 4.5).

4.1 Evaluation methodology

The purpose of this paper is to identify the unique challenges
that arise when state-of-the-art Web bot detection techniques are
utilised for detecting advanced Web bots as opposed to simple bots.
To this end, we evaluated our framework in how well it can identify
simple and advanced Web bots separately. Initially, we identified
the most important features in the case of simple and advancedWeb
bots. We used these features to generate the respective classification
models and evaluate our framework after the models’ deployment.

Furthermore, we took into account the fact that, in a real world
case scenario, it is imperative to have a low false positive rate in
order to avoid miscategorising human visitors. Thus, we tested
our framework’s general performance in various working points
(i.e. classification thresholds) and analysed its performance on the
working point in which the false positive rate is relatively low.

4.2 Dataset

The framework was tested on HTTP log data collected from MK-
Lab’s public Web server6. Instead of feeding the framework with
data real time, we used a year’s worth of HTTP log data (from
20/3/2016 to 20/3/2017) as input in a simulated time mode. We only
considered Web sessions with more than k=30 requests per session

to ensure that the framework has adequate data to identify the

nature of each visitor [22]. The value of k was chosen heuristically.

We annotated the dataset by examining the agent name of the

visitor as well as whether its IP has shown malicious activity (see

Section 3.3). The total unique agent names extracted from sessions

with more than k=30 requests were 2793. From them, the 2723 were

annotated by the useragentstring’s API as "browser" (2628) or "bot"

(95) and 70 were annotated as "unknown". For the "unknown" agent

names, we manually annotated them as browsers (66) or bots (4).

As we mentioned in Section 3.3, the IPs of the sessions that were

annotated as "browsers" by the useragentstring’s API (15452) are

also checked for malicious activity using the GreyNoise’s API. Thus,

we end up changing the annotation of 299 unique IPs (554 sessions)

which were originally annotated as "browser" but their IPs have

been marked as bots by the GreyNoise. The total unique agent

names and IPs per class (i.e. browser, simple bot, advanced bot) are

shown in Table 2.

Table 2: Unique agent names and IPs

Bots
Humans Total

Simple Adv. Total

Agent names 99 105 204 2589 2793

IPs 602 299 901 15153 16054

To evaluate the framework, we split the dataset into two sets, one

for training and one for testing. Our Web server by default splits

the HTTP log data into files based on a log rotation technique7.

The total files that were generated over a year were 13. We grouped

the files into two packages, (i) the training one using the first 8

files (from 20/3/2016 to 4/12/2016) and (ii) the testing one using the

6Multimedia Knowledge and Social Media Analytics Laboratory, https://mklab.iti.gr/
7https://httpd.apache.org/docs/2.4/logs.html

ARES ’19, August 26–29, 2019, Canterbury, United Kingdom Iliou, et al.

other 3 files (from 4/12/2016 to 20/3/2017). For each of these files we
extract all sessions with more than k=30 requests per session [22].

The final number of extracted sessions is shown in Table 3. To

assess the framework’s performance in identifying simple bots and

advanced bots separately, we created two "sub-datasets", the D1

that contains the human and simple bot sessions and the D2 that

contains the human and the advanced Web bot sessions.

Table 3: Human and Web bot sessions

Bots
Humans

Total

D1

Total

D2Simple Adv. Total

Train 1321 431 1752 17462 18783 17893

Test 1034 123 1157 6195 7229 6318

Total 2355 554 2909 23657 26012 24211

4.3 Feature analysis and selection

To analyse the importance of the extracted features in the detection

of simple as well as advanced Web bots we utilised the Principal

Component Analysis (PCA) and the x2 (chi-square) feature selection

techniques. For both of these techniques the data were scaled.When

scaling the data for the PCA, we subtracted the mean values and

then divided by standard deviation for each feature in the training

set. In the case of x2, we divided by standard deviation without

subtracting the mean to avoid negative values. We then used the

mean and standard deviation values calculated from the training

set to perform the same process in the testing set.

PCA can be used to assess the importance of each feature by cal-

culating its contribution to the generated principal components. To

do that, we can measure the mean of each feature "contribution" to

all the generated components of the PCA using the training set [17]

(D1 for simple bots and D2 for advanced bots - see Section 4.2).

Usually, the smaller principal components (i.e. with lower variance)

are associated with noise and thus they can be omitted. Thus, the

features with the lowest cumulative "contribution" to all the princi-

pal components can also be associated with noise [17]. However,

the high variance principal components are not necessarily all use-

ful, since they might not be correlated with the respective class (i.e.

Web bot or human) or they may refer to noise existing within the

data. Thus, we combined the results of the PCA technique with the

x2 feature selection technique to see the most important features

to the Web bot detection problem.

To select the features that will give us the highest score for each

classifier, we used the greedy Sequential Feature Selection (SFS)

technique [20]. The SFS works as a wrapper on top of each classifier.

It is an iterative process where in each iteration the feature with the

highest metric (in our case balanced accuracy) on the training set is

chosen and added to the features that are used for each classifier. By

this way, the features that perform the worst will be added in the

end and can omitted if they do not contribute to the performance.

Thus, SFS provides different results for each classifier, which is

useful because each feature may contribute differently depending

on the classifier that was used.

4.4 Evaluation metrics

Several researchers used accuracy as the evaluation metric for

Web bot detection [21, 22, 26, 29]. Since it is possible for an al-

gorithm to have high accuracy while maintaining low precision,

other researchers use the precision and recall metrics as well to

assess the performance of the proposed approaches more accu-

rately [2, 11, 13, 21, 25, 26]. Furthermore, researchers also calculated

the harmonic mean of the precision and the recall which is called

F-measure, F1 score or simply F-score [11, 13, 21, 25, 26].

Due to the unbalanced classes in our dataset, we decided to use

balanced accuracy as opposed to accuracy. Furthermore, to evaluate

the framework’s performance in both the case of Web bot detection

as well as human user detection we calculated the precision, recall

and their harmonic mean, F-score, for both classes. Finally, to gain

a more general understanding of the performance of the classifiers

irrespective of the working point (i.e. classification threshold) we

considered the Area Under Curve (AUC) evaluation metric that

can be calculated by plotting the Receiver Operating Characteristic

(ROC) curve for a classifier [14].

4.5 Classification algorithms tested

Our framework is built to allow for the effortless incorporation of

any machine learning algorithm. For our experiments, we incor-

porated 4 well known machine learning algorithms, all of whom

have been used by other researchers for the Web bot detection

problem. More specifically, we incorporated the Support Vector

Machine [21, 26], the Random Forest [25], the Adaboost [25] and

the MLP classifiers [7, 21, 26]. Furthermore, we added an ensemble

classifier, which we call the Voting classifier, that performs a class

probability averaging of all the available classifiers [25].

The parameters for each classifier are shown in Table 4. We per-

forming an exhaustive search over specified parameter values for

each classifier and chose the ones which have the highest balanced

accuracy with a 2-fold cross validation on the training data. Further-

more, in the case of SVM and MLP Classifier, the data are scaled to

avoid the problem of domination of some features over the others.

To scale the data, we followed the same scaling technique that we

used in the PCA (Section 4.3)

For the implementation of these algorithms the scikit-learn8

Python library was used. Furthermore, all the experiments were

performed on an Intel processor at 3.4GHz and 32GB RAM for

loading large datasets during the experiments.

5 RESULTS

In this section we present the results of the evaluation of our frame-

work in regards to detecting simple and advanced Web bots. First,

we analyse and select the most important features for each clas-

sification algorithm (Section 5.1). Subsequently, we evaluate the

general performance of our framework (Section 5.2) and the per-

formance of our framework in a false positive intolerant server

(Section 5.3).

8http://scikit-learn.org/stable/

Towards a framework for detecting advanced Web bots ARES ’19, August 26–29, 2019, Canterbury, United Kingdom

Table 4: The parameters used on the classification algorithms.

Classification Algorithm D1 - Simple Web bots D2 - Advanced Web bots

SVC
RBF kernel, C=16384,
gamma = 1.22 * 1e-4, tol=0.001

RBF kernel, C=64,

gamma=2, tol=0.001

MLP Classifier

tanh activation, adam solver,

a=0.1, b1=0.9, b2=0.9, e=1e-05,

hidden layer sizes: (100, 50),

constant learning rate

tanh activation, sgd solver,

a=1, b1=0.1, b2=0.1, e=1e-08,

hidden layer sizes: (400),

invscaling learning rate

Random Forest

Estimators = 200, Gini criterion,

Max features =
√

no_f eatures ,

Min samples per leaf = 4, min samples split 10,

max depth=70

Estimators = 1000, Gini criterion,

Max features =
√

no_f eatures ,

Min samples per leaf = 4, min samples split 2,

max depth=10, out-of-bag samples used

Adaboost

Decision Tree Classifier as base estimator,

estimators=450, decision entropy criterion,

no max depth, Max features =
√

no_f eatures ,

łbestž split strategy, learning rate=1

Decision Tree Classifier as base estimator,

estimators=50, decision entropy criterion,

no max depth, Max features =
√

no_f eatures ,

łbestž split strategy, learning rate=1

5.1 Feature analysis and selection

5.1.1 Feature analysis. Figure 3 presents the cumulative variance

of the data by adding the PCA’s principal components one at a time

ordered by descending eigenvalues for the simple (D1) as well as the

advanced (D2) Web bots. As we can see, the principal components

generated from D1 and D2 have similar variance. Moreover, the

number of principal components which are essential to maintain

at least 90% and 95% of the variance for simple and advanced Web

bots is 14 and 16, respectively.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
principal components

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

cu
m

ul
at

iv
e

ex
pl

ai
ne

d
va

ria
nc

e
(%

)

>90%
>95%

D1 - Simple Web bots
D2 - Advanced Web bots

Figure 3: Cumulative variance of PCA’s components for sim-

ple (D1) and advanced (D2) Web bots

Furthermore, we calculated the absolute value of the mean val-

ues of each feature "contribution" to all the components for the

simple (D1) and advanced (D2) Web bots (Figures 4). In general, the

higher the mean value of the features’ contribution to the princi-

pal components the more important the feature can be considered.

However, this is not always the case; some of these features might

not contribute to the problem. Thus, to decide which features are

the most important, we also calculated the respective x2 scores for

the simple (D1) as well as the advanced (D2) Web bots (Table 5).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
feature index

0.00

0.02

0.04

0.06

0.08

0.10

0.12

fe
at
ur
e
co
nt
rib

ut
io
n

D1 - Simple Web bots
D2 - Advanced Web bots

Figure 4: The absolute mean value of each feature contribu-

tion to PCA components for the simple (D1) and advanced

(D2) Web bots

Table 5: Ranked features using x
2 for simple (D1) and ad-

vanced (D2) Web bots

Dataset Ranked features using x
2

D1 - Simple Web bots
13, 21, 23, 9, 15, 5, 10, 11, 8, 14, 7,

22, 16, 4, 6, 17, 12, 18, 19, 3, 20, 2, 1

D2 - Advanced Web bots
17, 4, 21, 12, 18, 1, 6, 3, 22, 23, 8, 9,

16, 11, 7, 13, 10, 5, 14, 2, 20, 15, 19

In both cases (PCA and x2), the importance of the features differs

when using the D1 dataset (simple Web bots) and when using the

D2 (advanced Web bots). Furthermore, the features that have both

ARES ’19, August 26–29, 2019, Canterbury, United Kingdom Iliou, et al.

Table 6: Ranked and selected (bold and in brackets) features using SFS for simple (D1) and advanced (D2) Web bots for each

classification algorithm

Classification

Algorithm
D1 - Simple Web bots D2 - Advanced Web bots

SVM
{13, 4, 20, 8, 22, 14, 18, 21, 16, 1, 11, 19, 10, 17, 23,

5, 9, 12, 3, 6, 2, 7, 15}

{17, 9, 20, 7}, 5, 2, 14, 22, 6, 4, 11, 10, 8, 23, 3,
1, 16, 12, 19, 13, 15, 21, 18

MLP Classifier
{13, 15, 4, 14, 23, 20, 18, 5, 2, 21, 17, 12, 7, 6, 22, 8,

9, 1, 3, 10, 16, 11}, 19
{17, 21, 23, 6, 12, 9, 19, 5, 22, 14, 18, 16, 20, 10,

1, 8, 11, 15, 2, 3, 7, 13, 4}

Random Forest
{13, 4, 11, 19, 14, 20, 6, 17, 23, 5, 9, 12, 10, 8, 21, 18,

1, 16}, 22, 7, 2, 15, 3
{11, 14, 12, 20, 10, 5, 21, 7}, 9, 6, 8, 4, 2, 17, 22,
23, 1, 15, 3, 16, 18, 19, 13

Adaboost
{13, 4, 19, 14, 20, 15, 5, 9, 10, 8, 11, 7, 17, 18, 12, 3, 6,

16, 1}, 21, 23, 2, 22
{11, 8, 14, 20, 10, 5, 9}, 2, 22, 7, 6, 4, 12, 1, 3, 17,
18, 21, 23, 19, 15, 13, 16

the higher contribution to the PCA and a high x2 score are 21 and
23 for simple Web bots (D1) and 17 and 18 for advanced Web bots
(D2). Features 21 and 23 have to do with time-related aspects of the
browsing behaviour of the visitor. Simple Web bots, usually, have
a predefined and therefore predictable behaviour regarding time,
which is why they can be detected this way. On the other hand,
advanced Web bots use a more unpredictable browsing behaviour,
so the characteristic that gives them away is the unique content
they try to access (Features 17 and 18).

5.1.2 Feature selection. Each feature might contribute differently
in the performance of different classification algorithms. Thus, we
performed the greedy SFS technique to pick the features that give
the highest score (in our case balanced accuracy) for each classifier
in the case of simple (D1) as well as advanced (D2) Web bots. We
decided to keep as many features as possible as long as they do not
noticeably decrease the balanced accuracy in training. The selected
features for each classifier and dataset are shown in Table 6.

The SFS results show that each feature contributes differently
in each classifier. Furthermore, the initial features selected by the
PCA in combination with the x2 were selected and highly ranked
in some classifiers and rejected in other classifiers. Such an example
is feature 17, which was initially selected and is highly ranked in
the case of SVM and MLP Classifier, but rejected in the case of the
Random Forest and Adaboost.

For this reason, depending on the size of the dataset and the
processing power we have, we can either select the most promising
features according to the combination of the PCA with the x2

technique or perform the greedy SFS over all the features and pick
the ones that perform better on the training set. In our case, since
the dataset was relatively small, we followed the latter.

5.2 General Performance

To evaluate the general performance of our framework, we plotted
the ROC curve of the Voting classifier when the framework was
tested on simple and advanced Web bots (Figure 5). We also marked
a few working points (i.e. classification thresholds) based on the
respective False Positive Rate (FPR). We opted to do this because
in a real-world scenario a Web bot detection framework must be
false-positive intolerant to avoid affecting visitors’ experience.

The performance of our classifiers show that detecting simple
Web bots is a trivial task. The framework is able to effectively

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue
 P
os
iti
ve
 R
at
e

t=0.95 (FPR=0)

t=0.32 (FPR=0.01)

t=0.31 (FPR=0.01)

t=0.17 (FPR=0.4)

D1 - Simple Web bots (area = 1.00)
D2 - Advanced Web bots (area = 0.64)

Figure 5: ROC curve of the Voting classifier for the simple

(D1) and advanced (D2) Web bots

detect the simple Web bots (D1 dataset) with an AUC=1.00. How-

ever, detecting advanced Web bots (D2 dataset) is not that simple.

The framework performs poorly and, if a low FPR is required, the

framework detects very few Web bots.

To further analyse the behaviour of our framework on the se-

lected working points in the case of advanced Web bots (D2), we

calculated the confusion matrix of the Voting classifier on the two

working points selected in Figure 5 (Tables 7 and 8).

Table 7: Confusion matrix for advanced Web bots (FPR=0.4,

t=0.17)

Predicted Values

Bot Human Total

Actual Values
Bot 82 41 123
Human 3661 2534 6195
Total 3743 2575

The choice of a working point depends on how strict we want

our detection framework to be in each case. For example, choosing

a working point with FPR = 0.4, we would correctly identify 2 out

of 3 advanced Web bots, but most humans would be misclassified

Towards a framework for detecting advanced Web bots ARES ’19, August 26–29, 2019, Canterbury, United Kingdom

Table 8: Confusionmatrix for advancedWeb bots (FPR=0.01,

t=0.31)

Predicted Values
Bot Human Total

Actual Values
Bot 18 105 123
Human 417 5778 6195
Total 435 5883

(Table 7). Choosing a higher threshold (lower FPR) results in fewer
misclassified human visitors, but the framework’s effectiveness in
detecting advanced Web bots is decreased.

5.3 Performance on a false positive intolerant
Web server

To assess the framework’s performance on a false-positive intoler-
ant Web server, we calculated the precision, recall and F-measure
in the working point of FPR=0.01 for all employed classifiers. Fur-

thermore, we calculated the balanced accuracy, which represents

more accurately the performance of the framework in the case of

unbalanced datasets. The results are shown in Figure 6.

The performance of the classifiers shows that identifying ad-

vanced Web bots is more challenging than identifying simple Web

bots. When choosing a working point with a low FPR, simple bots

are detected with very high precision (∼95%) and recall (∼97%)

which makes an F-measure higher than 96%. Furthermore, in the

case of detecting human visitors (class 0), we achieved a precision

and recall of more than 99% each. However, the framework achieves

low precision and recall in the case of advanced Web bots which

results in a low balanced accuracy (∼55%).

Moreover, the performance of different classifiers varies. To

achieve a more balanced behaviour we chose the Voting classi-

fier to be the main classifier. Generally, voting classifiers are not

always guaranteed to have a better performance. However, they

can be more "stable", since, if one of the employed classifiers under-

performs, its behaviour will be masked by the other classifiers. For

example, Random Forest achieves the highest balanced accuracy in

the case of advanced Web bots (D2) but, at the same time, very low

recall of the human class (Figure 6).

6 DISCUSSION

There is a huge incentive for individuals and companies alike to

create Web bots that can bypass Web bot detection techniques.

This has led to the introduction of advanced Web bots that try to

evade detection. Our dataset, which is comprised by the logs from a

public web server, contains several sessions from such bots.We used

these logs to determine the effectiveness of state-of-the-art Web

bot detection techniques against advanced web bots. The results

have shown that, although detecting simple bots is relatively easy,

detecting advancedWeb bots that present a browser fingerprint and

maybe a humanlike behaviour is much more difficult. Furthermore,

if we try to detect such bots with current detection techniques, we

will end up misclassifying benign visitors, which is a non-desirable

behaviour in a real-world case scenario.

Literature has focused on identifying all kinds of Web bots, treat-

ing Web bots as one group of visitors. However, since advanced

Web bots will be considerably fewer than simple bots, the afore-

mentioned technique will present biased results masking its ability

or lack thereof to detect advanced bots. To this end, we performed a

more in depth study of the Web bot detection problem by dividing

the simple from the advanced Web bots and showed that there is an

efficiency gap in the detection of advanced web bots compared to

simple ones. For this reason, we have concluded that the features

proposed by literature were not suitable for the detection of ad-

vanced bots.Future work includes examining browsing behaviour

holistically instead of relying exclusively on requested pages and

time. For example, we could use features extracted from visitor

mouse movements and keystrokes. By incorporating such features

in our framework we will be able to more accurately identify ad-

vanced Web bots.

In summary, the question of whether existing detection mecha-

nisms can be used as an effective solution comes down to the threat

model. If we choose to only target simple Web bots (which is the

majority of bots that will visit our Website) we can easily detect

them using using hard-coded rules. Even if such bots try to evade

detection by presenting a browser fingerprint, they can easily be

detected by their behaviour by using machine learning models from

features extracted from HTTP logs. However, if we are targeting

advancedWeb bots, we need to have a better understanding of their

behaviour and use more advanced features generated from more

sources than simply the commonly used by research HTTP logs.

7 CONCLUSIONS

This work presented an in depth analysis of the Web bot detection

problem by examining the performance of a machine learning based

Web bot detection framework in terms of identifying simple Web

bots separately from its performance in detecting advanced Web

bots which try to hide their bot nature. To do that, we generated

the ground truth to train our models by using a novel automatic

annotation mechanism that examines (i) the fingerprint of the visi-

tor (in our case the agent name) as well as (ii) whether its IP has

shown malicious activity using an external honeypot.

The proposed framework was tested on real HTTP Web log data

collected from a public Web server. The results of our evaluation

experiments indicated that the Web bot detection problem is a mul-

tifaceted one, characterised by the coexistence of simple bots that

can be detected easily and advanced Web bots that are considerably

more difficult to detect. Furthermore, if the framework is applied

on a false-positive intolerant Web server, its effectiveness regarding

detecting advanced Web bots is significantly reduced.

Future work includes the introduction of more advanced features

that can not be easily simulated by bots to facilitate the identifica-

tion of advanced Web bots. These features will be aggregated to our

framework. Furthermore, we are planning to examine and improve

the framework’s performance in adversarial settings, where adver-

saries try to create bots that adjust their behaviour dynamically to

avoid detection.

ACKNOWLEDGMENTS

This work was supported by the TENSOR (H2020-700024) and

Ideal-Cities (H2020-778229) projects, funded by the European Com-

mission.

ARES ’19, August 26–29, 2019, Canterbury, United Kingdom Iliou, et al.

Precission
(class 1)

Recall
(class 1)

F-measure
(class 1)

Precission
(class 0)

Recall
(class 0)

F-measure
(class 0)

Balanced Accuracy
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Sc

or
e

RandomForest (D1)
RandomForest (D2)
MLP (D1)
MLP (D2)
Adaboost (D1)
Adaboost (D2)
SVM (D1)
SVM (D2)
Voting (D1)
Voting (D2)

Figure 6: Comparison of the effectiveness of the classification algorithms for humans (class 0) and Web bots (class 1) for the

D1 (simple Web bots) and D2 (advanced Web bots) datasets in the working point with FPR=0.01

REFERENCES
[1] Akamai. 2018. Akamai’s Bot Manager - Advanced strategies to flexibly manage

the long-term business and IT impact of bots. https://www.akamai.com/us/en/
multimedia/documents/product-brief/bot-manager-product-brief.pdf

[2] Shafiq Alam, Gillian Dobbie, Yun Sing Koh, and Patricia Riddle. 2014. Web bots
detection using particle swarm optimization based clustering. In Evolutionary
Computation (CEC), 2014 IEEE Congress on. IEEE, 2955ś2962.

[3] Yasmin A AlNoamany, Michele C Weigle, and Michael L Nelson. 2013. Ac-
cess patterns for robots and humans in web archives. In Proceedings of the 13th
ACM/IEEE-CS joint conference on Digital libraries. ACM, 339ś348.

[4] Quan Bai, Gang Xiong, Yong Zhao, and Longtao He. 2014. Analysis and detection
of bogus behavior in web crawler measurement. Procedia Computer Science 31
(2014), 1084ś1091.

[5] Anshul Bhargav and Munish Bhargav. 2014. Pattern discovery and users classifi-
cation through web usage mining. In Control, Instrumentation, Communication
and Computational Technologies (ICCICCT), 2014 International Conference on. IEEE,
632ś636.

[6] Kevin Bock, Daven Patel, George Hughey, and Dave Levin. 2017. unCaptcha: a
low-resource defeat of recaptcha’s audio challenge. In 11th {USENIX} Workshop
on Offensive Technologies ({WOOT} 17).

[7] Alberto Cabri, Grażyna Suchacka, Stefano Rovetta, and Francesco Masulli. 2018.
Online Web Bot Detection Using a Sequential Classification Approach. In 2018
IEEE 20th International Conference on High Performance Computing and Commu-
nications; IEEE 16th International Conference on Smart City; IEEE 4th International
Conference on Data Science and Systems (HPCC/SmartCity/DSS). IEEE, 1536ś1540.

[8] Zi Chu, Steven Gianvecchio, and HainingWang. 2018. Bot or Human? A Behavior-
Based Online Bot Detection System. In From Database to Cyber Security. Springer,
432ś449.

[9] Zibusiso Dewa and Leandros A Maglaras. 2016. Data mining and intrusion
detection systems. vol 7 (2016), 62ś71.

[10] Distil Networks. 2018. 2018 BAD BOT REPORT: The Year Bad Bots
Went Mainstream. https://resources.distilnetworks.com/white-paper-reports/
2018-bad-bot-report

[11] Wang Dong, Xi Lei, Zhang Hui, Liu Hebing, Zhang Hao, and Song Ting. 2015.
Web robot detection with semi-supervised learning method. (2015).

[12] Derek Doran and Swapna S Gokhale. 2012. A classification framework for web
robots. Journal of the Association for Information Science and Technology 63, 12
(2012), 2549ś2554.

[13] Derek Doran and Swapna S Gokhale. 2016. An integrated method for real time
and offline web robot detection. Expert Systems 33, 6 (2016), 592ś606.

[14] Tom Fawcett. 2006. An introduction to ROC analysis. Pattern recognition letters
27, 8 (2006), 861ś874.

[15] Javad Hamidzadeh, Mahdieh Zabihimayvan, and Reza Sadeghi. 2017. Detection
of Web site visitors based on fuzzy rough sets. Soft Computing (2017), 1ś14.

[16] Gregoire Jacob, Engin Kirda, Christopher Kruegel, and Giovanni Vigna. 2012.
PUBCRAWL: Protecting Users and Businesses from CRAWLers.. In USENIX
Security Symposium. 507ś522.

[17] Otterbach Johannes. 2016. Principal Component Analysis (PCA) for Feature Se-
lection and some of its Pitfalls. http://jotterbach.github.io/2016/03/24/Principal_
Component_Analysis/

[18] G Neelima and Sireesha Rodda. 2016. Predicting user behavior through sessions
using the web log mining. In Advances in Human Machine Interaction (HMI), 2016
International Conference on. IEEE, 1ś5.

[19] Nick Nikiforakis, Alexandros Kapravelos, Wouter Joosen, Christopher Kruegel,
Frank Piessens, and Giovanni Vigna. 2013. Cookieless monster: Exploring the
ecosystem of web-based device fingerprinting. In Security and privacy (SP), 2013
IEEE symposium on. IEEE, 541ś555.

[20] Pavel Pudil, Jana Novovičová, and Josef Kittler. 1994. Floating search methods in
feature selection. Pattern recognition letters 15, 11 (1994), 1119ś1125.

[21] Stefano Rovetta, Alberto Cabri, Francesco Masulli, and Grażyna Suchacka. 2017.
Bot or Not? A Case Study on Bot Recognition from Web Session Logs. In Italian
Workshop on Neural Nets. Springer, 197ś206.

[22] H Nathan Rude and Derek Doran. 2015. Request type prediction for web robot
and internet of things traffic. InMachine Learning and Applications (ICMLA), 2015
IEEE 14th International Conference on. IEEE, 995ś1000.

[23] Merve Baş Seyyar, Ferhat Özgür Çatak, and Ensar Gül. 2017. Detection of Attack-
Targeted Scans from The Apache HTTP Server Access Logs. Applied Computing
and Informatics (2017).

[24] Dilip Singh Sisodia and Shrish Verma. 2012. Web usage pattern analysis through
web logs: A review. In Computer Science and Software Engineering (JCSSE), 2012
International Joint Conference on. IEEE, 49ś53.

[25] Dilip Singh Sisodia, Shrish Verma, and Om Prakash Vyas. 2015. Agglomerative
approach for identification and elimination of web robots from web server logs to
extract knowledge about actual visitors. Journal of Data Analysis and Information
Processing 3, 01 (2015), 1.

[26] Dusan Stevanovic, Aijun An, and Natalija Vlajic. 2012. Feature evaluation for web
crawler detection with data mining techniques. Expert Systems with Applications
39, 10 (2012), 8707ś8717.

[27] Dusan Stevanovic, Natalija Vlajic, and Aijun An. 2013. Detection of malicious
and non-malicious website visitors using unsupervised neural network learning.
Applied Soft Computing 13, 1 (2013), 698ś708.

[28] Luis Von Ahn, Manuel Blum, Nicholas J Hopper, and John Langford. 2003.
CAPTCHA: Using hard AI problems for security. In International Conference
on the Theory and Applications of Cryptographic Techniques. Springer, 294ś311.

[29] Gang Wang, Tristan Konolige, Christo Wilson, Xiao Wang, Haitao Zheng, and
Ben Y Zhao. 2013. You Are How You Click: Clickstream Analysis for Sybil
Detection.. In USENIX Security Symposium, Vol. 9. 1ś008.

[30] Yang Yang, Natalija Vlajic, and UT Nguyen. 2015. Next Generation of Imperson-
ator Bots: Mimicking Human Browsing on Previously Unvisited Sites. In Cyber
Security and Cloud Computing (CSCloud), 2015 IEEE 2nd International Conference
on. IEEE, 356ś361.

[31] Mahdieh Zabihimayvan, Reza Sadeghi, H Nathan Rude, and Derek Doran. 2017.
A Soft Computing Approach for Benign and Malicious Web Robot Detection.
Expert Systems with Applications (2017).

https://www.akamai.com/us/en/multimedia/documents/product-brief/bot-manager-product-brief.pdf
https://www.akamai.com/us/en/multimedia/documents/product-brief/bot-manager-product-brief.pdf
https://resources.distilnetworks.com/white-paper-reports/2018-bad-bot-report
https://resources.distilnetworks.com/white-paper-reports/2018-bad-bot-report
http://jotterbach.github.io/2016/03/24/Principal_Component_Analysis/
http://jotterbach.github.io/2016/03/24/Principal_Component_Analysis/

	Abstract
	1 Introduction
	2 Background and related work
	3 The Web bot detection framework
	3.1 Session extraction
	3.2 Feature composition
	3.3 Automatic annotation
	3.4 Feature analysis and selection
	3.5 Classification

	4 Evaluation
	4.1 Evaluation methodology
	4.2 Dataset
	4.3 Feature analysis and selection
	4.4 Evaluation metrics
	4.5 Classification algorithms tested

	5 Results
	5.1 Feature analysis and selection
	5.2 General Performance
	5.3 Performance on a false positive intolerant Web server

	6 Discussion
	7 Conclusions
	Acknowledgments
	References

