
Towards a framework for intuitive

programming of cellular automata

by

Sami Torbey

A thesis submitted to the

School of Computing

in conformity with the requirements for

the degree of Master of Science

Queen’s University

Kingston, Ontario, Canada

December 2007

Copyright c© Sami Torbey, 2007

Abstract

The ability to obtain complex global behaviour from simple local rules makes cellu-

lar automata an interesting platform for massively parallel computation. However,

manually designing a cellular automaton to perform a given computation can be ex-

tremely tedious, and automated design techniques such as genetic programming have

their limitations because of the absence of human intuition. In this thesis, we pro-

pose elements of a framework whose goal is to make the manual synthesis of cellular

automata rules exhibiting desired global characteristics more programmer-friendly,

while maintaining the simplicity of local processing elements. We also demonstrate

the power of that framework by using it to provide intuitive yet effective solutions to

the two-dimensional majority classification problem, the convex hull of disconnected

points problem, and various problems pertaining to node placement in wireless sensor

networks.

i

Acknowledgements

This may be the hardest section to write in my entire thesis, as it is difficult for me to

thank the people mentioned here enough for their tremendous impact on my studies

and my life in general.

I will start by thanking my supervisor, Dr. Selim Akl, whose enthusiasm, knowl-

edge, resourcefulness and ability to see the big picture and simplify difficult con-

cepts deeply inspired my work as a graduate student - not to mention his occasional

cracking-of-the-whip which helped me finish writing this thesis on time.

I want to thank Queen’s University for welcoming me, funding me, and providing

me with a great academic and extra-curricular learning environment during both my

undergraduate and graduate studies.

I would also like to thank the members of my examining committee, Drs. Kai

Salomaa, Robin Dawes, Ahmed Safwat and Gang Wu, as well as the members of my

research group, the Parallel Computation Group at Queen’s University, for thoroughly

reading my thesis, attentively listening to my presentations, and offering me their

invaluable comments and feedback.

Throughout my university career, several professors at the American University

of Beirut (AUB) and at Queen’s University have helped make computer science and

mathematics fun for me. In particular, I would like to thank Dr. Louay Bazzi at AUB

ii

through whom I discovered my passion for algorithms and the theory of computation.

Earlier this year, I started my first company, and on several occasions I felt like

it was going to sidetrack me from completing my master’s degree. I am especially

grateful to my friend and business partner Mike Kulesza for preventing this from

happening by understanding and supporting my decision to take some time off the

company to write this thesis.

I would like to say a big “thank you” to all of my close friends and family in

Lebanon, Canada and around the world, for the emotional support, camaraderie,

entertainment, and care they provided. I want to thank Ramy Torbey for teaching

me much of what I know, and for being a mentor and a friend in addition to being a

brother, and Maya-Maria Torbey for being the best sister I could hope for.

Finally, my greatest thanks go to my parents Aziz and Marie Torbey. They bore

me, raised me, supported me, taught me, and loved me. They pushed me to be my

best when I was in doubt, and were the voice of reason when I got too carried away.

It is to them that I dedicate this thesis.

iii

Contents

Abstract i

Acknowledgements ii

Contents iv

List of Tables vi

List of Figures vii

Chapter 1:

Introduction . 1

1.1 Contributions . 2

Chapter 2:

Background . 4

2.1 Basic questions . 4

2.2 Classification . 11

2.3 Universality . 19

2.4 Reversibility . 24

iv

Chapter 3:

Computing with cellular automata 26

3.1 Computational aspects of cellular automata 26

3.2 Cellular automata compared to other parallel computational models . 29

3.3 Generating “interesting” cellular automata 32

Chapter 4:

Proposed framework . 38

4.1 Description . 38

4.2 Major enhancements . 39

4.3 Forgone enhancements . 48

4.4 Usability recommendations . 49

Chapter 5:

Examples . 51

5.1 Majority . 51

5.2 Convex hull . 68

5.3 Sensor positioning . 80

Chapter 6:

Concluding thoughts . 90

Bibliography . 93

v

List of Tables

5.1 Results of a preliminary study comparing two-dimensional GKL results

respectively without and with reverse annealing 56

5.2 Performance of the proposed algorithm under various parameters . . 86

vi

List of Figures

2.1 von Neumann (left) and Moore (right) neighbourhoods with radii 2. . 6

2.2 An interation of Wolfram Rule 128 on an example configuration of

a one-dimensional cellular automaton with periodic boundary condi-

tions. The Wolfram Rule notation will be defined in more detail in

Section 2.2.1; for now, the reader just needs to know that under this

transition rule, a cell becomes black if and only if it is itself black and

both of its left and right neighbours are also black. The only cell satis-

fying this condition in the example above is the leftmost cell (because

of the periodic boundary conditions). As such, all of the other cells

become white. 7

2.3 Transition rules of a Rule 30 elementary cellular automaton. It is

called “Rule 30” because “11110” in binary notation is “30” in decimal

notation. As a convention throughout this thesis, we will use a black

cell to represent a “1” and a white cell to represent a “0” in two-state

cellular automata. 12

vii

2.4 The Rule 250 elementary cellular automaton exhibits an infinitely-

growing chequerboard pattern. Therefore, it belongs to Class 1. Note

that one-dimensional cellular automata are often presented in two di-

mensions, with time on the vertical axis. Here, we show 50 successive

iterations of Rule 250, beginning from the top row. 13

2.5 The Rule 90 automaton presents a fractal-like structure that is com-

pletely periodic. This is typical of Class 2 cellular automata. 14

2.6 200 iterations of the Rule 30 cellular automaton. Despite some regu-

larity around the edges, its overall behaviour is seemingly random. As

such, it belongs to Class 3. 15

2.7 200 iterations of Rule 110, which belongs to Class 4 16

2.8 Game of Life configuration showing Gosper’s glider gun with two emit-

ted gliders (the two bottommost five-cell structures) 22

2.9 The smallest known Garden of Eden in the Game of Life [1] 24

4.1 50 iterations of Rule 238 showing its progress-bar-like behaviour . . . 41

4.2 50 iterations of Rule 2 provide 50 different clock cycles 43

4.3 50 iterations of Rule 204 . 47

5.1 The black cells in this figure represent the middle cell’s neighbourhood

when it is black. Its next state is the same as the majority among them. 54

5.2 Neighbourhood of the middle cell when it is white 55

5.3 7 iterations of Rule 184 highlighting an initial majority of black cells . 59

5.4 Representation of the neighbourhood in the gravity automaton 62

viii

5.5 Three consecutive iterations of a small example gravity automaton.

Notice how the two rightmost particles and the top particle simply fall

(following the first rule). The top particle in the column moves to the

left (rule 2), and the lower two particles move to the right (rule 3) -

there are no conflicts in the first transition. In the second transition,

the two uppermost particles in the column face a conflict (the first one

under rule 2 and the second one under rule 3) and therefore do not move. 63

5.6 Terminating condition of the example automaton reached two transi-

tions later . 64

5.7 Worst case structure for the gravity automaton 67

5.8 Convex hull of a set of points with the elastic band analogy 68

5.9 Rosin’s solution to the convex hull problem [32]. (a) initial condi-

tions, (b) cellular automaton creating a box surrounding the initial

conditions, (c) exact solution (not reached using a cellular automaton),

(d) Rosin’s one-cycle automaton approximately solving the problem,

(e) Rosin’s two-cycle (memory) automaton approximately solving the

problem. These solutions suffer from being approximations and from

their requirement for connected initial conditions. 69

5.10 Figure taken from [3] showing 25 iterations of Adamatzky’s cellular

automaton. Notice the connectedness in the initial conditions. 70

5.11 Initial state of a 100× 100 convex hull cellular automaton shown with

four input points and the boundary conditions 72

5.12 State of the same automaton after 31 iterations 72

5.13 Notice the effect of the two topmost points on the shape of the polygon 73

ix

5.14 Same automaton at the end of the first stage. By now, all gray points

are guaranteed to be part of the convex hull. Notice how the rightmost

black point is being kept connected to the rest of the polygon by a thin

gray strip. 73

5.15 The first picture represents the top row, the middle row and the bottom

row. Under the rules below a row is considered as the sum of the

states of the cells it contains (a white cell is a 0, a gray cell is a 1

and a black cell is a 2). The second picture shows the left column,

the middle column and the right column. The third picture represents

the top left corner, the slash and the bottom right corner. Similarly

the fourth picture shows the top right corner, the backslash and the

bottom left corner. The total is the sum of the states of all cells in the

neighbourhood, while the number of non-quiescent cells is the number

of gray or black cells in the neighbourhood. 74

5.16 The special case and the cornerless L shape neighbourhood 76

5.17 The 45-convex hull reached from the initial conditions in Figure 5.11 77

5.18 End of the first and second stages for an example where not all points

belong on the convex hull . 77

5.19 Ideal static placement of sensors for a small cellular automaton with

periodic boundaries and RC = RS = 3 86

x

5.20 Initial and desired states of an automaton with 10,000 cells and 729

sensors. Note that despite the simplicity of the rules, the emergent

behaviour is clear: it strives for sparsity while maintaining coverage

and connectivity. Regardless of the initial state, the desired state is

always reached and it looks roughly the same. 87

xi

Chapter 1

Introduction

Cellular automata can be generally described as systems consisting of a large number

of locally-interacting simple cells. This architecture is easily implementable and if

harnessed appropriately, it can make a cellular automaton a formidable computation

engine.

However, implementing desired high-level behaviour into low-level local cellular

automata rules is a difficult problem. Our focus in this thesis is to add a powerful

framework to the arsenal of cellular automata designers, allowing them to more simply

and intuitively design cellular automata that perform some desired behaviour. We

show that some ideas previously seen as “enhancements” to the traditional cellular

automaton model are actually part of it; they are just a different, more designer-

friendly way of thinking about its behaviour.

Having provided the main ideas behind our framework, we use it to design au-

tomata that solve three open problems: the majority classification problem in two

dimensions, the convex hull of discrete points problem, and various problems per-

taining to node placement in wireless sensor networks. These problems are simple

1

CHAPTER 1. INTRODUCTION 2

to describe but difficult to solve using cellular automata because of their require-

ment for global behaviour, despite the limitation of cellular automata to strictly local

connections.

Finally, we learn from these solutions that computation in cellular automata is

only in the eye of the beholder and cannot be isolated from the perspective from

which it is meant to be seen; we also learn that simple “dull” cellular automata can

indeed be “interesting” and better at solving some problems than their universal

counterparts. To conclude, we provide some direction for future research in the area.

1.1 Contributions

In this thesis, our original results can coexist with previous work within the same

chapter (although whenever possible we try to clearly demarcate our original work).

We have therefore opted to add this section in order to help in the task of distin-

guishing our contributions from those of our predecessors. The thesis is organized as

follows:

Chapter 2 mostly consists of background information which we had no role in

creating although we present it in a manner to fit the purposes of this thesis. How-

ever, the chapter contains some glimpses of original ideas (usually preceded by the

expression “we believe” or something of the like) which are revisited in other chapters;

furthermore, the ideas for the quick universality proof of Rule 110 are ours.

Chapter 3 is also mostly based on the literature. Nevertheless, the direct com-

parison of cellular automata against Parallel Random Access Machines and Artificial

Neural Networks is our original work. We also contradict Gutowitz and Langton’s

“interestingness” hypothesis [18], and show the limitations of both automated and

CHAPTER 1. INTRODUCTION 3

manual existing rule generation approaches.

Chapter 4 consists mainly of original work. Although some of the enhancements

described (such as hierarchical and probabilistic cellular automata) have been previ-

ously presented in the literature under different forms, they have never been combined

into such a complete framework designed to facilitate the design of cellular automata.

In addition, they have never been shown to be capable of being implemented under

the simple traditional cellular automaton model.

Chapter 5 is also mostly original work. We designed the convex hull solver from

the ground up, although the second (simple) stage is partially based on Adamatzky’s

work [3]. In addition, the two-dimensional GKL adaptation, the non-local automaton

approach and the two-dimensional perfect majority classifier based on Rule 184 are

entirely our work. The remaining automata are merely presented to show previous

results in the area. We briefly presented the results of Chapter 4 and the majority

classification and convex hull results of Chapter 5 in [37]. The wireless sensor network

node placement strategy and simulation also entirely consist of original work.

Finally, the recapitulation, open questions and philosophical discussion in Chapter

6 are original. However, the views that computation is in the eye of the beholder and

that non-universal cellular automata are capable of computing were previously hinted

at by Capcarrere [7].

Chapter 2

Background

2.1 Basic questions

2.1.1 What is a cellular automaton?

Generally speaking, a cellular automaton is a system consisting of a large number of

simple processing elements (cells) locally interacting among themselves. The emphasis

here is on the simplicity of individual elements, their connectivity and the absence

of global control. This is a basic definition retaining only the elements essential for

a system to be considered “cellular”. However, cellular automata are often defined

in far more detail, with many variations proposed since they were first introduced in

the middle of the twentieth century. While we will contribute several such variations

throughout this thesis, we will always refer to the definition above whenever we need

to provide a basic sanity check of whether a proposed system can still be considered

a cellular automaton.

Cellular automata are commonly seen as consisting of a “cellular space” and a set

4

CHAPTER 2. BACKGROUND 5

of “transition rules” [28]. The cellular space is a set of cells, often shown in a given

geometric configuration with respect to each other (usually a grid). Each one of these

cells is a finite state machine in one of a constant number of possible states, evolving

synchronously at discrete time units in parallel with all of the other cells in the system.

The state of a cell at the next time unit is determined by a set of transition rules

which are functions of the current states of cells in its neighbourhood (a finite set

of cells connected to it, usually in its geometric vicinity). This neighbourhood often

also contains the cell itself. Traditionally, all cells in the automaton have the same

transition rules. However, there is an increased interest in non-uniform automata (see

[34] for example).

In this thesis, we will mostly use finite grid configurations. This means that we

will consider the number of cells to be finite but still large enough to clearly display

complex behaviour (this will be defined in later sections), and we will show cells

as small squares juxtaposed to each other in a row for one-dimensional grids or in

a rectangle (usually a square) for two-dimensional grids. We now need to define

two particularities of finite grid configurations: the neighbourhood radius and the

boundary conditions.

Neighbourhood radius

The radius is a short-hand method of specifying the neighbourhood for common

neighbourhood configurations. For example, in a one-dimensional cellular automaton

of radius r = 1, each cell’s neighbourhood consists of itself, one cell to its immediate

left and one cell to its immediate right. In two dimensions, two configurations (shown

in Figure 2.1) are commonly used: the von Neumann neighbourhood and the Moore

CHAPTER 2. BACKGROUND 6

neighbourhood, differing in how they treat diagonally-connected cells. In von Neu-

mann neighbourhoods, they are considered to be two distance units (one vertical and

one horizontal) away from the main cell, whereas in Moore neighbourhoods they are

directly connected to it (one distance unit apart). In other words, a two-dimensional

von Neumann neighbourhood with r = 1 and including the cell itself contains five

cells, while a Moore neighbourhood with the same specifications contains nine cells.

Defined this way, the neighbourhood of a cell consists of all cells that are within a

distance smaller or equal to r from it.

Figure 2.1: von Neumann (left) and Moore (right) neighbourhoods with radii 2.

Boundary conditions

When the grids are finite, boundary conditions become essential. They are meant

to answer questions such as: “what is the left neighbour of the leftmost cell?” Peri-

odic (also called “cyclic”) boundary conditions are commonly used. They turn one-

dimensional rows into circles (where the leftmost cell is connected to the rightmost

cell), and two-dimensional rectangular grids into toroids (by connecting the leftmost

column to the rightmost column and the topmost row to the bottommost row). An

example of a simple cellular automaton with periodic boundary conditions is shown

in Figure 2.2. Static boundary conditions are also common; in such a scheme, the

boundaries are fictional cells that remain in a given state throughout the computation.

CHAPTER 2. BACKGROUND 7

For example, in a two-dimensional cellular automaton with two states 0 and 1, static

boundary conditions can dictate that there are two additional columns respectively

to the left and to the right of the grid, and two additional rows respectively above

and below the grid, where all the cells are in the state 0 throughout the computation.

This means they participate in the computation only as passive neighbours to other

cells without being themselves affected by the computation. Throughout this thesis,

we will follow the convention of representing cellular automata with two states in

black and white with white representing 0 cells and black representing 1 cells.

Figure 2.2: An interation of Wolfram Rule 128 on an example configuration of a one-
dimensional cellular automaton with periodic boundary conditions. The Wolfram
Rule notation will be defined in more detail in Section 2.2.1; for now, the reader just
needs to know that under this transition rule, a cell becomes black if and only if it
is itself black and both of its left and right neighbours are also black. The only cell
satisfying this condition in the example above is the leftmost cell (because of the
periodic boundary conditions). As such, all of the other cells become white.

2.1.2 Why study cellular automata?

Ilachinski presents four partially-overlapping motivations for studying cellular au-

tomata [19]:

Powerful computational engines

Cellular automata are inherently parallel. This makes their implementation in hard-

ware interesting, with large numbers of simple locally-connected cells serving as a

CHAPTER 2. BACKGROUND 8

faster alternative to complicated sequential processors. Several such implementations

have been made, most notably the Cellular Automata Machines (CAM) series led

by Norman Margolus at the MIT Information Mechanics Group. Despite sacrificing

some of the performance benefits for programmability, Margolus showed in multiple

instances (such as [26]) that CAM computation speeds are both theoretically and

practically several orders of magnitude larger than their contemporary supercomput-

ers. While we do not focus on hardware implementations of cellular automata, their

use as an alternate computer architecture will be our main interest in this thesis.

Discrete dynamical system simulators

Cellular automata allow systematic investigation of complex phenomena by embody-

ing any number of desirable physical properties. They enable the correlation of macro-

scopic continuous behaviour with microscopic discrete behaviour. Toffoli, a prominent

researcher in this field, puts it best in [36]:

The features that one usually associates with physics (forces, pressure,

temperature, magnetization, etc.) are not present as primitive features in

the fine-grained recipe, which just deals with simple discrete tokens. They

are derived features, which emerge at a macroscopic level when we start

counting, averaging, blurring; in sum, looking at populations rather than

individuals.

Toffoli also outlines the special role played by reversible cellular automata (detailed

later in this chapter) in this area: they allow a more accurate simulation of physical

processes, which are assumed to be reversible.

CHAPTER 2. BACKGROUND 9

Conceptual vehicles for studying pattern formation and complexity

Cellular automata are also used as a theoretical tool for studying complexity and

emergence. Emergence (or complexity) can be defined as the capability of a sys-

tem to display global behaviour greater than the sum of its parts. Certain cellular

automata display an apparent remarkable capability to self-organize and generate

complex behaviour starting from very simple rules. Wolfram has dedicated decades

of work to classifying automata into different subjective complexity categories [39].

Other researchers such as Langton have attempted to objectively quantify overall

system complexity [23]. Many have also been studying the relationship between mi-

croscopical dynamics and global emergent behaviour.

Original models of fundamental physics

Cellular automata allow studies of radically new discrete dynamical approaches to

microscopic physics, exploring the possibility that elements of nature locally and

discretely process their own future states. As explained in the previous section, some

simple cellular automata are capable of arbitrarily complex behaviour. For example,

Toffoli mentions the existence of discrete cellular automata capable of simulating

continuous fluid flow despite the automata rules having never heard of the Navier-

Stokes equations [36]. Some researchers such as Zuse [42] and Rucker [33] even go as

far as suggesting that the entire universe is a giant cellular automaton.

CHAPTER 2. BACKGROUND 10

2.1.3 What does it mean for a cellular automaton to com-

pute?

It is generally agreed upon that a cellular automaton is considered to have terminated

a computation when it reaches an appropriate termination condition (also called

acceptance condition) as specified by the automaton designer. However, no single such

condition applies to all automata. Therefore, the choice of a reasonable termination

condition is usually left to the automaton designer. Sutner provides several examples

of plausible conditions [35]:

• All cells are in a special state at some time t0

• All cells are in a special state at all times t ≥ t0

• One particular cell is in a special state at some time t0

• One particular cell is in a special state at all times t ≥ t0

All of these example conditions are suitable for detection by both machines and human

observers. However, the first two are generally preferred for human observers, while

the last two are easier for machines. In fact, many if not most computing cellular

automata throughout history have been designed for human observers. The role of

the automaton in such cases is to reorganize or modify the input information to make

the desired result stand out for a human observer. The second and fourth example

conditions assume that the observer knows when the automaton has converged, which

may not be obvious at all. Capcarrere goes even further to argue that computation

only happens in the eye of the beholder [7]. We agree with this statement given that

emergence, considered the holy grail of computation in cellular automata, can only be

CHAPTER 2. BACKGROUND 11

perceived by an observer with a certain point of view. The automaton cells themselves

only see local microscopic information, even after the acceptance condition is reached.

We will argue this point further when we explain the majority problem.

2.2 Classification

There are many classification systems attempting to group together cellular automata

behaving similarly. We will detail the Wolfram classification [39], arguably the most

well-known system. We will also explain its limitations and briefly mention some

of the alternative classifications. However, we must first define elementary cellular

automata, the simplest non-trivial automata which were used by Wolfram to illustrate

his four behaviour classes.

2.2.1 Elementary cellular automata

Elementary cellular automata are one-dimensional two-state automata with periodic

boundary conditions and a neighbourhood radius of 1.

Each cell can be in either one of the two states, leading up to 23 = 8 possible

input configurations for a neighbourhood of three cells (including the cell itself). For

each of these configurations, the result cell can also be in any one of the two states.

This means that there are 28 = 256 possible sets of transition rules to the system.

Wolfram notation

Elementary cellular automata can then be described unambiguously based on the rules

they follow, using a notation coined by Wolfram. As shown in Figure 2.3 depicting

CHAPTER 2. BACKGROUND 12

an example rule, the rule number describing an elementary cellular automaton can be

obtained as such: after placing all possible input configurations in decreasing order,

the rule number is the concatenated binary value of the outputs yielded by each one

of these configurations.

Figure 2.3: Transition rules of a Rule 30 elementary cellular automaton. It is called
“Rule 30” because “11110” in binary notation is “30” in decimal notation. As a
convention throughout this thesis, we will use a black cell to represent a “1” and a
white cell to represent a “0” in two-state cellular automata.

2.2.2 Wolfram classes

After thousands of hours simulating countless selected and random rules on disordered

initial configurations, Wolfram divided cellular automata into four classes depending

on their prevalent practically observed long-term behaviour. While this classification

is purely phenomenological and very qualitative, its simplicity and relevance makes it

the most widely-adopted and well-known classification for cellular automata [17, 39].

CHAPTER 2. BACKGROUND 13

Class 1

In cellular automata belonging to the first class, evolution on a random initial con-

figuration leads to a homogenous state. Formally, every finite initial configuration

evolves to a stable configuration in finitely many steps. Such automata exhibit repet-

itive behaviour, as shown in the example of Figure 2.4.

Figure 2.4: The Rule 250 elementary cellular automaton exhibits an infinitely-growing
chequerboard pattern. Therefore, it belongs to Class 1. Note that one-dimensional
cellular automata are often presented in two dimensions, with time on the vertical
axis. Here, we show 50 successive iterations of Rule 250, beginning from the top row.

CHAPTER 2. BACKGROUND 14

Class 2

In the second class, evolution on a random initial configuration leads to simple sep-

arated periodic structures (Figure 2.5); every finite initial configuration evolves to a

periodic configuration in finitely many steps. This periodicity can also involve nest-

ing structures. Class 1 and Class 2 automata are common particularly in elementary

cellular automata where they constitute the majority [17].

Figure 2.5: The Rule 90 automaton presents a fractal-like structure that is completely
periodic. This is typical of Class 2 cellular automata.

CHAPTER 2. BACKGROUND 15

Class 3

In cellular automata of Class 3, evolution on a random initial configuration leads to

chaotic aperiodic patterns. An example of such automata is shown in Figure 2.6.

This behaviour is similar to the chaotic behaviour found with strange attractors in

dynamical systems. Put more simply, the behaviour of such automata is seemingly

random; in fact, they are often used as random number generators. Class 3 is esti-

mated to be the largest among the four classes (more than half of arbitrary automata

but only 25% of elementary cellular automata).

Figure 2.6: 200 iterations of the Rule 30 cellular automaton. Despite some regularity
around the edges, its overall behaviour is seemingly random. As such, it belongs to
Class 3.

CHAPTER 2. BACKGROUND 16

Class 4

In the fourth class, evolution on a random initial configuration leads to complex

patterns of localized structures (Figure 2.7). No similar behaviour has been found in

continuous dynamical systems. Few automata belong to this class (less than 6% of

various simple cellular automata as shown in [17]), but in general they are considered

to be the most interesting ones to study.

Figure 2.7: 200 iterations of Rule 110, which belongs to Class 4

Wolfram’s classification has been criticized for being heuristic and not providing

an objective quantification of “interestingness”. It also does not differentiate between

areas within an automaton. For example, some parts (such as the left side) of the

diagram in Figure 2.7 representing the behaviour of Rule 110 seem to belong to a

Class 2 rule.

CHAPTER 2. BACKGROUND 17

2.2.3 Alternate classifications

These limitations have led other researchers to offer alternate classification systems,

each with their own shortcomings. We present some of them in this section, which is

largely based on [28].

Edge of Chaos

For example, Langton studied the relationship between the “average” dynamical be-

haviour (most likely behaviour obtained from a random initial sequence) of cellular

automata and λ, a particular statistic of their rule tables defined as the fraction of

non-quiescent states in the output (where one of the states is arbitrarily chosen to be

the quiescent state) [23]. For example, in two-state cellular automata λ would be the

number of rules whose output is a 1 divided by the total number of rules.

Langton performed numerous simulations intended to capture the “average” be-

haviour (most likely behaviour for randomly-chosen initial configurations) of a large

number of automata belonging to each λ-space (sub-interval of λ values within the
[

0; 1

2

[

interval). Based on these simulations, he claimed that as λ increases, the av-

erage behaviour of cellular automata undergoes a “phase transition” from ordered

behaviour (Wolfram Classes 1 and 2) to chaotic behaviour (Wolfram Class 3). Cellu-

lar automata having λ close to a critical value λc situated between orderly and chaotic

behaviour tend to exhibit long-lived “complex” (non-periodic but non-random) pat-

terns. Langton proposed that such automata roughly correspond to Wolfram’s Class

4 and can be considered to be at the “edge of chaos”. To quote Toffoli [36]:

Thus, between the immense area of boring grayness (chaos) and the

small areas of dependable but not so exciting performance (e.g. waves),

CHAPTER 2. BACKGROUND 18

there are vanishingly thin areas in which something interesting happens

where we had no “right” to expect it. There, an explanation for the exis-

tence of macroscopic texture will have to be sought case by case, and the

challenge is to devise general rules to deal with the exceptions.

Mitchell et al. re-examine the edge of chaos concept and discuss its problems in [29].

For example, they show that there is no single λc; instead, it depends on the particular

computation desired.

Intrinsic computation

Crutchfield and Hanson took a different approach in [10], pointing out that attempts

(like Wolfram’s and Langton’s) to classify cellular automata rules in terms of their

“generic” behaviour are problematic, in that for many rules there is no generic be-

haviour either across initial configurations or even for the same initial configuration

(there can be different dynamics going on in different parts of an automaton).

Instead, they developed techniques for classifying the different patterns that show

up in cellular automata space-time behaviour. Their idea was to discover an ap-

propriate “pattern basis” for each cellular automaton. This can be thought of as a

regular expression specifying the background configuration of the automaton against

which coherent structures evolve. Once the parts conforming to the pattern basis are

removed from the general space-time configuration, if such coherent structures exist,

they would be considered as the “interesting” part of the automaton.

An important aspect of this approach (which Crutchfield and Hanson call the

“intrinsic computation” of a cellular automaton) is that it works for both ordered

and chaotic configurations. For example, the Wolfram Rule 18 automaton which was

CHAPTER 2. BACKGROUND 19

considered by Wolfram to be chaotic (Class 3) does in fact display coherent structures

once the appropriate pattern basis is removed [28].

2.3 Universality

Although the Turing machine has been proven to be non-universal in [5], we follow the

traditional definition of computation universality (more aptly referred to as “Turing

universality”) as being the ability of an automaton to simulate an arbitrary Turing

machine. One common way to prove universality is using von Neumann’s approach

for the “universal copier and constructor”: construction universality [17].

2.3.1 Construction universality

Construction universality requires the existence of a configuration c0 with the follow-

ing two properties [17]:

• c0 is self-reproducing: that is, if at time t = 0 the initial configuration is c0,

then at some later time there will be two disjoint copies of c0 in the current

configuration of the host universe

• Upon being given another configuration x in its neighbourhood, c0 will build a

disjoint copy of x

Intuitively, c0 can be seen as the equivalent of a logic gate. More specifically, it

is a universal logic gate such as the NAND gate. In addition, c0 needs to be self-

reproducing so that it can create enough universal gates to implement any action

required by an arbitrary algorithm. It should also be able to build a disjoint copy of

one of its inputs; this means generating the output of the gate.

CHAPTER 2. BACKGROUND 20

However, construction universality is not a necessary condition for universality. In

fact, it is considered responsible for much of the complexity in von Neumann’s original

automaton. Perrier et al. show how a simple implementable self-reproducing cellular

automaton can be capable of universal computation when the need for construction

universality is forfeited [31].

2.3.2 Universal cellular automata

Researchers have not been able to prove general conjectures about universality in

cellular automata. However, many automata have been individually proven to be

universal. For example, Rule 110, one of the simplest non-trivial automata was shown

to be universal by Cook in 2004 [9].

This and other universality proofs have laid the groundwork for more general

statements. For example, it is now believed that most Class 4 cellular automata

are universal, while there are no universal automata in other classes. This emanates

from the fact that Class 1 and Class 2 automata converge to some known repetitive or

periodic state irrespective of their input, i.e. after some transition period their output

is mostly not a function of their input. On the other hand, Class 3 cellular automata

exhibit pseudo-random behaviour no matter what their input is. Therefore, Class 4

automata are the most promising for universality; this can include automata such as

Rule 18 which were thought by Wolfram to be in Class 3 but were later shown to

have some of the Class 4 characterestics.

The Rule 110 universality proof also reinforced earlier beliefs that adding finite

complexity beyond a certain point does not make a cellular automaton more powerful.

CHAPTER 2. BACKGROUND 21

Conway’s Game of Life

The Game of Life is widely credited for bringing cellular automata to the mainstream.

It was invented by John H. Conway and popularized in the early 1970’s by Martin

Gardner in his “Mathematical Games” column in Scientific American.

It is a two-dimensional semi-totalistic cellular automaton with a unitary-radius

Moore neighbourhood. In totalistic cellular automata, the state of a cell depends

only on the average state of neighbouring cells, and not on their individual states.

This means that the position of such cells relative to the output cell does not matter;

all that matters is an aggregate number (usually the sum or average) of their states

[39]. Semi-totalistic cellular automata are a variation on this where the state of the

output cell itself in the previous iteration is considered towards the calculation of that

aggregate; that is, the cell is in its own neighbourhood. The Game of Life has the

following rules [17]:

• Any live cell with fewer than two live neighbours dies, as if by loneliness

• Any live cell with more than three live neighbours dies, as if by overcrowding

• Therefore, a live cell remains alive if and only if it has either two or three live

neighbours

• Any dead cell comes to life if it has exactly three live neighbours

The key to the Game of Life’s universality is a multi-cell structure called “glider”.

As their name implies, gliders are structures that move on the two-dimensional space

through translation. They are considered to be the “bits” of the Turing machine

within the Game of Life. Their behaviour becomes more interesting when they col-

lide and thus interact; depending on how the collision happens, they can form “glider

CHAPTER 2. BACKGROUND 22

guns” shown in Figure 2.8 (first discovered by Bill Gosper at the Massachusetts In-

stitute of Technology) which emit gliders periodically until disrupted by an external

object. The gliders emitted by the glider guns can themselves collide and form other

glider guns. This proof idea makes sense given its similarity to construction univer-

sality. A more detailed universality proof sketch describing logic gates and wires is

provided in [19].

Figure 2.8: Game of Life configuration showing Gosper’s glider gun with two emitted
gliders (the two bottommost five-cell structures)

The Game of Life is very interesting from a theoretical standpoint. However,

despite its name its behaviour does not closely mimic that of a population in real life

(this may not have been Conway’s original purpose). Some of our colleagues have

made attempts at tweaking the Game of Life in order to better simulate real life by

modeling human interaction [13] and enabling multiple populations [11].

CHAPTER 2. BACKGROUND 23

Rule 110

Despite its simplicity, the Rule 110 cellular automaton can simulate an arbitrary

Turing machine. Cook showed that it is universal by proving it equivalent to cyclic

tag systems (Cook’s rather complicated proof is described in [9]). Here we provide

the beginning of a potential proof that may end up being simpler than Cook’s. One

way to show that a system is universal is to show that it supports a universal set of

logic gates, wires (connections), bridges (allowing wires to cross each other without

intersecting), and some method to hold an input for an arbitrary number of cycles

[19]. We notice that Rule 110 is equivalent to the following boolean expression:

ρ (x, y, z) = (x ∧ y) ∨ (y ⊕ z)

We can easily see that if we set y = 1 and apply De Morgan’s theorem, ρ becomes

a NAND gate having x and z for inputs. The NAND gate is known to be a universal

logic gate, and as such it can simulate a NOT gate. By applying an even number of

NOT gates on an input, we can hold it for arbitrarily many cycles. With this quick

proof sketch, we have shown that Rule 110 satisfies two of the conditions listed above.

We leave to the reader to prove that it can support wires and bridges.

The universality of the Game of Life and Rule 110 proves that additional com-

plexity in cellular automata (such as more states or larger neighbourhoods) does not

necessarily make them more powerful.

CHAPTER 2. BACKGROUND 24

2.4 Reversibility

A cellular automaton is said to be reversible if for every current configuration of the

cellular automaton there is exactly one past configuration. If one thinks of a reversible

automaton as a function mapping configurations to configurations, this function must

be bijective [17].

Cellular automata do not have to be reversible in order to be computationally uni-

versal. In fact, the Game of Life is irreversible. A more basic example is the NAND

logic gate, which is universal but not reversible. For universal and reversible comput-

ing, check the Fredkin gate and the billiard-ball computer mentioned in Fredkin and

Toffoli’s seminal 1982 paper [14].

For one-dimensional cellular automata, there are known algorithms for finding

past configurations, and any rule can be proven reversible or irreversible. For cel-

lular automata of two or more dimensions, Kari showed using Wang tiles that the

reversibility is undecidable for arbitrary rules [20].

For finite cellular automata that are not reversible, there must exist patterns for

which there are no previous states [17]. These patterns are called Gardens of Eden,

an example of which is shown in Figure 2.9.

Figure 2.9: The smallest known Garden of Eden in the Game of Life [1]

Several techniques are available to explicitely construct reversible cellular au-

tomata with known inverses. These are used by researchers such as Toffoli to design

CHAPTER 2. BACKGROUND 25

cellular automata simulating physical rules, since such rules are assumed reversible.

Another interesting property of reversible cellular automata is that they can be con-

sidered to have infinite memory (of the previous states). However, the further the

desired state, the more time is needed to retrieve it.

Chapter 3

Computing with cellular automata

In the previous chapter, we have defined cellular automata in general along with

some of the relationships between their dynamics and computation. However, we will

see that while these relationships are interesting to study, they are not necessarily

efficient ways to compute using cellular automata. Instead, our main focus will be on

how cellular automata can help generate fast, practical, parallel computers.

3.1 Computational aspects of cellular automata

Capcarrere presents four ways to view the computational aspects of cellular automata

(see [7] for references and examples):

3.1.1 Abstract computing systems

Cellular automata can be studied as abstract computing systems, similarly to Turing

machines or finite state automata; the focus here on what languages they can accept,

time and space complexity, undecidable problems, and other mathematical aspects.

26

CHAPTER 3. COMPUTING WITH CELLULAR AUTOMATA 27

3.1.2 Simulation

Another approach is to develop certain structures inside the cellular automata to allow

them to simulate existing universal computers such as the Turing machine. Both the

Game of Life and the Rule 110 cellular automata fall under this section if used as

universal computers. These simulations are interesting from a theoretical standpoint

but not for practical computation using cellular automata. In fact, even real-time

Turing machine simulations - where one step of the Turing machine is simulated

by only one cycle of the automaton (unlike in the Game of Life) - are considered

inefficient because of the large number of parallel processors involved to simulate one

sequential device.

3.1.3 Computing black boxes

Cellular automata can also be seen as computing black boxes whose input data is

their initial configuration and whose output is given in the form of some spatial

configuration after a certain number of time steps. In such systems, computation

occurs on collision of particles carrying information. Therefore, it is called particle or

collision-based computing.

Despite the similarity of rules governing all cells, Capcarrere writes that compu-

tation can often be seen as happening only in some specific cells of the system, while

other cells are considered particle transmitters; this means that parallelism is not

exploited as such. However, there are exceptions where every cell in an automaton

is part of the computation. We believe that this is only a matter of perspective,

because some information transmittal is necessary for global behaviour to occur. For

example, we challenge the reader to come up with a local automaton to compute an

CHAPTER 3. COMPUTING WITH CELLULAR AUTOMATA 28

exact convex hull of discrete points in two dimensions - as presented in Chapter 5 - in

less than
√

n cycles (where n is the number of cells in the automaton). This
√

n is the

time it takes for information to be transmitted vertically or horizontally across the

automaton. Whether the cells in-between points are considered to be merely passing

information or whether they are seen to be computing if they belong to the convex

hull or not is in the eye of the beholder. However, we understand Capcarrere’s view in

the light of the cells which have already decided with certainty whether they belong

to the convex hull. These cells can be seen as quiescent or inactive for the rest of the

computation.

This is the form of computation where a cellular automaton is tailored to solve a

specific problem, allowing it to achieve large performance gains as well as to present

its output in human-readable form. For these reasons, it will be our main focus

throughout this thesis.

3.1.4 Computational mechanics

A fourth way of studying computation in cellular automata is to consider their com-

putational mechanics. This is detailed in the second chapter of this thesis under the

“Classification” section, and concentrates on regularities, particles and exceptions

arising in the spatial configuration of the cellular automata considered through time.

This research really studies the dynamical global behaviour of the system without

considering any particular computation.

CHAPTER 3. COMPUTING WITH CELLULAR AUTOMATA 29

3.2 Cellular automata compared to other parallel

computational models

Following our detailed overview of cellular automata, we deemed appropriate a com-

parision of their characteristics compared to other parallel computational models.

Having found no such direct comparision in the literature (except briefly in [19]),

most of the conclusions in this section are ours.

3.2.1 PRAM and other conventional parallel computers

The Parallel Random Access Machine (PRAM) is considered the most powerful

among conventional parallel computers. For more background information regard-

ing this section, the reader is encouraged to consult [4].

One difference between cellular automata and conventional parallel computers is

that in cellular automata, everything is integrated - the processor is the memory, the

input and the output. The input is merely the initial state of the whole system, and

the output the final state. Conventional parallel computers can be seen as a large

number of Turing machines connected together. They retain the Turing machines’

property of separating between the structural part (fixed) and the data (variable)

[36]. Therefore, unlike cellular automata, they are unable to extend themselves or

construct separate copies of themselves, which was the original purpose of cellular

automata when invented by von Neumann.

Another difference is in the way algorithms are designed for cellular automata

compared to conventional parallel computers. To quote Akl in [4]:

Given a problem to be solved in parallel, a parallel algorithm defines

CHAPTER 3. COMPUTING WITH CELLULAR AUTOMATA 30

how the problem can be solved on the given parallel computer, that is, how

the problem is divided into sub-problems, how the processors communicate,

and how the partial solutions are combined to produce the final answer.

From this statement, we can understand that each one of the processors globally solves

a part of the problem in question before the partial global solutions are combined.

On the other hand, cellular automata require a completely different approach to en-

sure that emergent behaviour is observed from strictly local rules which can appear

unrelated to the desired global behaviour. Therefore, in conventional parallel compu-

tational models complex global behaviour comes from complex building blocks, while

such behaviour comes from very simple parts in cellular automata.

Even in interconnection networks - a conventional parallel computation model

where each processor has its own memory - there is a certain expected “flow” of

information. On the other hand, the cells in a cellular automaton do not know of

such flow and execute the same rules with the same neighbours at every time unit.

3.2.2 Artificial Neural Networks

The general definition given in the beginning of this thesis applies equally well to

cellular automata and Artificial Neural Networks (ANN or neural networks for short)

- see [21] for more information on Artificial Neural Networks. Both systems con-

sist of a number of locally-interacting simple elements aiming to generate complex

global behaviour. Therefore, strictly speaking, neural networks can be seen simply as

biologically-inspired cellular automata.

However, there are practical differences in how the two are generally used which

CHAPTER 3. COMPUTING WITH CELLULAR AUTOMATA 31

we will detail below. Recurrent ANN of one layer are virtually identical to totalis-

tic cellular automata if such automata are constrained to only threshold-based rules

and the neural networks are constrained to uniform input weights (ANN frequently

use threshold rules with weighted inputs which are not common for totalistic cellular

automata but can be simulated using non-totalistic rules). In addition, many neu-

ral network constructions are feed-forward (having non-recurrent components) and

consist of several layers. These are conceptually similar to cellular automata with

time-varying rules and neighbourhoods which are not very common, although we will

show in Chapter 4 that they can be simulated with traditional cellular automata.

To illustrate this point further, Minsky and Papert showed in [27] that single-layer

perceptrons - a type of neural network - are unable to perform linearly-inseparable

tasks such as the XOR function (see [12] for an introduction to linear separability).

We can prove that this is a limitation of the single threshold normally used in ANN

by showing that even certain elementary totalistic cellular automata are capable of

performing the XOR function. For example, Rule 90 is effectively an XOR of the left

and right neighbours and can be seen as a totalistic rule which outputs a 1 if and

only if the sum of the left and right neighbours is a 1; otherwise, it outputs a 0 when

the sum is 0 or 2. This requires two thresholds; a feat not possible using single-layer

perceptrons.

Neural networks also usually have designated input and output neurons, while

every cell in a cellular automaton is the input in the first cycle and an output in every

cycle (especially when the termination condition is reached). However, as with many

of the other differences described here, this one is mainly a matter of perspective as the

user cannot be prevented from only considering a few of the cells while disregarding

CHAPTER 3. COMPUTING WITH CELLULAR AUTOMATA 32

the rest.

Finally, neural networks are often instructed to “learn” (by varying thresholds or

weights) during a computation. On the other hand, the rules of a cellular automaton

are generally derived before it is run.

3.3 Generating “interesting” cellular automata

3.3.1 What do we consider “interesting”?

We use the term “interesting” after Gutowitz and Langton in [18]. They define “in-

terestingness” as the ability of cells in an automaton to transmit information between

them in a useful manner. They argue that all Class 1 and 2 cellular automata are

“dull” because no such information is transmitted. They also consider most of Class

3 automata to be dull because although information is transmitted in them, it is not

transmitted in a useful form.

We agree with Gutowitz and Langton’s definition of interestingness and elaborate

on it by considering any automaton that simulates a non-trivial system or performs

some desired computation to be interesting. However, we disagree with their conclu-

sion and show that even Class 2 automata can be interesting. In fact, we present in

Chapter 5 a Class 2 cellular automaton that can perfectly solve the majority clas-

sification problem. A similar result was also presented by Capcarrere in [7]. This

automaton solves the problem by sorting its input, and sorting is generally consid-

ered a computation and therefore interesting. However, the automaton reaches a

periodic state after sorting which is expected given that the computation is over.

We believe that Gutowitz and Langton confuse computation with universality. A

CHAPTER 3. COMPUTING WITH CELLULAR AUTOMATA 33

computing device does not have to be universal to perform a desired computation.

While we agree with the quasi-universal belief that only Class 4 and certain Class 3

automata (such as Wolfram Rule 18) - which should really be in Class 4 but were

misclassified because their Class 4 behaviour was harder to identify - can be universal,

we disagree with the opinion that no other cellular automata can be interesting.

In this thesis, we are mainly concerned with the design of cellular automata that

behave as “computing black boxes” by performing some desired computation in an

efficient way and present an easily-readable output. Devising local rules exhibiting

a required global behaviour can be extremely tedious. Therefore, several approaches

(both automatic and manual) have been created to make the designers’ job easier.

We present some of them along with their shortcomings in the following sections,

after which we propose our novel approach aimed at mitigating some of these issues.

3.3.2 Automatic approach

Many researchers have worked on algorithms to automatically derive cellular au-

tomata rules exhibiting desired global behaviour. Such systems require as an input

the automaton in several starting conditions and their corresponding desired ter-

mination conditions after a certain number of steps. Most algorithms also require

additional input parameters such as the desired number of states and neighbourhood

size, as well as the number of steps in which the computation should be completed.

One of these researchers is Andrew Adamatzky who wrote a book on the subject

[2]. In his book, Adamatzky devises several theorems regarding the complexity of the

automatic identification of desired cellular automata rules. For example:

Theorem Let U be a deterministic synchronous stationary d-dimensional cellular

CHAPTER 3. COMPUTING WITH CELLULAR AUTOMATA 34

automaton without memory, consisting of n cells, each of the cells having q

states and k neighbours. Then U can be identified completely by a Turing

machine M in Ω
(

k1+
1

d q2k
)

steps.

This is the simplest of the theorems in [2]. Like all other ones, it involves at least

exponential running time in the neighbourhood size.

To mitigate this impracticality, other researchers proposed approximate methods

with faster running times such as genetic algorithms (computational models of adap-

tation and evolution based on natural selection) championed by Mitchell [28] and

Sipper [34] among others, and some deterministic approaches such as the one used

by Rosin in [32] - which is essentially modified hill-climbing: the sequential floating

forward search.

Despite being tractable, these approaches still require large amounts of process-

ing power and deliver less accurate results than their exponential-time counterparts.

However, this is not their main limitation. Instead, we believe their key shortcoming

is the lack of human intuition: these methods only consider one accepting condition,

their work is based on example inputs and outputs (some special cases might be miss-

ing), and they often require the neighbourhood size, the number of states and the

number of cycles needed to reach the desired terminating condition to be known in

advance.

These limitations mean that such methods are excellent for the cases where a

solution is known to exist and details about it are known but writing every possible

transition rule is tedious. On the other hand, in the initial stages where problems

still require human intuition, these approaches fail to provide adequate solutions.

For example, as we will explain in Chapter 5, the majority classification problem

CHAPTER 3. COMPUTING WITH CELLULAR AUTOMATA 35

with the traditional accepting condition is not perfectly solvable [22]. Gacs et al.

manually came up with an approximate solution for it achieving 81.6% accuracy [16].

It took more than a decade of genetic programming attempts to obtain marginally

better accuracy at 82.3% [6]. However, the problem becomes perfectly solvable with

a different terminating condition as shown in [7] and [15]. Another example is the

convex hull problem. Adamatzky used his automatic identification approach to find

a perfect solution for it provided that the points are connected (the solution converts

a concave polygon to a convex polygon instead of forming a polygon from a set of

discrete points) [3]. Rosin automatically found an approximate solution also provided

one starts from a polygon [32]. In this thesis we provide the first solution - which

we found manually in just a few days - to the problem of finding the convex hull of

discrete points in a cellular automaton.

3.3.3 Manual approach

An alternate approach is to come up with a manual method that allows devising

local rules in a way that makes more sense to designers. This is the approach we

take in this thesis, although we consider our work to be very different from existing

work in the area. Existing work generally focuses on making a particular function

easier to implement subsequently: a set of rules allowing for some input parameters is

engineered with considerable difficulty the first time it is needed; when similar rules

are required for other automata, all one has to do is modify the input parameters in a

straightforward way for rules behaving according to specifications to be automatically

generated. The problem with this approach is that no set of functions, no matter

how large, is enough to characterize any arbitrary desired behaviour. If an undefined

CHAPTER 3. COMPUTING WITH CELLULAR AUTOMATA 36

behaviour (or some unexpected parameter change) is needed, the designer is left to

start from scratch by devising every transition rule required.

Most previous research - such as work done by Turner et al. [38] and Capcarrere

[7] - adopts a multi-layered approach, for instance a “surface” or “mobile” or “ac-

tion” layer and an “environmental” layer. The two layers can communicate within

one cycle and the environment layer helps the surface layer make the right decision.

For example, if the function represents a number of moving objects interacting in a

room according to Newtonian mechanics, designers can use the surface layer to easily

explain the desired behaviour (e.g. “the ball moves vertically at two cells per cycle”)

while the environment layer takes care of settling conflicts (hitting the ceiling for

example) by instantly messaging the surface layer, therefore allowing it to change its

movement within the same cycle. This high-level informal specification is then con-

verted automatically to a set of pre-specified conventional low-level cellular automata

rules. However, problems occur when the required behaviour is not pre-specified and

no function exists for it; in the above example, what if the designer wants to take

gravity into account? The only solution is to create the desired function and its

low-level equivalent, which is very hard. To quote Turner et al. [38]:

“The low-level system components cannot be systematically derived from

the system specification. The components are fundamentally different from

the overall system, and cannot be described using the same language con-

cepts.”

This approach is akin to creating libraries of functions in traditional programming

languages. However, if some required function is not part of the library, the designer

is left with the only option of writing it in machine language. On the other hand,

CHAPTER 3. COMPUTING WITH CELLULAR AUTOMATA 37

our approach - described in the next chapter - can be compared to a higher-level

programming language such as C allowing the designer to implement any desired

function more easily without losing sight of the low-level details.

Both existing automatic and manual approaches do not leave a significant place

for human intuition, and as such suffer from problems similar to those described in

Gödel’s Incompleteness Theorem: one cannot possibly have a complete set of func-

tions or an automated device that generates every possible desired rule. Therefore,

human intuition is always needed and our work is meant to facilitate the process of

applying it to deriving cellular automata rules while still allowing the use of existing

automatic and manual (function libraries) approaches whenever they are suitable.

Chapter 4

Proposed framework

4.1 Description

The framework we propose can be assimilated to a higher-level programming language

for cellular automata that does not completely abstract the low-level details. Rules

are there to stay, whether they are generated automatically, using function libraries,

or manually. However, our framework effectively divides those rules into several parts

that are each easily understandable and devisable by humans, although they can be

complicated when taken as a whole. It then combines these parts automatically to

form the complete rule understandable by a machine.

While many of the ideas we propose in the next section have been mentioned

before in the literature, we group them together as a framework and customize or

reframe each one of them to fit our purpose. More importantly, we show how every

single one of them can be implemented using simple cellular automata by adding

more information to the state and the transition rule. This implementation is done

automatically by the framework’s “compiler”, allowing the user to focus only on the

38

CHAPTER 4. PROPOSED FRAMEWORK 39

general idea of the automaton where human intuition is still required. The goal

from this implementation is to allow running any algorithm on a generic cellular

automata machine in order to benefit from the performance gains provided by such

hardware implementation without having to design specific hardware for every desired

automaton (we briefly go over potential hardware implementations in Chapter 6). For

example, we believe that we are the first to show that automata with variable rules

or probabilistic automata can be indeed implemented using the simple traditional

description of cellular automata without the need for external information.

In the next section, we detail some major elements of the framework (we call them

“enhancements” because they have traditionally been considered to be outside the

scope of simple cellular automata) while explaining some of their benefits and their

implementation using traditional cellular automata, as well as providing a reality

check on whether they can still be considered to belong to the general definition of

cellular automata as provided in the beginning of this thesis. We then go over some

improvements which we considered but decided to leave out of the framework because

they violate some of the conditions established by that general definition. Finally, we

briefly mention some usability recommendations that do not inflict any changes on

the physical automata but would be beneficial to designers if implemented in some

cellular automata development environment.

4.2 Major enhancements

Most of the features we describe in this section can be implemented using hierarchical

automata. We therefore start by describing hierarchical cellular automata and explain

how they can themselves be implemented using traditional automata. It is important

CHAPTER 4. PROPOSED FRAMEWORK 40

to note that such implementation (as described here) is not always the minimal one,

but is fully usable and relatively efficient. It can be optimized at a later stage if

enough information is known about the hardware it is designed to run on.

4.2.1 Hierarchical cellular automata and variable rules

Adamatzky defines hierarchical cellular automata in [2] as a finite sequence of one-

dimensional deterministic cellular automata U0, U1, . . . , Up where automaton Ui is

controlled by Ui+1for i = 1, . . . , p − 1. Up has no supervisor and evolves in the

usual way for a cellular automaton. The transition vector is the juxtaposition of

the rule outputs for neighbourhoods ordered in decreasing order similarly to the

Wolfram notation; for example, the transition vector for Rule 30 is “00011110”. In

Adamatzky’s scheme, the transition vector of automaton Ui is given by the current

states of the cells in automaton Ui+1.

We provide a different definition which is broader yet simpler and easier to im-

plement. In our framework, cells in Ui simply have cells in Ui+1 as part of their

neighbourhood - with Ui and Ui+1 generally evolving under different rules. This al-

lows Ui+1 to dictate any rule to Ui (as in Adamatzky’s model) but also enables it

to take a lower profile when needed where cells in Ui+1 are equally (or even less)

important than cells in Ui. We also allow two-way communication (Ui can be in the

neighbourhood of Ui+1), similarly to what Adamatzky defines as “implantable cellular

automata”. While only one-way communication is needed in most cases, there are

certain instances such as cellular automata with memory (described later) where two-

way communication helps. We still call these hierarchical cellular automata because

conceptually Ui+1 would still be governing Ui despite needing some feedback from it.

CHAPTER 4. PROPOSED FRAMEWORK 41

Usage

We consider hierarchical cellular automata to be the most important feature of our

framework. Along with enabling other framework features, they have unlimited uses;

one of these is to allow variable rules. For example, they can allow an automaton to

completely change its rules after some time t0 (time-variable rules). The way this is

done is by having a progress-bar-like automaton such as Rule 238 (shown in Figure

4.1) as the parent automaton and connecting all cells in the child automaton to its

tth0 cell. If this cell is a “1”, then t ≥ t0 and the new rules are used.

Figure 4.1: 50 iterations of Rule 238 showing its progress-bar-like behaviour

The rules can also change based on some other parameter: for example, when

some kind of constant-size structure is reached in the child automaton; we stress the

necessity of the constant size of the structure because otherwise the automaton would

be considered non-local and would therefore violate the general definition. This is

one of the cases which would require two-way communication.

The danger of having all cells connected to one cell is that this might seem to

violate the locality condition. However, the neighbourhood size of every one of these

CHAPTER 4. PROPOSED FRAMEWORK 42

cells would still be constant (only one additional cell added to the neighbourhood)

and not a function of the automaton size. In addition, they would all be making

decisions based on their neighbourhood. Although connecting this one cell to every

other cell might be complicated to implement in practice, we believe that this is not a

major issue as long as the number of such cells is constant compared to the automaton

size. In our opinion, the locality condition is only violated when a cell needs to read

some value outside of its fixed constant neighbourhood in order to make a decision.

We still consider this scheme to be local because many cells are reading one cell and

not vice-versa.

Implementation

Hierarchical cellular automata can be easily implemented within one simple cellular

automaton by taking the largest automaton in the hierarchy and embedding the rest

within it by adding their state bits and transition rules to it. This means that two

binary-state automata can be embedded within one four-state automaton.

4.2.2 Clocking

Another timing-related rule change is clocking, which has been previously used in

Quantum-dot Cellular Automata (refer to [24] for more information on this topic).

In such a scheme, all cells in the automaton do not update at the same time. Instead,

different areas do so sequentially in order to allow some messages to be passed without

being influenced by pre-existing conditions. This concept was also considered by

Rosin [32] who proposed the idea of even-odd rules (different rules for even and odd

cycles) without providing a means to implement such rules using traditional cellular

CHAPTER 4. PROPOSED FRAMEWORK 43

automata. Our framework can be used for this purpose and is not limited to two

different cycles. We can have an arbitrary number of cycles n using a parent Rule 2

automaton (shown in Figure 4.2) having n cells and periodic boundary conditions. We

recommend limited use of clocking rules because they curtail some of the parallelism

benefits of cellular automata.

Figure 4.2: 50 iterations of Rule 2 provide 50 different clock cycles

4.2.3 Probabilistic rules

Probabilistic rules are yet another feature that makes use of hierarchical automata.

Adamatzky defines probabilistic cellular automata in [2] by putting a certain proba-

bility on a set of transition rules for a given neighbourhood (instead of having just one

transition rule per neighbourhood). He also proposes several classes of probabilistic

cellular automata differing in the details.

We propose a simpler definition that is also more flexible and easier to implement.

For the purposes of our framework, probabilistic rules are ones where at least one

neighbourhood cell is in fact a coin flip (unbiased for simplicity, but this can differ in

CHAPTER 4. PROPOSED FRAMEWORK 44

the implementation). Using a number of such coins, we can implement any desired

probability to an arbitrary precision and as such, simulate Adamatzky’s system.

Usage

Probabilistic rules can be used similarly to their probabilistic algorithm counterparts.

For example, they can provide adequate approximate solutions in less time than

deterministic rules, or they can help escape local optima or deadlocks.

Implementation

We do not need an external coin or access to an external random variable. The coin flip

can be implemented using hierarchical cellular automata by having a Wolfram Class 3

automaton as a parent and selecting a number of its cells to be in the neighbourhood

of the cells in the child automaton. This works because Class 3 automata such as

Rule 30 are chaotic and as such, they behave like pseudo-random number generators.

In fact, Rule 30 is used to generate random numbers in Wolfram’s famous software

package Mathematica.

4.2.4 Cellular automata with memory

Also called multi-cycle automata or automata with history, they are considered by

various researchers including Adamatzky [2]. In such cellular automata, the next

state of a cell depends not only on the current state of its neighbours, but also on the

previous states (up to a constant number of previous cycles) of some of its neighbours.

Interestingly, reversible cellular automata do not need to have their previous states

stored. They can be retrieved from any current state, however the further in time the

CHAPTER 4. PROPOSED FRAMEWORK 45

desired state, the longer it takes to retrieve it. As such, reversible automata can be

said to have unbounded memory.

Usage

Memory in cellular automata has many uses. Among them is estimating certain

behaviour over time (derivatives such as speed or acceleration), or detecting deadlocks

and backtracking, as we will show in one majority classification solution example in

Chapter 5.

Implementation

Automata with memory can be easily implemented using hierarchical automata,

which themselves can be implemented within one simple traditional automaton. In

that case, the parent automaton is the previous state of the child automaton. This

needs two-way communication and a very simple rule having a radius zero neighbour-

hood (only the cell itself).

4.2.5 Static and private state information

We propose allowing a part of a cell’s state to be constant throughout a computation

(such information is to be provided before the beginning of the computation). We also

propose allowing a part of a state to be considered private (not part of the output)

in order to facilitate discerning the solution for human observers.

CHAPTER 4. PROPOSED FRAMEWORK 46

Usage

The static part of a cell’s state is used to give a cell more information about itself

and its role in the computation. For example, this can be the cell’s position within

the cellular automaton (or relative position for periodic boundary conditions) which

can help in many cases, such as when designing an automaton to find a centroid. The

concept of static state information is closely tied to non-uniform automata detailed

in the next section.

Keeping some of the state information private is important to allow better percep-

tion of the solution and to discern between temporary variables and ouput variables.

For example, when attempting to compute the convex hull of a set of points, the ob-

server only needs to know whether a given cell belongs to the convex hull or not (one

state bit). However, the cells often require more information during a computation

(more state bits) in order to be able to reach such a decision - it is this information

that we desire to keep private. For example, one way to keep it private is to assign

only two colours to a four-state automaton when visually displaying it.

Implementation

Both of these conditions are very easy to implement. Static information can be

considered as variable information that is not modified by any of the transition rules,

while certain state bits can be ignored in the output in order to keep them private.

Static information can also be implemented using static parent automata (with idle

transition rules) such as Rule 204 shown in Figure 4.3.

CHAPTER 4. PROPOSED FRAMEWORK 47

Figure 4.3: 50 iterations of Rule 204

4.2.6 Non-uniform automata

Non-uniform cellular automata are automata where some cells follow different transi-

tion rules from each other. They are widely documented in the literature; for example,

Sipper provides several methods to automatically design such automata efficiently us-

ing genetic programming [34]. We believe that non-uniform automata fit within the

general definition of cellular automata since the individual elements are still simple

and can often be easily reprogrammed to perform different functions when different

automata are being run on the same hardware (we provide an example hardware

implementation in Chapter 6). However, we also believe that it is practically hard to

CHAPTER 4. PROPOSED FRAMEWORK 48

design an automaton where every cell has different transition rules, unless these rules

differ only by a certain value (for example a threshold in totalistic cellular automata)

that can be automatically programmed.

Usage

A more practical application is having several blocks of cells each with their own rules.

For example, when designing an automaton that simulates a bouncing ball inside a

maze, the walls which are fixed cells need to follow different rules than the free-space

cells where the ball is allowed to pass.

Implementation

Non-uniform automata can be simply implemented using uniform automata with

static state information telling the cell which set of rules it should follow. They can

also be directly implemented in hardware if this is supported.

4.3 Forgone enhancements

We also considered one other enhancement that would add additional power and

convenience to the design of traditional cellular automata. However, we have decided

to leave it out of the framework because it clearly violates the locality condition of

the general definition of cellular automata.

CHAPTER 4. PROPOSED FRAMEWORK 49

4.3.1 Non-local automata

Non-local automata have been widely studied (reference [25] provides more informa-

tion). These automata contain some cells having either a large number of neighbours

(a function of the automaton size), or a “pointer” cell in their neighbourhood. Pointer

cells are cells which contain the location of another cell (the one they point to) and

return its content when read. The transition rules of pointer cells specify the location

of the cell they point to, allowing it to change during the computation depending on

their neighbourhood. Effectively, pointer cells allow the re-routing of a small number

of connections and as such, allow any cell to have any other cell as its neighbour

during the computation without needing a large neighbourhood size.

While such a scheme might have practical uses such as the simulation of some

natural systems which are believed to be non-local, we believe it violates one of the

key conditions of cellularity. It is also difficult to implement in hardware unless some

hardware implementation allowing instant re-routing of connections without major

compromises is developed. As such, it does not fit the goals of our framework.

4.4 Usability recommendations

4.4.1 Pseudo-totalistic rules

One thing we found very useful in developing the example automata mentioned in

Chapter 5 is the introduction of pseudo-totalistic rules. While they do not modify

simple automata in any way, they would be a welcome addition to a cellular automata

development environment. We define pseudo-totalistic rules as logical conjunctions

of partial totalistic rules. They aim to reduce the total number of rules required to

CHAPTER 4. PROPOSED FRAMEWORK 50

describe a system. For example, a three-state automaton with a neighbourhood of

size 9 presents 39 = 19683 possible neighbourhood states and 319683 possible rules. In

most cases, the rules follow similar patterns and not all possible neighbourhood states

should be specified individually. Pseudo-totalistic rules allow specifying the system

more simply by enabling the designer to provide statements such as “if the sum of

the top 3 cells is larger than the sum of the bottom 3 cells and the sum of the middle

3 cells is 0 then the next state is 2”. The system can then easily fill-in the blanks

and derive the low-level rules by executing such statements against all possible input

conditions.

4.4.2 Automatic identifiers and function libraries

Another useful feature allows easy integration of automatic rule identifiers and func-

tion libraries such as those defined in Chapter 3. These can be used to fill-in the

details after the work requiring human intuition is done. For example, in the “grav-

ity” automaton we describe to solve the majority classification problem in Chapter 5,

we could have simply used a pre-defined function implementing Newtonian mechanics

to define the rules of the automaton instead of having to take every possibility into

account (which can be difficult especially when the next state of one cell influences

the next state of another - this requires enlarging the neighbourhood size and adding

many duplicate rules).

Chapter 5

Examples

In this chapter, we present three problems that although simple in their description,

are considered complicated for cellular automata given their requirement for emergent

global behaviour. We explain existing solutions to these problems as well as provide

our own improved solutions reached using our framework.

5.1 Majority

The majority (also known as density classification) problem is arguably the most

studied problem in cellular automata theory. It can be described as follows: given a

two-state (black and white) cellular automaton, does it contain more black or white

cells? The accepting condition can vary as long as it provides a clear-cut answer.

However, the most frequently used (and the first proposed, in [16]) accepting condition

requires that the whole automaton converges to the more dense colour, i.e. all cells

become black if black cells initially outnumber white cells, and vice versa.

51

CHAPTER 5. EXAMPLES 52

Land and Belew proved in [22] that a two-state automaton with local neighbour-

hoods can never converge 100% accurately to such an accepting condition. However,

the search is still on for the rule with the highest accuracy, and at the time of writing,

such a rule is believed to be a soon-to-be-published rule discovered through genetic

programming in 2007 by Wolz and de Oliveira [40]. This rule achieves an 89% ac-

curacy for a large number of random initial conditions on a one-dimensional lattice

of size 149 with a neighbourhood of radius 3 (by convention these are the conditions

normally used to easily compare the efficiency of such algorithms; larger lattice sizes

generally reduce the accuracy). In two dimensions, the best rule at the time of writ-

ing achieves 83% accuracy [40]. Later in this section, we show that a change in the

accepting condition makes a 100% accurate convergence possible.

We now present a few approaches to solving the density classification problem:

5.1.1 Normal threshold

This is considered the most obvious solution; however, it rarely works since the au-

tomaton does not usually converge. In such a solution, the next state of a cell is

determined simply by the majority of the cells in its neighbourhood. Traditional

two-way neighbourhoods are used. In elementary cellular automata, such a solution

would be Rule 232. In two dimensions, a Moore neighbourhood of radius 1 (and

including the cell itself) is usually taken in which a cell becomes black if and only if

five or more of its neighbours are black.

We believe that the deadlock reached by such automata (to some intermediate

state that looks like the pattern on a cow’s skin) is largely due to the mutual influence

exercised by neighbours on each other. For example, in a Moore neighbourhood with

CHAPTER 5. EXAMPLES 53

r = 1, each cell can have up to six out of nine neighbours in common with its

neighbours. All cells also follow the same threshold rule which is reinforced in the

next states with more and more cells stabilizing on one colour.

5.1.2 Vichniac rule

The Vichniac rule is a simple rule aiming to overcome that deadlock. It is effective

in many cases and works by switching the behaviour at boundary conditions. For

example, in a two-dimensional Moore neighbourhood of radius 1 this means that a

cell becomes black if and only if 4, 6, 7, 8 or 9 of its neighbours are black; it becomes

white otherwise.

5.1.3 GKL

A seminal 1978 paper by Gacs et al. presented a breakthrough in solving the majority

problem [16]. That breakthrough which became known as the GKL rule (after the

last names of its authors) is a one-dimensional automaton of radius 3 with quasi-

totalistic rules. It was shown 81.6% effective on a large number of random initial

configurations of a one-dimensional automaton of size (number of cells) 149. This

test became the standard against which the effectiveness of other automata (such as

the genetic improvements presented in the next section) is measured.

Under the GKL rule, if a cell is black, its neighbourhood consists of the cell itself,

the cell immediately to its left and the cell three spaces away from it also to the

left (Figure 5.1). Then a simple totalistic rule is applied where the majority in the

neighbourhood determines the next state of the cell. On the other hand, if the cell is

white, then its neighbourhood has the same configuration except that this time only

CHAPTER 5. EXAMPLES 54

the cells to its right are taken into account.

Figure 5.1: The black cells in this figure represent the middle cell’s neighbourhood
when it is black. Its next state is the same as the majority among them.

We believe that the key to GKL’s success is the minimal overlap between neigh-

bouring cells’ neighbourhoods. This makes information more likely to flow inside the

system instead of having neighbours highjack each other’s next states, forcing the

automaton into a deadlock.

5.1.4 Genetic improvements

Ever since the GKL rule was introduced, researchers have been trying to devise rules

that are more effective at classifying random initial configurations. Most of these

attempts are automated and use genetic algorithms to select the best rules from

a very large number of possibilities. At the time of writing, the best such rule is

presented in [40]. It has a neighbourhood of radius 3 and is 89% effective on initial

configurations of size 149.

We argue that while better rules can be found using such approaches, the manual

approach can be more effective if more insight is gained into the long-term behaviour

of cellular automata. For example, the best known rule introduced almost two decades

and many researcher and computer hours after GKL was only 82.3% correct [6], a

marginal improvement. In addition, such genetic algorithms use GKL as their basis;

rules are generally considered “better” and thus preserved by the genetic algorithms

when they are more similar to GKL. This makes reaching a breakthrough with such

CHAPTER 5. EXAMPLES 55

automated methods not possible.

5.1.5 Two-dimensional GKL adaptation

We experimented with adapting GKL to bi-dimensional cellular automata. We used

a radius 3 von Neumann neighbourhood - although a Moore neighbourhood can be

considered by adding diagonals for probably better results - and added to the tradi-

tional one-dimensional GKL black cell’s neighbourhood the cells immediately above

it and three steps above it (for a total neighbourhood size of 5). We did the same to

the neighbourhood of white cells by considering the cells below them as well (Figure

5.2).

Figure 5.2: Neighbourhood of the middle cell when it is white

Reverse annealing

While the two-dimensional GKL adaptation behaved very similarly to the one di-

mensional GKL rule by having large masses of chequerboard-like patterns erase black

or white islands (clusters of cells), it frequently did not converge and got stuck in a

deadlock of period 2. We resorted to the proposed framework to reduce the likeliness

of that deadlock by adding memory capability that effectively allowed the system to

CHAPTER 5. EXAMPLES 56

behave conversely to simulated annealing: each cell checks a constant number (pa-

rameter of the system) of previous cycles of itself and its neighbours for deadlock

patterns. For each previous cycle that exhibits such patterns, a coin toss is added to

the cell’s neighbourhood; this means that the more a cell considers itself to be in a

deadlock, the less it relies on its traditional neighbourhood by adding more and more

random cells to its neighbourhood.

This method - which we call “reverse annealing” - allowed us to increase conver-

gence and success rates significantly. Table 5.1 shows the results of a preliminary

study we did on a 100 × 100 cellular automaton with twenty initial configurations

for each of the two-dimensional GKL rule and the two-dimensional GKL rule with

reverse annealing.

Standard 2D GKL 2D GKL with reverse annealing

Correct 65% 85%
Incorrect 15% 10%

Did not converge 20% 5%

Table 5.1: Results of a preliminary study comparing two-dimensional GKL results
respectively without and with reverse annealing

While twenty initial configurations are not statistically significant, these numbers

provide an idea of the results to be expected in a larger-scale study.

5.1.6 Non-local automaton approach

GKL and its derivative rules are effective on random initial configurations. How-

ever, they are all vulnerable to specific patterns of initial configurations where their

success rates can drop to below 50%. Here we propose a method to overcome that

vulnerability using non-local cellular automata. The key is to provide randomization

CHAPTER 5. EXAMPLES 57

somewhere in the process. In this case the neighbourhoods are chosen at random

at every step, making a result manipulation using specific initial configurations im-

possible. The rate of effectiveness of this method is always above 50%; it increases

predictably with the size of the neighbourhood chosen and the discrepancy between

black and white cells in the initial configuration.

In this method, each cell randomly chooses a constant odd-size neighbourhood

at every step; this neighbourhood determines the cell’s next state using a simple

majority rule. While non-local automata are not part of the framework described,

in this particular case they can be easily and reasonably implemented using local

automata. This is done by noticing that only a very small number of iterations is

needed before the accepting condition is reached. This number is determined by

the closeness of the densities of black and white cells, which can be related to the

automaton size in general. For example, in a 1,000-cell automaton, the most difficult

initial configuration is the one having 501 cells in one state and 499 in the other. In

a 10,000-cell automaton, this is the configuration with 5,001 cells in one state and

4,999 in the other. This means that in the first case, the difference is 2

1,000
cells while

in the second it is 2

10,000
. The good news is that for a fixed neighbourhood size of

more than 10 cells for both cases, the second automaton is expected to need only one

extra cycle before it reaches its accepting condition. Therefore the number of cycles

required for convergence can be seen as growing at most logarithmically with the size

of the automaton.

This allows simple implementation of that particular non-local automaton in a lo-

cal automaton. This implementation is done by selecting at random a neighbourhood

of size the expected number of cycles times the neighbourhood size in the non-local

CHAPTER 5. EXAMPLES 58

automaton. For example, if a non-local automaton with a neighbourhood size of 5

is expected to converge in 3 cycles, the neighbourhood size of the local automaton

should be 15. Then, using changing rules as defined in this framework (hierarchical

automata), each cell can select 5 neighbours among the 15 at every iteration. In fact

we do not even need to multiply by the expected number of cycles. A constant multi-

ple should be enough regardless of the automaton size since the discrepancy between

the numbers of black and white cells is greatly increased at each iteration, making the

task of classification much simplified after a couple of iterations. Each cell can select

its neighbours at random among a multiple of the non-local neighbourhood size at

every iteration, and some overlap between iterations after the first few cycles rarely

influences the outcome.

The key however remains in non-uniform neighbourhoods (von Neumann, Moore

and other neighbourhoods that apply to every cell cannot be used) where each cell’s

neighbourhood structure is different from the others and picked at random when

the automaton is defined. This means that while all cells have equal neighbourhood

sizes, the position of such neighbours relatively to the cells vary for each cell and are

picked randomly. Then each cell randomly chooses an odd number of neighbours that

influence its next state at every iteration, and follows a simple majority rule to decide

on that next state.

5.1.7 Rule 184

Although Land and Belew proved that a two-state cellular automaton cannot perfectly

perform the majority classification task under the all black or all white accepting

condition [22], their proof does not necessarily hold under other accepting conditions.

CHAPTER 5. EXAMPLES 59

For example, Capcarrere showed that an elementary cellular automaton (Rule 184) of

radius 1 was perfectly capable of performing that task under a different termination

condition [7]: if there are two consecutive black cells anywhere in the automaton after

n cycles - where n is the lattice size i.e. the total number of cells - then black cells

have the majority. Conversely if there are two consecutive white cells then white cells

have the majority. If none of these conditions is true (the automaton is a perfect

chequerboard) then both colours are in equal numbers. Capcarrere also showed that

under Rule 184, having both consecutive black and consecutive white cells in the

automaton after n cycles is impossible. In Figure 5.3, we show an example of several

iterations of Rule 184 leading up to its accepting condition.

Figure 5.3: 7 iterations of Rule 184 highlighting an initial majority of black cells

The key behind Rule 184’s success is that it is conservative: this means that the

numbers of black cells and white cells do not change throughout the computation;

they are merely reordered. In fact, it makes intuitive sense that non-conservative two-

state automata are incapable of performing majority classification with a constant

CHAPTER 5. EXAMPLES 60

neighbourhood size (not a function of the lattice size). The accepting condition

chosen by Capcarrere is perfectly valid; it can be easily checked by both humans and

machines. This reinforces the point we made earlier: computation is in the eye of the

beholder. Whether this simple sorting can be seen as a computation or not is only a

matter of perspective. By using human intuition to change an accepting condition, a

problem that was previously unsolvable becomes very easily solvable. This also shows

that universality and “interestingness” are two separate ideas: Rule 184 belongs to

Wolfram’s Class 1 or 2 (there is no clear taxonomy of classes), yet it still perfectly

solves a desired problem.

Fuks later extended Capcarrere’s idea to show that even under the all black or

all white accepting condition, a perfect classification is possible using a two-state

automaton [15]. The trick is to allow a rule change from Rule 184 to Rule 232 after

n
2

cycles; the automaton then converges to the desired accepting condition after no

more than n cycles. Rule 232 is a simple totalistic local majority automaton; it only

becomes effective for global majority after Rule 184 ensures that no consecutive black

or white cells exist unless they are the global majority.

We believe that a slight modification of Capcarrere’s idea can make it even more

powerful: we propose replacing the periodic boundary conditions with static boundary

conditions; a black cell to the right and a white cell to the left. Under these conditions,

Rule 184 stacks all black cells to the right of the automaton, and leaves all white cells

on the left. It can be seen as if there were a force (such as gravity) attracting all black

cells to the right. We expand on this concept in the next section to provide the first

automaton capable of performing majority classification perfectly in two dimensions.

For now however, we notice that by changing the boundary conditions only one cell

CHAPTER 5. EXAMPLES 61

(or two if the lattice size is even) needs to be checked to provide an answer to the

majority question - under Capcarrere’s approach all cells need to be checked. This

simplifies spotting the accepting condition for both humans and machines. It also

allows checking for other percentages of cell densities: it makes answering questions

such as “do black cells constitute more than 30% of the total number of cells?”

possible, while this cannot be done under periodic boundary conditions.

5.1.8 Two-dimensional perfect majority classification

After presenting his solution to the one-dimensional majority classification problem,

Capcarrere presents an open problem [7]: how can this solution be extended to two di-

mensions, and can the two-dimensional majority classification problem be completed

in O (
√

n) cycles (assuming a square shape where n is the number of cells in the

automaton)?

We devised a solution based on Rule 184 that performs in expected O (
√

n) time

given a random initial configuration. This solution, which we call the “gravity au-

tomaton” has static vertical boundary conditions and periodic horizontal boundary

conditions: the top row is all white, the bottom row is all black, and the left and

right columns are connected to each other. The gravity automaton can therefore be

seen as an upright cylinder. All cells have a uniform neighbourhood shown in Figure

5.4: it is a Moore neighbourhood of radius 1 with one additional cell immediately to

the right of the middle row (this can also be seen as a von Neumann neighbourhood

of radius 2 where three cells are not used).

CHAPTER 5. EXAMPLES 62

Figure 5.4: Representation of the neighbourhood in the gravity automaton

Transition rules

Since this a conservative cellular automaton, we explain its behaviour in terms of

particle motion where black cells are considered particles and white cells are consid-

ered free space. We believe such a description to be much more intuitive than one

describing every transition rule in detail. The reason why we call this system the

“gravity automaton” becomes more apparent with this description: The top white

row boundary condition is just additional free space above all particles, while the

bottom black row is the ground, beyond which particles cannot fall. The particles

then behave as follows:

1. If a particle has nothing under it (the cell below it is white), it simply falls by

one cell

2. If the particle has other particles immediately below it and nothing above it (it

is the top particle in a column of particles), it moves one cell to the left (the

gravity vector is not fully vertical; it leans slightly to the left)

3. If the particle has other particles immediately below it but also has particles

immediately above it (it is part of a column), it moves one cell to the right; here

CHAPTER 5. EXAMPLES 63

the particle on top of the column (the one which satisfies rule number 2) can be

seen as having with its left movement pushed all particles below it to the right.

All rules 1 to 3 are in priority sequence. This means that under rule 2, the particle

also checks if there is a particle diagonally to its top left. If so it does not move in

order to avoid a collision with that particle since it would be falling into the same

spot. The same check is done to the top right under rule 3 to avoid a collision with

rule 1. A particle satisfying the conditions of rule 3 also avoids a collision with another

cell under rule 2 by checking the cell two positions to its right; if that cell contains a

particle then it is given priority and the checking particle does not move to the right.

Figure 5.5 presents a small example illustrating these rules.

Figure 5.5: Three consecutive iterations of a small example gravity automaton. Notice
how the two rightmost particles and the top particle simply fall (following the first
rule). The top particle in the column moves to the left (rule 2), and the lower two
particles move to the right (rule 3) - there are no conflicts in the first transition. In
the second transition, the two uppermost particles in the column face a conflict (the
first one under rule 2 and the second one under rule 3) and therefore do not move.

Terminating condition

The accepting condition is reached when as many rows as needed are completely full.

Figure 5.6 illustrates this condition for the example automaton presented in Figure

CHAPTER 5. EXAMPLES 64

5.5. The behaviour of the topmost row is similar to Rule 184. Thus to solve the

majority problem, if the number of rows is even, one only needs to check if there is

any particle on the upper middle row after a certain number of iterations; if so, then

black has the majority. Otherwise, it is white or the initial numbers of black and

white cells are equal; if the latter case is a concern one can check the lower middle

row for any gaps that, if present, would confirm that white has a strict majority (if no

such gaps exist then there would be no majority). If the number of rows is odd, one

only needs to check if there are any consecutive black or white cells in the middle row.

If so, whichever colour is present in two or more consecutive cells is the colour with

the majority; there cannot be both consecutive black and consecutive white cells in

the middle row at the same time after convergence. This accepting condition can also

be easily adapted to check for thresholds other than 50% up to a O (
√

n) resolution;

changing boundary conditions or other tricks would be needed for an O (n) resolution.

Figure 5.6: Terminating condition of the example automaton reached two transitions
later

As with the one-dimensional case, we can reach an all-black or all-white terminat-

ing condition if desired by marking the middle row (private static information under

our framework) and changing the rules to propagate its majority colour across the

rest of the automaton.

CHAPTER 5. EXAMPLES 65

Analysis

By giving priority to the first rule, we ensure that particles keep falling while they

can. If they cannot, they move left and right until they find an empty spot where

they can fall. This simple strategy ensures that after a certain number of iterations,

as many bottom rows as possible are guaranteed to be filled with particles. Then

when the top row is partially full, the particles in it cannot follow the first and third

rules and as such they always follow the second rule which mimicks Rule 184 exactly

(but in the reverse direction). This means that the rules are correct and the accepting

condition is guaranteed to be reached after some number of cycles.

The question that remains to be answered is: how many cycles are needed? A large

number of practical trials with randomly-generated initial conditions and varying

concentrations of black and white cells (obtained by flipping a biased coin to decide

on the colour of each cell) has shown that the number of cycles before the accepting

condition is reached falls between
√

n and 2
√

n, and is never practically above 3
√

n.

We can explain this running time by dissecting the vertical (1) and the horizontal (2

and 3) rules individually.

All particles in a column need no more than
√

n time before they cannot fall

anymore. This is illustrated by two cases: the individual particle and the column of

particles. An individual particle in the worst case (topmost row) falls to the ground

in
√

n time. On the other hand, in a column of particles, only the lowest particle can

fall at one time. The particles above it have to wait (we are disregarding horizontal

motion for now). k successive particles take k − 1 cycles to be separated from each

other, with their number shrinking by one particle at a time (the lowest particle

separates itself from the column at each time unit). At this point, they can be seen

CHAPTER 5. EXAMPLES 66

as individual particles since they can all fall at the same time. The time for their fall

to be completed is the time required for the topmost particle to reach the top of the

column when the column is completely affixed to the ground. For a column of size k,

the top of the column is situated at k cells above the ground. Therefore, assuming the

column is initially located at the topmost position, the particle needs to fall
√

n−k+1

cells. The total running time for the fall becomes k − 1 +
√

n − k + 1 =
√

n.

In the horizontal case once the column has reached the ground, the particles

are separated from it at the rate of one to two particles per cycle (one to the left

under rule 2 and one to the right under rule 3 if it finds a gap to fall into). There

could be some conflicts slowing this movement down but generally it remains within

O (
√

n). Combining these two movements yields an O (
√

n) total running time; this is

especially the case when the initial conditions are generated at random, which means

that there are no large discrepancies in the column sizes. Even if there were such

discrepancies, this set of rules helps resolve them both while the particles are in the

air and when they touch the ground.

Special case

Although every random practical test we did on the gravity automaton terminated

in O (
√

n), we were able to artificially generate a special case where O (n) time is

required for it to reach its accepting condition. This is the case of a pyramid-like

structure - depicted in Figure 5.6 - of size (number of cells) ω (
√

n), where ω (
√

n) is

Ω (
√

n)− θ (
√

n). The pyramid itself does not need to be in the initial condition; any

structure that can lead to a pyramid structure over time is sufficient. Some examples

include an upside-down pyramid or an hourglass. A superset of these structures is

CHAPTER 5. EXAMPLES 67

the set of structures where, in a rectangle, the middle column contains the largest

number of black cells, followed by one column to its left and one column to its right

which contain one less black cell, etc; this continues until there are no black cells left

so that if all black cells in a column are stacked on top of each other in the botton of

the rectangle, a shape similar to the one depicted in Figure 5.7 is obtained.

Figure 5.7: Worst case structure for the gravity automaton

We believe this to be the only special case; however we leave finding other cases

as an exercise to the reader. In the pyramid case, particles fall one by one to the

left starting with the topmost particle, and as such a time proportional to the size

of the pyramid is required for termination. Practically, the probability of generating

such a structure with size O (n) from random initial conditions is extremely small.

However, we avoid calculating that probability because there is no clear-cut boundary

between what terminates in O (
√

n) time and what terminates in O (n) time. The

running time required to flatten any structure is relative, and depends on how much

that structure is similar to a pyramid. Exact pyramids require O (n) time, while

typical randomly-generated structures require O (
√

n) time. All other structures fall

somewhere between these two running times, depending on their degree of similarity

to exact pyramids.

CHAPTER 5. EXAMPLES 68

5.2 Convex hull

The problem of finding a two-dimensional convex hull can be described as follows:

given a set of planar points, what is the smallest convex polygon containing all of

them? This problem is illustrated by Figure 5.8. While there is a large number of

algorithms answering this question using traditional computers, no solution exists yet

using cellular automata. The two partial solutions we found in the literature take a

non-convex polygon as an input, but not a set of discrete points. This means that

the points have to be connected together before being fed into the cellular automaton

whose job is to form a convex polygon encompassing them and their connections.

Figure 5.8: Convex hull of a set of points with the elastic band analogy

One of these solutions (Figure 5.9) is given by Rosin who uses a cellular automaton

to find an approximate convex polygon containing the input concave polygon [32].

Rosin later enhances his results (while still being approximate) by adding memory

capability to his cellular automaton.

CHAPTER 5. EXAMPLES 69

Figure 5.9: Rosin’s solution to the convex hull problem [32]. (a) initial conditions,
(b) cellular automaton creating a box surrounding the initial conditions, (c) exact
solution (not reached using a cellular automaton), (d) Rosin’s one-cycle automaton
approximately solving the problem, (e) Rosin’s two-cycle (memory) automaton ap-
proximately solving the problem. These solutions suffer from being approximations
and from their requirement for connected initial conditions.

The other solution is given by Adamatzky in [3] and depicted in Figure 5.10. It

is a simple totalistic cellular automaton capable of finding an exact solution to the

45-convex hull problem given a concave polygon. The 45-convex hull is a convex hull

that is restricted to vertical, horizontal, and perfect diagonals; this means that the

angles are always a multiple of 45 degrees, and there are four possible line directions.

We will use this definition of the convex hull since it is the least ambiguous in a grid

situation such as our cellular automaton.

Intuitively, the proposed cellular automaton can find an exact convex hull for a

set of discrete, disconnected input points. It behaves like an elastic band expanded

around a set of pins (the input points) and then released to form the tightest polygon

around them, as shown in Figure 5.8. However, the band is overly elastic so before

forming the tightest convex polygon, it goes in even tighter to form a concave polygon

before it expands into the desired convex polygon.

CHAPTER 5. EXAMPLES 70

Figure 5.10: Figure taken from [3] showing 25 iterations of Adamatzky’s cellular
automaton. Notice the connectedness in the initial conditions.

CHAPTER 5. EXAMPLES 71

5.2.1 Rule description

The automaton therefore uses two stages: one for tightening the elastic band and

the other for re-expanding it. It has three states: black (2), white (0) and gray (1).

Black is reserved for points that are certainly part of the convex hull. White is the

colour of cells which are not part of the convex hull, although a cell coloured as white

can be re-coloured as black in the second stage when the convex hull expands into it.

Gray describes the points which may or may not belong to the convex hull; a decision

regarding them has not been reached yet. By the time the automaton reaches its

accepting condition, there are no gray points left.

All cells in the automaton have a Moore neighbourhood of radius 1. The boundary

conditions are static and consist of white cells.

First stage

The automaton starts with the input points in black and all other points in gray

(Figure 5.11). Then the gray area begins to tighten itself around the black points,

increasing the number of white cells surrounding it in the process (Figure 5.12).

When the rubber band reaches a black point, it is progressively straightened by

that point and prevented from shrinking (Figure 5.13). It is also prevented from

shrinking under another condition: when it risks cutting itself off, i.e. when it becomes

just a thin strip and removing any points from it would cut the connection between

the black points. Figure 5.14 shows the end of the first stage, when the rubber band

can no longer shrink.

CHAPTER 5. EXAMPLES 72

Figure 5.11: Initial state of a 100 × 100 convex hull cellular automaton shown with
four input points and the boundary conditions

Figure 5.12: State of the same automaton after 31 iterations

CHAPTER 5. EXAMPLES 73

Figure 5.13: Notice the effect of the two topmost points on the shape of the polygon

Figure 5.14: Same automaton at the end of the first stage. By now, all gray points
are guaranteed to be part of the convex hull. Notice how the rightmost black point
is being kept connected to the rest of the polygon by a thin gray strip.

CHAPTER 5. EXAMPLES 74

We will try to explain the main pseudo-totalistic rules as simply as possible. First,

we begin by defining the neighbourhood areas under consideration (Figure 5.15).

Figure 5.15: The first picture represents the top row, the middle row and the bottom
row. Under the rules below a row is considered as the sum of the states of the cells it
contains (a white cell is a 0, a gray cell is a 1 and a black cell is a 2). The second picture
shows the left column, the middle column and the right column. The third picture
represents the top left corner, the slash and the bottom right corner. Similarly the
fourth picture shows the top right corner, the backslash and the bottom left corner.
The total is the sum of the states of all cells in the neighbourhood, while the number
of non-quiescent cells is the number of gray or black cells in the neighbourhood.

In this phase, only gray cells can change their colours. Black cells remain black

and white cells remain white throughout the computation. Gray cells become white

if:

• The total is smaller than or equal to 4 and in all of the four pictures shown in

Figure 5.15 the sum of the white cells is smaller than or equal to the sum of

the highlighted cells (e.g. for the first picture the middle row is smaller or equal

to the sum of the top and bottom rows, etc.). This rule removes cells with few

neighbours (i.e. cells on the edge) while making sure that removing them does

not cause any cut-off.

• Or in any of the four pictures in Figure 5.15 one of the black clusters of cells

is greater than or equal to 4 and its opposed cluster is equal to 0 (e.g. for the

first picture the bottom row is all white while the top row has at least one black

CHAPTER 5. EXAMPLES 75

cell and two gray cells, or at least two black cells, and vice-versa). This rule

removes the cells that are just one point outside of the convex hull which would

not be removed under the rule above because they have a powerful one-sided

neighbourhood.

• Or if the total is smaller than or equal to 2 (there is only one other non-quiescent

cell in the neighbourhood and it is gray).

• Or if one of the black clusters is empty and the sum of both black clusters

corresponding to its 90-degree rotation is smaller than or equal to 1 plus the

number of black cells in the neighbourhood (e.g. for the first figure the top row

is empty and the sum of the left and right columns is smaller than or equal to 1

plus the total number of black cells in the neighbourhood). The last two rules

are both meant for the cases where the number of input points is very small

(one to three points in general); they overcome the first two rules to make sure

that the gray area is shrunk as tightly as possible around these points.

Second stage

Once the elastic band is done from tightening itself around the points according to

the rules above, the system comes to a stop until the rules are changed to allow it

to expand back into a convex polygon. The second set of rules is very simple and is

based on [3]:

• A gray cell always becomes black. Therefore, after the first cycle of the second

stage there are no more gray cells.

• A white cell becomes black only if:

CHAPTER 5. EXAMPLES 76

– The sum of its neighbourhood is larger than 6, which means that it has

four or more black neighbours; this rule is the one described by Adamatzky

in [3]

– The sum of its neighbourhood is equal to 6 but it is made of a cornerless

“L” shape on any of the four corners (Figure 5.16); considering 90-degree

rotations and mirroring, there are eight possible such shapes. This rule

was added to overcome the special case where the first stage leaves some

30-degree lines in the system, which the first rule is incapable of handling.

Figure 5.16: The special case and the cornerless L shape neighbourhood

These rules are enough to perfectly expand the concave polygon into a 45-convex

hull, as shown in Figure 5.17. Figure 5.18 shows another example with more points

at the end of the first stage and at the accepting condition.

CHAPTER 5. EXAMPLES 77

Figure 5.17: The 45-convex hull reached from the initial conditions in Figure 5.11

Figure 5.18: End of the first and second stages for an example where not all points
belong on the convex hull

CHAPTER 5. EXAMPLES 78

5.2.2 Analysis

One question that remains to be answered is: when should the rules change from those

of the first stage to those of the second stage? Our practical trials have shown that

the first stage is always completed before 2.5
√

n cycles. This reflects our theoretical

results too: the first stage can be seen as consisting of two parts:

1. The elastic band shrinking uniformly throughout (with an octagon shape)

2. The elastic band straightening after having touched one of the points

The first part takes 1.5
√

n cycles; this can be seen by having empty initial conditions

(no points on the convex hull) and checking how long it takes for all the gray area

to disappear, i.e. for the octagon to shrink to the middle of the automaton from all

eight sides. It takes
√

n

2
cycles for the octagon to be created (for the message to reach

the middle of the automaton from opposing corners) then
√

n cycles for the octagon

to shrink to the middle of the automaton since it moves by one cell every two cycles.

In the event where there are many points and they are all located on one side of the

automaton (in one quadrant, or two consecutive quadrants), the first part can take

longer since the octagon needs to shrink past the centre of the automaton; however,

these extra cycles are subtracted from the second part since this means that the shape

is small enough that straightening takes much less time than the maximum.

The second part clearly takes at most
√

n time since the straightening message is

sent at the pace of one cell per cycle, and vertically, horizontally and diagonally there

are at most
√

n cells between the farthest points.

This means that the rules can be changed after 2.5
√

n cycles according to hier-

archical cellular automata as proposed in our framework. The second stage has a

CHAPTER 5. EXAMPLES 79

√
n running time for the same reason as the second part of the first cycle. There-

fore, the overall running time of the system is in O (
√

n). We believe this to be

optimal for the problem as described (each cell represents a point in the euclidean

plane) since one could always have points on opposite corners of the automaton and

some communication between them would be needed; although the rules do not ex-

plicitly show communication between the points (since they are not in each other’s

neighbourhoods), such communication is essential and is at the centre of emergent

behaviour.

For the sake of comparison, the lower bound for the running time of a sequential

computer solving the convex hull for m planar points is known to be Ω (m log m).

Several optimal algorithms achieving this lower bound are known; for example, Gra-

ham’s scan computes the convex hull of m planar points in O (m log m). In parallel,

a constant O (1) running time can be achieved on a concurrent-read concurrent-write

PRAM with O (m2) processors. [4]

This solution is faster than its sequential counterpart when the number of input

points is Ω (
√

n). Although it cannot achieve a constant running time (due to the

locality of rules), it can perform better than the best-known parallel solution (with

performance defined as the product of the running time with the number of processors)

when the number of input points is Ω
(

n
3

4

)

. Despite these encouraging performance

characteristics, we do not believe that the convex hull problem is the perfect example

of a problem to be solved using cellular automata; it can be easily solved sequentially

and using other parallel methods, and is certainly not optimized for local behaviour.

However, we provided it as an example to show that our framework greatly simplifies

the design of difficult cellular automata and that cellular automata are capable of

CHAPTER 5. EXAMPLES 80

solving problems requiring global behaviour, sometimes even competitively with other

methods.

5.3 Sensor positioning

Of the three solutions studied in this chapter, sensor positioning is the one with

the most practical utility. Wireless sensor networks are systems consisting of a large

number of miniaturized sensor nodes deployed to operate autonomously in unattended

environments. They probe their surroundings and send the collected data to an access

point either directly or through a multi-hop path. Wireless sensor networks have many

applications including forest monitoring, disaster management, space exploration,

factory automation, border protection and battlefield surveillance. [41]

Geometrical positioning of sensors (nodes) in sensor networks is an important

research area whose aim is to optimize one or more design variables such as coverage,

connectivity and energy consumption (see [8] and [41] for surveys of node placement

strategies and algorithms). While the communication methods and protocols of the

sensors can have an important impact on these variables, we will only deal here with

sensor positions for simplicity reasons, keeping in mind that any other constraints can

be added later to the resulting system. Coverage is a Quality of Service (QoS) problem

whose goal is to minimize the part of the desired monitored area that is not covered

by any sensor node. In other words, the coverage problem is optimally solved when

every part of the area that we need to monitor is covered by at least one sensor node.

Connectivity is another QoS problem aiming to make sure that every sensor node

is connected either directly or indirectly (through other sensor nodes) to an access

point; the information collected by the sensors is useless if it cannot be transmitted

CHAPTER 5. EXAMPLES 81

back. Sensors are generally battery-operated; energy consumption is therefore a key

performance metric because it determines the lifetime (and replacement cycle) of the

sensors. Energy consumption should be minimized in order to minimize the frequency

of sensor replacements.

Like some of the algorithms described in [8] and [41], we aim to optimize all three

key performance metrics: coverage, connectivity and energy consumption. Energy

consumption can be greatly reduced by having simple components with exclusively

local decisions. It can also be seen to be inversely proportional to the node sparsity

[8]; this means that we should aim to achieve the best balance between maximum

coverage and connectivity and a minimal number of nodes.

The simplicity and locality of nodes in sensor networks bears a striking similarity

to that of cells in cellular automata. We have therefore elected to simulate simple

sensor node positioning rules on a cellular automaton.

5.3.1 System description

RS and RC are two widely-used characteristics of nodes in wireless sensor networks.

RS is the sensing radius; it defines the maximum distance that a point can be from

a sensor while still being covered by that sensor. RC is the communication radius,

which is the maximum distance two sensors can be from each other while still being

able to communicate. We will only consider RS ≤ RC ≤ 2RS. This makes sense

according to our objectives: if RC ≤ RS then RS needs not be as large as it is since

the necessity of connectivity guarantees that there are several sensors covering the

same area (redundancy may be useful in some cases but it contradicts our sparsity

requirement). On the other hand, if RC ≥ 2RS then RC should be reduced because

CHAPTER 5. EXAMPLES 82

the need for coverage ensures that sensors are within 2RS of each other.

We simulate our wireless sensor network on a two-dimensional cellular automaton:

space is therefore discretized. However, this is not perceived as a problem or limi-

tation since many existing mathemcatical models of sensor networks also deal with

discretized space. In our model, a cell in state 0 does not contain a sensor (but still

needs to be monitored by a sensor). A cell in state 1 is an access point and a cell

in state 2 is a sensor node. For our purposes, both access points and sensor nodes

can monitor their environment and they have the same sensing and communication

radii. The difference between them is that access points are capable of communicat-

ing directly with the external observer (through wired or additional powerful wireless

connections); this means that access points need to be wired somehow even in the

case of additional wireless connections (in this case they would be plugged into some

power source because of the large power consumption). Therefore, the other differ-

ence between access points and sensor nodes is that access point positions are fixed

while sensor nodes are mobile.

The mobility of the sensor nodes classifies our system as a dynamic positioning

system, as opposed to a static positioning system where the sensors are assigned to

fixed positions upon deployment. Sensing and communication radii are assimilated

to the Moore neighbourhood radius of the cellular automaton; a direct implication

of this fact is that sensing and communication radii are of constant size relatively to

the size of the system. Since RC ≤ 2RS, our transition rules need only focus on the

communication radius; this is the case because under this restriction, the fact that

two nodes can communicate means that they are collectively fully monitoring the

area between them.

CHAPTER 5. EXAMPLES 83

5.3.2 Transition rules

The nodes behave according to very simple even-odd (described in Section 4.2.2)

probabilistic rules (Section 4.2.3). Therefore, the automaton can be seen as being in

a cycle of two steps: nodes decide where they want to move in the first step, while

they actually make that movement in the second. This division simplifies the design

because the choice of where to move is partially probabilistic. As mentioned earlier,

the goal of that movement is to maximize coverage, communication and sparsity.

Even cycles

The first step is when the nodes announce their intention to move. The decision to

move is made very simply; it is a random decision based on the number of other nodes

in a sensor’s neighbourhood weighed by the distance of these nodes from the sensor.

For example, for a neighbourhood of size 4 every sensor node calculates a number k

as follows:

k = 4N1 + 3N2 + 2N3 + 1N4

In this formula N1 is the number of nodes within a distance of 1 cell from the

sensor in question, N2 the number of nodes within a distance of 2 cells, etc.

k is then used to determine the probability of moving:

• For k = 0 or k ≥ 9 the node has a 50% chance of moving

• For k = 1 or 7 ≤ k ≤ 8 the node has a 37.5% chance of moving

• For k = 2 or 5 ≤ k ≤ 6 the node has a 25% chance of moving

CHAPTER 5. EXAMPLES 84

• For 3 ≤ k ≤ 4 the node has a 12.5% chance of moving

These numbers are not cast in stone; however, they have worked well in our practical

experiments. They are meant to give a greater incentive for a node to move when

it has too few or too many neighbours. The assumption is that a node that has too

few neighbours is potentially isolated (incapable of reaching an access point either

directly or indirectly) is therefore encouraged to move for the sake of connectedness.

On the other hand, a node that has too many neighbours is not needed at its current

location (while being probably needed somewhere else) and is hence encouraged to

move for the sake of sparsity. Note that chances of moving are kept at or below 50%

to provide some stability to the system.

The question that remains to be answered is: “where does a node move?” Once it

has taken the decision to move, a sensor chooses at random one of its eight immediate

neighbouring cells while following two conditions:

• The chosen neighbouring cell must be empty

• The chosen neighbouring cell must also be outside the reach of all other nodes

(conflicts are resolved by simply preventing them from occuring in the first

place)

The sensor then points to the cell it has randomly chosen by changing its state to a

number from 3 to 10 reflecting the chosen direction. If on the other hand it decides

not to move, it remains in state 2.

Odd cycles

The rules for odd cycles are very simple:

CHAPTER 5. EXAMPLES 85

• A cell in state 1 or 2 does not change its state

• A cell in state 0 changes its state to 2 only if there is a cell in its immediate

neighbourhood pointing in its direction (having the right state number greater

or equal to 3)

• A cell in any of the states 3 to 10 changes its state to 0

Thus, the moves designated in the previous cycle would be complete. The cycle then

repeats itself.

5.3.3 Testing

This algorithm assumes that the “right” number of sensors is deployed in the first

place. Too few sensors cause coverage and connectivity issues, while too many sensors

cause a waste of resources and energy (violating the sparsity requirement). But what

is that number?

The good news is that ideal placement (with the minimal number of sensors) is

possible given RC and RS. The problem with such placement is that it is static and

extremely vulnerable to any minor position change or sensor failure. However, we

can use the ideal placement as a benchmark against which to compare our placement

algorithm. Taking RC = RS = 3, the ideal placement (shown in Figure 5.19) for a

cellular automaton with periodic boundaries requires one sensor for every 18 cells.

Starting from 10,000

18
≃ 556 we performed several tests on a cellular automaton

with varying parameters. The average results of these tests are given in Table 5.2.

From these tests, we see that deploying 50% more sensors than the minimum

yields excellent results with no disconnections and almost complete coverage (Figure

CHAPTER 5. EXAMPLES 86

Figure 5.19: Ideal static placement of sensors for a small cellular automaton with
periodic boundaries and RC = RS = 3

Number of sensors
(as a multiple of the minimum)

RS RC
uncovered

area
disconnected

sensors

1.1 3 3 2% 3.1%
1.1 3 4 2% 0.2%
1.3 3 4 1% 0%
1.5 3 4 0.3% 0%
2.0 3 4 0.05% 0%

Table 5.2: Performance of the proposed algorithm under various parameters

5.20). Note that in our system the area covered changes between cycles (the num-

bers displayed in Table 5.2 are average values in any given cycle). Thus, the small

areas missed by sensors in one cycle are covered in subsequent cycles, unlike with

static placement algorithms. We also notice that a communication radius slightly

larger than the sensing radius dramatically reduces disconnection rates. However, a

significantly larger communication radius is not necessary since the large number of

deployed sensors (for coverage purposes) would prevent it from having any effect.

CHAPTER 5. EXAMPLES 87

Figure 5.20: Initial and desired states of an automaton with 10,000 cells and 729
sensors. Note that despite the simplicity of the rules, the emergent behaviour is
clear: it strives for sparsity while maintaining coverage and connectivity. Regardless
of the initial state, the desired state is always reached and it looks roughly the same.

5.3.4 Analysis

We have shown how our system can achieve its objectives of maximizing coverage

and connectivity while aiming for sparsity, provided the right number of sensors is

initially deployed. We have also shown how we can quickly estimate that number.

What remains is an analysis of the other benefits and side effects of this algorithm.

We will base this analysis on the open problems described in [8], and show how we

can solve many of them.

Sensors with irregular sensing or communication ranges

Since our transition rules are simply based on the number of other sensors every

individual node can locally see within its communication range, this problem is in-

herently taken care of. Sensors with irregular sensing and communication ranges can

CHAPTER 5. EXAMPLES 88

be simulated in cellular automata using non-uniform automata (described in Section

4.2.6 as part of our proposed framework).

Coverage solutions for mobile sensor networks

Mobility is at the core of the presented system. It enables desired initial positioning as

well as fault tolerance when changes in the environment (or problems with individual

sensors) cause reduced coverage or connectivity. In fact, fault tolerance is presented

as a separate open problem in [8]; in our case, it is simply a consequence of mobility

and the simplicity of transition rules.

Other energy conservation methods

Chen and Koutsoukos propose communication range reduction as an example measure

aimed at energy conservation; while this measure is not part of our system, it can

be easily accomodated by locally adjusting the communication range probabilistically

depending on the number of other nodes in that range.

It is worth mentioning here that energy conservation seems to be the only poten-

tial major weakness of our system: constant movement significantly contributes to

depleting node batteries. Our proposed solution to this problem resides in repeated

cycles of simulated annealing: the probability of movement is decreased with time

(for example 50% becomes 10% and 12.5% becomes 2.5%) in order to keep the sen-

sors in place after they have found good positions. However, to maintain the fault

tolerance benefits sensors should be given the chance to move again after potential

changes in their environment have occured; this is accommodated by briefly raising

the probability of movement periodically, and then decreasing it again.

CHAPTER 5. EXAMPLES 89

This raises another issue: our algorithm needs an adequate number of nodes in

order to function as desired; what happens when some nodes die (when their batteries

are depleted for example)? We propose measuring the average node lifetime, and

periodically deploying additional nodes. For example if 100 nodes are needed and

the average node lifetime is of 10 years, 10 nodes should be deployed every year after

the initial deployment. If the nodes are inexpensive and unintrusive, they can just

die in-situ when their batteries are depleted; if this is not the case, being mobile the

nodes can be instructed to move to a charging station when their battery levels reach

critical values.

Chapter 6

Concluding thoughts

We have presented a framework conceived to simplify the process of designing complex

cellular automata. It is not designed to replace the existing manual and automated

methods we described in Chapter 3. Rather, it is meant to complete them and we

have shown how allowing for human intuition can move problems such as the majority

classification problem from unsolvable to easily and perfectly solvable. On the other

hand, the greatest difficulty we had in designing the perfect majority classification

solver was in making sure that the details of the rules match the required particle-like

behaviour. We described the rules in terms of particles; however, actual low-level

cellular automata rules are more complicated; for a particle to move from one spot to

the other, two rules are needed: one to make it disappear from the first spot and the

other to make it appear in the second spot. This is where using particle-based high-

level manual design methods such as the one described in [38] would have helped

us complete our task more efficiently. Genetic programming could have also been

used to help in the design of rules that overcome some of the special cases reached in

solving the convex hull problem. We did not use these approaches because although

90

CHAPTER 6. CONCLUDING THOUGHTS 91

described theoretically in the literature, they are not formulated in a readily-usable

software framework.

In addition to providing the initial framework and solving two open problems

using it, we tried to answer some more general questions regarding cellular automata.

For example, we showed that computation or emergent behaviour is only a matter

of perspective. We also showed that universality and computation are two separate

concepts; in fact, simple non-universal automata can be “interesting” and can perform

computations perfectly. Finally, we showed that human intuition still plays a central

part in the design of cellular automata.

We believe that there are three directions for future work based on this thesis:

1. Further developing the proposed theoretical framework by adding language el-

ements and expanding or detailing existing elements

2. Designing solutions for difficult problems in various fields using cellular au-

tomata in general and this framework in particular

3. Devising a suitable cellular automata hardware implementation that takes the

framework into consideration and easily enables porting a wide variety of prob-

lems from it.

Regarding this last point, we propose the chaotic computer described by Munakata

et al. [30] as a starting point. Its ability to instantly “change the rules” (by using

a parameter that defines logic gate behaviour) closely matches our framework and

allows the implementation of large systems using a significantly smaller number of

elements.

CHAPTER 6. CONCLUDING THOUGHTS 92

Finally, no treatment of cellular automata is complete without some broader philo-

sophical questions: is the universe a giant cellular automaton? We believe that any-

thing can be seen as a cellular automaton provided a large enough neighbourhood

and set of states (which may defeat the purpose); in fact, this stems directly from

our belief in the laws of physics and cause and effect: any event occuring at time t

is a direct consequence of one or more events or conditions at times prior to time t -

a perfect description of transition rules in cellular automata. This also brings about

the question of whether the universe operates in discrete or continuous time; we are

in no position to answer this question but we can point out that some adaptations

of cellular automata behaving in continuous time have been designed, and are able

to cover that concern. We have shown that a large variety of behaviours (memory,

probability, changing rules, etc.) can all be implemented using standard cellular au-

tomata given enough states and connections. Given this information, we believe that

a cellular automaton with real-valued (infinite) states - as described by Rucker in [33],

a large (inifinite?) number of cells and a large (infinite?) number of connections, as

well as a fine-grained (continuous?) update time would have no problem in simulating

the universe.

Bibliography

[1] Wikipedia: Garden of eden pattern. Available at http://en.wikipedia.org/

wiki/Garden_of_Eden_pattern.

[2] Andrew Adamatzky. Identification of Cellular Automata. Taylor and Francis,

London, Bristol, 1994.

[3] Andrew Adamatzky. Automatic programming of cellular automata: identifica-

tion approach. Kybernetes: The International Journal of Systems & Cybernetics,

26(2):126–135, 1997.

[4] Selim G. Akl. Parallel computation: models and methods. Prentice-Hall, Inc.,

Upper Saddle River, NJ, USA, 1997.

[5] Selim G. Akl. Three counterexamples to dispel the myth of the universal com-

puter. Parallel Processing Letters, 16(3):381–403, September 2006.

[6] David Andre, Forrest H. Bennett III, and John R. Koza. Evolution of intricate

long-distance communication signals in cellular automata using genetic program-

ming. In Artificial Life V: Proceedings of the Fifth International Workshop on

the Synthesis and Simulation of Living Systems, Cambridge, MA, 1996. The MIT

Press.

93

BIBLIOGRAPHY 94

[7] Mathieu Capcarrere. Cellular Automata and other Cellular Systems: Design &

Evolution. PhD dissertation, Swiss Federal Institute of Technology Lausanne,

March 2002.

[8] Jie Chen and Xenofon Koutsoukos. Survey on coverage problems in wireless ad

hoc sensor networks. In IEEE SouthEastCon, Richmond, VA, March 2007.

[9] Matthew Cook. Universality in elementary cellular automata. Complex Systems,

15(1):1–40, 2004.

[10] James P. Crutchfield and James E. Hanson. Turbulent pattern bases for cellular

automata. Physica D, 69(3/4):279, 1993.

[11] Sina Dengler. Multiple populations: A game of life variation. Queen’s University

Undergraduate Thesis, April 2007.

[12] David Elizondo. The linear separability problem: Some testing methods. IEEE

Transactions on Neural Networks, 17(2):330–344, March 2006.

[13] Kent Fenwick. Exploring the world of simple systems : From the game of life to

real life. Queen’s University Undergraduate Thesis, April 2007.

[14] Edward Fredkin and Tommaso Toffoli. Conservative logic. In Collision-based

computing, pages 47–81. Springer-Verlag, London, UK, 2002.

[15] Henryk Fuks. Solution of the density classification problem with two cellular

automata rules. Physical Review E, 55:2081R, 1997.

BIBLIOGRAPHY 95

[16] Peter Gacs, Georgii L. Kurdyumov, and Leonid A. Levin. One-dimensional

homogenuous media dissolving finite islands. Problems of Information Trans-

mission, 14(3):92–96, 1978.

[17] Max Garzon. Models of massive parallelism: analysis of cellular automata and

neural networks. Springer-Verlag, London, UK, 1995.

[18] Howard A. Gutowitz and Chris G. Langton. Methods for designing cellular

automata with ”interesting” behavior. Available at www.santafe.edu/~hag/

interesting/interesting.html, 1988.

[19] Andrew Ilachinski. Cellular Automata: A Discrete Universe. World Scientific

Publishing Company, 2001.

[20] Jarkko Kari. Theory of cellular automata: a survey. Theoretical Computer

Science, 334(1-3):3–33, 2005.

[21] Ben Krose and Patrick van der Smagt. An introduction to Neural Networks. The

University of Amsterdam, eighth edition, November 1996.

[22] Mark Land and Richard K. Belew. No perfect two-state cellular automata for

density classification exists. Physical Review Letters, 74(25):5148–5150, Jun

1995.

[23] Chris G. Langton. Computation at the edge of chaos: phase transitions and

emergent computation. In CNLS ’89: Proceedings of the ninth annual interna-

tional conference of the Center for Nonlinear Studies on Self-organizing, Collec-

tive, and Cooperative Phenomena in Natural and Artificial Computing Networks

BIBLIOGRAPHY 96

on Emergent computation, pages 12–37, Amsterdam, The Netherlands, 1990.

North-Holland Publishing Co.

[24] Craig. S. Lent and Paul D. Tougaw. A device architecture for computing with

quantum dots. Proceedings of the IEEE, 85(4):541–557, 1997.

[25] Wentian Li. Phenomenology of nonlocal cellular automata. Journal of Statistical

Physics, 68(5/6):829, 1992.

[26] Norman Margolus. Cam-8: a computer architecture based on cellular automata.

In Pattern Formation and Lattice-Gas Automata. American Mathematical Soci-

ety, 1994.

[27] Marvin L. Minsky and Seymour A. Papert. Perceptrons: expanded edition. MIT

Press, Cambridge, MA, USA, 1988.

[28] Melanie Mitchell. Computation in cellular automata: A selected review. In Non-

Standard Computation. John Wiley & Sons, Inc., New York, NY, USA, 1997.

[29] Melanie Mitchell, James P. Crutchfield, and Peter T. Hraber. Dynamics, com-

putation, and the ”edge of chaos”: a re-examination. pages 497–513, 1999.

[30] Toshinori Munakata, Sudeshna Sinha, and William L. Ditto. Chaos comput-

ing: implementation of fundamental logical gates by chaotic elements. IEEE

Transactions on Circuits and Systems I: Fundamental Theory and Applications,

49(11):1629–1633, November 2002.

[31] Jean-Yves Perrier, Moshe Sipper, and Jacques Zahnd. Toward a viable, self-

reproducing universal computer. Physica D, 97(4):335–352, 1996.

BIBLIOGRAPHY 97

[32] Paul L. Rosin. Training cellular automata for image processing. IEEE Transac-

tions on Image Processing, 15(7):2076–2087, 2006.

[33] Rudy Rucker. The Lifebox, the Seashell, and the Soul: What Gnarly Computation

Taught Me About Ultimate Reality, the Meaning of Life, and How to Be Happy.

Thunder’s Mouth Press, 2006.

[34] Moshe Sipper. Evolution of Parallel Cellular Machines: The Cellular Program-

ming Approach. Springer-Verlag, 1997.

[35] Klaus Sutner. Computing in cellular automata. Lecture given as part of the Com-

putational Discrete Mathematics course at Carnegie Mellon University, 2007.

[36] Tommaso Toffoli. Occam, turing, von neumann, jaynes: How much can you get

for how little? (a conceptual introduction to cellular automata). In Proceedings

of the International conference on Cellular Automata for Research and Industry,

Rende, Italy, September 1994.

[37] Sami Torbey and Selim G. Akl. Towards a framework for high-level manual

programming of cellular automata. In 13th International Workshop on Cellular

Automata, Toronto, Canada, August 2007. The Fields Institute.

[38] Heather Turner, Susan Stepney, and Fiona Polack. Rule migration: Exploring

a design framework for emergence. International Journal of Unconventional

Computing, 3(1):49–66, 2007.

[39] Stephen Wolfram. A New Kind of Science. Wolfram Media, January 2002.

BIBLIOGRAPHY 98

[40] Dietmar Wolz and Pedro P.B. de Oliveira. Very effective evolutionary techniques

for searching cellular automata rule spaces. To appear in the Journal of Cellular

Automata, 2008.

[41] Mohamed Younis and Kemal Akkaya. Strategies and techniques for node place-

ment in wireless sensor networks: A survey. In Elsevier Ad Hoc Network Journal

(to appear).

[42] Konrad Zuse. Rechnender Raum (Calculating Space). Friedrich Vieweg & Sohn,

Braunschweig, Deutschland, 1969.

