
 

 

Abstract 

Autonomous systems have the potential to provide 
great benefit to society. However, they also pose 
problems for safety assurance, whether fully auton-
omous or remotely operated (semi-autonomous). 
This paper discusses the challenges of safety assur-
ance of autonomous systems and proposes a novel 
framework for safety assurance that, inter alia, uses 
machine learning to provide evidence for a system 
safety case and thus enables the safety case to be up-
dated dynamically as system behaviour evolves.  

1 Introduction 

This paper addresses the safety of autonomous systems (AS). 
It is intended to cover the spectrum from those that are semi-
autonomous (remotely controlled or operated) through to 
those that operate largely free of human oversight.  Often AS 
use artificial intelligence (AI), including machine learning 
(ML), as a key implementation mechanism. The paper relates 
to the System Assurance and Certification and the AI Safety 
Foundations focus areas of the AI Safety Landscape. It pro-
poses a novel safety assurance framework. 

1.1 Spectrum of Autonomy 

In the authors’ view AS are best thought of as systems where 
decisions that would otherwise have been taken by humans 
are allocated to machines. In practice, many systems have 
‘shared autonomy’ where operators can monitor and poten-
tially over-ride the system’s decisions and actions. Often the 
function (decision) allocation between humans and AS can 
vary over time. In some sectors, e.g. automotive, the spec-
trum is codified into ‘levels’ of autonomy. However, diverse 
sectors use different definitions of levels, so we choose here 
just to refer to a spectrum; ultimately our proposed frame-
work is intended to address the whole spectrum of autonomy.  

1.2 Scope and Ambition  

Producing a complete framework for assuring AS, or even the 
AI elements of such systems, is a major endeavour. The scope 
in this paper is more limited and we address: 
• Some of the challenges of use of AI and ML in AS, 

particularly focusing on training and testing; 

• Some of the challenges of analysing shared autonomy. 
These issues underpin the proposed framework; they are il-
lustrated in section 2 which considers some AS accidents. 

AS used in safety-related situations should be subject to 
safety processes. Previous analysis of quantitative risk anal-
ysis (QRA) [Rae et al 2014] identified limitations of classical 
safety processes, many of which are relevant to AS. Section 
3 draws out key issues, considering the impact on both assur-
ance and regulation. It also reviews the literature on AI safety 
seeking to show a correlation with the QRA limitations. 

Section 4 outlines the top-level of the framework and iden-
tifies some of the work that will underpin (flesh out) the 
framework. The framework seeks to address some of the lim-
itations in safety processes identified in the analysis of QRA.  
The major novelty of the framework is that it includes the use 
of ML in safety assessment as well as its role in the AS itself.  

As the framework is new, it has not yet been applied to an 
AS. However, a related framework, which has informed our 
ideas, has been applied in complex healthcare settings, see 
Section 5. Using such an example also shows how the frame-
work might be used for AI safety more generally, not just for 
safety of AS. 

Sections 6 discusses related work and future plans; Section 
7 presents conclusions.  

The paper considers some apparently disparate concepts. 
The ambition is to draw these concepts together to propose a 
framework that can address the wide range of factors that in-
fluence safety and assurance of AS, not just AI. As the ideas 
are evolving the paper shows a ‘direction of travel’, not a fin-
ished product; it is hoped that this will help stimulate debate.  

2 Motivating Examples 

Examples are presented which illustrate the problems of the 
use of AI/ML, and shared autonomy, respectively. The intent 
is primarily to identify the issues that need to be addressed in 
producing a safety assurance framework for AS.  

2.1 Autonomous Road Vehicles 

There have been several fatal accidents with autonomous 
road vehicles (AVs). We consider two accidents which can 
be viewed as illustrating some of the issues with AI and ML 
(as image analysis necessarily uses ML), although this is not 
fully covered in the accident reports. 
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A fatal accident occurred in May 2016 when a Tesla on 
autopilot impacted a truck (semi-trailer) near Williston Flor-
ida. The NTSB’s analysis of probable cause refers to the 
driver of the truck failing to yield, and to the Tesla driver’s 
‘inattention due to over-reliance on vehicle automation’ 
[NTSB 2017]. However, the report also says: ‘the Tesla’s au-
tomated vehicle control system was not designed to, and did 
not, identify the truck crossing the car’s path or recognize the 
impending crash’; if it had recognised the obstacle in its path 
the Tesla could have applied emergency braking. This shows 
the challenge of training and testing image analysis systems 
for operation in an open environment but doesn’t give any 
specific information on the issues for the ML processes.   

The NTSB preliminary report on the Uber accident in 
Tempe Arizona in March 2018 [NTSB 2018] gives a more 
detailed account of the events leading to the accident than is 
present in the Tesla analysis. The pedestrian was first ob-
served about 6 seconds prior to the accident. The report says: 
‘the self-driving system software classified the pedestrian as 
an unknown object, as a vehicle, and then as a bicycle with 
varying expectations of future travel path. At 1.3 seconds be-
fore impact, the self-driving system determined that an emer-
gency braking maneuver [sic] was needed’. The Uber system 
relied on the driver for emergency braking and was not in-
tended to initiate an emergency stop. 

This example illustrates more fully the problems for ML: 
how to reliably detect and classify objects in the environment 
whilst avoiding ‘false alerts’ that would prevent expeditious 
progress? It also illustrates the shared autonomy problem, but 
this is shown more fully below.  

2.2 Unmanned Air Systems 

The United Kingdom (UK) Army uses an Unmanned Air 
System (UAS) known as Watchkeeper (WK) for reconnais-
sance. WK is operated and supported by a ground crew at a 
Ground Control Station (GCS) but some functions are auton-
omous, e.g. the ability to execute a go-around (rather than 
landing). WK does not use AI or ML but it is a good example 
of the shared autonomy problem.  

WK has suffered five accidents to date; a far higher loss 
rate than the safety analysis predicted [Wilby 2019]. The UK 
Defence Safety Authority (DSA) report on the fourth WK 
crash [DSA 2019] draws out three ‘themes’ from all five ac-
cidents (the fifth is still being investigated but the DSA has 
visibility of the investigation). The themes highlighted are: 

1. The incomplete understanding of the full system, and 
how sub-systems integrate; 

2. The need to improve collection and analysis of data; 
3. Ground crew and engineer workload. 

For example, in the third area, the report cites the high rate of 
warnings, cautions and advisory (WCA) notifications creat-
ing a high workload. Further, the ground crew rely on their 
collective knowledge to understand the situation and how to 
respond, e.g. to interpret WCAs rather than referring to doc-
umentation (paper or electronic). Thus, based on our reading 
of the reports and from discussions with the manufacturers 
[Wilby 2019], we propose the abstract model of accident cau-
sation set out in Figure 1. 

Figure 1. Abstract Model of WK Accident Causation 

 

The design model used, including for safety analysis, was 
not an accurate predictor of the actual behaviour of the sys-
tem (in its operational environment). The ground crew train-
ing and documentation did not help them to understand the 
actual system behaviour, including WCAs. Finally, workload 
had a significant impact on the operators’ ability to observe 
the state of the system and to control it. There is a dissonance 
between the three sub-models in Figure 1 which is redolent 
of the distinctions made between ‘work as imagined’ and 
‘work as done’ [Hollnagel et al 2006]. This dissonance is only 
likely to get worse for systems that learn in operation. 

3 Safety and Assurance Challenges for AS 

By assurance we mean justified confidence or certainty in a 
system’s capabilities, including its safety. The motiving ex-
amples have given some practical illustrations of why assur-
ing safety of AS is challenging. This section considers these 
challenges more systematically drawing together three differ-
ent perspectives. First, it considers ‘classical’ safety pro-
cesses, but focusing on their limitations. Second, it considers 
the ‘AI perspective’ on safety. Third, it presents a perspective 
on assurance challenges from a programme addressing assur-
ance and regulation of AS, including their use of AI/ML.  

3.1 Safety Processes and their Limitations 

The principles of classical safety processes apply to AS. It is 
necessary to identify hazards, to assess (safety) risks associ-
ated with the AS, and to change the design (or operational 
profile) if the risks are too high, in order to make the system 
acceptably safe. In this paper we assume that the safety pro-
cess results in the production of a safety case – a justification 
(or argument), supported by evidence, that the system is safe 
to operate in its intended context of use. 

A systematic review of Quantitative Risk Analysis (QRA) 
[Rae et al 2014] showed that the quantitative results are nor-
mally not accurate. Safety analysis is not just quantitative, but 
the problems identified affect the validity of all aspects of 
safety analysis, whether or not the results are quantified [Rae 
et al 2014]. The paper proposed a five-level hierarchy for im-
proving QRA, which is also relevant to AS: 

1. Unrepeatable, e.g. analysis relies on undocumented 
assumptions; 

2. Invalid, e.g. for WK, design models were not accurate 
predictors of operational behaviour; 



 

 

3. Valid but inaccurate, e.g. inadequate treatment of un-
certainty such as in object classification; 

4. Accurate but challengeable, e.g. insufficient scientific 
knowledge for parts of the analysis (this is likely to be 
a particular issue for AS using ML); 

5. Ideal (which the paper views as unattainable). 
The intention is that flaws at level 1 need to be corrected 

before a safety analysis can move to level 2, and so on. Flaws 
identified in [Rae et al 2014] are referred to here as §x.y 
meaning flaw y at level x, e.g. §2.3 is ‘mismatch between the 
risk assessment and reality’ – a key point drawn out in our 
motivating WK example. The level 4 flaws are of particular 
relevance to AS – in general we do not have a good scientific 
basis for safety assessment of ML. [Rae et al 2014] identify 
other flaws that motivate our framework, and we discuss 
some of these in Section 4.  

3.2 Challenges of AI Safety 

The AI community have recently produced a number of pa-
pers on the problems of ‘AI safety’ e.g. [Domingos 2012], 
[Feige 2019]. It should be noted here that there is a disso-
nance between the use of the term ‘safety’ in the AI and safety 
engineering communities. The latter focus on injury or death 
to humans; the former takes a wider definition that encom-
passes robustness, privacy and security, and they tend to fo-
cus more on mechanisms for producing ‘unsafe’ results 
whereas safety engineers are more concerned about effects. 
Fortunately, these different perspectives are complementary 
and safety engineers can usefully consider ‘AI safety’ con-
cerns as potential causes of a hazard. 

One of the more influential papers [Amodei et al 2016] 
identifies ‘concrete problems in AI’. The paper is largely fo-
cused on reinforcement learning; the problems they identify 
can be rephrased as follows, to make them more general: 

1. Avoiding negative side effects – ensuring that the be-
haviour meets safety constraints; 

2. Avoiding reward hacking – ensuring that the behav-
iour doesn’t get a high reward by ‘cheating’ and thus 
avoiding the benefit that was sought; 

3. Scalable oversight – this concerns the ability of the 
human to interact with the system both to monitor it, 
and to respond to requests for confirmation of deci-
sions prior to actions being taken; 

4. Safe exploration – if the system can try out new things 
(new strategies) how can negative outcomes be 
avoided if these are circumstances that have not been 
considered hitherto; 

5. Robustness to distributional shift – how the system 
adapts to changes in the operational environment. 

Problem 3 arises for WK even though it does not use AI. 
The two AV accidents illustrate both problems 1 and 3 (alt-
hough there are issues of psychology here too). The Tempe 
Uber accident seems to reflect problem 4. There are real-
world examples of both problems 2 and 5, e.g., ship classifi-
cation algorithms that work in the Baltic but not near the 
equator due to differences in the angle of elevation of the sun, 
typical wave patterns, etc.  

3.3 Assurance and Regulation 

The Lloyd’s Register Foundation review of robotics and AS 
(RAS) identified challenges (they used the term ‘white 
spaces’) in assurance and regulation of RAS [LRF 2016]. The 
Assuring Autonomy International Programme that was set up 
in response to the above review has amplified on these issues 
and identified Critical Barriers to Assurance and Regulation 
(CBARs) [AAIP 2018]. CBARs are characterized as prob-
lems that must be solved otherwise there is a risk that:  

1. Unsafe systems are deployed, or  
2. Safe systems cannot be deployed.  
The distinction between these two cases rests on the regu-

latory regime; a permissive regulatory regime which allows 
systems to be deployed in the absence of contrary evidence is 
prone to the former risk (arguably this is what happened in 
the case of the AV accidents outlined above); a restrictive re-
gime is prone to the latter which might inhibit the beneficial 
use of RAS (hereinafter AS for brevity). 

CBARs are intended to highlight key issues in the assur-
ance and regulation of AS, with the aim of focusing research 
on these issues to expedite safe deployment of AS. The 
CBARs are intended to apply across different application do-
mains, e.g. UAS or medical devices. Two CBARs relevant to 
this paper are (simplified and merged from [AAIP 2018]): 

1. Monitoring and handover – how can it be ensured and 
assured that operators retain sufficient levels of atten-
tion and concentration to handle problems that arise?  

2. Training and Testing – how can it be shown that the 
training and test sets used in ML give enough cover-
age of the environment to provide sufficient evidence 
to allow controlled use of the AS?  

All three accidents discussed in Section 2 illustrate the 
monitoring and handover CBAR; the AV accidents illustrate 
the second CBAR. 

4 The Proposed Framework  

The framework proposed here is intended to provide a basis 
for assurance and regulation of AS, taking into account the 
use of AI/ML in their development. Although safety princi-
ples apply to AS the analysis can be difficult, especially 
where the behaviour of the system can evolve in operation 
(e.g. due to ML).  The core difficulty is that traditional safety 
processes assume that safety can be assessed prior to deploy-
ment and the assessment remains largely valid through life. 
The framework therefore includes continued and proactive 
assessment in operation – in contrast to current safety man-
agement that tends only to update safety assessments in re-
sponse to problems or accidents. It draws on Hollnagel’s 
‘work as imagined’ and work as done’, but re-setting these as 
the ‘world as imagined’ (as we have to consider the system 
and its environment) and the ‘world as observed’ (or the ‘data 
world’) reflecting the need to analyse operational data to un-
derstand and control the dissonances identified above.  

4.1 Framework Overview 

The framework has four major elements which are conceptu-
ally distinct, although they physically overlap to some extent: 



 

 

 
Figure 2. Top-level of the Proposed Safety Assurance Framework  

 
• The ‘real world’ contains the AS in its operational 

environment; 
• The ‘world as imagined’ contains design and simu-

lation models, and the results of safety analysis 
based on those models; 

• The ‘world as observed’ contains the operational 
data, e.g. images produced by sensors, and the re-
sults of ML analysis of the operational data; 

• A safety case, initially reflecting just the ‘world as 
imagined’ later updated to respond to the ‘world as 
observed’, reducing the gaps between the safety 
case and reality.   

The ‘real world’ environment includes both the physical 
infrastructure, e.g. roads, and people, including operators, 
passengers, etc., as well as the AS. This is the ‘ground truth’.  

Design produces models of the system and environment, 
including simulations both to define what is to be produced, 
and to analyse it. In the framework, safety analysis including 
hazard analysis and the identification of risk mitigations are 
key elements of the ‘world as imagined’, but this is where 
model mismatches (dissonances) can start to arise. 

There are ‘gaps’ between the ‘real world’ and the ‘world 
as imagined’, see Figure 2, that are challenges for safety anal-
ysis. The gaps identified in Figure 2 (with example mapping 
to flaws in [Rae et al 2014]) include: 

• Assumptions – what is taken as a ‘given’, about the 
system or environment, e.g. driver will be able to 
intervene and apply emergency braking [§2.3 ‘mis-
match between the risk assessment and reality’];  

• Framing (scoping) – deciding what aspects of the 
‘real world’ should be considered, and which do 
not, e.g. in determining what objects might need to 
be classified by an AV vision system, such as pe-
destrians pushing bicycles [§2.2 ‘Major omissions 
in the analysis’];  

• Model fidelity – precision and accuracy of the mod-
els used, including simulations, e.g. point mass ap-
proximations to the dynamics of AVs [§2.4a ‘Mod-
els are used outside their valid scope’]; 

• Training data – limitations of the data used to train 
the ML in AS, e.g. biases in data sets used for pe-
destrian detection, so that some ethnic groups are 
misclassified [§2.8 ‘failure to report limitations’]; 

• Uncertainty – the inability to model all the likely 
variations in the environment, or the distribution of 
possibilities, due to ‘real world’ complexity, [§3.3 
‘insufficient characterization of uncertainty’].  

These factors (and more) contribute to the mismatch be-
tween the real and imagined worlds, and thus limit the fidelity 
(predictive accuracy) of the safety analyses. The training data 
‘gap’ clearly links to the ‘training and testing’ CBAR.  

The ‘world as observed’ is also affected by ‘gaps’ as 
shown in Figure 2, which represent different sorts of mis-
match with the ‘real world’.  These include: 

• Sensing – sensor sets, e.g. lidars and cameras, will 
have limited capabilities and are affected by the en-
vironment, e.g. rain, dust clouds, etc.; 

• Algorithmic limitations – characteristics of algo-
rithms, e.g. balancing false positives against false 
negatives, or sensor data fusion not always selecting 
the best combination of data sources to use; 

• Failure conditions – hardware can fail, and this can 
affect behaviour (but it should be addressed by con-
ventional safety processes); 

• Human/team performance – limitations in human 
cognition and capability, allowing for factors that 
shape human performance, e.g. the high level of 
WCAs that affected the WK accidents; 

• Resource limitations – many AI/ML algorithms are 
non-deterministic and, for example, it is possible for 
object classification algorithms to ‘lose’ objects if 
they run out of time between video frames (this is 
viewed as distinct from algorithmic limitations if the 
algorithm would not ‘lose’ the objects given suffi-
cient processing resources).  

The human/team performance ‘gap’ relates to the monitor-
ing and handover CBAR.  

The sensor and algorithmic issues are not always disjoint 
and, for example, the failure of the Tesla to identify the semi-
trailer in the Florida accident, is likely to have been due to a 
combination of such limitations.  

As with the mismatches between the ‘real world’ and 
‘world as imagined’, these gaps are illustrative, not exhaus-
tive. Again, these reflect problems identified by [Rae et al 
2014], viz: Sensing maps to §3.1 ‘insufficient rigour in se-
lecting source data’ and Algorithmic limitations maps to §3.2 



 

 

‘incorrect processing of data’, albeit extending these catego-
ries to the operational system, not just the safety analysis. 
Note that gaps can also arise in the ‘world as observed’ from 
the ‘work as imagined’ shown as ‘inherited gaps’ in Figure 2. 

The most novel part of the framework is the ML analysis 
in the ‘world as observed’. Safety analysis on the ‘world as 
imagined’ is hypothetical – it is based on design models and 
on an imperfect understanding of the environment. The WK 
example shows clearly that such mismatches are a serious 
problem and form significant contributions to the accidents.  

Systems employing AI and ML are data rich, and this 
opens up the possibility of using ML on the operational data 
both to understand the factors that actually influence safe be-
haviour, and to validate or to inform refinement of, the safety 
analyses. The rate at which operational data is produced will 
exceed human capability for analysis in real-time, but ML of-
fers the opportunity to identify the critical information in the 
data. In this way the initial safety case would reflect analysis 
of the ‘world as imagined’, but then would be updated with 
ML analysis of the ‘world as observed’.  Such an approach 
would allow the safety case to stay in (closer) alignment with 
the system behaviour, which has been referred to as a dy-
namic safety case [Denney et al 2015], [Calinescu et al 2018]. 
The framework also supports feedback, enabling the safety 
analysis to be improved based on the ‘world as observed’, 
and to improve the data collection and ML analysis.  

4.2 Assurance of ML in the Framework 

The safety case needs to address explicitly each of the ‘gaps’ 
identified in Figure 2 and demonstrate that the impact on the 
behaviour (safety) of the AS is small enough to permit initial 
operations (see the discussion of regulatory issues below). 
Figure 2 is not rich enough to show all the issues relating to 
ML in AS; these will require a more detailed model. The As-
suring Autonomy International Programme is working on 
such models [Ashmore et al 2019]. For simplicity we draw 
out only a small number of issues highlighted in their ML 
process model relevant to the ‘training and testing’ CBAR. 

The safety case needs to provide arguments and evidence 
for the coverage of the training and testing data, noting that 
the coverage criteria should be informed by the safety pro-
cess. Thus, for an AV, the focus should be on coverage of 
those driving situations which are hazardous, e.g. junctions, 
driving into low sun, and not ‘undemanding’ situations such 
as quiet dual carriageways (divided highways). However, it 
is unlikely (undesirable) that good coverage of near-accident 
data will be achieved using real world data – it is too rare, and 
too dangerous to collect – thus collection must be augmented 
by simulation data to get good coverage of the operational 
design domain (ODD), from a safety perspective. Thus, the 
argument should address a number of issues: 

• The coverage of the ODD in the data used for train-
ing and testing, justifying the ‘skew’ in the data to 
get coverage of ‘demanding’ situations based on the 
assessment from the safety analysis, e.g. vehicle 
cut-in and emergency braking to avoid pedestrians; 

• The choice between real-world and simulation data, 
again based on risk assessment, and dealing with 

the potential problem of distributional shift between 
the simulator and AV; 

• The rationale for choosing factors that shape the 
learning process including selection of training and 
test data sets, and ‘hyperparameters’.  

The ‘hyperparameters’ in model learning are important as 
the models learnt are dependent on these values. For exam-
ple, Bayesian Network (BN) structure learning can be used to 
identify correlations between elements in the training data. 
The relevant hyperparameter is Equivalent Sample Size 
(ESS) which is used to guide the learning process when BDeu 
(Bayesian Dirichlet equivalent uniform) score is used for the 
structure learning. In general, increasing ESS leads to learn-
ing more links in the structure, but the number of links does 
not necessarily increase monotonically. The arguments will 
be domain specific, e.g. for a data set with a skewed distribu-
tion, which is very likely with AVs, for example, a smaller 
ESS value is preferred [Steck 2012]. 

The Assuring Autonomy International Programme is de-
veloping a Body of Knowledge (BoK) which includes tem-
plate assurance arguments to address these issues [AAIP 
2019]. The BoK contains guidance on the structure of assur-
ance arguments and the criteria for evidence and will evolve 
to provide more details. e.g. using different search algorithms 
for learning BN structures to improve confidence. 

4.3 Example using ML for Safety Analysis 

The development of the framework presented here has been 
influenced by parallel work on safety of medication manage-
ment which has had to address very similar issues of mis-
match between the ‘world as imagined’ and ‘world as ob-
served’. The following illustrative example focuses on the 
‘ML analysis’ in the ‘world as observed, as this is the most 
novel part of the framework.  

The example is of a Health IT (HIT) system rather than an 
AS [Jia 2019]; as mentioned above, this example is chosen as 
it best illustrates the framework, in the absence of an applica-
tion to AS. In the HIT work, the mapping to the framework 
is as follows: 
• Real world – hospital environment, including HIT 

systems; 
• World as imagined – healthcare pathway model re-

lated to post-operative care of patients following oe-
sophagectomy, and safety analysis using Software 
Hazard Analysis and Resolution in Design (SHARD) 
[Pumfrey 1999] based on the healthcare pathway;  

• World as observed – real data from the HIT system, 
and BN structure learning to explore the correlations 
between the different factors identified in the safety 
analysis, representing hazards, causes and their ef-
fects; this enables the safety analysis to be validated in 
the real world.   

The structure learnt showed new patterns in the ways that 
nurses carry out their work during post-operative care follow-
ing oesophagectomy which was not expected as it was neither 
apparent in the pathway model nor in the safety analysis. This 
can be characterized as ‘flaw’ §2.3 [Rae et al 2014] ‘mis-
match between the risk assessment and reality’.  



 

 

BN parameter learning was used to quantify the effects of 
different causes and controls on the associated hazard in or-
der to understand their significance, enabling the introduction 
of the potential hazard controls to be prioritized.   

4.4 Regulation based on the Framework 

As noted above, regulatory processes assume that system ap-
proval is essentially static, only updated for major events, e.g. 
significant design changes or accidents. Where AS evolve 
their capability over time, e.g. using ML, then a more evolu-
tionary approach is needed, with two primary phases.  

First, initial operation of the AS should be based on safety 
analysis of the ‘world as imagined’. The decision to approve 
the system must be based on an assessment of risk that will 
reflect the arguments that the ‘gaps’ identified in Figure 2 
have been adequately controlled. For AVs this amounts to de-
ciding whether or not the use of the AV in an initial ODD 
carries an acceptable risk. This will, for example, include 
consideration of sufficiency of the training and augmentation 
data in the specified ODD, as outlined above. 

Second, operation of the system will provide data, which 
is then analysed using ML, to either confirm the safety anal-
ysis in the ‘world as imagined’ or to identify areas in which 
the safety analysis is not consistent with the ‘world as ob-
served’ (or the ‘real world’) in a way that is safety significant. 
The operational data would enable identification of structural 
weaknesses or ‘flaws’ in the safety analysis, such as identi-
fied in [Rae et al 2014]. For example, if using BN structure 
learning, the learnt structures may show correlations of causal 
factors of hazards not reflected in the safety analysis, which 
is an example of §2.2 ‘Major omissions in the analysis’. Iden-
tifying such a problem should prompt review and, if appro-
priate, revision to the system design, its operation, e.g. limi-
tations to ODDs for AVs, and update of the safety analysis to 
reflect a better understanding of the ‘real world’, etc.  

In the WK example this might involve an analysis of 
ground crew workload (using ML) and a redesign of WK (or 
more likely its support systems, e.g. the GCS) to reduce 
workload, with an associated update to the safety analysis and 
the safety case. Put another way, the ML analysis in the 
‘world as observed’ enables organisations to learn from ex-
perience, and to update their approach to safety, rather than 
the safety analysis being ‘open loop’ [McDermid 2017]. 

Of course, the analysis of the ‘world as observed’ may 
show that the risk is lower than predicted and that there is a 
‘safety margin’. In principle, this can be used to justify ex-
tending the use of the AS – perhaps expanding the ODD for 
an AV, or expanding the fleet size for a UAS, or allowing 
UAS to fly in more congested airspace. 

ML can be applied to data from the AS in (near) real-time 
so, in principle, the safety case can be updated continuously. 
However, unless regulatory approval can be automated so it 
can track the evolution of the evidence base, as might be done 
using run-time certification [Rushby 2008], it is likely that 
human regulators would approve changes to usage in ‘incre-
ments’ from time to time. This could be done where the evi-
dence produced by ML analysis in the ‘world as observed’ 
enables the gaps affecting confidence in the AS to be reduced. 

In some ways, this is what AS developers are doing now, e.g. 
progressively expanding the ODDs of AVs. Doing this ‘for-
mally’ through a regulatory process would be a substantial 
culture shift, in many domains, not least for the regulators. 

5 Discussion and Future Work 

The ideas presented here are evolving and have their roots in 
the earlier analysis of QRA and considerations of how safety 
engineering can ‘catch up’ with design engineering [McDer-
mid 2017]. They were crystalized by discussions of the WK 
accidents. The aspiration is to use ML to understand and re-
duce the ‘gaps’ identified in Figure 2. Our initial work on HIT 
is encouraging, but the ideas need to be applied to AS. There 
is work using ML on operational data, e.g. for assessing 
drowsiness of car drivers [Schwarz et al 2019]. However, we 
believe that use of ML on operational data to update safety 
cases is a unique perspective, but one that we hope might help 
to build bridges between the safety and AI communities. 

Also, there is a need to revise safety analysis processes to 
reflect the characteristics of AS and ML, for example chang-
ing the notion of controllability used in risk assessment for 
road vehicles as they become more autonomous [Habli et al 
2016]. There is other work in this area, and several authors 
have made use of Leveson’s STAMP/STPA or referred to its 
utility [NHTSA 2018], [NASA 2018]. STAMP/ STPA re-
flects a control systems perspective which is highly appropri-
ate for AS, and some aspects of the models might help ad-
dress the ‘flaws’ in QRA [Rae et al 2014], however it is not 
clear that the approach helps particularly with the ‘gaps’ iden-
tified in Figure 2. Thus, we believe that more will need to be 
done to produce an effective safety analysis process for the 
‘world as imagined’, and thus improve the safety analysis of 
AS. There is relevant work for AVs, including on Safety of 
the Intended Function and on a ‘standard for safety for the 
evaluation of autonomous products’ by the Underwriters La-
boratory (UL), known as UL 4600 [Koopman 2019]. UL 
4600 will explicitly address some of the requirements on 
safety cases for AVs employing AI and ML discussed above; 
a public draft of UL 4600 should be available during 2019.   

We think that the notion of ‘gaps’ is helpful in considering 
the wider issues of AS safety. Moving decision-making to an 
AS can create a ‘responsibility gap’ where it is unclear who 
is responsible for an action (in an ethical sense) [Porter et al 
2019], and there may be no-one responsible in a legal sense 
(e.g. Arizona determined that Uber did not have a case to an-
swer for the Tempe fatality). We see the possibility of devel-
oping a new and rich socio-technical ‘theory of safety’ that 
draws together multiple disciplines, including AI, system 
safety engineering, law and ethics. A key part of this will be 
reconciling system safety with AI safety – combining system 
safety’s view of the harm to humans from AS with the under-
standing from the AI safety community of what might go 
wrong in AI and ML. 

6 Conclusions 

The introduction of AS has the possibility of providing sig-
nificant benefits to society, for example in social care and in 



 

 

reducing fatalities on the road. However, there are also fun-
damental challenges to safety and regulatory processes as the 
WK example, and accidents and incidents with AVs, show.  

The framework presented here reflects both empirical un-
derstanding of problems with particular AS, and a much more 
thorough analysis of weaknesses of safety processes in gen-
eral, and QRA in particular. However, it is abstract, and more 
detail is needed; the Assuring Autonomy International Pro-
gramme BoK [AAIP 2019] and standards such as UL 4600 
should provide some of the necessary underpinning.  

There has been an initial validation of the framework on a 
healthcare example. It is hoped that the proposed framework 
will help to unify perspectives on AI safety and contribute to 
the development of the AI Safety Landscape.  
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