
Towards a Framework for Self-adaptive
Component-Based Applications�

Pierre-Charles David and Thomas Ledoux

OBASCO Group, EMN/INRIA
École des Mines de Nantes – Dépt. Informatique

4, rue Alfred Kastler – BP 20722
F-44307 Nantes Cedex 3, France

{pcdavid,ledoux}@emn.fr

Abstract. Nowadays, applications must work in highly dynamic envi-
ronments, where resources availability, among other factors, can evolve at
runtime. To deal with this situation, applications must be self-adaptive,
that is adapt themselves to their environment and its evolutions. Our
goal is to enable systematic development of self-adaptive component-
based applications using the Separation of Concerns principle: we con-
sider adaptation to a specific execution context and its evolutions as a
concern which should be treated separately from the rest of an appli-
cation. In this paper, we first present the general approach we propose
and the corresponding development framework and tools we are devel-
oping to support it. Then, in order to validate this approach, we use it
on a small component-based application to show how it can be made
self-adaptive.

1 Introduction

Given today’s fast pace of technological evolutions and diversity of computing
platforms (both hardware and software), building applications which can work in
such a wide range of systems is becoming more and more challenging. Moreover,
even on a specific platform, the execution context and available resources tend
to vary a lot at runtime. This is particularly the case with distributed applica-
tions, as those have to deal with the heterogeneity of different hosts and rely on
network communication, which are often highly variable (especially with newer
technologies like wireless networking).

The result of this situation is that applications should be adaptable (i.e. able
to be adapted), or even better self-adaptive (i.e. adapting themselves) to their
environment [1]. Adaptation in itself is nothing new, but it is generally done
in an ad hoc way, which involves trying to predict future execution conditions
at development time and embedding the adaptation decisions in the application
code itself. This creates several problems: increased complexity (business logic
polluted with non-functional concerns) and poor reuse of components caused
� This research is supported by the RNTL project ARCAD (http://arcad.essi.fr/)

J.-B. Stefani, I. Demeure, and D. Hagimont (Eds.): DAIS 2003, LNCS 2893, pp. 1–14, 2003.
c© IFIP International Federation for Information Processing 2003



2 Pierre-Charles David and Thomas Ledoux

by a strong coupling with a specific environment. We believe that some kinds of
adaptations, most notably those related to resource usage, can be decoupled from
pure functional concerns, and that doing so does not have the same drawbacks
as the ad hoc approach.

The long term goal of our work is to enable a more systematic (as opposed
to ad hoc) way to develop self-adaptive component-based applications. Our ap-
proach is based on the Separation of Concerns [2] principle: we consider adapta-
tion to a specific execution context and its evolutions as a concern which should
be treated separately from the rest of an application. Ideally, application de-
velopers should be able to concentrate on pure business logic, and write their
code without worrying about the characteristics and resource limitations of the
platform(s) it will be deployed on. Then, the adaptation logic [1], which deals
specifically with the adaptation concern, is added to this non-adaptive code,
resulting in a self-adaptive application able to reconfigure its architecture and
parameters to always fit its evolving environment.

In this paper, we first present the general approach we propose and the corre-
sponding development framework and tools we are developing to support it. This
framework is based on the Fractal component model [3], chosen for its flexibil-
ity and dynamicity. To supplement this model, we propose a context-awareness
service to provide information about the execution context. This information is
used by adaptation policies, which constitute the third part of our framework
and capture the adaptation concern. Then, in order to validate this approach,
we present how a small component-based application can be made self-adaptive
using it. In this example, we show how different kinds of performance-related
adaptations can be applied non-invasively to the original application depending
on its dynamic execution context.

This paper is divided in two main parts: in the first one (Sec. 2), we describe
our approach in more details and present the three main parts of our framework
(Sec. 2.1, 2.2, 2.3); in the second one (Sec. 3), we present a very simple application
developed using our approach. Finally, we compare our approach to some other
related work (Sec. 4) before concluding (Sec. 5).

2 General Approach

The general idea of our approach is to consider adaptability as a concern [2]
which can be separated from the core concerns (i.e. business logic) of an ap-
plication. We think that regardless of the specific domain of an application,
adaptability concerns can often be expressed in the same way. Our goal is thus
to identify a general form of these concerns and to capture it in a framework and
accompanying tools. In practice, we do not pretend we have found the one and
only mean to express adaptability concerns, but we believe that the approach
we propose is general enough to be used in a wide range of adaptations.

More concretely, the development model we envision is as follows:

1. First, the application programmers create the core of the application (pure
business logic), without worrying about the characteristics of the environ-
ment(s) it will/may be deployed in.



Towards a Framework for Self-adaptive Component-Based Applications 3

2. Then, once the deployer or administrator knows more precisely both the ex-
ecution context(s) the application will be deployed in and its non-functional
requirements , he can specify (using the tools we provide) how the applica-
tion must be made to adapt itself to this context.

What we need as the output of the first phase is an adaptable application: an
application which exhibits enough flexibility so that it can be reconfigured to fit
different execution conditions. In the second phase, we take this adaptable appli-
cation and make it self-adaptive by incorporating the additional logic required
to drive these reconfigurations appropriately in response to the evolutions of the
execution context. This integration of the adaptation logic can be done by source
code transformation of the application, but although it enables adaptations to
happen at run-time, this approach can not deal with unanticipated adaptations
[4,5] which will only be known during the execution. The solution we adopted
is to host the adaptable application inside a suitable execution platform which
is responsible for interpreting the adaptation logic and reconfigure the applica-
tion when required. This way, not only do the adaptations happen at run-time,
but the adaptation logic itself can be modified during the execution, without
stopping and restarting the application.

The kind and extent of flexibility the adaptable application provides deter-
mine the nature of the adaptations that will be possible. In our case, we deal
with component-based applications which are explicitly structured through their
architecture. The first kind of reconfigurations we support is thus structural :
modifications of the connections between components and of their containment
relationships. This allows for example to disconnect a component and replace it
with another one, compatible with it but better suited to a specific usage con-
text. As we will see, the component model we chose, Fractal [3], also supports
the notion of component configuration through parameters. The second kind of
reconfiguration we provide is thus parameterization (for example, changing the
colors of GUI components if we know the user is color-blind). These two kinds
of reconfiguration already enable powerful adaptations, but they both have the
same drawback: they must be anticipated, at least partially, at development
time. It is the application programmer (or assembler) who defines the architec-
ture and which component parameters will be reconfigurable. In order to support
unanticipated adaptations [5] at run-time, we needed a mechanism to transpar-
ently modify the behavior of components. As the Fractal component model did
not support this natively, we had to extend it. The extension we added uses
reflection to provide a meta-programming [6] interface to Fractal components
(see Sec. 2.1 for details).

Having an adaptable application with the required level of flexibility and a
set of reconfiguration operations is only the first step. In order to make this
application self-adaptive, we need to add adaptation logic [1] whose role is to
determine when to apply which specific reconfigurations. In our approach, this
adaptation logic takes the form of adaptation policies which can be attached to
or detached from individual components during the execution. An adaptation
policy is a set of rules modeled after the Event – Condition – Action rules from



4 Pierre-Charles David and Thomas Ledoux

active databases [7]: when the event described in the first part of a rule occur,
the condition is evaluated, and if it holds, the action is then applied. This allows
to react to changes in the execution context by reconfiguring the application.

To summarize the global picture of our approach, the development and ex-
ecution of a component-based self-adaptive application can be decomposed in
two phases:

1. Development of an adaptable application by application programmers and
assemblers using an appropriate component model, but without worrying
about the details of the execution context it will be deployed in.

2. Definition of adaptation policies and binding of these policies to the com-
ponents of the application by the deployer. This binding is dynamic and
happens at run-time so adaptation policies can be defined and attached to
components when the real execution conditions are better known.

The resulting application is executed in an appropriate software platform
which interprets the adaptation policies and ensures that all the adaptations are
applied correctly (no disruption in the execution of the application, no conflicts
between policies...).

2.1 Using Fractal to Build Adaptable Applications

In this section we present the Fractal component model that we have chosen as a
base for our framework and show how it supports our requirements for adaptable
applications.

Fractal [3] is a general (i.e. not domain-specific) component model for Java
part of the ObjectWeb consortium1. It supports the definition of primitive and
composite components, bindings between the interfaces provided or required by
these components, and hierarchic composition (including sharing). Unlike other
Java-based component models, like Jiazzy [8] or ArchJava [9], Fractal is not a
language extension, but a run-time library which enables the specification and
manipulation of components and architectures.

What makes Fractal particularly suited in our case is that because of its
nature as a run-time library, it is highly dynamic and reflective. In practice,
Fractal is presented as an API which can be used to create and manipulate com-
plex architectures using plain Java classes as building blocks. Its programmatic
approach makes it an ideal base to build tools on top of it.

Fractal distinguishes two kinds of components: primitives which contain the
actual code, and composites which are only used as a mechanism to deal with a
group of components as a whole, while potentially hiding some of the features of
the subcomponents. Primitives are actually simple, standard Java classes con-
forming to some coding conventions. Fractal does not impose any limit on the
levels of composition, hence its name. Each Fractal component is made of two
parts: a controller which exposes the component’s interfaces, and a content which
can be either a user class in the case of a primitive or other components in the
1 http://www.objectweb.org/



Towards a Framework for Self-adaptive Component-Based Applications 5

case of a composite. All interactions between components passes through their
controller.

The model thus provides two mechanisms to define the architecture of an
application: bindings between interfaces of components, and encapsulation of a
group of components into a composite. Because Fractal is fully dynamic and
reflective (in the sense that components and interfaces are first-class entities),
applications built using it inherently support structural reconfiguration. Fractal
also supports component parameterization: if a component can be configured
using parameters, it should expose this feature as a Fractal interface identified
by a reserved name so that it is available in a standard way. This gives us the
second kind of adaptations we want to support.

In order to support adaptations not anticipated at development time [4,5],
we needed a mechanism to modify transparently the behavior of Fractal com-
ponents. Fractal does not provide this kind of mechanism by default. However
its reference implementation is very extensible and it was possible to add the
required feature, which can be thought of as a simple “Meta Object Protocol”
[6] for Fractal. As every interaction between components passes through the con-
troller part, we extended the default Fractal controller so that it can reify all
the messages it receives (see Fig. 1). Instead of being sent to its original target,
the reified message is sent to a subcomponent which implements a meta-level
message invocation interface. The component can then process the message in
a generic way, doing pre- or post-processing, or even completely replacing the
original behavior. If this meta-level component is a composite, it is then rela-
tively easy to support dynamic addition and removal of multiple generic behavior
modifications (though the correct composition of meta-level behaviors is an open
problem [10] which we do not address).

2.2 Context-Awareness Service

The role of the context-awareness service is to provide the rest of the framework
precise and up-to-date information about the execution context of the applica-
tion [11]. This information is required to decide when it becomes necessary to
trigger an adaptation. We can distinguish three parts in context-awareness:

1. Acquisition of raw data from outside the application into a form that can be
further manipulated.

2. Representation or structuring of these informations using an ontology.
3. Reasoning on the resulting knowledge to detect interesting situations which

ask for a reaction/adaptation.

The remaining of this section describes how these functions are realized in
our framework.

Acquisition. In our framework, acquisition is delegated to libraries of probes.
A probe is simply a Java object which, when invoked, return an object regroup-
ing named samples (values with a time-stamp indicating the moment it was



6 Pierre-Charles David and Thomas Ledoux

M
et

a−
le

ve
l

in
te

rf
ac

e

1 2

4

3

Meta−level
component 1

Meta−level

Original
Component

an
In

te
rf

ac
e

Controller part

Content part

Provided interface

Required interface

Reification

Binding

1 Message received from another component

2

4 Original component called at some point (optional)

Meta−level Composer

an
In

te
rf

ac
e

component 2

Message reified and forwarded to the meta−level interface

3 Reified message processed by meta−level components

Fig. 1. MOP-like extension for Fractal.

acquired). The system maintains a set of instantiated probes, each with a par-
ticular sampling rate. A scheduler running in its own thread invokes each probe
in turn, according to its sampling rate, and collects the results of the measures,
to be consumed by the other parts of the framework. Libraries of probes to
observe different kinds of context can be developed independently of an appli-
cation, although some would probably depend on the underlying platform (OS,
hardware). For example, our current implementation uses Linux’s /proc pseudo
file-system to gather information about the CPU load, available memory, and
usage of the network connection.

Representation. The raw data collected by the probes is just a set of unrelated
measures, not in a form appropriate to support any kind of sophisticated reason-
ing. The second step towards context-awareness is to structure this information
into a model of the environment using an appropriate ontology. Because our
framework is domain-independent, we chose a rather simple and generic meta-
model to structure these informations. The context is represented as a tree of
resources identified by a name. Resources can represent actual elements of the
context (like a disk if the domain is hardware resources, or a room if the domain
deals with physical informations) or a logical group of other resources (for ex-
ample, a category named storage to regroup disk, memory...). Each resource is
described by a set of named attributes, whose value change over time.

The structure of the resource tree is defined by a configuration file read at
startup, which also indicates the mapping between the informations gathered by
probes and the resources attributes. The current design assumes that the hier-
archical structure of resources is fixed at startup time and that neither resources



Towards a Framework for Self-adaptive Component-Based Applications 7

nor attributes can appear or disappear. Future versions will remove these limi-
tations to reflect more accurately the dynamic nature of real execution contexts.

The system supports multiple parallel resource trees, identified by a name.
Each such tree is called a context-domain and models one particular aspect of the
application context. Examples of possible context-domains inlude hardware and
software resources (CPU, memory, disk, libraries...), network topology and per-
formance, physical environment (geographic position, temperature...) and user
preferences (should applications use sound or stay quiet...). Given the appropri-
ate library of probes and ontology to structure them, all these domains can be
treated in a uniform way by our framework.

Reasoning. Even structured, information gathered by the probes are generally
very low level and not appropriate for deciding when an adaptation is required.
Indeed, which particular information is available to probes can vary from system
to system.

In addition to primitive attributes containing raw data collected by probes,
it is also possible to define synthetic attributes. These attributes are defined
by an expression over the whole context domain the attribute belongs to. This
feature allows to define more abstract attributes derived from the low level data
collected by probes. For example, if probes can get from the underlying OS the
number of bytes sent and received by a network interface, these values can be
used to compute synthetic attributes representing incoming and outgoing traffic
in MB/s. Combining this with the expected maximum throughput of the network
card (available thanks to another probe), another attribute could be defined to
represent the percentage of the current bandwidth usage.

The system uses the data regularly collected by the scheduler to update the
values of all the synthetic variables, automatically taking care of dependencies.
This way, an up-to-date model of the execution context of the application is
always available to the rest of the system. However, what we have described
until now gives us only snapshots (albeit regularly updated) of the state of
the context. More sophisticated reasoning requires not only awareness of the
immediate state of the context, but also of how it evolves over time. This is
supported by the possibility to define composite event in the rules of adaptation
policies (see Sec. 2.3).

The context-awareness service is available to the rest of the system through
two interfaces: a simple query interface and an asynchronous notification inter-
face. To use the query interface, a client object simply sends a request in the
form of an expression, similar to those used to define synthetic variables. The
system immediately evaluates the expression relative to the current state of its
knowledge and returns the current value of the expression. To use the notifica-
tion interface, an object also sends the expression it is interested in, but this
is used to register the client as a listener to the expression. From this moment,
until the client unregisters itself, the context-awareness service will notify the
client each time the value of the expression changes. These expressions are ac-
tually managed almost exactly like normal synthetic variables, except that they
are not associated to a resource but to a client object.



8 Pierre-Charles David and Thomas Ledoux

2.3 Adaptation Policies

The role of adaptation policies is twofold: first, to detect significant changes in
the execution context of the application using the information made available by
the context-awareness service, and then to decide which reconfigurations must
be applied to the application when these changes occur.

To do this, an adaptation policy consists in a set of rules, each of the form
Event – Condition – Action (modeled after the ECA paradigm used for example
in active databases [7]):

– the event part describes the circumstances in which a rule must be triggered,
using primitive events which can be combined to reason on the evolution of
the context over time (see below);

– conditions are simple guards, evaluated when a rule is triggered to determine
if the action should be applied;

– action is a (sequence of) reconfiguration operation(s) among those presented
in Sec. 2.1 which are applied to the system when the rule is activated.

Each Fractal component in the application can have one or more adaptation
policy dynamically attached to (or detached from) it. The policies are actu-
ally contained inside the controller part of the component, and are accessible
through a specific Fractal interface automatically added to every self-adaptive
component.

We distinguish two kinds of primitive events depending on their source (ex-
ternal or internal). The first kind corresponds to changes in the execution con-
text, and more precisely to any change in the value of an expression over a
context-domain. The second kind of events corresponds to things happening in
the application itself, like messages sent between component, creation of new
components or architectural reconfigurations triggered by the application itself
(and not by an adaptation policy).

Both kinds of events can be combined to form composite events using a set
of operators to detect sequences, alternatives or conjunctions of events. Using
these mechanisms, it is possible to define adaptation policies which can react
not only to the immediate state of the application or of its context, but also to
its evolutions.

Conditions are simple boolean expressions defined in the same language as
for synthetic variables, used as guards.

Actions consist in a sequence of concrete reconfiguration actions among the
set already presented: structural reconfigurations, parameterization, addition or
removal of a generic service using the MOP-like extension. Possible actions are
limited to those directly implying the component an adaptation policy is at-
tached to.

Although the adaptation policies are currently coded in plain Java, our goal
is to define a DSL (Domain Specific Language [12]) to write these. This would
enable verifications on the validity of the policies (to be defined more precisely)
and to detect possible conflicts between policies, for example when two policies
react differently to the same situation, or when their interaction would create
unstable behaviors.



Towards a Framework for Self-adaptive Component-Based Applications 9

Decoder

Image Provider

File
Loader

URL
Loader

Fig. 2. Initial architecture of the example application.

3 Example Application of Our Approach

This section describes through a small example how the approach we propose
can be used to transparently make a component-based application self-adaptive.
First, we describe the example application and the problems it can have under
certain circumstances. Then, we show how to apply three different (but cumu-
lative) adaptations of this application using our approach, illustrating the three
different types of reconfigurations we support. These adaptations overcome the
original limitations of the application without breaking the encapsulation of the
original components.

The application is an image viewer/browser. At its core is an image decoder
component whose role is to interpret the content of an image file (JPEG, PNG...)
into a bitmap which can be printed on a screen. It uses another component to
load the content of the image files from a source location (local or remote). Fig-
ure 2 shows the corresponding part of the initial architecture of the application,
coded using Fractal.

3.1 First Adaptation: Conditional Enabling of a Cache

The components in the application have been written to be simple and reusable,
implementing one and only one thing. In particular, none of the loaders cache the
files it loads. However, adding a cache would improve performance a lot in some
circumstances. The first adaptation we will implement is thus the conditional
enabling of a transparent caching service. The best place to put a cache is on the
decoder (the front end component): this way, we will not only cache the cost of
fetching the content of the files but also the cost of decoding the images. Using
the meta-programming extension we added to Fractal, it is not very difficult to
add a generic caching service to our component: because it works at a meta-
level, handling reified messages and responses, the cache doesn’t have to be
implemented specifically for our example but can be reused from a library of
generic services. Figure 3 shows the internal structure of the decoding component
once the cache is enabled. Thanks to the dynamicity of Fractal, going from the
original decoder to this configuration can be done (and undone) at runtime and
completely transparently.

The adaptation policy required to implement this behaviour is very simple,
consisting in only one rule:



10 Pierre-Charles David and Thomas Ledoux

Generic
Cache

Adaptive
Decoder

Decoder
Original

Fig. 3. Conditional cache enabling.

1. When the average execution time of a request (to load and decode an image)
to the image provider goes above a given threshold, then instantiate a new
generic cache component and attach it to the image provider.

This way, when the system detects that images take a long time to get,
it will automatically adapt the image provider component by adding a cache
service to increase performance when the same images are loaded several times.
The average execution time of a request is computed by the adaptation policy
attached to the component using the time-stamps of method receptions and
method returns, two kinds of events available for writing the Event part of an
adaptation rule.

3.2 Second Adaptation: Automatic Resizing of the Cache

The second adaptation we describe concerns the size of the cache, which we
did not precise in the previous section. This can have a high impact on the
performance of the system: on the one hand, if the cache is too small we will
not use all of its potential; on the other hand, if it is too big compared to the
memory available in the system, we risk to pay an even higher price from the
use of swap space. The goal of this second adaptation is thus to adapt the size
of the cache to the amount of free memory available on the system, which of
course changes dynamically.

One originality of our approach which allows us to do this is that the generic
cache we added to the application in the previous step is itself a Fractal compo-
nent. This means we can use the same techniques as for the application compo-
nent to adapt the cache service itself. To be able to do this, we assume that the
cache component exposes its size as a reconfigurable parameter in the standard
Fractal way. We can then use on the cache a second kind of reconfiguration: pa-
rameterization. The size of the cache will be determined according to the amount
of free RAM available in the system. This amount is tracked by the context-
awareness service and is available as res:/storage/memory.free (to be read
as: the free attribute of the resource named memory in the storage category of
the res context-domain). The adaptation policy to control the size of the cache
has three rules (free is used as a shorthand for res:/storage/memory.free):

1. When the value of free changes, if it is less than low, then set the cache
size to 0.

2. When the value of free changes, if it is greater than high, then set the
cache size to max.



Towards a Framework for Self-adaptive Component-Based Applications 11

3. When the value of free changes, then set the cache size to (free− low)×
max

high−low .

These rules state that when the amount of free memory is below the low
watermark, the cache is effectively disabled by setting its size to 0 (Rule 1).
Otherwise, the size of the cache grows linearly with the amount of free memory
(Rule 3) until it reaches a maximum value of max when the amount of free
memory is more than high (Rule 2). By dynamically attaching such a policy to
the cache, its size will always be adapted to the available resources.

3.3 Third Adaptation: Replacement Policy Selection

When a cache is full, it uses a replacement policy to decide which of the el-
ements it contains must be removed. The most classical replacement policy is
LRU (Least Recently Used), which chooses to drop the element in the cache
which was not accessed for the longest time. This works well for random access
patterns but can lead to trashing when the data is accessed sequentially [13].
Glass [13] presents a more sophisticated replacement policy called SEQ which
behaves like LRU by default, but switches to MRU (Most Recently Used) be-
haviour when it detects the beginning of a sequential access. Although Glass
implemented his SEQ algorithm in an ad hoc and much more sophisticated way,
its general idea fits very well in our model of adaptation policies. We can easily
implement a simplified version of SEQ in our application to illustrate the last
kind of adaptation we support: structural reconfiguration. We suppose that the
component implementing the core cache logic uses another component to im-
plement the replacement policy, using a well-defined interface. An adaptation
policy attached to the cache which can detect the start and end of sequential
accesses to data can then use the structural reconfiguration facilities offered by
Fractal to switch between a component which implement LRU and one which
implement MRU2.

Such an adaptation policy could look like this:

1. When returning from the invocation of the cached method, if the last N
requests were consecutive, then unbind the LRU component and replace it
with the MRU component.

2. When returning from the invocation of the cached method, if the last N
requests were not consecutive, then unbind the MRU component and replace
it with the LRU component.

3.4 Conclusion & Evaluation

In this section, we have shown how our approach to building self-adaptive appli-
cations makes it possible to take a simple component-based application written
with only business concerns in mind and make it self-adaptive transparently,
adding the required adaptation logic well encapsulated in adaptation policies.
2 The state transfer between the two replacement policy components is currently han-

dled in an ad hoc way, but we are investigating more generic solutions.



12 Pierre-Charles David and Thomas Ledoux

Although these adaptation policies are currently written in pure Java, we have
already achieved complete separation between the core, business concern of the
application and its adaptation to the limits and evolution of its execution con-
text.

4 Related Work

Apart from Fractal, several component models have been developed to extend
the Java language. Some of them like Jiazzy [8] and Java Layers [14] are purely
static (compile-time), and hence can not support dynamic reconfiguration. Arch-
Java [9], on the other hand, is a Java extension which supports dynamic recon-
figurations, but is not reflective and thus supports only reconfigurations which
have been written explicitly at development time. As for the EJBs, the model
does not really support the notion of architecture, and a previous experiment
[15] showed us than the model was too rigid and restrictive to support the kind
of reconfigurations we want. The CORBA Component Model supports all the
features we need, but is much more complicated than the others. Although our
approach could be ported to this model, its complexity makes it difficult to use
as an experimentation platform.

In [11], Capra describes a middleware architecture which uses reflection and
context-awareness to support adaptation to changing context. As in our ap-
proach, this architecture encapsulates adaptation decisions in XML-based user
profile (similar in intent to our adaptation policies), and relies on a hierarchical
model of the context to take decisions. However, these decisions can be based
only according to the immediate state of the context, whereas our approach
allows the definition of composite events to reason on the evolution of the con-
text over time. Also, reconfiguration actions are delegated to user code through
call-backs, which makes them arbitrary and impossible to analyze.

The QuO (Quality Object) middleware platform [16] uses an approach sim-
ilar to ours to adapt distributed applications. It uses a sophisticated context-
awareness subsystem based on performance models for the application compo-
nents to compute the expected QoS. The resulting system is very powerful, but
heavily biased towards performance-related adaptations, whereas our approach
tries to be more generic.

Bergmans et al. present in [17] a middleware architecture inspired by control
theory to deal with QoS issues in the platform itself. In this architecture, QoS
contracts are attached to bindings between components. Sensors are then used
to observe the performance of components. The system compares this measured
QoS to what is allowed by the contract, and if it detects a difference, reconfigures
the system using actuators. The general idea is close to ours, but the system
only deals with the quality of communications between components (contracts
are attached to bindings).

5 Conclusion: Current Status & Future Work
In this paper, we have presented our approach to enable systematic develop-
ment of self-adaptive component-based applications. The approach follows the



Towards a Framework for Self-adaptive Component-Based Applications 13

Separation of Concerns principle, where the adaptation logic of an application
is developed separately from the rest of it. It relies on the use of an appropriate
component model (in our case, Fractal) to develop an application that is adapt-
able. This adaptable application is then supplemented by adaptation policies
which capture the adaptation logic in an appropriate formalism (Event – Condi-
tion – Action rules). The application is executed inside a software platform which
interprets these policies at run-time, using a generic context-awareness service to
detect changes in the environment, and dynamically reconfigures the application
when appropriate. We have also shown, using an example application, how this
approach can be used in practice to adapt transparently an application.

Currently, we have a working implementation of the extension we designed
for Fractal, and we are implementing the context-awareness service. Next, we
plan to do more experiments to guide the design of the DSL we want to provide
to define adaptation policies. Once we have a formal definition of this language,
we will use it to ensure that the reconfigurations do not break the application,
and to detect conflicts between policies leading (incompatible actions triggered
by the same events, rules interactions creating unstable behavior...).

References

1. Dowling, J., Cahill, V.: The K-Component architecture meta-model for self-
adaptive software. In Yonezawa, A., Matsuoka, S., eds.: Proceedings of Reflection
2001, The Third Int. Conference on Metalevel Architectures and Separation of
Crosscutting Concerns, Kyoto, Japan. LNCS 2192, Springer-Verlag (2001) 81–88

2. Hürsch, W., Lopes, C.V.: Separation of concerns. Technical Report NU-CCS-95-03,
Northeastern University, Boston, Massachusetts (1995)

3. Coupaye, T., Éric Bruneton, Stéfani, J.B.: The fractal composition framework.
Technical report, The ObjectWeb Group (2002)

4. Redmond, B., Cahill, V.: Supporting unanticipated dynamic adaptation of applica-
tion behaviour. In: Proceedings of ECOOP 2002. Volume 2374 of LNCS., Malaga,
Spain, Springer-Verlag (2002) 205–230

5. The First International Workshop on Unanticipated Software Evolution. In:
ECOOP 2002, Malaga, Spain (2002) http://www.joint.org/use2002.

6. Kiczales, G., des Rivières, J., Bobrow, D.G.: The art of the Meta-Object Protocol.
MIT Press (1991)

7. Dittrich, K.R., Gatziu, S., Geppert, A.: The active database management system
manifesto: A rulebase of a ADBMS features. In: Proceedings of the 2nd Int. Work-
shop on Rules in Database Systems. Volume 985., Springer (1995) 3–20

8. McDirmid, S., Flatt, M., Hsieh, W.C.: Jiazzi: New-age components for old-
fashioned Java. In Northrop, L., ed.: OOPSLA’01 Conference Proceedings, Tampa
Bay, Florida, USA, ACM Press (2001) 211–222

9. Aldrich, J., Chambers, C., Notkin, D.: ArchJava: Connecting software architecture
to implementation. In: International Conference on Software Engineering, ICSE
2002, Orlando, Florida, USA (2002)

10. Mulet, P., Malenfant, J., Cointe, P.: Towards a methodology for explicit composi-
tion of metaobjects. In: Proceedings of OOPSLA’95. Volume 30 of ACM SIGPLAN
Notices., austin, Texas, USA (1995) 316–330



14 Pierre-Charles David and Thomas Ledoux

11. Capra, L., Emmerich, W., Mascolo, C.: Reflective middleware solutions for context-
aware applications. In Yonezawa, A., Matsuoka, S., eds.: Proceedings of Reflection
2001, The Third International Conference on Metalevel Architectures and Separa-
tion of Crosscutting Concerns, Kyoto, Japan. LNCS 2192, Springer-Verlag (2001)
126–133

12. Consel, C., Marlet, R.: Architecturing software using a methodology for language
development. In: Proceedings of the 10th Int. Symposium on Programming Lan-
guages, Implementations, Logics and Programs PLILP/ALP’98, Pisa, Italy (1998)

13. Glass, G., Cao, P.: Adaptive page replacement based on memory reference behav-
ior. In: Proceedings of ACM SIGMETRICS 1997. (1997) 115–126

14. Cardone, R., Batory, D., Lin, C.: Java layers: Extending java to support com-
ponent-based programming. Technical Report CS-TR-00-11, Computer Sciences
Department, University of Texas (2000)

15. Jarir, Z., David, P.C., Ledoux, T.: Dynamic adaptability of services in enter-
prise JavaBeans architecture. In: Seventh International Workshop on Component-
Oriented Programming (WCOP’02) at ECOOP 2002, Malaga, Spain (2002)

16. Zinky, J., Loyall, J., Shapiro, R.: Runtime performance modeling and measurement
of adaptive distributed object applications. In Meersam, R., et al, Z.T., eds.: On
the Move to Meaningful Internet Systems 2002: CoopIS, DOA, ODBASE 2002.
Volume 2519 of LNCS., Irvine, California, USA, Springer-Verlag (2002) 755–772

17. Bergmans, L., van Halteren, A., Pires, L.F., van Sinderen, M., Aksit, M.: A QoS-
control architecture for object middleware. In: IDMS’2000 Conference Proceedings.
Volume 1905 of LNCS., Springer Verlag (2001) 117–131


	1 Introduction
	2 General Approach
	2.1 Using Fractal to Build Adaptable Applications
	2.2 Context-Awareness Service
	2.3 Adaptation Policies

	3 Example Application of Our Approach
	3.1 First Adaptation: Conditional Enabling of a Cache
	3.2 Second Adaptation: Automatic Resizing of the Cache
	3.3 Third Adaptation: Replacement Policy Selection
	3.4 Conclusion & Evaluation

	4 Related Work
	5 Conclusion: Current Status & Future Work
	References

