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Abstract

The increasingly popular independent component analysis (ICA) may only be ap-
plied to data following the generative ICA model in order to guarantee algorithm-
independent and theoretically valid results. Subspace ICA models generalize the
assumption of component independence to independence between groups of com-
ponents. They are attractive candidates for dimensionality reduction methods,
however are currently limited by the assumption of equal group sizes or less gen-
eral semi-parametric models. By introducing the concept of irreducible indepen-
dent subspaces or components, we present a generalization to a parameter-free
mixture model. Moreover, we relieve the condition of at-most-one-Gaussian by
including previous results on non-Gaussian component analysis. After introduc-
ing this general model, we discuss joint block diagonalization with unknown block
sizes, on which we base a simple extension of JADE to algorithmically perform
the subspace analysis. Simulations confirm the feasibility of the algorithm.

1 Independent subspace analysis

A random vectorY is called anindependent componentof the random vectorX, if there exists
an invertible matrixA and a decompositionX = A(Y,Z) such thatY andZ are stochastically
independent. The goal of a generalindependent subspace analysis (ISA)or multidimensional inde-
pendent component analysisis the decomposition of an arbitrary random vectorX into independent
components. IfX is to be decomposed into one-dimensional components, this coincides with ordi-
nary independent component analysis (ICA). Similarly, if the independent components are required
to be of the same dimensionk, then this is denoted by multidimensional ICA of fixed group sizek
or simplyk-ISA. So1-ISA is equivalent to ICA.

1.1 Why extend ICA?

An important structural aspect in the search for decompositions is the knowledge of the number of
solutions i.e. the indeterminacies of the problem. Without it, the result of any ICA or ISA algorithm
cannot be compared with other solutions, so for instance blind source separation (BSS) would be
impossible. Clearly, given an ISA solution, invertible transforms in each component (scaling matri-
cesL) as well as permutations of components of the same dimension (permutation matricesP) give
again an ISA ofX. And indeed, in the special case of ICA, scaling and permutation are already all
indeterminacies given that at most one Gaussian is contained inX [6]. This is one of the key the-
oretical results in ICA, allowing the usage of ICA for solving BSS problems and hence stimulating
many applications. It has been shown that also fork-ISA, scalings and permutations as above are
the only indeterminacies [11], given some additional rather weak restrictions to the model.

However, a serious drawback ofk-ISA (and hence of ICA) lies in the fact that the requirement
fixed group-sizek does not allow us to apply this analysis to an arbitrary random vector. Indeed,
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Figure 1: Applying ICA to a random vectorX = AS that does not fulfill the ICA model; hereS
is chosen to consist of a two-dimensional and a one-dimensional irreducible component. Shown are
the statistics over 100 runs of the Amari error of the random original and the reconstructed mixing
matrix using the three ICA-algorithms FastICA, JADE and Extended Infomax. Clearly, the original
mixing matrix could not be reconstructed in any of the experiments. However, interestingly, the
latter two algorithms do indeed find an ISA up to permutation, which will be explained in section 3.

theoretically speaking, it may only be applied to random vectors following thek-ISA blind source
separation model, which means that they have to be mixtures of a random vector that consists of
independent groups of sizek. If this is the case, uniqueness up to permutation and scaling holds as
noted above; however ifk-ISA is applied to any random vector, a decomposition into groups that are
only ‘as independent as possible’ cannot be unique and depends on the contrast and the algorithm.
In the literature, ICA is often applied to find representations fulfilling the independence condition as
well as possible, however care has to be taken; the strong uniqueness result is not valid any more,
and the results may depend on the algorithm as illustrated in figure 1.

This work aims at finding an ISA model that allows applicability to any random vector. After review-
ing previous approaches, we will provide such a model together with a corresponding uniqueness
result and a preliminary algorithm.

1.2 Previous approaches to ISA for dependent component analysis

Generalizations of the ICA model that are to include dependencies of multiple one-dimensional
components have been studied for quite some time. ISA in the terminology of multidimensional ICA
has first been introduced by Cardoso [4] using geometrical motivations. His model as well as the
related but independently proposed factorization of multivariate function classes [9] is quite general,
however no identifiability results were presented, and applicability to an arbitrary random vector
was unclear; later, in the special case of equal group sizes (k-ISA) uniqueness results have been
extended from the ICA theory [11]. Algorithmic enhancements in this setting have been recently
studied by [10]. Moreover, if the observation contain additional structures such as spatial or temporal
structures, these may be used for the multidimensional separation [13].

Hyvärinen and Hoyer presented a special case ofk-ISA by combining it with invariant feature sub-
space analysis [7]. They model the dependence within ak-tuple explicitly and are therefore able
to propose more efficient algorithms without having to resort to the problematic multidimensional
density estimation. A related relaxation of the ICA assumption is given by topographic ICA [8],
where dependencies between all components are assumed and modelled along a topographic struc-
ture (e.g. a 2-dimensional grid). Bach and Jordan [2] formulate ISA as a component clustering
problem, which necessitates a model for inter-cluster independence and intra-cluster dependence.
For the latter, they propose to use a tree-structure as employed by their tree dependepent component
analysis. Together with inter-cluster independence, this implies a search for a transformation of the
mixtures into a forest i.e. a set of disjoint trees. However, the above models are all semi-parametric
and hence not fully blind. In the following, no additional structures are necessary for the separation.



1.3 General ISA

Definition 1.1. A random vectorS is said to beirreducibleif it contains no lower-dimensional
independent component. An invertible matrixW is called a (general)independent subspace analysis
of X if WX = (S1, . . . ,Sk) with pairwise independent, irreducible random vectorsSi.

Note that in this case, theSi are independent components ofX. The idea behind this definition is
that in contrast to ICA andk-ISA, we do not fix the size of the groupsSi in advance. Of course,
some restriction is necessary, otherwise no decomposition would be enforced at all. This restriction
is realized by allowing only irreducible components. The advantage of this formulation now is that
it can clearly be applied to any random vector, although of course a trivial decomposition might be
the result in the case of an irreducible random vector. Obvious indeterminacies of an ISA ofX are,
as mentioned above, scalings i.e. invertible transformations within eachSi and permutation ofSi

of the same dimension1. These are already all indeterminacies as shown by the following theorem,
which extends previous results in the case of ICA [6] andk-ISA [11], where also the additional
slight assumptions on square-integrability i.e. on existing covariance have been made.
Theorem 1.2. Given a random vectorX with existing covariance and no Gaussian independent
component, then an ISA ofX exists and is unique except for scaling and permutation.

Existence holds trivially but uniqueness is not obvious. Due to the limited space, we only give
a short sketch of the proof in the following. The uniqueness result can easily be formulated as a
subspace extraction problem, and theorem 1.2 follows readily from
Lemma 1.3. Let S = (S1, . . . ,Sk) be a square-integrable decomposition ofS into irreducible
independent componentsSi. If X is an irreducible component ofS, thenX ∼ Si for somei.

Here the equivalence relation∼ denotes equality except for an invertible transformation. The follow-
ing two lemmata each give a simplification of lemma 1.3 by ordering the componentsSi according
to their dimensions. Some care has to be taken when showing that lemma 1.5 implies lemma 1.4.
Lemma 1.4. LetS andX be defined as in lemma 1.3. In addition assume thatdimSi = dimX for
i ≤ l anddimSi < dimX for i > l. ThenX ∼ Si for somei ≤ l.
Lemma 1.5. LetS andX be defined as in lemma 1.4, and letl = 1 andk = 2. ThenX ∼ S1.

In order to prove lemma 1.5 (and hence the theorem), it is sufficient to show the following lemma:
Lemma 1.6. LetS = (S1,S2) with S1 irreducible andm := dimS1 > dimS2 =: n. If X = AS

is again irreducible for somem × (m + n)-matrix A, then(i) the leftm × m-submatrix ofA is
invertible, and(ii) if X is an independent component ofS, the rightm×n-submatrix ofA vanishes.

(i) follows after some linear algebra, and is necessary to show the more difficult part (ii). For this,
we follow the ideas presented in [12] using factorization of the joint characteristic function ofS.

1.4 Dealing with Gaussians

In the previous section, Gaussians had to be excluded (or at most one was allowed) in order to
avoid additional indeterminacies. Indeed, any orthogonal transformation of two decorrelated hence
independent Gaussians is again independent, so clearly such a strong identification result would not
be possible.

Recently, a general decomposition model dealing with Gaussians was proposed in the form of the so-
callednon-Gaussian subspace analysis (NGSA)[3]. It tries to detect a whole non-Gaussian subspace
within the data, and no assumption of independence within the subspace is made. More precisely,
given a random vectorX, a factorizationX = AS with an invertible matrixA, S = (SN ,SG)
andSN a square-integrablem-dimensional random vector is called anm-decompositionof X if
SN andSG are stochastically independent andSG is Gaussian. In this case,X is said to bem-
decomposable. X is denoted to beminimallyn-decomposableif X is not (n − 1)-decomposable.
According to our previous notation,SN andSG are independent components ofX. It has been
shown that the subspaces of such decompositions are unique [12]:

1Note that scaling here implies a basis change in the componentSi, so for example in the case of a two-
dimensional source component, this might be rotation and sheering. In the example later in figure 3, these
indeterminacies can easily be seen by comparing true and estimated sources.



Theorem 1.7(Uniqueness of NGSA). The mixing matrixA of a minimal decomposition is unique
except for transformations in each of the two subspaces.

Moreover, explicit algorithms can be constructed for identifying the subspaces [3]. This result en-
ables us to generalize theorem 1.2and to get a general decomposition theorem, which characterizes
solutions of ISA.

Theorem 1.8(Existence and Uniqueness of ISA). Given a random vectorX with existing covari-
ance, an ISA ofX exists and is unique except for permutation of components of the same dimension
and invertible transformations within each independent component and within the Gaussian part.

Proof. Existence is obvious. Uniqueness follows after first applying theorem 1.7 toX and then
theorem 1.2 to the non-Gaussian part.

2 Joint block diagonalization with unknown block-sizes

Joint diagonalization has become an important tool in ICA-based BSS (used for example in JADE)
or in BSS relying on second-order temporal decorrelation. The task of (real)joint diagonalization
(JD) of a set of symmetric realn×n matricesM := {M1, . . . ,MK} is to find an orthogonal matrix
E such thatE⊤

MkE is diagonal for allk = 1, . . . , K i.e. to minimizef(Ê) :=
∑K

k=1 ‖Ê⊤
MkÊ−

diagM(Ê⊤
MkÊ)‖2F with respect to the orthogonal matrix̂E, wherediagM(M) produces a matrix

where all off-diagonal elements ofM have been set to zero, and‖M‖2F := tr(MM
⊤) denotes the

squared Frobenius norm. The Frobenius norm is invariant under conjugation by an orthogonal ma-
trix, so minimizingf is equivalent to maximizingg(Ê) :=

∑K

k=1 ‖ diag(Ê⊤
MkÊ)‖2, where now

diag(M) := (mii)i denotes the diagonal ofM. For the actual minimization off respectively maxi-
mization ofg, we will use the common approach of Jacobi-like optimization by iterative applications
of Givens rotation in two coordinates [5].

2.1 Generalization to blocks

In the following we will use a generalization of JD in order to solve ISA problems. Instead of fully
diagonalizing alln× n matricesMk ∈ M, in joint block diagonalization (JBD)ofM we want to
determineE such thatE⊤

MkE is block-diagonal. Depending on the application, we fix the block-
structure in advance or try to determine it fromM. We are not interested in the order of the blocks,
so the block-structure is uniquely specified by fixing apartition ofn i.e. a way of writingn as a sum
of positive integers, where the order of the addends is not significant. So let2 n = m1 + . . . + mr

with m1 ≤ m2 ≤ . . . ≤ mr and setm := (m1, . . . , mr) ∈ N
r. An n × n matrix is said to be

m-block diagonalif it is of the form






D1 · · · 0
...

. . .
...

0 · · · Dr







with arbitrarymi ×mi matricesDi.

As generalization of JD in the case of known the block structure, we can formulate thejoint m-
block diagonalization (m-JBD) problem as the minimization offm(Ê) :=

∑K

k=1 ‖Ê⊤
MkÊ −

diagMm(Ê⊤
MkÊ)‖2F with respect to the orthogonal matrix̂E, wherediagMm(M) produces a

m-block diagonal matrix by setting all other elements ofM to zero. In practice due to estimation
errors, suchE will not exist, so we speak of approximate JBD and imply minimizing some error-
measure on non-block-diagonality. Indeterminacies of anym-JBD arem-scalingi.e. multiplication
by anm-block diagonal matrix from the right, andm-permutationdefined by a permutation matrix
that only swaps blocks of the same size.

Finally, we speak ofgeneral JBDif we search for a JBD but no block structure is given; in-
stead it is to be determined from the matrix set. For this it is necessary to require a block

2We do not use the convention from Ferrers graphs of specifying partitions in decreasing order, as a visual-
ization of increasing block-sizes seems to be preferable in our setting.



structure of maximal length, otherwise trivial solutions or‘in-between’ solutions could exist (and
obviously contain high indeterminacies). Formally,E is said to be a (general) JBD ofM if
(E,m) = argmax

m | ∃E:fm(E)=0 |m|. In practice due to errors, a true JBD would always result
in the trivial decompositionm = (n), so we define an approximate general JBD by requiring
fm(E) < ǫ for some fixed constantǫ > 0 instead offm(E) = 0.

2.2 JBD by JD

A few algorithms to actually perform JBD have been proposed, see [1] and references therein. In
the following we will simply perform joint diagonalization and then permute the columns ofE to
achieve block-diagonality — in experiments this turns out to be an efficient solution to JBD [1].
This idea has been formulated in a conjecture [1] essentially claiming that a minimum of the JD cost
functionf already is a JBD i.e. a minimum of the functionfm up to a permutation matrix. Indeed,
in the conjecture it is required to use the Jacobi-update algorithm from [5], but this is not necessary,
and we can prove the conjecture partially:

We want to show that JD implies JBD up to permutation, i.e. ifE is a minimum off , then there
exists a permutationP such thatfm(EP) = 0 (given existence of a JBD ofM). But of course
f(EP) = f(E), so we will show why (certain) JBD solutions are minima off . However, JD might
have additional minima. First note that clearly not any JBD minimizesf , only those such that in
each block of sizemk, f(E) when restricted to the block is maximal overE ∈ O(mk). We will call
such a JBDblock-optimalin the following.
Theorem 2.1. Any block-optimal JBD ofM (zero offm) is a local minimum off .

Proof. Let E ∈ O(n) be block-optimal withfm(E) = 0. We have to show thatE is a local
minimum off or equivalently a local maximum of the squared diagonal sumg. After substituting
eachMk by E

⊤
MkE, we may already assume thatMk is m-block diagonal, so we have to show

thatE = I is a local maximum ofg.

Consider the elementary Givens rotationGij(ǫ) defined fori < j andǫ ∈ (−1, 1) as the orthogonal
matrix, where all diagonal elements are1 except for the two elements

√
1− ǫ2 in rowsi andj and

with all off-diagonal elements equal to0 except for the two elementsǫ and−ǫ at (i, j) and(j, i),
respectively. It can be used to construct local coordinates of thed := n(n − 1)/2-dimensional
manifoldO(n) at I, simply byι(ǫ12, ǫ13, . . . , ǫn−1,n) :=

∏

i<j Gij(ǫij) This is an embedding, and
ι(0) = I, so we only have to show thath(ǫǫǫ) := g(ι(ǫǫǫ)) has a local maximum atǫǫǫ = 0. We do this
by consideringh partially in each coordinate. Leti < j. If i, j are in the same block ofm, thenh is
locally maximal i.e. negative semi-definite at0 in the directionǫij because of block-optimality.

Now assumei andj are from different blocks. After possible permutation, we may assume thatj =
i + 1 so that each matrixMk ∈ M has(Mk)ij = (Mk)ji = 0, andak := (Mk)ii, bk := (Mk)jj .
ThenGij(ǫ)

⊤
MkGij(ǫ) can be easily calculated at coordinates(i, i) to (j, j), and indeed entries

on the diagonal other than at indices(i, i) and(j, j) are not changed, so

‖ diag(Gij(ǫ)
⊤
MkGij(ǫ))‖2 − ‖ diag(Mk)‖2 =

= −2ak(ak − bk)ǫ2 + 2bk(ak − bk)ǫ2 + 2(ak − bk)2ǫ4

= −2(a2
k + b2

k)ǫ2 + 2(ak − bk)2ǫ4.

Henceh(0, . . . , 0, ǫij, 0, . . . , 0) − h(0) = −cǫ2ij + dǫ4ij with c = 2
∑K

k=1(a
2
k + b2

k) and d =

2
∑K

k=1(ak − bk)2. Now eitherc = 0, then alsod = 0 andh is constant zero in the direction
ǫij . Or, more interestingly,c 6= 0, thenc > 0 and thereforeh is negative definite in the direction
ǫij . Altogether we get a negative definiteh at 0 except for ‘trivial directions’, and hence a local
maximum at0.

2.3 Recovering the permutation

In order to perform JBD, we therefore only have to find a JDE ofM. What is left according to the
above theorem is to find a permutation matrixP such thatEP block-diagonalizesM. In the case of
known block-orderm, we can employ similar techniques as used in [1, 10], which essentially find
P by some combinatorial optimization.
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Figure 2: Performance of the proposed general JBD algorithm in the case of the (unknown) block-
partition40 = 1+2+2+3+3+5+6+6+6+6 in the presence of noise with SNR of5dB. The
productÊ⊤

E of the inverse of the estimated block diagonalizer and the original one is anm-block
diagonal matrix except for permutation within groups of the same sizes as claimed in section 2.2.

In the case of unknown block-size, we propose to use the following simple permutation-recovery
algorithm: consider the mean diagonalized matrixD := K−1

∑K

k=1 E
⊤
MkE. Due to the assump-

tion thatM is m-block-diagonalizable (with unknownm), eachE⊤
MkE and hence alsoD must

bem-block-diagonal except for a permutationP, so it must have the corresponding number of zeros
in each column and row. In the approximate JBD case, thresholding with a thresholdθ is necessary,
whose choice is non-trivial.

We propose using algorithm 1 to recover the permutation; we denote its resulting permuted matrix by
P(D) when applied to the inputD. P(D) is constructed from possibly thresholdedD by iteratively
permuting columns and rows in order to guarantee that all non-zeros ofD are clustered along the
diagonal as closely as possible. This recovers the permutation as well as the partitionm of n.

Algorithm 1 : Block-diagonality permutation finder

Input : (n× n)-matrixD

Output : block-diagonal matrixP(D) := D
′ such thatD′ = PDP

T for a permutation matrixP

D
′ ← D

for i← 1 to n do
repeat

if (j0 ← min{j|j ≥ i andd′ij = 0 andd′ji = 0}) existsthen
if (k0 ← min{k|k > j0 and(d′ik 6= 0 or d′ki 6= 0)}) existsthen

swap columnj0 of D′ with columnk0

swap rowj0 of D′ with row k0
until no swap has occurred;

We illustrate the performance of the proposed JBD algorithm as follows: we generate a set ofK =
100 m-block-diagonal matricesDk of dimension40 × 40 with m = (1, 2, 2, 3, 3, 5, 6, 6, 6, 6).
They have been generated in blocks of sizem with coefficients chosen randomly uniform from
[−1, 1], and symmetrized byDk ← (Dk + D

⊤
k )/2. After that, they have been mixed by a random

orthogonal mixing matrixE ∈ O(40), i.e.Mk := EDkE
⊤ + N, whereN is a noise matrix with

independent Gaussian entries such that the resulting signal-to-noise ratio is5dB. Application of
the JBD algorithm from above to{M1, . . . ,MK} with thresholdθ = 0.1 correctly recovers the
block sizes, and the estimated block diagonalizerÊ equalsE up tom-scaling and permutation, as
illustrated in figure 2.

3 SJADE — a simple algorithm for general ISA

As usual by preprocessing of the observationsX by whitening we may assume thatCov(X) = I.
The indeterminacies allow scaling transformations in the sources, so without loss of generality let
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Figure 3: Example application of general ISA for unknown sizesm = (1, 2, 2, 2, 3). Shown are the
scatter plots i.e. densities of the source components and the mixing-separating mapÂ

−1
A.

alsoCov(S) = I. ThenI = Cov(X) = ACov(S)A⊤ = AA
⊤ soA is orthogonal. Due to the ISA

assumptions, the fourth-order cross cumulants of the sources have to be trivial between different
groups, and within the Gaussians. In order to find transformations of the mixtures fulfilling this
property, we follow the idea of the JADE algorithmbut now in the ISA setting. We perform JBD of
the (whitened)contracted quadricovariance matricesdefined byCij(X) := E

(

X
⊤
EijXXX

⊤
)

−
Eij −E

⊤
ij− tr(Eij)I. HereRX := Cov(X) andEij is a set of eigen-matrices ofCij , 1 ≤ i, j ≤ n.

One simple choice is to usen2 matricesEij with zeros everywhere except1 at index(i, j). More
elaborate choices of eigen-matrices (with onlyn(n + 1)/2 or evenn entries) are possible. The
resulting algorithm,subspace-JADE (SJADE)not only performs NGCA by grouping Gaussians as
one-dimensional components with trivialCii’s, but also automatically finds the subspace partition
m using the general JBD algorithm from section 2.3.

4 Experimental results

In a first example, we consider a general ISA problem in dimensionn = 10 with the unknown
partitionm = (1, 2, 2, 2, 3). In order to generate 2- and 3-dimensional irreducible random vectors,
we decided to follow the nice visual ideas from [10] and to draw samples from a density following
a known shape — in our case 2d-letters or 3d-geometrical shapes. The chosen sources densities are
shown in figure 3(a-d). Another 1-dimensional source following a uniform distribution was con-
structed. Altogether104 samples were used. The sourcesS were mixed by a mixing matrixA with
coefficients uniformly randomly sampled from[−1, 1] to give mixturesX = AS. The recovered
mixing matrix Â was then estimated using the above block-JADE algorithm with unknown block
size; we observed that the method is quite sensitive to the choice of the threshold (hereθ = 0.015).
Figure 3(e) shows the composed mixing-separating systemÂ

−1
A; clearly the matrices are equal

except for block permutation and scaling, which experimentally confirms theorem 1.8. The algo-
rithm found a partition̂m = (1, 1, 1, 2, 2, 3), so one 2d-source was misinterpreted as two 1d-sources,
but by using previous knowledge combination of the correct two 1d-sources yields the original 2d-
source. The resulting recovered sourcesŜ := Â

−1
X, figures 3(f-j), then equal the original sources

except for permutation and scaling within the sources — which in the higher-dimensional cases
implies transformations such as rotation of the underlying images or shapes. When applying ICA
(1-ISA) to the above mixtures, we cannot expect to recover the original sources as explained in
figure 1; however, some algorithms might recover the sources up to permutation. Indeed, SJADE
equals JADE with additional permutation recovery because the joint block diagonalization is per-



formed using joint diagonalization. This explains why JADE retrieves meaningful components even
in this non-ICA setting as observed in [4].

In a second example, we illustrate how the algorithm deals with Gaussian sources i.e. how the
subspace JADE also includes NGCA. For this we consider the casen = 5, m = (1, 1, 1, 2) and
sources with two Gaussians, one uniform and a 2-dimensional irreducible component as before;
105 samples were drawn. We perform 100 Monte-Carlo simulations with random mixing matrix
A, and apply SJADE withθ = 0.01. The recovered mixing matrix̂A is compared withA by
taking the ad-hoc measureι(P) :=

∑3
i=1

∑2
j=1(p

2
ij + p2

ji) for P := Â
−1

A. Indeed, we get nearly
perfect recovery in 99 out of 100 runs, the median ofι(P) is very low with0.0083. A single run
diverges withι(P ) = 3.48. In order to show that the algorithm really separates the Gaussian part
from the other components, we compare the recovered source kurtoses. The median kurtoses are
−0.0006± 0.02,−0.003± 0.3,−1.2± 0.3,−1.2± 0.2 and−1.6± 0.2. The first two components
have kurtoses close to zero, so they are the two Gaussians, whereas the third component has kurtosis
of around−1.2, which equals the kurtosis of a uniform density. This confirms the applicability of
the algorithm in the general, noisy ISA setting.

5 Conclusion

Previous approaches for independent subspace analysis were restricted either to fixed group sizes
or semi-parametric models. In neither case, general applicability to any kind of mixture data set
was guaranteed, so blind source separation might fail. In the present contribution we introduce the
concept of irreducible independent components and give an identifiability result for this general,
parameter-free model together with a novel arbitrary-subspace-size algorithm based on joint block
diagonalization. As in ICA, the main uniqueness theorem is an asymptotic result (but includes
noisy case via NGCA). However in practice in the finite sample case, due to estimation errors the
general joint block diagonality only approximately holds. Our simple solution in this contribution
was to choose appropriate thresholds. But this choice is non-trivial, and adaptive methods are to be
developed in future works.
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