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Basic Framework

Exogenously Given:

• An underlying incomplete market.

• A contingent T -claim Z.

Recall: The arbitrage free price of Z is given by

Π(t, Z) = EP

[
DT

Dt
· Z

∣∣∣∣Ft

]
= EQ

[
e−

∫ T
t rudu · Z

∣∣∣Ft

]

where D is the stochastic discount factor (SDF)

Dt = e−
∫ t
0 ruduLt, Lt =

dQ

dP
, on Ft

However:

• Incomplete market ⇒ D and Q are not unique.

• Thus no unique price process Π(t, Z).
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How can we price in this incomplete

setting?

Sad Fact:
The no arbitrage bounds are far to wide to be useful.

Some standard techniques:

• Quadratic hedging.

• Utility indifference pricing.

• Minimize some distance between Q and P .

Our Goal:

• Find “reasonable” and tight no arbitrage bounds.

• Economic interpretation.

• Market data as input.
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Cochrane and Saa-Requejo

• An arbitrage opportunity is a “ridiculously good
deal”.

• Thus, no arbitrage pricing is pricing subject to the
constraint of ruling out ridiculously good deals.

The CSR Idea:
Find pricing bounds by ruling out, not only ridiculously
good deals, but also “unreasonably good deals”.

How is this formalized?:

• Impose restrictions on the volatility of the SDF
(stochastic discount factor).

• Impose bounds on the Sharpe Ratio!

3



Sharpe Ratio

The Sharpe Ratio for an asset price S is defined by

SR = risk premium per unit volatility

i.e.

SR =
µ − r

v
where

µ = mean rate of return

r = short rate

v = total volatility of S

i.e.

v2
t dt = V arP

[
dSt

St−

∣∣∣∣Ft−

]

Moral:
High Sharpe Ratio = unreasonbly good deal.
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Reasonable Values of the Sharp Ratio

• The market portfolio is not so dramatically
inefficient ⇒ we do not expect to see SR much
higher then historical market SR, which is about
0,5.

• Using utility function approach, unless we make
extreme assumptions about consumption volatility
and risk aversion it is difficult to generate SR higher
then 0,3.

• A hedge fund with a SR around 2 is doing extremely
well.

5



CSR First Problem Formulation

Find upper and lower price bounds subject to a
constraint of the Sharpe Ratio, i.e. find

sup EP

[
DT

Dt
· Z

∣∣∣∣Ft

]

subject to
|SRt| ≤ B. for all t

However:

• Formulated this way, the problem is mathematically
intractable.

• Even if we have a bound on the SR for the Z
derivative, it may be possible to form portfolios (on
underklying and derivative) with very high Sharpe
ratios.
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Reformulating the Constraint

Recall:
In a Wiener driven world we have the

Hansen-Jagannathan inequality:

|SRt|2 ≤ ‖ht‖2
Rd

where

−ht = market price vector of W -risk

or in martingale language

dLt = LthtdWt, Lt =
dQ

dP
, on Ft

Idea:
Replace SR constraint with constraint on ‖ht‖
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Second CSR Problem Formulation

Find

sup
h

EP

[
DT

Dt
· Z

∣∣∣∣Ft

]

subject to

‖ht‖2
Rd ≤ B2 ∀t ∈ [0, T ].

CSR Results:

• Main analysis done in one-period framework.

• In continuous time, CSR derive a PDE for upper
and lower price bounds through (informal) dynamic
programming argument.

• Obtains nice numerical results.

• Surprisingly tight bounds.
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Limitations of CSR

sup
h

EP

[
DT

Dt
· Z

∣∣∣∣Ft

]

subject to

‖ht‖2
Rd ≤ B2 ∀t ∈ [0, T ].

• Only Wiener driven asset price processes.

• Analysis carried out entirely in terms of SDFs.

• Connection to martingale measures not clarified.

• CSR derive a HJB equation, but the precise
underlying control problem is never made precise.

• Some ad hoc assumptions on the upper an lower
bounds processes.
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Main Contributions of the Present Paper

• We focus on martingale measures rather than on
SDF, which is mathematically equivalent but

– allows to use the technical machinery of
martingale theory

– considerably streamlines the arguments - ”good-
deal” pricing problem can be formulated as a
standard stochastic control problem

• We do not assume the existence, nor do we make
assumptions about the explicit dynamics of the price
bounds

• We introduce a driving general marked point
process, thus allowing the possibility of jumps in the
random processes describing the financial markets.
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A Generic Example

The Merton model:

dSt = Stαdt + StσdWt + St−δtdNt

Here N is Poisson and δ lognormal at jumps.

• To obtain a unique derivatives pricing formula
Merton assumes zero market price of jump risk.

Can we do better?
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The Model

• An n-dimensional traded asset price process S = (S1, . . . , Sn)

dSi
t = Si

tαi (St, Yt) dt + Si
tσi(St, Yt)dWt

+Si
t−

∫

X

δi(St−, Yt−, x)µ(dt, dx), i = 1, . . . , n

• A k-dimensional factor process Y = (Y 1, . . . , Y n)

dY j
t = aj (St, Yt) dt + bj(St, Yt)dWt

+
∫

X

cj(St−, Yt−, x)µ(dt, dx). j = 1, . . . , k

12



Recap on Marked Point Processes

• µ(dt, dx) - number of events in (dt, dx) ∈ R+ × X

• Typically we assume that µ(dt, dx) has predictable
P -intensity measure process λ This essentially
means that

λt(dx)dt = EP [µ(dt, dx)|Ft−]

• λt(dx)- expected rate of events at time t with marks
in dx.

• For each x, the differential µ(dt, dx) − λt(dx)dt is
a P -martingale differential.

• λt(X)=global intensity (regardless of mark)

• The probability distribution of marks, given that
there is a jump at t is

1
λt(X)

· λt(dx)
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Assumptions

• The point process µ has a predictable P -intensity
measure λ, of the form

λt(dx) = λ(St−, Yt−, dx)dt.

• We assume the existence of a short rate r of the
form

rt = r(St, Yt).

• We assume that the model is free of arbitrage in the
sense that there exists a (not necessarily unique)
risk neutral martingale measure Q.

• δi(s, y, x) ≥ −1 ∀i and ∀(s, y, x)

• We consider claims of the form

Z = Φ(ST , YT )
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Girsanov for MPP and Wiener

Assume that µ(dt, dx) has predictable P -intensity
λt(dx) and that W is d-dimensional P -Wiener

• Choose predictable processes ht and ϕt(x) ≥ −1

• Define likelihood process L by

{
dLt = LthtdWt + Lt−

∫
X

ϕt(x)µ̃(dt, dx)
L0 = 1

µ̃(dt, dx) = µ(dt, dx) − λt(dx)dt

Then:

• µ(dt, dx) has Q-intensity

λQ
t (dx) = {1 + ϕt(x)}λt(dx)

• We have
dW = h?

t + dWQ
t
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Extended Hansen-Jagannathan Bounds

Proposition:
For all arbitrage free price processes S and for
all Girsanov kernels ht, ϕt(x), defining a martingale
measure, the following inequality holds

|SRt|2 ≤ ‖ht‖2
Rd +

∫

X

ϕ2
t (x)λt(dx)

or

|SRt|2 ≤ ‖ht‖2
Rd + ‖ϕt‖2

λt
,

where ‖ · ‖λt denotes the norm in the Hilbert space
L2 [X, λt(dx)].
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Good Deal Bounds

The upper good deal price bound process is defined
as the optimal value process for the following optimal
control problem.

V (t, s, y) = sup
h,ϕ

EQ
[
e−

∫ T
t ruduΦ (ST , YT )

∣∣∣Ft

]

Q dynamics:

dSi
t = Si

t

{
rt −

∫

X

δi(x) {1 + ϕt(x)}λt(dx)
}

dt

+Si
tσidWQ

t + Si
t−

∫

X

δi(x)µ(dt, dx),

i = 1, . . . , n

dY j
t = {aj + bjht} dt + bjdWQ

t

+
∫

X

cj(x)µ(dt, dx). j = 1, . . . , k

Standard stochastic control problem
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Constraints on h and ϕ

• (Guarantees that Q is a martingale measure)

αi + σiht +
∫

X

δi(x) {1 + ϕt(x)}λt(dx) = rt, ∀i

• (Rules out ”good deals”)

‖ht‖2
Rd +

∫

X

ϕ2
t(x)λt(dx) ≤ B2,

• (Ensures that Q is a positive measure)

ϕt(x) ≥ −1, ∀t, x.
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HJB Equation

Theorem The upper good deal bound function is the solution V to the
following boundary value problem

∂V

∂t
(t, s, y) + sup

h,ϕ
Ah,ϕV (t, s, y) − r(s, y)V (t, s, y) = 0,

V (T, s, y) = Φ(s, y)

NB:
The embedded static problem

sup
h,ϕ

{
Ah,ϕV (t, s, y)

}

is a full fledged variational problem. For each (t, s, y) we have to determine
ϕ(t, s, y, ·) as a function of x.
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Ah,ϕV (t, s, y)

=
n∑

i=1

∂V

∂si
si

{
r −

∫

X

δi(x) {1 + ϕ(x)}λt(dx)
}

+
k∑

j=1

∂V

∂yj
{aj + bjh} +

∫

X

∆V (x) {1 + ϕ(x)}λt(dx)

+
1
2

n∑

i,l=1

∂2V

∂si∂sl
sislσ

?
i σl +

1
2

k∑

j,l=1

∂2V

∂yj∂yl
b?
jbl +

k∑

i,j=1

∂2V

∂si∂yj
siσ

?
i bj

Here
∆V (x) = V (t, s(1 + δ(x)), y + c(x)) − V (t, s, y)
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Examples. Purely Wiener-driven Model

dSi
t = Si

tαi (St, Yt) dt + Si
tσi(St, Yt)dWt, ∀i

dY j
t = aj (St, Yt) dt + bj(St, Yt)dWt, ∀j

The static problem takes the form

max
h

k∑

j=1

∂V

∂yj
(t, s, y)bj(s, y)h(t, s, y)

subject to the constraints

αi + σih = r, i = 1, . . . , n

‖h‖2
Rd ≤ A2.

• Maximize linear function subject to linear and
quadratic constraints.

• Piece of cake.

• Includes the Cochrane Saa-Requejo theory.
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Point Process Examples

Consider a financial market and a scalar price process
S satisfying the SDE

dSt = Stαdt + StσdWt + St−

∫

X

δ(x)µ(dt, dx).

The point process µ has a P -compensator of the form

νP (dt, dx) = λ(dx)dt

λ is a finite nonnegative measure on (X,X ).

I. The Poisson-Wiener Model
X = {x0}, the measure λ(dx) is a point mass λ(x0),
the jump function is a real number δ = δ(x0)

dSt = Stαdt + StσdWt + St−δdNt
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1. The infinitesimal generator is given now as

Ah,ϕV (t, s) =
∂V

∂s
s {r − δλ(1 + ϕ)} +

1
2
s2σ2∂

2V

∂s2

+ {V (t, s(1 + δ)) − V (t, s)}λ(1 + ϕ).

2. The static optimization problem becomes

max
h,ϕ

λ {V (t, s(1 + δ)) − V (t, s) − Vs(t, s)sδ}ϕ

3. subject to the constraints

α + σh + δλ {1 + ϕ} = r,

h2 + ϕ2λ ≤ B2,

ϕ ≥ −1.
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The structure of the solution

• In general the optimal kernels have ”bang-bang”
structure depending on the sign of

V (t, s(1 + δ)) − V (t, s) − Vs(t, s)sδ

• In case contract funcion Φ is convex

– The optimal upper bound value function is convex

– V (t, s(1 + δ)) − V (t, s) − Vs(t, s)sδ ≥ 0

– The optimal kernels are constant
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Solution to the Poisson-Wiener Model

The optimal upper bound value function satisfies the
following PIDE

∂V

∂t
(t, s) +

∂V

∂s
s {r − δλ(1 + ϕ̂)} +

1
2
s2σ2∂

2V

∂s2

+ {V (t, s(1 + δ)) − V (t, s)}λ(1 + ϕ̂) − rV (t, s) = 0,

V (T, s) = Φ(s)

where ĥ, ϕ̂ are defined by as follows

hmax = − σR

(σ2 + δ2λ)λ
−

δ
√

B2 (σ2 + δ2λ) − R2)
(σ2 + δ2λ)

√
λ

ϕmax = − δR

σ2 + δ2λ
+

σ
√

B2 (σ2 + δ2λ) − R2)
(σ2 + δ2λ)

√
λ
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II. The Compound Poisson-Wiener

Model

In this case the static problem has the following form

max
h,ϕ

∫

X

∆V (t, s, x)ϕ(t, s, x)λ(dx)

−sVs(t, s)
∫

X

δ(x)ϕ(t, s, x)λ(dx),

subject to

α + σh +
∫

X

δ(x)λ(dx) +
∫

X

δ(x)ϕ(x)λ(dx) = r,

h2 +
∫

X

ϕ2(x)λ(dx) ≤ B2,

ϕ(x) ≥ −1,

where, as before,

∆V (t, s, x) = V (t, s(1 + δ(x))) − V (t, s).
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• The static problem has to be solved for every fixed
choice of (t, s, y) and the control variables are h
and ϕ

• For fixed (t, s, y) h is d-dimensional vector

• However, ϕ is a function of x and thus infinite-
dimensional control variable

• We are faced thus not a standard finite dimensional
programming problem, but variational problem
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Numerical Aspects of Static Problem

• Linear objective with:

– Linear constraints.
– Quadratic constraints.
– A positivity constraint!

• The positivity constraint makes it messy.

Present situation:

• Without the postivity constraint, the static problem
can easily be solved using Hilbert space techniques.
This may lead to a signed “martingale measure”
and to bounds which are to wide.

• Including the positivity constraint, we have used an
interior point method.
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The Minimal Martingale Measure
Assume price dynamics

dSt = Stαdt + StσdWt + St−

∫

X

δ(x)µ(dt, dx).

The minimal martingale measure is defined as the
(possibly signed) martingale measure with minimum
norm for the price of risk, i.e. by the problem

min
h,ϕ

‖ht‖2
Rd +

∫

X

ϕ2
t (x)λt(dx)

s.t.
α + σht +

∫

X

δ(x) {1 + ϕt(x)}λt(dx) = rt,

NB: No positivity constraint!

The good deal constraint is

‖ht‖2
Rd +

∫

X

ϕ2
t(x)λt(dx) ≤ B2

If the MMM is a positive measure then the MMM
price is always within the good deal bounds.
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The Relaxed Pricing Bounds

Definition:

V s = optimal upper price bound

V i = optimal lower price bound

V̄ s = upper relaxed price bound

V̄ i = lower relaxed price bound

V̄ m = MMM price

The relaxed prices bounds V̄ s, V̄ i, and the MMM price
V̄ m are very easy to compute.

In general we have

V̄ i ≤ V i ≤ V s ≤ V̄ s

and
V̄ i ≤ V̄ m ≤ V̄ s
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Good deal pricing bounds
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The minimal martingale measure and the

Merton model
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