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Abstract— Developing robust computer vision algorithms to 
detect fruit in trees is challenging due to less controllable 
conditions, including variation in illumination within an image as 
well as between image sets. There are two classes of techniques: 
local-feature-based techniques and shape-based techniques, 
which have been used extensively in this application domain. Out 
of the two classes, the local-feature-based techniques have shown 
higher accuracies over shape-based techniques, but are less 
desirable due to the requirement of repeated calibration. In this 
paper, we investigate the potential of developing a generalized 
colour pixel classifier that can be employed to detect kiwifruit on 
vines, under variable fruit maturity levels and imaging 
conditions. First, we observed the colour data patterns of fruit 
and nonfruit regions from different image sets. With consistant 
data patterns it was found that a suitable normalization could 
produce an invariant colour descriptor. Then, a neural network 
Self-Organizing Map (SOM) model, which has a hierarchical 
clustering ability was used to investigate the potential of 
developing a generalized neural network model to classify pixels 
under variable conditions. Models were built for colour features 
extracted in CIELab space for both absolute colour values and 
relative colour descriptors. The paper presents the positive 
results of the preliminary investigations. The conditions for a 
successful application of the approach as well as the potential for 
extending it for automatic calibration will also be discussed. 
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I.  INTRODUCTION  
Vision based detection of fruit in trees was first applied in 

robotic fruit harvesting systems in the late 1970s [1]. Since 
then, fruit detection algorithms have been researched and 
applied in different fruit harvest robotics. Application of vision 
based techniques for pre-harvest estimation purposes has also 
become popular in recent years [2, 3]. A survey of vision 
techniques used to detect fruit in trees can be found in [4]. 
Jimenez et al [4] divide vision based techniques used in 
detecting fruit in trees into two categories, based on the 
analysis method. They are local feature-based techniques and 
shape-based techniques. Techniques based on local features 
consider pixel based properties such as intensity, colour, 
texture and other spectral band values. Shape based methods 
use morphological properties of a fruit object as a whole and 
the shape measurements are obtained from edge images or 
convexity analysis. Out of the two categories the local-feature-
based methods have shown higher levels of accuracy, despite 

the disadvantage of their need for calibration.  On the other 
hand, when the background contains complex variations, shape 
based techniques do not perform well. Therefore, local features 
like colour become an essential feature in detecting objects as 
well as in isolating relevant information needed for other 
techniques to perform well. 

When using local features, a requirement of calibration 
arises due to the variability of local features (mainly the 
intensities of spectral bands) with different imaging conditions. 
Furthermore, spectral reflectance properties of fruit and other 
background can vary slightly from season to season. When we 
deploy a vision system for pre-harvest estimation at several 
stages of fruit growth, the fruit colour differs slightly at 
different ages requiring calibrations in order to detect fruit 
accurately. However, the need of calibration makes a system 
less user friendly. Therefore, a generalized model which can 
detect fruit despite slight variations of the spectral reflectance 
properties and imaging conditions is of interest to the industry. 
In this paper, we investigate the potential of developing such a 
model for detecting kiwifruit within orchards, as an attempt to 
extend the vision system developed in [5] to be more 
generalized. 

The problem of comparing images taken under different 
lighting conditions and by different cameras is often addressed 
by colour constancy techniques [6]. Such techniques include 
gray world assumption, white world assumption and gamut 
mapping techniques [7]. The images in our work consist of 
several complexities; the background of the images is 
uncontrollable and variable and different fruit maturity levels 
make the fruit colour also variable. Consequently, the surface 
reflectance can also be variable. Furthermore, we are interested 
in comparing images captured by different cameras and 
therefore the sensitivity functions also change. If the gray 
world assumption is considered, it removes the colour cast 
caused by an illuminant which is biased towards one colour, by 
adjusting each colour band’s mean value to be equal to the 
mean value of the gray image [8]. This assumption is suitable 
for images which have lot of colour variation within the image. 
In the system we discuss, images are taken at night and images 
mostly contain fruit and canopy; hence there is little colour 
variation. Furthermore, only white light illuminants are often 
used in this application domain, so the gray world assumptions 
are not valid for the images in our application. The white world 
algorithm is also another variation of gray world assumption 
and further it assumes to have a white point, which can not be 
assumed to exist in every image of our application. Gamut 
mapping methods map gamut of an image under an unknown 
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illuminant into the gamut of the image under a known 
illuminant. If mapping is based on diagonal model, two gamuts 
can be mapped to each other by multiplying each band by a 
scalar value. If the shape of the gamut is complex, then the 
mapping has to consider the constraints; hence the convex hulls 
of gamuts are mapped [9]. 

Our approach is data driven and can also be grouped under 
the gamut mapping method. The approach is a convenient 
alternative based on the patterns of colour ranges in CIELab 
colour space for different image sets. After preprocessing, we 
used a convenient gamut shape in CIELab colour model. We 
present the effect of a suitable normalizing for gamut mapping 
towards achieving a generalized pixel classification model, 
using a Self Organizing Map (SOM) neural network. 

The paper is organized in 5 Sections. Section 2 briefly 
discusses SOM neural network models and the model 
parameters used for this work. The data used for this work, pre-
processing and hypothesis for normalizing is described in 
Section 3. Then, the results comparing original colour features 
and normalized colour features are presented in Section 4. 
Finally the conclusion and further work is discussed in Section 
5. 

II. SOM CLUSTERING 
Artificial Neural networks are massively parallel networks 

of processing elements (neurons) that can learn patterns of data 
via training. SOM neural networks use an unsupervised 
learning method to organize unknown data into groups of 
similar pattern based on distance measures. The most important 
feature of SOM is that it preserves the topological relationship 
between data so that the neighbouring inputs in the input space 
are mapped into neighbouring neurons; hence SOM is an ideal 
tool to visualize the clusters in large input data in a condensed 
form through the neurons arranged in a two dimensional  lattice 
[10].  

As the inputs are represented by neurons, input clustering 
can be achieved by clustering neurons, i.e. weight vectors. 
Neurons group the data into subgroups, each of which is 
represented by a neuron. Then, as in hierarchical clustering, the 
subgroups are grouped again to form the desired number of 
clusters. This way, a classifier can be trained to take in to 
account variations within one cluster and still be classified 
under one final cluster. SOM clustering techniques have 
proven superior performance in classifying data with 
imperfections, such as data dispersion, outliers, irrelevant 
variables, and nonuniform cluster densities [11]. In this study, 
we aim to achieve a SOM neural network model such that the 
feature vectors of fruit pixels are responded by neurons in one 
cluster where as the feature vectors of background pixels are 
responded by another cluster of neurons.  In order to achieve a 
general pixel classifier, the model should respond similarly for 
images captured under different imaging conditions. 

Matlab 2009 software and its Neural Network toolbox were 
used to implement SOM network. A SOM network model with 
100 neurons arranged in a hexagonal topology was used for 
this work. Weights were randomly initialized and the batch 
training approach with 200 iterations was used to train the 
network. The factor determining whether the model is properly 

trained or not, is the cumulative distances (D) between input 
vectors and corresponding wining neurons. The D is calculated 
as in (1), and the model is optimized when it is trained until the 
D is minimized so that all the neurons have spread themselves 
among input vectors.  In addition, a sufficiently large number 
of neurons enables a lower value for D. We use 100 neurons 
which are expected to be sufficient to represent a simple linear 
shape of data. Furthermore, appropriate training can be verified 
by visually observing the plot of weight vectors on top of input 
vectors. 
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where C is the number of neurons, Ni is the number of input 
vectors responded by ith neuron, and Wi is the wining weight 
vector corresponds to the ith neuron. 

III. DATA AND HYPOTHESIS 

A. Data and Pre-processing 
Three sets of three band (R, G and B) images captured at a 

New Zealand kiwifruit orchard were used for this study. Each 
set contains five representative images. Images were captured 
using a custom built acquisition setup used in [5]. The details 
of imaging conditions for each image set are shown in Table 1. 
An example image from each image set is shown in Fig. 1.  

TABLE I.  DETAILS OF IMAGE SETS 

 Set 1 Set 2 Set 3 

Camera 
Lumenera 

Le256- high 
resolution 

Lumenera 
Le256- high 
resolution 

AVT Guppy 
F-080/C 

Lighting Array of 
fluorescent 

Array of 
fluorescent Halogen 

Image 
size 1080x1920x3 1080x1920x3 768x1024x3 

Month/ 
year 

captured 

December/ 
2006 

(3months 
prior to 

harvesting) 

April/ 2007    
(2 weeks 
prior to 

harvesting) 

November/ 
2008         

(4 months 
prior to 

harvesting) 
 

Images were pre-processed using the steps used in [5]. 
First, each colour band values were contrast stretched using a 
nonlinear function, 5.0kxy = , where k is a scalar and x is the 
input intensity value. The nonlinearity helps correcting 
illumination variations within the image. Secondly, the green 
colour band was omitted and the images were made false 
colour, replacing R, G and B with B, R and B respectively to 
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achieve better visual contrast. This false colour combination [5] 
creates an approximately linear relationship between a and b 
colour components (Fig. 2) in CIELab space, providing a 
convenient gamut shape to map between images. This 
approximately linear relationship was mathematically proved 
and can be collected from authors upon request. It places the 
fruit region data further towards one corner of the gamut and 
the non-fruit region data towards the other corner making only 
one separation line is sufficient.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Then, the outliers of each colour band were removed by 
replacing the colour values of pixels which are six standard 
deviations away from the mean, with the mean value of the 
colour band. This outlier removal enables removing 
undesirable bright points present in some images, thereby 
making the range of colour values comparable between images. 
An average filter was then applied to smooth the image. Then 
we converted the image into CIELab colour space. CIELab 

colour space has several favourable properties, such as device 
independence and perceptual uniformity, that make it suitable 
for colour image segmentation [12]. The a and b chromaticity 
components were used as features for clustering image pixels. 

 

 
Figure 2: Gamut of a and b colour components of CIELab model for a 

preprocessed image  
 

B. Data analysis and hypothesis  
Two masks were created for each image in order to extract 

colour values of fruit regions and background. Regions for 
masks were selected in a way that the fruit and nonfruit regions 
are well represented, containing over 5000 sample pixels per 
region. Then, the patterns of data ranges for fruit and nonfruit 
regions were observed using interval plots (Fig. 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(a) 

 
(b) 

 
(c) 

Figure 1.   Original image (a) set 1, (b) set 2, and  (c) set 3 

 
(a) 

 
(b) 

Figure 3. The 95% confident interval plot showing the pattern of 
colour data ranges (for  (a) chromaticity a,  (b) chromaticity  b for 

fruit and non fruit regions for three images from each image set (‘fi’ 
and ‘nfi’ refer to fruit and non-fruit regions of  ith  image 

respectively). 
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Even though, the variations of data are not clear due to the 
large number of data points, it can be seen from Fig. 2 that, 
both a and b colour values shows a consistent pattern. Fruit 
regions have higher b values and lower a values within the 
image compared to non-fruit regions. However, the colour 
values are not consistent. Particularly, the range of colour 
values for fruit from set 1 and 2 coincide with that for non-fruit 
regions from set 3.  

Considering the pattern consistency, it can be argued that 
normalizing each colour band will bring the fruit and non-fruit 
colour values in to a common range.  Different normalizing 
methods were studied.  Normalizing the a and b values of the 
entire image using (2) was desirable as it does not distort the 
relationship between a and b while preserving the distances 
between similar valued clusters. The idea was to map a, b 
values into illumination independent descriptors rather than 
using absolute colour values. 
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an, bn are the normalized a and b components respectively, 
and  L is the illumination component. 

However, as interval plots are not sufficient to properly 
visualize the variations and overlaps within fruit and non-fruit 
regions, a SOM visualization tool was used for further 
observations. Then, two Neural network SOM models were 
trained: (i) using original (a, b) data from image set 1, and (ii) 
using normalized (an, bn)  data from image set 1.  The models 
were then tested using images from other two image sets. As 
we used the same masks to extract both the original and 
normalized colour data, the effect of normalizing can be 
compared by looking at the models’ response to the data 
extracted from same regions. 

IV. RESULTS 
Figure 4 and Figure 5 shows the trained neural network 

SOM models and model responses for the three image sets. 
The neighbour distance map shows the neuron clusters, which 
are separated by arger distances (dark boundaries). The weight 
planes indicate each input variables’ contribution in clustering 
data.  

It can be seen from Figure 4 that neurons which respond to 
fruit data are located towards the right side of neuron lattice 
whereas the rest of neurons respond to non-fruit data. The fruit 
captured with the same conditions but at a different stage of 
fruit growth have still been responded to by the same neurons. 
However, when the camera and lighting condition changes, the 
model trained with original data has failed, misclassifying non-
fruit regions as fruit (Fig. 3(i)). 

The model trained with normalized input data (Fig. 4 (a)) 
has comparatively more clean cluster boundaries. The neurons 
representing fruit regions are located towards the top-right 
corner of the neuron lattice. Even though there are some 
overlaps, the model has successfully recognized the fruit region 

despite the different imaging conditions (Fig. 4(h),(i)), 
demonstrating the possibility of developing an unsupervised 
colour image segmentation algorithm to detect kiwifruit within 
an orchard under variable imaging conditions and fruit age.  

V. DISCUSSION AND FUTURE WORK 
Considering the consistent patterns in fruit colour values 

with reference to the background colour values,  the results 
show the potential for developing a hierarchical clustering 
based generalized pixel classifier. A Learning Vector 
Quantization network can be trained to cluster neurons (weight 
vectors) of the competitive layer (similar to SOM) into two 
regions: fruit and nonfruit.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
        (a)                                (b)                                     (c)               

 
                    (d)                  (e) 

 
                   (f)                 (g) 

 
                   (h)                  (i) 

Figure 4: Neural network SOM model for original input data and model 
responses for fruit and nonfruit regions for  three image sets. (a) neighbor 
distance between neurons representing the clusters of input data (lighter 

the colour lower the distance between neighbor neurons), (b) weight plane 
for input variable b, (c) weight plane for input variable a, (d),(e) sample 
hits for data of fruit and nonfruit regions respectively for image set 1. 

Similary (f),(g) and (h), (i) are for image set 2 and 3 respectively 
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A. Automatic calibration   
Considering the conditions, under which automatic 

calibration could work, it can be expected that the variety of 
regions (fruit, leaves, dark background etc) present in the 
images should be similar to that of images used to train the 
model. Most of the images taken at the orchard contain a 
common set of regions, but there are also images with no fruit. 
In such cases, the classifier may falsely detect fruit regions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Therefore, the model can be used first to automatically 
calibrate the classifier before using it for the whole image set. 
For that, a model trained by normalized data obtained from a 
sample image with a typical set of regions can be used. To 
calibrate the classifier for a new set of images, first the sample 
image is loaded and the fruit regions located. Then, the colour 
values of the image can be de-normalized and the range of 

original colour values for fruit in the new image set can be 
recognized using the detected fruit regions. The classifier can 
then be adjusted to use original colour values, rather than 
normalized values. This calibration can be automated as it does 
not require user intervention. However, a suitable sample 
image from the image set should be provided by the user. With 
this calibration, the problem of false classification in images 
with no fruit regions, which occur when using normalized data, 
can be overcome. Hence, the model trained with normalized 
data can be better used as an automatic calibration technique. 

B. Future work 
Further research will be carried out in order to test the 

performance of practical use of the classifier in terms of correct 
and false fruit detection under variable imaging conditions. 
Next, it is of much interest to use the model to automatically 
calibrate the system and to assess the performance. 
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 (a)                  (b)           (c)             

                         (c)   (d)                    

            (f)                             (g)                      

            (h)                    (i) 

Figure 5: Neural network SOM model for normalized input data and 
model responses for fruit and nonfruit regions for three image sets. (a) 

neighbor distance between neurons representing the clusters of input data 
(lighter the colour lower the distance between neighbour neurons), (b) 
weight plane for input variable b,  (c) weight plane for input variable a, 

(d),(e) sample hits for dat 
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