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A model of diagnostic behaviour shared by most 

diagnostic tasks is discussed. The model is, by-and- 

large, presented at a conceptual (knowledge) level. Its 

expression at more concrete levels is task dependent. 

The modelS use can be seen as being twofold: first as 

an aid in the construction of more adequate shells for 

diagnostic tasks; and second, and more importantly, 

as the initial (albeit crude) interpretation model held 

by the knowledge engineer about to embark on the 

cumbersome task of analysing a particular expert 

diagnostician’s behaviour. 
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Two approaches to the use of computers in diagnosis 
can be identified: first, one can use the computer’s 
speed, arithmetic capabilities and storage capacity to 
solve problems in ways that people cannot; and second, 
the computer’s plasticity can be used to model human 
problem solving. Combining these approaches offers 
the prospect of extending the range of diagnostic 
procedures. The diagnostic model discussed in this 
paper is intended to be a framework for combining the 
two fundamental approaches. We believe that only a 
framework which is a global model of human diagnostic 
reasoning can form an adequate basis for such a 
combination. Our global model contains a fundamental 
division between what Chandrasekaranl has called the 
generic task, and the data handling capacities of human 
beings. In the model, intelligent data handling is 
performed through a multi-faceted procedure called 
Decide-Status: it is through Decide-Status that access to 
mathematical models and large amounts of data can be 
provided in ways that are congruent with the demands 
of the generic task. 

The diagnostic model, however, has a second very 
important function: it forms part of a well founded and 
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coherent approach to building knowledge-based sys- 
tems. When embarking upon the analysis of some 
knowledge-intensive task it is necessary to do so with a 
general and complete model of the generic task. The 
model focuses the analysis of the domain more com- 
pletely, effectively and efficiently than otherwise. If the 
model is not misdirective at crucial points, feedback 
from the initial analysis enables the refinement of the 
model with respect to the specific task, and guides the 
subsequent stages of analysis (see Johnson and 
Johnson2 and Breuker and Wielinga”; also, Part One of 
Reference 4 contains much relevant material). This 
paper is therefore an indication of a framework in 
which the major conceptual, technical and methodo- 
logical issues in the design of knowledge-based systems 
can be addressed. 

DIAGNOSTIC CONCEPTS 

Diagnosis is probably the field where most of the 
empirical expert systems work has been undertaken. 
Medical diagnostic systems encompass a substantial 
proportion of the pioneering attempts in articulating 
expertise (e.g. Shortliffe et al. 5; Young6). Malfunction- 
ing devices other than the human body have also 
attracted attention in recent years’. 

In a diagnostic task the important concepts are 
findings and hypotheses. Findings (or data) on a 
problem case is the known information on that case. 
Findings can refer to the case’s history, can express 
universal truths about any such case instance; or can be 
statements of malfunctioning. It is the statements of 
malfunctioning that constitute the direct evidence, 
while other findings constitute contextual or circum- 
stantial evidence. Each finding is associated with a 
temporal aspect, e.g. past, recently, currently. Hypoth- 
eses are statements of possible explanations of the 
malfunctioning: an established hypothesis becomes a 
finding. It may be that the only way to establish a 
particular hypothesis is by establishing the effectiveness 
of an associated rectification action (treatment). A 
treatment is effective only if it turns the system’s 
behaviour back to normal (assuming no side-effects 
from the treatment). Thus, treatment is another very 
important concepts. This concept, however, is not of 
central concern here. 
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A general model of diagnostic behaviour can only be 
adequate if it is a model at a sufficiently high level of 
abstraction, induced from the analysis of a sufficient 
sample of the relevant task population. We have 
studied the results of researchers analysing diagnostic 
behaviour ~*~4, made an analysis of diagnostic systems ~5 
and had experience in building an actual diagnostic 
system ~'. Our abstraction and integration involved the 
highlighting of divergences between the practices 
adopted by diagnosticians and the dynamics of existing 
diagnostic systems. 

REPRESENTING REASONING KNOWLEDGE 

The maintainability, explanatory power, flexibility and 
adaptability of an expert system all depend on the 
quality of the knowledge representation structures for 
the incorporated expertise. The completeness of the 
system's knowledge depends on the expressiveness of 
the chosen knowledge structures. Domain knowledge is 
of two types: factual knowledge (i.e. knowledge about 
domain entities and their interrelationships), and 
reasoning knowledge (i.e. knowledge of how to use the 
factual knowledge to generate knowledgeable be- 
haviour). Generally, factual knowledge is domain- 
specific, while reasoning knowledge can apply to more 
than one domain, e.g. the same diagnostic principle 
applies to more than one diagnostic domain. A 
knowledge structure for the reasoning knowledge is 
discussed here, which we view as a generic structure. 

Task analysis 

A generic task (see Chandrasekaran L) we decompose 
into a set of simpler possible tasks. These in turn are 
decomposed until directly executable tasks are 
reached. Non-decomposable tasks are those that man- 
ipulate factual knowledge and case-specific informa- 
tion. In a diagnostic domain it is these primitive tasks 
that progress the construction of the diagnostic picture 
(see below). The tree representing the decomposition 
of a task into subtasks is called the taA'k analysis tree. A 

task analysis tree makes the functionality of the overall 
task more explicit. Our analysis of knowledge-intensive 
diagnostic tasks resulted in a greater articulation of this 
notion of task analysis. This is the framework in which 
we represent reasoning knowledge. 

Analysing knowledge-intensive tasks 
A knowledge-intensive task is decomposed into a set of 
subtasks that collectively constitute the means available 
to complete the task (e.g. the Decide-Status task 
mentioned in the section below on reasoning within a 
findings base is decomposed into the four cooperating 
subtasks, viz matcher, inferencer, generalizer-re- 
strictor and default-reasoner). To achieve a given 
global task, instantiations of the specific subtasks are 
repeatedly selected and executed until a termination 
condition for the task is satisfied. The selection of a 
subtask instantiation is geared by case-specific informa- 
tion on which the selection conditions for the subtasks 
are applied. The selection conditions for a subtask form 
its logical basis" in the context of the particular task. 
Thus, a strategic principle is encompassed in the link: 

logical basis 
task ~ subtask 

It might be concluded from this that the rule scheme is 
the most appropriate for representing strategic knowl- 
edge. However, we would resist this conclusion. The 
essence of a strategic principle is the underlying logical 
basis. Unless the logical bases are, therefore, adequate- 
ly explicated (and subsequently reasoned with) in the 
chosen representational structure, this structure will 
not be suitable. We found that rules arc not suitable for 
representing strategic knowledge: rules arc an inflexi- 
ble representation structure, in the sense that they 
leave many assumptions governing their application as 
implicit 17, thus preventing their violation when these 
assumptions cease to hold. A logical basis for a subtask 
(always in the context of some task) consists of the 
conditions that must be true for the subtask to be 
selected (enabling condition) assuming that another set 
of conditions are not true (disabling condition). In 
addition, disabling assumptions can be violated through 
a set of relaxation conditions. Making the components 
of a logical basis (enabling, disabling and relaxation 
conditions) explicit is of paramount importance in 
knowledge-intensive processing, where case-specific 
information is incomplete, imprecise, and continually 
changing. A condition that is considered to be valid 

entered- from en tered-from 

~ ~ /gical basis: 

( Condition ) ~ II di ll e%%~l%%-ii~ 

entered-from ochieved-through achieved-through 

achieved-through 

i 

@ 
Figure 1. Analysing reasoning knowledge. A task is 

linked to its subtasks via achieved-through links. A 
primitive task is achieved-through the procedure im- 
plementing it. Non-primitive tasks are linked to their 
termination conditions. A task is linked to its invocation 

contexts (other tasks) via entered-from links which are 
qualified with the respective logical bases. A task can be 

invoked from numerous points'. Some rusks are entry 
(global) tasks. If there is only one entry task then we 
have a tangled hierarchy. Entry tasks form the roots of 
strategic explanation trees (see discussion below) 
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may cease to be valid, or an unknown disabling 
condition may become true, etc. In such a dynamic 
environment new strategic choices are frequently 
made. Figure 1 gives a network representation, in 
associative form, of this analysis. 

Representation structure 
Tasks are represented declaratively in terms of frames 
(the format of which is given in Reference 16). As the 
reasoning knowledge is represented declaratively, an 
interpreter embodying the above semantics is required. 
The task interpreter selects, instantiates and executes 
tasks until the global task is achieved. In addition, the 
task instantiations are linked into a strategic explana- 
tion tree that constitutes the means for the generation 
of strategic explanations. 

The justification of diagnostic hypotheses through 
the tracing of their status transitions is discussed below. 
Such transitions are directly attributed to primitive 
tasks that form leaf nodes in a strategic tree. By 
traversing the tree upwards from these nodes, the 
entire rationale behind a status transition can be 
obtained. (For further details on the analysis, repre- 
sentation and interpretation of strategic knowledge, see 
Reference 16.) 

ABSTRACT ARCHITECTURE 

The relationships within the domain of findings and the 
relationships within the domain of hypotheses are far 
more numerous and complex than their interrela- 
tionships. However, during the initial stages of diagnos- 
tic activity, the shifts of reasoning from the findings 
base to the diagnostic (hypotheses) base are crucial, as 
they establish the initial context for the problem- 
solving activity. Clancey is refers to such initial reason- 
ing jumps as 'heuristic inferences' - -  a non-hierarchical 
and non-definitional connection between concepts of 
distinct classes. Although such inferences are very 
nearly categorical, as their name implies they are not 
infallible. Examples are the constrictor associations in 
CADUCEUS 19 and the trigger associations in PIP 2°, 
PUFF el and NEOMYCIN 22. 

The model of diagnostic behaviour proposed here 
has an abstract architecture that separates the two 
bodies of factual knowledge along the lines of concep- 
tual cleavage in the diagnostic concepts (see Figure 2). 
At this level of analysis the model resembles that 
proposed by Chandrasekaran and Mitta123. However, 
at more refined levels of analysis and on more concrete 
issues, the two models differ significantly. 

The findings reasoner operates on the conceptual 
organization of the general findings knowledge to make 
intelligent inferences on the available case-specific 
information. Such inferencing could be of a common- 
sense nature, deducing that a child is a non-smoker, for 
example, or it could be based on specialist knowledge, 
e.g. deriving suitable qualitative abstractions from the 
quantitative results of laboratory tests entails knowl- 
edge of the units of measurement used. The diagnosti- 
cian generates and refines hypotheses by operating on 
the conceptual organization of the general hypotheses 
knowledge. A critical function of the diagnostician is in 
assessing what additional information would be needed 
for the diagnostic activity to progress. The diagnostic 

Set of loosely bound More rigid 
auxi l iary tasks structure 

FINDINGS ] Heuristic jumps ]DIAGNOSTICIAN 
R E A S O N E R ]  

• abstraction J ~ • / • abduction 
• restriction 1.~ L/uerles | • deduction 
"defau l ts  etc / Replies ] " induction 

User volunteered 
information 

Figure 2. Abstract architecture overview, representing 
the separation of  the findings knowledge and the 
diagnostic knowledge. The reasoning processes within 
each of  these components and the communication 
protocols between them are not represented 

picture is the data structure that holds the user-supplied 
case-specific information and the results of the opera- 
tions of the findings reasoner and diagnostician. The 
diagnostic picture for a particular domain could be of 
considerable structural complexity. As this data struc- 
ture essentially holds the instantiations of the general 
knowledge that apply in the particular case, its com- 
plexity would depend on the complexity of the organi- 
zation of the knowledge bases. The communication 
between the findings reasoner and the diagnostician 
could be restricted to message passing through the 
diagnostic picture, but this is an implementation rather 
than a conceptual issue. 

The separation of the data handling function from 
the main diagnostic function is seen as the first step 
towards the explication of the total functionality of a 
diagnostic task. An important feature of the proposed 
architecture is the distribution of the overall reasoning 
among a number of knowledge-intensive tasks (see 
above). The top level distribution is between the 
diagnostic and data handling tasks. The findings 
reasoner comprises a set of loosely bound auxiliary 
tasks (see below), while the tasks comprising the 
diagnostician are rigidly bound together into a cooper- 
ating whole. The distribution of reasoning as such 
enhances the modularity of the overall system, and by 
implication, its extensibility. Furthermore, and impor- 
tantly, this allows the construction of a knowledge 
engineering environment with acceptable skeleton sys- 
tem tools. 

REASONING WITHIN A HYPOTHESIS BASE 

A diagnostic task can be characterized by its breadth 
(very narrow, e.g. dealing with one disease; or very 
broad, e.g. dealing with internal medicine) and its 
depth (very shallow, e.g. reasons from the clinical 
knowledge; or very deep, e.g. reasons from the 
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pathophysiological knowledge). Although at a high 
level of abstraction every diagnostic process can be 
captured within a uniform framework (see below and 
Reference 24), at less abstract levels individual proces- 
ses can diverge significantly in the way these high level 
forms of inference are carried out. This is reflected in 
the wide spectrum of representation structures that are 
encountered in the knowledge bases of diagnostic 
systems. 

There are three forms of diagnostic inference:5: 
abduction,  the process of generating hypotheses; de- 
duction, the process of testing hypotheses; and induc- 
tion, the process of evaluating hypotheses. Figure 3 
qualifies diagnostic steps from this perspective. A 
hypothesis could be a simple assertion, a collection of 
property value associations, possibly with certainty 
measures, an associative network of simpler hypoth- 
eses, or a combination of these. The same hypothesis 
could be described at different levels of abstraction and 
within the same system: hypotheses could be of 
different types, e.g. in a medical system some hypoth- 
eses are primary etiologies, others are syndromes or 
intermediate states, etc. By definition, hypotheses can 
not be directly established through observation, and 
thus they need to be inferred or gradually pieced 
together from observations and inferences. 

Diagnostic inquiries 

Abductive diagnostic steps 
Abductive diagnostic steps generate hypotheses of two 
types: non-contextual and contextual: 

non-contextual: (findings) -) (hypothesis) 

contextuah (hypothesis) * (findings) - ) ( hypothesis ) 

contextual: ( hypothesis ) -) ( hypothesis ) 

Non-contextual abductive steps are Clancey's (simp- 
lest) heuristic jumps. They function to set up the initial 
context for the problem-solving activity. In the prop- 
osed model, initial context formation is a collaborative 
activity between the findings reasoner and the di- 
agnostician (see below). The hypotheses thus gener- 
ated are usually few and general. Non-contextual 
abductive steps, therefore, function to significantly 
constrain the range of possible explanations of the 
malfunctioning behaviour. 

A contextual abductive step occurs when a hypoth- 
esis is generated in the context defined by another 
hypothesis (the two hypotheses could be of different 
types, thus having another case of heuristic jumps). 
Such steps are qualified either as traversal of a 
taxonomy or as lateral shifts. In the former case, the 
generated hypothesis is either a refinement, or a 
generalization, to the initial given hypothesis, and in 
the latter case, an opponent, or a complement, to this 
hypothesis. Generalization shifts broaden the range of 
currently entertained explanations, and refinement 
shifts constrain this range even further. Thus, taxono- 
mic shifts of the former type are more likely to occur at 
the initial stages of the process, and of the latter type at 
subsequent stages. Opposing hypotheses share expecta- 
tions, giving rise to situations where the actual presence 
of the one may be confused for the presence of the 

Non- Given ( firldings/ 

~ conte×tual ] Result <hypothesis • 
<hypothesis) 

~Abductive ! (;iven ] <findings) [or <constraint)) 

Lc°ntextual " Taxonomic <generalized hyp) 
' Result ~-- shift -~<ref ined hyp) 

L Latera[ _ r-<opposing hyp) 
shift L <complementary hyp) 

J 

Diagnostic~ Deductive { Given-(hypothesis)r Given step Result-<expectations) 
J " <conclusions) 

<all findings) 
-Termination l 

f [-<satisfactory explanation) 
i i Result <conclusions too general) 

~ _  < unex plai ned findings) 
_ i inductive i <treatment not possible) 

i <hypothesis) 
!'Given ] <all unexplained findings) 

-Other 
! F<accept hypothesis) 
: Result-{ <reject hypothesis) 

L<update belief in hypothesis) 

Figure 3. Qualifying diagnostic" steps. { ." joint  selection; 
[ : exclusive selection; ( : selection may be repeated 

other. The given findings in such abductive steps are 
not expected on the currently entertained hypothesis, 
but on an opponent of it. Complementary hypotheses 
are related via a causality, or a complication-of, or 
some other sort of an association relationship. Thus, 
the given findings point to the direction of the 
particular complementary hypothesis, the objective 
being that the two hypotheses together wilt give a more 
accurate and complete picture of what is causing the 
malfunctioning than either one would do on its own. 
Groups of complementary hypotheses constitute com- 
plex or composite hypotheses. Contextual abductive 
steps function to piece together the components of 
more complex and more diagnostically complete (glob- 
al) hypotheses. Contextual abductive steps do not 
necessarily involve findings: a hypothesis can directly 
point to a complementary hypothesis. 

Contextual abductive diagnostic steps can take place 
within the scope of inductive diagnostic steps (see 
below). For example, consider an inductive step 
concerned with matching a hypothesis' expectations 
against the reported findings to decide whether the 
hypothesis can be concluded. If an expectation viola- 
tion is thus detected, which points in the direction of an 
opposing hypothesis, a contextual abductive step has 
occurred. 

Deductive diagnostic steps 
Given a hypothesis, deductive diagnostic steps decide 
which findings follow by necessity from the hypothesis. 
Thus, actions for testing the unobserved expectations, 
on the hypothesis, can be requested. In the proposed 
model the acquisition of new information is again a 
collaborative activity between the diagnostician and the 
findings reasoner (see below). 

Inductive diagnostic steps 
An inductive inference is from hypotheses to overall 
best explanation, or termination of the diagnostic 
process. Usually a satisfactory explanation is when the 
critical abnormal findings are accounted for by the 
concluded hypotheses and, more importantly, when the 
explanation permits the undertaking of ' treatment'  
procedures. It is only after treatment procedures have 
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been undertaken that we can really test the correctness 
of the induced explanation of the problem. For 
example, in the case of hardware devices, a satisfactory 
explanation of a problem would indicate a set of 
replaceable/repairable units as being faulty. If after 
replacing/repairing the particular units the problem 
still exists, then the given explanation was incorrect. Of 
course, if each contending hypothesis gives rise to the 
same treatment there is no justification in trying to 
resolve these hypotheses any further. 

All three forms of inference should be present in a 
diagnostic system. We found that evaluating existing 
systems from this abstract but complete model of 
diagnostic inference gives rise to many useful insights. 
It seems that of the three forms of inference, deduction 
is the one understood best, and induction is the one 
understood least. Although diagnostic systems have 
been built that only employ deduction (e.g. MYCINZ6), 
neither abduction nor induction can suffice on their 
own. Knowledge engineers agree that inductive proces- 
ses are the ones most difficult to analyse, How expert 
diagnosticians evaluate hypotheses, and how they 
decide when to stop are still largely unanswered 
questions. The PIP and INTERNIST-127 systems have 
very ad hoc termination criteria, and the designers of 
ABEL 2s accept this for their system. 

Focusing and information acquisition 
The focusing heuristics are inherently inductive, and 
the information acquisition heuristics are inherently 
deductive in nature. However, focusing and informa- 
tion acquisition are intimately related (and critical) 
aspects of a diagnostic process. The former decide on 
the part of the hypothesis space on which to focus next, 
and the fatter decide on the information which is 
required next. Figure 4 gives a complete abstraction of 
a diagnostic process from this perspective. To be 
complete, the analysis of a particular diagnostic task 
must therefore reveal the heuristics for the initial 
context formation, the focusing heuristics and the 
information acquisition heuristics. MYCIN has a sim- 
ple parameter-value language. The system reasons in a 
backward-chaining fashion, as such goals are always 
more general than the premises. The whole notion of 
hypotheses is alien to MYCIN (see Clancey29). 

At the heart of a diagnostic process' focusing aspect 
lie the means for evaluating the promise of hypotheses. 
As mentioned above, eliciting these means for a 
particular domain could prove to be a very challenging 
undertaking. Existing diagnostic systems have been 
criticized for erratic changes in focus which are not akin 
to the corresponding human reasoning. As focusing 
and information acquisition are so intimately related, 
problems with the one aspect in a particular system may 
m fact be related to errors in the other aspect, i.e. 
focusing errors can propagate themselves as informa- 
tion acquisition problems, and vice versa. This fact 
should be borne in mind during the evaluation stages of 
a diagnostic system. For example, MYCIN's informa- 
tion acquisition problems are due to the lack of 
focusing, and PIP's focusing problems are to a large 
extent dependent on the system's shortcomings in its 
information acquisition. 

~ / ~  Focusing 
heuristics 

Terminate I nductive 

A b d u c t i v e  

In i t ia l  con tex t  
formation 
heur is t i cs  

I "t'n'°rma"°°l acquisition 
] :  ,,, heur is t i cs  

Deduc t i ve  

11 "~ I nco rpo ra te  \I 
~x new in format ion  / 

A b d u c t i v e  

Figure 4. High level abstraction of diagnostic process, 
showing the intimate link between focusing and informa- 
tion acquisition 

REASONING WITHIN A FINDINGS BASE 

The reasoning within a findings base has a central 
process concerned with deciding whether some item of 
information is true, false or unknown. This reasoning is 
involved in revealing conflicts among case-specific 
findings, deciding whether an abnormal finding can be 
trivially explained and hence ignored, whether it is 
sensible, in the light of the things known, to ask a user a 
question, or to request an action for eliciting additional 
information. We call the central process the Decide- 
Status process 30. This process uses a number of 
structures defined over the findings. Findings are 
grouped into hierarchies which are associated and 
labelled in various ways. The basic organization of 
findings is shared by most knowledge domains: it is 
usual to classify (finding) concepts; to associate attri- 
butes with findings; and to identify property dependen- 
cies among findings. The same findings reasoner can be 
shared by a number of diagnosticians. The procedures 
operating on the findings base are not, in fact, 
restricted to the findings in a diagnostic domain. 

User-volunteered information is processed by the 
findings reasoner to: 

• locate and resolve conflicts; 
• remove red herrings; 
• and to locate potential triggering information. 

Human competent diagnosticians are very quick to spot 
conflicts in the user-supplied evidence. Exhaustively 
locating conflicts among a set of findings could be a 
computationally costly operation. A procedure for this 
would be to try to decide the status of each finding from 
a consistent subset of the findings, initialized to the 
empty set. If the finding is true (in which case it is not a 
very informative finding) or unknown, then it is 
consistent with the 'axiom' set, and thus becomes a 
member of it. If the finding is false then we have an 
inconsistent set, and the user needs to be queried to 
resolve the conflict. The above procedure, although it 
does not display the parallelism inherent in the 
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corresponding human reasoning process, would locate 
data inconsistencies, if they exist. 

A potential red herring is a finding that can both be 
either trivially explained or attributed to some serious 
malfunctioning. The findings base must indicate such 
findings and associate them with their trivial explana- 
tions, themselves findings. To locate potential red 
herrings from among the user-supplied information, 
the findings reasoner may have to perform suitable 
abstractions or refinements on the data. For example, 
one finding could be "a blood pressure of 15 was read'. 
The findings reasoner has to translate that to 'a high 
blood pressure was observed' ,  a potential red herring 
since it may have the trivial explanation of 'the person 
concerned was under significant stress'. Once a red 
herring is located, the findings reasoner has to ensure 
that none of its trivial explanations holds for the 
particular case. 

Locating potential trigger findings is a crucial process 
in a diagnostic task, as such information tends to 
significantly constrain the diagnostician's focus of 
attention. Trigger links associate groups of findings 
with, usually, classes of diagnostic hypotheses which 
they either implicate or rule out. It is these trigger links 
that enable 'heuristic jumps'. The findings reasoner 
does not perform these jumps: what it does do, though, 
is to locate from among the user information which 
triggers could be instantiated. Here again it has to 
perform suitable abstractions over the data. The 
competence with which this and the previous function 
are performed depends on how well the findings 
knowledge is 'practically indexed' (see Clancey Is) to 
enable the efficient and effective derivation of such 
abstractions. 

The results of the operations of the findings reasoner 
are entered into a global database or blackboard which 
is referred to here as the case-specific diagnostic 
picture. It is up to the diagnostician to decide on the 
basis of its knowledge and the diagnostic picture which 
potential triggering information is worth pursuing 
further, or whether a 'red herring" is truly a red herring. 

Deciding the truth status of findings 
The central Decide-Status process is carried out by four 
cooperating tasks: a marcher that reasons from attri- 
bute types and other constraints (where necessary 
employing computational procedures) to translate sent- 
ences to contextually equivalent expressions: an in- 
ferencer that reasons from the finding dependencies: a 
generalizer/restrictor that reasons from the hierarchies 
of finding concepts and employs the principle of 
non-monotonicity: and a default-reasoner that uses 
assumptions to reach useful conclusions when every 
other route has failed. Instances of these tasks impli- 
cate new findings that entail the queried finding, and 
which subsequently themselves become queried. This 
dynamically generated network of findings is referred 
to as the implications network. When the truth status of 
a finding in the implications network is decided, this 
information is propagated along the network. The 
implications network is a component structure of the 
diagnostic picture. It forms the blackboard for the 
Decide-Status auxiliary task, while the diagnostic 
picture is the blackboard for the overall diagnostic 
system. Nesting of blackboards is common in complex, 

non-deterministic knowledge-intensive processing. 
(For a fuller description of these procedures see 
Reference 31.) 

The case-specific findings are partitioned according 
to their temporal aspects. The Decide-Status process 
must be able to reason temporally. For example, 
suppose that the case-specific information indicates 
that the patient underwent heart surgery three months 
ago, and that he developed respiratory problems a 
week after surgery. If the queried finding is whether the 
patient had respiratory problems in the near past, 
Decide-Status should be able to say 'yes'; to reach this 
decision it must "understand" that three months ago is 
near past, and that near past plus a week is still near 
past. Processes capable of temporal reasoning are said 
to be deep processes, as opposed to shallow processes 
that have no such capabilities. Thus, to be effective 
Decide-Status needs to incorporate deep reasoning. In 
contrast, a particular diagnostician's reasoning can be 
entirely shallow and still be effective. 

Constructing a plan of information acquisition actions 
The acquisition of new information is a collaborative 
activity between the diagnostician and the findings 
reasoner. The diagnostician performs the high level 
information acquisition tasks, i.e. decides which addi- 
tional information is required. This information could 
be expressed as a list of findings, or it could be 
structured as a knowledge intensive decision tree (c.f. 
ABELeS). The findings reasoner performs the low level 
information acquisition tasks, i.e. decides which are the 
appropriate actions, for yielding the required informa- 
tion, in the particular case, and the order of their 
execution. In addition, the findings reasoner must be 
able, if necessary, to provide instructions to the user 
regarding the execution of actions. The findings reason- 
er would then inform the diagnostician of the truth 
status of the requested findings, or of the reasons they 
were unobtainable. (The information acquisition func- 
tion in the ARBY diagnostic model -~' is distributed 
between a hypothesis generator and an interaction 
frames manager. ) 

Managing case-specific information 
Often a consultation consists of a sequence of tempor- 
ally distinct sessions with the diagnostician. For exam- 
ple, the patient is prescribed some treatment and asked 
to report in a fortnight's time, or the behaviour of a 
hardware device suffering from transient faults needs to 
be observed over a period of time. To be able to 
continue a diagnostic process at a later time, the 
contents of the diagnostic picture need to be saved. 
This information will be used to instantiate the diagnos- 
tic picture prior to the next session. (For the sake of 
simplicity the database that holds the snapshots of the 
diagnostic picture for the problem case is not shown in 
Figure 2.) We see the managing of such information as 
a function of the findings reasoner. In particular, the 
findings reasoner must ensure that the temporal aspects 
of findings are maintained. Further, as at the next 
session only the most critical information need be 
brought back to the diagnostician's attention, the 
findings reasoner must be able to select such findings 
and to provide summaries of groups of other findings; 
information left behind could be retrieved from secon- 
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dary memory if and when it is required. Information 
audit is a very complex task indeed, with an associated 
database of significant organizational complexity. 
Although here this task is being categorized under the 
findings reasoner, its complexity for a particular 
diagnostic process could justify its incorporation as the 
third major component of the overall system. 

Queries and replies 
Once the initially volunteered information is processed 
by the findings reasoner, control is passed to the 
diagnostician. Subsequently, volunteered information 
will temporarily revert control back to the findings 
reasoner. Also, the diagnostician needs to be able to 
directly request the services of the findings reasoner. 
The most common query is 'What is the status of this 
finding with respect to the case?' Such a query has 
'true', 'false' and 'unknown' as replies. Other queries 
are 'Is this constraint satisfied by that finding inst- 
ance?', with 'yes', 'no', 'can be satisfied' and 'unknown' 
as replies; 'Is this finding a potential red herring?', with 
'yes' and 'no' as replies; and 'What is the value of 
something?', with a value and 'unknown' as replies. 

Findings base 

The conceptual structure of a findings base can be 
accurately captured in terms of frames for the finding 
subjects 33. Procedural attachments and/or declarative 
rules can encode the various finding (subject) inter- 
dependencies. The overall function of the findings 
reasoner is open-ended, and this is reflected in the 
more general nature of the content of the findings base. 
The findings base can include general commonsense 
knowledge, specialist domain knowledge, or even deep 
knowledge on domain concepts. Deep knowledge 
allows the prediction of new information from known 
information or the explication of unstated constraints 
on case-specific findings. Such diverse sources of 
knowledge would be needed by the central function of 
the findings reasoner, Decide-Status (see above). Thus, 
Decide-Status is an open-ended operation, and can 
always be extended with the addition of new structures 
defined over the findings knowledge. 

Knowledge duplications 
Diagnostic subtasks and auxiliary tasks can share 
knowledge. Tasks that share knowledge are strongly 
coupled by virtue of their close collaboration in 
achieving some function. Knowledge duplications, if 
present, should be made explicit to ensure that 
knowledge updates are properly propagated across the 
boundaries of the knowledge bases. 

In summary, the functions of the findings reasoner 
are: to decide the truth status of a queried finding from 
the known findings (this is the central operation, and 
requires the ability to reason temporally); to locate and 
resolve conflicts in user supplied information; to locate 
potential triggers and red herrings; to devise a global 
plan for the acquisition of a set of information 
requirements; and to manage case-specific information 
so that a consultation can progress over a number of 
distinct sessions. The last function may need to be 
extended to a fully fledged information audit subsys- 
tem, capable of managing all historical information on 

a case, and not just the information relevant to a single 
consultation. 

EVALUATING HYPOTHESES: 
QUANTITATIVE OR QUALITATIVE 

BELIEFS? 

Here we show how the diagnostic model allows us to 
address an important issue in the design of expert 
systems. It is argued that the evaluation of hypotheses 
should be primarily qualitative. Quantitative methods, 
where used, should be secondary from an architectural 
point of view. Thus, our framework is a suitable basis 
for integrating qualitative reasoning and quantitative 
methods. 

People do not use anything closely resembling 
mathematical methods in making diagnoses 34.35. Our 
postulate is that hypotheses are ranked from a single 
direct (global) perspective, and a number (possibly 
zero) of contextual (local) perspectives, especially 
when one is dealing with a hypothesis space partitioned 
into interrelated subspaces. The global belief in a 
hypothesis indicates the strength of the belief in the 
hypothesis from the available direct (hard) evidence. A 
contextual belief in a hypothesis indicates the strength 
of the belief in the hypothesis in relation to other 
hypotheses (of the same or different types). The split in 
direct and contextual belief measures is exhibited by 
the CASNET system 36 and advocated by the designers 
of the ABEL 2~ system. 

Rule scheme lends itself to quantitative methods 

It seems that quantitative methods have evolved from 
diagnostic systems that are primarily rule-based. The 
concept of a production rule is meant to capture any 
conditional association in a uniform way. The rule 
scheme, therefore, lends itself naturally to uniform 
numeric manipulations. This is not so for semantically 
richer knowledge structures; qualitative methods would 
seem more appropriate for these. 

Those advocating quantitative methods for evalu- 
ating hypotheses do not claim that these procedures are 
the result of an analysis of the corresponding reasoning 
processes of the experts. A notable exception is the 
claim that the underlying assumption of MYCIN's 
method, viz that a piece of evidence cannot both 
favour and disfavour a hypothesis, is a well known 
paradox in physicians' reasoning 37. Of course, this 
paradox could equally well constitute the basis for a 
qualitative method. What is perhaps interesting to note 
is the fact that a lot of emphasis is placed on how to 
train the experts to 'think' in terms of the particular 
quantitative methods, and thus to provide the neces- 
sary numeric values. Surely, if such methods were to 
capture the reasoning of the experts, such training 
would be unnecessary? The thrust of our argument is 
not which methods (quantitative or qualitative) yield 
better performance, but which methods are nearer to 
the experts' thinking. Our philosophy is that expert 
systems should model human competence, and should 
not aim to outperform'human expertise3L 

Most quantitative methods used in diagnostic expert 
systems are rooted in probability theory. Their under- 
lying assumptions (e.g. hypotheses are independent) 
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are pragmatically imposed. Assuming a production rule 
implementation, such a method can be summarized as: 
the associations captured in the rules are assigned 
numeric values, usually from the interval [ -  1, 1] (these 
values are predetermined and do not change during a 
consultation). Hypotheses are dynamically assigned 
similar values in the context of a problem. The basic 
procedures for this, as exemplified by systems like 
MYCIN ~7 and P R O S P E C T O R  39 are: 

• How are antecedent concept (evidence) uncertain- 
ties propagated over rule (associational) uncertain- 
ties to yield belief measures for the consequent 
concepts (hypotheses) from the perspective of the 
particular evidence'? 

• How are these individual conditional beliefs in some 
hypothesis combined to yield an overall belief 
measure for the hypothesis? 

The hypotheses are, therefore,  ranked on a finite scale 
ranging from some value (usually - 1 )  denoting 'rejec- 
tion' to some other value (usually 1) denoting 'con- 
firmation'. Thus, quantitative methods reduce a 
hypothesis space to a linear configuration, where 
hypotheses types and their interdependencies are 
hidden (see also Cohen and Grinberg 40 for a similar 
conclusion). This could not be acceptable for semanti- 
cally rich hypotheses spaces; a single number cannot 
capture a complex, interplanar situation. 

PIP's qualitative method 

Humans use a finite and rather small set of belief values 
for qualifying hypotheses. Consider the following low 
level reasoning constructs which were observed being 
used by an expert: 

1 If this were the case then 1 would eliminate that 
possibility. 

2 If this were the case then you must definitely go for 
that. 

3 If this were the case then possibility X is more likely 
than possibilities Y or Z. 

4 If this were the case then any acceptable solution 

must satisfv that. 
5 If this were the case then a possibility that satisfies 

that would be more likely. 
6 If you were to accept X then Y is more likely than Z. 
7 If you were to accept this then any solutions for that 

must satisfy this condition. 

Reasoning constructs 1 to 5 and 6 and 7 respectively 
relate findings to hypotheses and hypotheses to hypoth- 
eses (possibly in another space). The expert was 
expressing these relations through qualitative terms 
like eliminate, definitely, more likely, must satisfy, etc., 
instead of numbers. The PIP, NEOCRIB 31 and CAS- 
NET systems 36 use methods that are more or less 
qualitative in nature. PIP's method is outlined below as 
an illustrative example of these. 

In PIP, those hypotheses that are strongly believed 
are the active ones. Hypotheses that are not yet 
strongly believed, but which have somehow been 
pointed at (usually through an active hypothesis), are 
semi-active ones. This qualification signifies the fact 

that although they are not in the immediate focus 
space, they are in the surrounding vicinity and ready to 
enter it. The other belief statuses are concluded, for 
those hypotheses that themselves become findings 
(facts), and inactive, for the general hypothesis pool. A 
rejected belief status is not used. PIP's method is 
qualitative because the transitions between the belief 
statuses are related to domain heuristics, and by 
implication to domain structures, not because it em- 
ploys four rather than an infinite number of belief 
values. These heuristics provide the basis for justifying 
the transitions. P1P also employs a secondary quantita- 
tive method: hypotheses can be assigned matching 
scores. If a hypothesis' matching score is above a given 
threshold, the hypothesis is concluded, and if below 
another given threshold, the hypothesis is removed 
from further consideration. The cut-off values are used 
to convert a quantitative scale to a qualitative scale. 
The choice of these values is quite significant--in the 
absence of the qualitative criteria this choice could even 
be critical. 

Skeleton for a qualitative method 

What is being offered here is not a fully fledged 
qualitative method for evaluating hypotheses, but a 
skeleton for supporting the acquisition of the relevant 
method for a specific task. (We believe that what is 
suggested here bears application outside the diagnostic 
field.) The point is that such a method would depend 
on a complete understanding of the particular diagnos- 
tic reasoning processes, and thus domain structure. In 
contrast, quantitative methods treat a hypothesis space 
syntactically. 

We propose the discrete belief scale, concluded, 
active, semi-active, suspended, rejected and inactive (for 
the general hypothesis pool). At any instant a hypoth- 
esis will have a single global (direct) belief status, and 
possibly a number of contextual belief statuses. The 
need for a concluded status and a rejected status is 
intuitively obvious. Active hypotheses should be 
strongly suggested, while semi-active hypotheses 
should simply be suggested. Hypotheses are activated 
through non-contextual and/or  contextual abductive 
steps (see above). Hypotheses are semi-activated 
through contextual abductive steps. The suspended 
belief status is a kind of special status. A hypothesis 
moved to this status still retains its prior status (active 
or semi-active). Such transitions are the results of 
deductive diagnostic steps that were not successful in 
acquiring the required information. This information 
could refer to direct evidence (in favour or against) the 
hypothesis; it could refer to direct evidence (for or 
against) a hypothesis that is contextually related to the 
suspended hypothesis; or it could directly refer to the 
hypothesis, but its acquisition is being imposed by a 
contextually related hypothesis (see the discussion on 
constraints above). In the former case the hypothesis is 
directly suspended, and in the latter cases it is 
contextually suspended. A suspended status for a 
hypothesis, therefore,  signifies that the information 
required to cause a transition from the hypothesis' 
current belief status is unobtainable. The suspended 
status simply implements a mechanism for temporarily 
removing hypotheses from the immediate focus. The 
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unknown required information should still remain in 
the diagnostician's immediate focus space. These items 
of information can be viewed as signals on which the 
suspended hypotheses are waiting. As incoming user 
information is processed by the findings reasoner, the 
matching of signals against new information should be a 
function of the findings reasoner. 

Figure 5 gives the possible (direct or contextual) 
status transitions for a hypothesis. Each transition is 
attributed to some reasoning chain that resulted in 
performing the particular manipulations on the domain 
knowledge and case information. In summary: abduc- 
tive diagnostic steps are responsible for the transitions 
from the inactive to the active and semi-active statuses; 
inductive diagnostic steps are responsible for the 
transitions from the active and semi-active statuses to 
the rejected and concluded statuses; and deductive 
diagnostic steps are responsible for the transitions to 
the suspended status. Thus, understanding the reason- 
ing behind all possible status transitions implies an 
understanding of the entire diagnostic process. 

Assigning global beliefs 
The global belief in some hypothesis must reflect the 
belief in the hypothesis, essentially due to direct factual 
information, i.e. case-specific findings. Findings either 
point to specific hypotheses or define constraints that 
must be satisfied by a hypothesis as a condition for its 
generation. Hypotheses, globally concluded, become 
case-specific findings. 

Assigning contextual beliefs 
Suppose we have a causally related hypothesis space 
(c.f. CASNET36). Hypotheses (generated or still in- 
active) can be evaluated from the perspective of the 
generated ones: how promising is this hypothesis given 
the hypotheses already generated? Thus, hypotheses of 
a given space can be contextually evaluated within their 
own space. Alternatively, some hypothesis subspace 
can be evaluated from the perspective of some other 
hypothesis subspace. For example, a hypothesis in one 
subspace could define a constraint to be satisfied by the 
hypotheses of the other subspace (such a situation 
arises in 'synthesis' problem-solving, where one part of 
the solution defines constraints for another part). If the 
former hypothesis is finally accepted, then a hypothesis 
from the other subspace must satisfy this constraint to 
be acceptable. The hypotheses thus generated are 
evaluated according to how well they satisfy the posted 
constraints. If a number of constraints (from one or 
more sources) are being posted, the evaluation may 
need to take into consideration the importance of the 
sources of the various constraints. 

Contextual beliefs function to interrelate hypotheses 
spaces (see Figure 6). Contextual rankings are ignored 
if the ranking hypothesis is globally rejected. However, 
if the hypothesis is globally concluded the relevant 
contextual beliefs of the associated hypotheses should 
be raised to the global level, as the former hypothesis is 
now a finding. Contextual beliefs can guide the 
acquisition of additional information. For example, 
suppose that a hypothesis is globally suspended (at a 
semi-active status), but is concluded from the perspec- 
tive of another hypothesis which is globally semi-active. 

Figure 5. Hypotheses status transitions 

Ranking hypotheses from the perspective 
of other hypotheses of the same type 

/ 
HYPOTHESIS I -  
SUBSPACE 

=J HYPOTHESIS I 
-1 SUBSPACE j 

Ranking the two spaces 
from each other's perspective 

Figure6. Contextual beliefs function to interrelate 
hypotheses spaces. Hypotheses suggest other hypotheses 
or impose constraints to be satisfied by other hypotheses 

Pursuing the latter hypothesis may therefore lead to the 
conclusion of both hypotheses. 

Combining procedures 
The term combining procedure is used to refer to the 
function of combining together all the evidence re- 
levant to a hypothesis, to give an overall ranking for the 
hypothesis. The distributed nature of the proposed 
qualitative method precludes the use of a uniform 
combining procedure, as in quantitative methods. A 
hypothesis has a global belief, determined by the 
available direct evidence, and a number of contextual 
beliefs determined by its associations to other gener- 
ated hypotheses. Thus, there is an immediate dif- 
ferentiation between the direct and the contextual 
evidence. A hypothesis that is only suggested by other 
hypotheses has an uninstantiated global status. An 
established (concluded) hypothesis becomes a finding, 
and thus direct evidence for its related hypotheses. The 
procedure that combines all the direct evidence re- 
levant to a hypothesis (to yield the hypothesis' overall 
global belief) computes the match between the expecta- 
tions on the hypothesis and the observations. 

The separation between the direct and contextual 
evidence aids the focusing and information acquisition. 
A hypothesis may not look very promising from the 
perspective of direct evidence, but very likely from the 
perspective of contextual evidence. Direct and contex- 
tual evidence are semantically different, and should be 
treated as such. Pursuing only hypotheses with direct 
evidence (even strong direct evidence) generates a 
behaviour that lacks the parallelism inherent in multi- 
fault cases. Hypotheses would be pursued sequentially, 
hoping that the multi-fault picture will gradually be 
pieced together by promoting the consideration of 
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hypotheses related to previously concluded hypotheses 
(which now constitute direct evidence for them). This is 
an important criticism of the INTERN1ST-I system 27, 
where contextual evidence is essentially ignored. A 
hypothesis with strong contextual evidence, i.e. one 
that is strongly interconnected with other hypotheses, 
would be a more promising focus point from a 
hypothesis with some direct evidence only. Further, the 
separation between direct and contextual evidence 
eases the processing of finding revocations. As finding 
information is not propagated beyond their immediate 
associated hypotheses, only the global beliefs of the 
associated hypotheses for the revoked finding need to 
be modified. A procedure for combining direct and 
contextual evidence, if required, is envisioned to 
embody knowledge-intensive, domain-specific 
methods. 

The discussion above applies both for simplex and 
compound hypotheses. The situation for simplex 
hypotheses is illustrated in Figure 7a, and the corres- 
ponding situation for compound hypotheses in Figure 
7b. Referring to Figure 7a, the links from the direct 
evidence to the hypothesis, H. are of the same 
associational nature. However, the links from the 
contextual evidence to the hypothesis could represent 
different relationships. Contextual evidence could be of 
varying types. 

A compound hypothesis has components that are 
hypotheses at a lower level of abstraction. Usually such 
components are mutually interrelated in some sense. 
However, the most general fault model is where there 
are multiple dependent and/or independent faults, thus 
allowing for compound hypotheses to consist of inde- 
pendent islands of interrelated components (see Figure 
7b). Usually compound hypotheses evolve as the 
diagnostic process progresses. At the end of a consulta- 
tion one of these hypotheses must completely explain 
the diagnostic problem. The direct evidence relevant to 
a compound hypothesis is the combination of the direct 
evidence for its component hypotheses. The contextual 
evidence for a compound hypothesis is split into intra- 
and inter-contextual evidence. Either of these may 
(partly) depend on the contextual evidence for the 
component hypotheses. The intra-contextual evidence 
must reflect the quality (plausibility) of the hypothesis 
based on criteria such as simplicity, completeness, 
coherence, etc. The inter-contextual evidence reflects 
how the hypothesis interrelates with other hypotheses 
of the same or different type (same definition as for 
simplex hypotheses). 

Constraint satisfaction 
Hypotheses can be defined implicitly through con- 
straints. A constraint is taken to be a qualified 
assertion, e.g. 'must-not cause teeth discolouration' 
could be a constraint for a treatment hypothesis. 
Qualifiers could include must-not, rather-not, rather- 
yes and must. The 'match' between a hypothesis and an 
assertion could be given by the three-valued scale, no, 
possible and yes, where the middle value denotes that 
the assertion can be satisfied by the hypothesis, 
possibly at an extra cost. The belief status for a 
hypothesis is determined by the particular match given 
the specified qualifier (see Table 1). If the constraint 
corresponds to direct evidence, then the belief status is 

a 

t type relations 

~ ssociational relations 

b 

[ n t r a - c o n ~ _  
evidence 

H 

Figure 7. Direct and contextual evidence .fbr hypoth- 
eses. (a) Simplex hypotheses, (b) Compound hypotheses 

at the global level. If, on the other hand, the constraint 
is defined by another hypothesis, then the belief status 
is a contextual one. 

Provided that a previously generated hypothesis 
already satisfies the constraint to a specified required 
level (i.e. activation or semi-activation levels), no new 
hypotheses need be generated. Otherwise, the most 
general hypothesis that satisfies the constraint to the 
required level must be generated. The 'matching' 
function of the constraint satisfaction procedure could, 
by and large, be carried out by the findings reasoner. 

Justifying hypotheses 
It is essential for a diagnostic system to be able to 
adequately justify to the user its belief in some 
hypothesis. Within the proposed qualitative 
framework, rich justifications can be generated by 
tracing a hypothesis' status transitions from the per- 
spectives of direct and contextual evidence. Recall that 
a status transition is justified in terms of the reasoning 
task that gave rise to it. Thus, the quality of explana- 
tions would depend on the representational adequacy 
of the reasoning tasks (see above). 
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Table 1. Constraint satisfaction 

Qualifier 

Belief-status Must-not Rather-not Rather-yes A-must 

No Active Semi-active Semi-active Reject 
Assertion Possible Active Active Semi-active Semi-active 
type Yes Reject Semi-active Semi-active Active 

C O N C L U S I O N  

A model of diagnostic behaviour has been presented at 
a sufficiently high level of abstraction to cover most 
diagnostic tasks. The model separates the data handling 
function from the main diagnostic function. 

The data (findings) reasoner deals with conflicts in 
user evidence, the identification of potential triggers 
and red herrings, instructing the user in carrying out 
information acquisition actions and the management of 
case information (historic or current). In this respect, 
deciding the truth status of a finding from the known 
findings is a central operation. To be fully adequate, 
the findings reasoner must be capable of deep temporal 
reasoning. 

The diagnostic function deals with the generation 
and evaluation of hypotheses. A diagnostic step is 
abductive, deductive or inductive in nature. Focusing 
and information acquisition are critical aspects of a 
diagnostic process that entail the evaluation of current 
hypotheses. A qualitative method for evaluating 
hypotheses that separates the direct and contextual 
evidence relevant to a hypothesis is being proposed. 
Direct evidence is derived from case-specific informa- 
tion, while contextual evidence is derived from the 
hypothesis' interrelationships to other hypotheses. A 
hypothesis' (direct or contextual) beliefs are from the 
qualitative range--inactive, semi-active, active, sus- 
pended, concluded and rejected. A hypothesis can be 
justified by tracing the transitions in its belief. 

In a domain, a knowledge of entities and their 
interrelationships is factual knowledge, and knowledge 
of how to use the factual knowledge to generate 
knowledgeable behaviour is reasoning knowledge. 
Factual knowledge can be represented in schemes that 
combine rules and frames. An analysis of reasoning 
knowledge that can be captured in generic frame 
structure has been presented here. This structure 
accurately captures the semantics of the reasoning 
knowledge as transpired from our analysis. According 
to the proposed structure, reasoning knowledge is 
statically represented as a tangled task hierarchy. 
Dynamically, tasks are instantiated and executed. All 
the task instantiations required to achieve a global task 
are related into a tree, referred to as the strategic 
explanations tree. Therefore, in the proposed diagnos- 
tic model the reasoning is distributed among a number 
of knowledge-intensive tasks. This brings out the total 
functionalilty of the system, including the bases for 
passing control from one .task to another (control 
knowledge). 

Figure 8 overviews the components of a diagnostic 
picture. The diagnostic picture is the placeholder for 

the case-specific information and the results of the 
operations of the findings reasoner and the diagnost- 
ician. The strategic trees have been included as 
components of the diagnostic picture in Figure 8. Note 
that although there is only one tree for the diagnosti- 
cian, there are numerous trees for the findings reason- 
er. Findings reasoner trees correspond to nodes in the 
diagnostician tree. 
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