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ABSTRACT 

A precise def in i t ion is provided for general 
configurat ion tasks. Two important assumptions 
are ident i f ied: (i) functional architecture and (ii) 
key component per funct ion. A domain-
independent model is presented based on these 
assumptions. These assumptions are shown to be 
both useful and tenable in real domains. They 
are useful because they l imit the complexity of 
the general conf igurat ion task, determine the 
basic knowledge needed for solving a 
configurat ion task, and enable more efficient 
problem solving methods. Ideas are presented 
both for representing the knowledge and 
control l ing the search. Some of these ideas were 
originally implemented in the Cossack expert 
system. 

1 INTRODUCTION 

Configuration is a special type of design activity, w i th 
the key feature that the art i fact being designed is 
assembled from a set of pre-defined components that 
can only be connected together in certain ways. This 
intuit ive def in i t ion fits a large number of design tasks 
f rom our everyday and professional lives. It is natural, 
therefore, that conf igurat ion has become an important 
application area for knowledge-based technologies. 
Starting w i th the landmark R1/XCON project 
[McDermott, 82], conf igurat ion expert systems have 
been built by many organizations. We have found 
publications describing over a dozen systems [Bennet 
and Lark, 1986; Birmingham et al., 1988; Bowen, 1985; 
Frayman and Mi t ta l , 1987; Haugeneder et al., 1985; 
Lan et al. 1987; Parunak et al., 1988; Pierick, 1986; 
Rolston, 1986; Searls and Norton, 1988; Wu et al., 
1986], not to ment ion many others that have been 
mentioned in various trade publications. Many of the 
reported systems configure computers, though we 
have also seen references to systems for configuring 
networks, operat ing systems, buildings, circuit boards, 
keyboards, pr int ing presses, and trucks. 
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Such a wealth of experience would suggest that 
some understanding exists about configuration as a 
generic task and techniques for solving it. 
Unfortunately, most published accounts of 
configuration expert systems seem to refer to only an 
intuit ive definit ion of the configuration task, and of ten 
dont describe their problem solving methods clearly 
enough to enable meaningful comparisons. 

Furthermore, it is not clear that each of these 
instances of configuration tasks are similar. Can the 
components in each of these domains be represented 
the same way? Are the rules of composition similar? 
How are the requirements expressed? What is the 
relationship between the requirements and what is 
known about the individual components in these 
domains? What assumptions are made by the problem 
solving methods? Would a method in one system be 
useful in other domains? These questions need to be 
answered before one can develop a general theory of 
configuration tasks or develop a more precise 
taxonomy of configuration tasks. 

In this paper we start by defining a general 
configuration task in a way that captures some of the 
important characteristics. We show that the general 
task involves exponential search in the worst case. 
Next, we define a restricted version of the task 
incorporating two important assumptions: [1], we 
know ahead of t ime the kinds of functional roles that 
need to be fulf i l led wi th in a configured artifact. These 
functional roles are often constrained by an 
architecture [2], we assume that for each functional 
role, one or more components can be identif ied as a 
"key component", i.e , any set of components that 
implements that function wil l include one of these 
components. 

In section 3, we analyze the essential knowledge 
needed by a problem solver and discuss ideas for 
represention. Section 4 describes a series of methods 
for solving configuration tasks and identifies some of 
the important issues. These ideas were originally 
developed in the context of implementing the Cossack 
expert system [Frayman and Mi t ta l 1987], 
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2 ASPECTS OF CONFIGURATION TASKS 

2.1 General definit ion 

Making very few assumptions about the kinds of 
knowledge that might be available, we define a 
configuration task as follows: 

Given: (A) a f ixed, pre-defined set of components, where 
a component is described by a set of properties, ports for 
connecting it to other components, constraints at each 
port that describe the components that can be connected 
at that port, and other structural constraints (B) some 
description of the desired configurat ion; and (C) possibly 
some criteria for making optimal selections. 

Build: One or more configurations that satisfy all the 
requirements, where a configuration is a set of 
components and a description of the connections 
between the components in the set, or, detect 
inconsistencies in the requirements. 

There are three important aspects to this definit ion. 
[1], the components that can be used to design some 
artifact are f ixed, i.e., one cannot design new 
components. [2], each component can be connected to 
certain other components in fixed and pre-defined 
ways, i.e., the components cannot be modified to get 
arbitrary connectivity. We use the idea of a "por t " as 
an abstraction for places where a component can be 
connected to other components. Each component 
locally describes constraints on the other components 
that can be connected at each of its ports. For now we 
make no assumptions about languages for specifying 
such connectivities. [3], a solution not only specifies the 
actual components but also how to connect them 
together. In other words, it is not enough to just 
identify the components. 

This definit ion clearly includes computer 
configuration problems. There one is given a fixed and 
pre-defined set of components (e.g., printers, displays, 
processors, keyboards, memory modules, operating 
systems), some description of the kind of computer 
system one wants configured (e.g., "a Xerox PC that 
can do word processing, accounting, can be used 
bilingually, prints letter quality documents, ...") and 
possibly some optimization criteria (e.g., should be 
extendable in the future, cheapest). A solution to a 
computer configuration problem is a set of actual 
components and a precise description of how they 
should be connected to build a computer out of these 
parts. 

The definit ion we have given is general enough to 
cover a broad array of tasks. A customer buying a car in 
effect configures it from a fixed set of components (car 
models, engines, brakes, transmissions, etc.). Design of 
many single-board computer systems [Birmingham et 
al., 1988; Bowen, 1985] can be largely viewed as a task 
of selecting from a set of components such as 
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microprocessors, memory chips, encoders, decoders, 
and bus drivers. Similar examples can be found in other 
domains. 

2.2 Analysis of the general configuration task 

Without making any further assumptions about what 
knowledge is available about components, how 
desired configurations are specified, or how the 
specifications are mapped onto components, a 
configuration task presents a formidable challenge. 
Given N components and p ports per component, the 
space of all possible configurations is on the order of 
sqrt[(pN)!] For even moderate sized N and small p, the 
space is quite formidable, and one does not expect real 
configuration tasks to be solved wi thout further 
knowledge. 

One can actually do much better than the 
worst-case shown above by considering, at an early 
stage, the local composition constraints specified at the 
level of each component. Based purely on the port 
constraints, one can pre-compute the number of 
components that can connect at a port. Let k be the 
upper-bound on the number of components that can 
be connected at each port. Let us also assume that S is 
the upper-bound on the size of the largest 
configuration we are interested in. Now one can 
estimate the size of the space of legal configurations as 
follows. A generator can be built that progressively 
generates larger configurations upto some size S, 
starting wi th size one. Given a configuration of size k, 
the generator produces all configurations of size (k + 1) 
by extending it along any of the open ports by any of 
the allowable components at that port. In [Mittal and 
Frayman, 1989], we show that the number of possible 
configurations produced by the above generator is on 

the order of O(Nksps). 

2.3 Restricted version of configuration tasks 

We now introduce two restrictions on the general 
configuration task. These restrictions reduce the 
complexity of the task and help in identifying 
additional kinds of knowledge that can further reduce 
the complexity, at least in typical cases. 

2.3.1 Functional architecture 

Our first restriction is based on the fol lowing 
observations about design practice. Artifacts are 
typically (but not always) designed wi th some purpose 
in mind. Experience wi th designing a class of artifacts 
leads to an understanding of the functions that must 
be provided to achieve the original purpose and rules 
on how these functions compose and interact. Often, 
such functional decompositions and the accompanying 
constraints are codified in the form of an architecture 
that guides the design of such artifacts. Thus, one can 
talk about the "Von-Neumann architecture" (or the 



stored program architecture) for computers which 
specifies the functions of memory as a place to store 
data and instructions and a processor as a device that 
uses a program counter to fetch the next instruction to 
be executed. Architectures of actual computer systems 
such as the IBM 370, IBM PC or DEC VAX describe in 
detai l the functions provided by these computers and 
rules for composing these functions. In a similar vein, 
one can describe architectures for other complex 
artifacts such as operating systems, copiers, 
automobiles, or pr int ing presses. 

Our first restriction is that the artifacts are 
configured according to some known functional 
architectures. In other words, instead of trying to 
assemble all possible artifacts that can be created from 
the given set of components, one restricts the problem 
to those artifacts that are similar in their 
architecture(s). This clearly restricts the scope of the 
task but not in an arbitrary way. 

This restriction also simplifies the task. Without 
knowing the functions to be achieved, one might have 
to compute the behavior of an arbitrary assembly of 
components and match it against the specifications. 
However, once certain architectures have been 
def ined, it is possible to configure systems by using the 
architecture in a more top-down fashion. Thus, one can 
view conf igurat ion as a generative task. Alternatively, 
it can be viewed as a "recogni t ion" or "ver i f icat ion" 
task, where the input is a particular arrangement of 
components, and the task is to verify that the 
conf igurat ion actually matches one of the 
architectures. 

As far as we can tel l , most of the implemented 
conf igurat ion expert systems embody some knowledge 
of the permissible architectures. A system such as 
R1/XCON which configures VAXes in effect checks that 
a given set of components wi l l actually result in a valid 
VAX system. To do this, XCON's knowledge of legal 
VAX architectures is implicitly represented in its rules 
Similarly, MICON only configures single-board 
computers that match the basic architecture defined in 
the knowledge base, even though it might be possible 
to configure other kinds of computer systems from the 
same set of components. 

Similar assumptions are made in Cossack [Frayman 
and Mi t ta l , 1987], an expert system for configuring 
Xerox personal computers. In Cossack, the permissible 
architectures of a Xerox PC are explicitly represented 
and it instantiates one of these architectures using a set 
of standard components. 

2.3.2 Key components per funct ion 

Even w i t h pre-defined functional architectures, one 
might have arbitrary ways of implementing the 
individual functions f rom the given set of components. 

This might again require a problem solver to generate 
arbitrary configurations and test if that configuration 
can indeed provide the desired functions. 

However, we have noticed that in many design 
domains, one can identify some particular component 
(or a small set) that is crucial to implementing some 
function. For example, the print ing function in a 
computer system crucially needs a printer component. 
Other components needed for the pr int ing function 
such as hardware interface, data cables, power cable, 
fonts, and driver software can be determined once a 
printer has been selected. Thus, one does not need to 
consider arbitrary configurations for pr int ing functions 
- one need only start w i th a printer and build suitable 
configurations f rom there. We call this a "key 
component" assumption. Notice, that this assumption 
both restricts the task (certain solutions would not be 
considered) and simplifies it (see sec. 2.3.3 below). Also 
note that this observation might help explain why 
functions are often given names that are the same or 
similar to those for their key components. 

Systems such as XCON, Cossack, and MICON 
crucially depend on this assumption. XCON actually 
relies on this assumption to " in fer" the functional 
requirements from the set of components it is given to 
verify. It has rules which look for certain "key" 
components and then ensures that other components 
needed to have consistent sub-systems around those 
components are included in the configurat ion. Cossack 
and MICON use this assumption in a generative fashion 
to build sub-systems which are then composed 
together. 

2.3.3 Definit ion of the restricted task 

These restrictions can be combined w i th the def ini t ion 
given in sec. 2.1 to arrive at an abstract def in i t ion, as 
fol lows: 

Given: (A1) one or more functional architectures for 
desired configurations, each abstractly def ined by 
functions { r f 1 , rf2 , ... r f n ; of1 , of2 , .... o f m } , where rfj are 
always needed and ofj are opt ional ; (A2) a f ixed, 
pre-defined set of components, where a component is 
minimally described by a set of properties, ports for 
connecting it to other components, constraints at each 
port that describe the components that can be connected 
at tnat port , and other structural constraints ; (A3) a 
mapping f rom each funct ion fj to components cj that are 
key components in providing fj and a description of other 
functions that are required by C I in order to funct ion as f j ; 
(B) some description of the desired conf igurat ion, usually 
in the form of addit ional constraints on some of the fj or 
the associated components; and (C) possibly some criteria 
for making opt imal selections. 

Build: One or more configurations that satisfy all the 
requirements, where a conf igurat ion is a set of 
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components and a description of the connections 
between the components in the set, or, detect 
inconsistencies in the requirements. 

These two assumptions - functional architecture 
and key component per function - actually dovetail 
quite nicely. An architecture allows one to decompose 
an artifact along functional lines, possibly identi fying 
constraints that always hold regardless of how the 
functions are achieved. The second assumption allows 
this decomposition to be carried all the way to the 
actual physical components by identi fying key 
components that are crucial in implementing a 
function along w i th addit ional constraints identi f ied 
during the mapping f rom function to components. 

These assumptions reduce each of p, k, and S that 
define the complexity of configuration tasks. The "key 
component" assumption limits both the ports (p) and 
the components (k) that are relevant at each port. This 
is because, of all the ways that a component can 
participate in some configurat ion, one is only 
interested in those that lead to one of the functions 
defined by the architecture(s). These architectural 
limits can be realized by restricting the representation 
of a component to include only those ports that 
participate in desired functions and by imposing 
additional constraints on the composability of a 
component. Also, by l imit ing the space of 
configurations to only those that provide certain 
functions, we in effect put a t ighter bound on S, i.e., 
not all sizes of configurations can possibly constitute a 
valid solution. 

These two assumptions also transform a 
tightly-coupled problem (since one can extend a partial 
configuration in arbitrary ways) into a more 
loosely-coupled problem because an architecture 
specifies a functional decomposition and each of the 
required functions can be configured somewhat 
independently around their key components. In a real 
sense, the key components act like "planning islands". 
Arguably, good architectures have the property that 
they decompose an artifact into nearly independent 
functions. Note that in general the problem is still 
coupled because of reusability of components and 
function sharing. 

3.0 KNOWLEDGE FOR THE CONFIGURATION TASK 

In the rest of this paper, we focus on this restricted 
version of the configuration task, though for brevity 
we shall not use the qualifier. In the previous section, 
we effectively performed a knowledge-level analysis of 
the configuration task. To summarize, a problem solver 
for the task needs three kinds of knowledge. [1], 
available components; [2], functional decomposition 
specified by the given architectures; and [3], 
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knowledge for mapping from functions to key 
components. A detailed treatment is beyond the scope 
of this paper so we l imit ourselves to a discussion of 
some of the important issues and describe some 
representation ideas. 

3.1 Components 

Components can be described independent of how 
they are used by a set of physical properties (or 
predicates). For example, physical properties of a 
printer include its dimensions and weight. Components 
have ports to represent "places" at which other 
components can be attached, e.g., typical ports for a 
printer include data port, power supply port, paper 
feeder attachment port, and a paper guide attachment 
port. 

Ports themselves can be described in terms of some 
set of properties. More importantly, one can specify 
constraints at these ports that l imit what components 
can be attached there. Typically, these constraints 
would describe properties of the components that can 
be connected at that port or more specifically 
properties of a port on another component. Thus, a 
printer w i th a "3-prong female power supply port" 
would have a constraint that any component that 
attaches to this port must have a matching 
"connector" port. 

Finally, the sub-component relationship between 
components has to be explicitly represented since the 
available components can include two components 
which only differ by a particular sub-component, i.e., 
one already has the sub-component connected and the 
other does not 

3.2 Functional architecture 

A functional architecture specifies a functional 
decomposition of the artifacts and constraints on their 
composition. For example, the architecture of the 
original IBM PC specified: [1], necessary functions such 
as a processor, bus, main memory, keyboard, and a 
booting store; [2], constraints on their composition 
such as, "how the booting store is accessed by the 
processor", "which addresses are available for main 
memory", "how peripheral devices are addressed by 
the processor", and "which addresses are set aside for 
the display memory"; and [3], constraints on how other 
optional functions may be composed w i th the required 
functions, e.g., constraints on connecting to the bus. As 
experience develops in connecting certain other kinds 
of components, one can develop a functional model of 
some of these options (e.g., pr int ing, data 
communication, point ing device in the PC case). 

Individual functions can be simply modelled by a set 
of properties that characterize them. For example, the 
printing function may be described by properties such 



as speed, resolution, directionality, character and font 
sets. 

3.3 Mapping f rom functions to components 

Finally, we need to model the knowledge for mapping 
from functions to components. In general, the 
mapping between functions and components is 
many-to-many. A function can be implemented by a set 
of components. For example, the print ing function on 
a PC needs as components a printer, a cable, and an 
interface board that connects to the bus. On the other 
hand, actual components are often multi-functional. 
For example, a motherboard on a PC contains 
components that can provide many functions such as 
the main processor, bus, memory, and data ports. 

The "key component per funct ion" assumption can 
be used to simplify the representation. Additional 
requirements for implementing a function once a key 
component has been selected, can be indexed via that 
key component. These additional requirements can be 
expressed as other required functions (and 
components directly) along wi th constraints on each of 
these. 

This simplifies (but does not solve the problem 
entirely, also see sec. 4.2.4) the mapping between 
functions and components and has the added 
advantage that variations at the level of components 
can be easily accounted for because each key 
component can have a separate description of 
addit ional requirements. The fol lowing simple 
example wil l clarify this point. Suppose a function A 
can be implemented by decomposing it into 
sub-functions A1 and A2, each of which can be directly 
implemented by some components. Furthermore, we 
are given three components C1, C2, and C3 such that Q 
implements both A1 and A2, C2 only implements A1, 
and C3 only implements A2. Using the key component 
assumption, we make C1 and C2 be two separate key 
components for A, bypassing its functional 
decomposition. There are no additional requirements 
for C1 implementing A. However, C2 additionally 
requires A2 (or C3 if expressed at the component level). 

Notice that this augmentation of component-level 
knowledge to include knowledge about the functions 
provided and other functions needed in support of the 
former funct ion, begins to blur the distinction between 
functions and components. One can easily imagine a 
continuum of concepts f rom purely functional concepts 
to actual physical components. This insight has been 
used by systems such as Cossack and MICON to 
represent components in a functional lattice. 

3.4 Specification of desired configuratron 

Limiting the scope of the task to a given set of 

architectures has an important consequence for 
describing the input specifications. Since we are no 
longer interested in specifiying any arbitrary 
configuration that can be assembled f rom the available 
components, the input specifications simply become a 
way to constrain one or more of the fo l lowing. 

[I] Choices at the architectural level. For example, in 
the case of Cossack, this might involve specifying which 
of the possible PC architectures should be used. [II] 
Constraints on the functions allowed by an 
architecture. For example, a typical constraint on the 
processor would specify the clock rate or MIPS. 
Similarly, the printing function could be constrained to 
certain print speed or print quality. [Ill] Constraints on 
the actual components that are used to ful f i l l some 
functional requiement. For example, a user might 
simply state that they want a particular word 
processing program, as opposed to giving a set of 
functional constraints. [IV] Finally, the requirements 
might include some local or global criteria for 
specifying optimal configurations, e.g., cost, 
expandability, and compatibility in the computer 
domain. 

4.0 PROBLEM SOLVING METHODS 

Our criteria for the methods we look at wi l l be: [1], 
soundness (a solution is indeed correct); [2], 
completeness (if a solution exists wi th in the available 
knowledge it wil l be found); and [3], exhaustivity (all 
possible solutions can be found). We shall ignore issues 
of optimization (finding the best solution under some 
set of criteria). These methods represent a progression 
towards more efficient search. Space limitations do not 
permit a detailed treatment of any of the methods so 
we wil l try to cover only the essential ideas (see [Mittal 
and Frayman 1989a] for more details). 

4.1 Bottom-up method 

A simple way to solve a configuration task is wi th a 
bottom-up generate-and-test method. A generator can 
be built (such as the one described in sec. 2.2) that 
starts wi th one of the available components and 
creates viable candidates by composing other 
components satisfying the structural composition 
constraints. The test part checks a candidate against 
the input specifications. This method is general, sound 
and exhaustive, but not very efficient. The complexity 
of the generator directly depends on the number of 
components and the degree of connectivity between 
components (see sec. 2.2). Thus, it is viable only when 
there are only a small number of components and they 
have low connectivity. 

Rest of the methods only work for the restricted 
version of the task and mix top-down (from function to 
components) and bottom-up (from components to 
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functions) strategies. 

4.2 Mixed strategy methods 

4.2.1 A Top-down method 

One can build a two-stage method. In the first 
stage, start wi th the functions required by an 
architecture and the input specifications. For each 
function, select one of the key components. The key 
component in turn may "post" additional 
requirements which are in terms of additional 
functions, or constraints on existing functions. If a 
contradiction is detected, e.g., a component used to 
implement some function is not consistent w i th 
additional constraints on the same function, then 
backtrack. The second stage starts w i th the 
components identif ied during the previous stage, and 
checks that they can be consistently connected 
together. Failure at this stage causes backtracking to 
the previous stage to look for an alternative to one of 
the inconsistent components. Let us call this method 
M 1 . This method is also sound and exhaustive but is 

deficient in other ways, three of which we wil l cover in 
this paper. 

4.2.2 Reducing Search 

The first problem wi th M1 is the inefficiency of its 
search. There are at least two causes of this 
inefficiency: sequencing of functional and structural 
stages and thrashing. 

Interleaving. M1 searches unnecessarily because the 
structural constraints are only checked after all the 
components have been identif ied. Thus, violation of 
structural constraints can be very expensive. This is 
because the choice of a component can recursively 
introduce many other constraints (and additional 
functions), all of which would be retracted by a 
contradiction. This problem can be partially f ixed by 
interleaving stages one and t w o in such a way that the 
structural constraints are checked as early as possible, 
i.e., as soon as two components are identif ied that 
need to be connected together, their structural 
constraints are checked. Let us call this method M2. 

Search ordering. The second cause of search 
inefficiency is thrashing caused by similar 
contradictions. Suppose some function A can be 
implemented by one of n components, only some of 
which can be consistently composed w i th components 
that implement another function B. Both M1 and M2 
wil l thrash, though M1 may do much additional wasted 
computation also, as they repeatedly try di f ferent 
components for implementing the function A, fai l ing 
in the same place, i.e., inconsistency wi th components 
for B. This problem can be partially solved by 
domain-specific heuristics, that impose an order on the 
sequence in which the function to component 
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mapping is performed. Many of the implemented 
expert systems including XCON rely on such heuristics. 
A better way to handle this problem is to employ some 
kind of least commitment strategy that postpones 
making a choice as late as possible. This can improve on 
heuristic ordering but still suffers from the atomicity of 
the component as a choice. 

Partial choice. An even better solution would be 
some kind of partial choice strategy as described by 
[Mi t ta l and Frayman, 1987; Mit tal and Frayman, 
1989b]. The basic idea here is to enable a partial 
component to be selected that might represent a set of 
possible solutions. In our example, a partial choice for 
the set of components implementing function A which 
are inconsistent w i th components for B might include 
the description of the relevant port and structural 
constraints (assuming they were the same for all the 
of fending components). A later contradiction would 
enable the whole set to be rejected, eliminating the 
thrashing. Note that a function abstraction hierarchy 
for components, as discussed in section 3.3, would 
facil i tate such partial choices naturally (see the longer 
paper for details). 

4.2.3 Re-usable components 

The second set of problems wi th M1 and the 
variants discussed above deals wi th reusable (e.g., 
serially or temporally) components or component 
sharing. The methods described above assume that if 
the need for the same function is identif ied in two or 
more places during search (typically as a requirement 
by some component) it has to be satisfied by the same 
component (hence the term reusable). This is not true 
in general. In the computer domain, bus slots can not 
be shared by two circuit boards. A port cannot be 
usually shared, except by using some kind of switch. 
Memory can be shared by programs but not disk space. 
Part of the problem is representational, i.e., one needs 
to indicate whether a function (or component) that 
needs a component (or function) does so exclusively or 
not. The methods would have to be modif ied to handle 
the extra information about exclusive use. Problems 
still remain f rom the point of view of search efficiency. 
However, the search problems are similar to those 
already discussed earlier and many of the same 
solutions can be adapted. 

4.2.4 Mult i - funct ion components 

The last problem deals w i th multi-function 
components, i.e., components that can simultaneously 
implement more than one funct ion. There are actually 
two problems here. The simpler one deals w i th the 
opportunistic use of components. Thus, if a component 
C1, selected for function A1, can also implement 
functions A2 and A3 that are identif ied later during 
problem solving, one would like our method to be able 



to notice that and not select new components for A2 

and A3. Extending M1 to handle this is not hard. In fact, 
Cossack did this routinely. 

The harder problem is biasing the search towards 
preferring solutions that use minimal number of 
components, which mult i-function components 
enable. While an exhaustive search method that 
incorporates opportunistic use of components is 
gauranteed to f ind solutions that are minimal, it might 
not do so soon enough for real problems where one 
could not af ford to examine all solutions. A simple 
heuristic for achieving this would be to order the 
component choices of a funct ion on the basis of the 
number of functions they implement. However, this 
heuristic is just as likely to be bad since it biases the 
search towards configurations that have multi-function 
components many of whose functions are not needed 
by the specifications. Variations on least committment 
and partial choice ideas might also help here since they 
can help in early identif ication of required functions. 
Clearly more work is needed here. 

It is also possible to map a configuration problem 
into a hierarchical constraint problem where variables 
and constraints can be hierarchically nested, and 
introduced (or retracted) dynamically as the search 
progresses. One proposal for such a hierarchical 
constraint language has been implemented and is 
described elsewhere [Mit tal and Davis, 1989]. 
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