
Sanjay Mittal
Xerox Palo Alto Research Center

3333 Coyote Hill Rd.
Palo Alto, CA 94304

ABSTRACT

A precise def in i t ion is provided for general
configurat ion tasks. Two important assumptions
are ident i f ied: (i) functional architecture and (ii)
key component per funct ion. A domain-
independent model is presented based on these
assumptions. These assumptions are shown to be
both useful and tenable in real domains. They
are useful because they l imit the complexity of
the general conf igurat ion task, determine the
basic knowledge needed for solving a
configurat ion task, and enable more efficient
problem solving methods. Ideas are presented
both for representing the knowledge and
control l ing the search. Some of these ideas were
originally implemented in the Cossack expert
system.

1 INTRODUCTION

Configuration is a special type of design activity, w i th
the key feature that the art i fact being designed is
assembled from a set of pre-defined components that
can only be connected together in certain ways. This
intuit ive def in i t ion fits a large number of design tasks
f rom our everyday and professional lives. It is natural,
therefore, that conf igurat ion has become an important
application area for knowledge-based technologies.
Starting w i th the landmark R1/XCON project
[McDermott, 82], conf igurat ion expert systems have
been built by many organizations. We have found
publications describing over a dozen systems [Bennet
and Lark, 1986; Birmingham et al., 1988; Bowen, 1985;
Frayman and Mi t ta l , 1987; Haugeneder et al., 1985;
Lan et al. 1987; Parunak et al., 1988; Pierick, 1986;
Rolston, 1986; Searls and Norton, 1988; Wu et al.,
1986], not to ment ion many others that have been
mentioned in various trade publications. Many of the
reported systems configure computers, though we
have also seen references to systems for configuring
networks, operat ing systems, buildings, circuit boards,
keyboards, pr int ing presses, and trucks.

Towards a generic model of configuration tasks

Felix Frayman
Hewlett-Packard Laboratories

3500 Deer Creek Rd.
Palo Alto, CA 94303-0867

Such a wealth of experience would suggest that
some understanding exists about configuration as a
generic task and techniques for solving it.
Unfortunately, most published accounts of
configuration expert systems seem to refer to only an
intuit ive definit ion of the configuration task, and of ten
dont describe their problem solving methods clearly
enough to enable meaningful comparisons.

Furthermore, it is not clear that each of these
instances of configuration tasks are similar. Can the
components in each of these domains be represented
the same way? Are the rules of composition similar?
How are the requirements expressed? What is the
relationship between the requirements and what is
known about the individual components in these
domains? What assumptions are made by the problem
solving methods? Would a method in one system be
useful in other domains? These questions need to be
answered before one can develop a general theory of
configuration tasks or develop a more precise
taxonomy of configuration tasks.

In this paper we start by defining a general
configuration task in a way that captures some of the
important characteristics. We show that the general
task involves exponential search in the worst case.
Next, we define a restricted version of the task
incorporating two important assumptions: [1], we
know ahead of t ime the kinds of functional roles that
need to be fulf i l led wi th in a configured artifact. These
functional roles are often constrained by an
architecture [2], we assume that for each functional
role, one or more components can be identif ied as a
"key component", i.e , any set of components that
implements that function wil l include one of these
components.

In section 3, we analyze the essential knowledge
needed by a problem solver and discuss ideas for
represention. Section 4 describes a series of methods
for solving configuration tasks and identifies some of
the important issues. These ideas were originally
developed in the context of implementing the Cossack
expert system [Frayman and Mi t ta l 1987],

Mittal and Frayman 1395

2 ASPECTS OF CONFIGURATION TASKS

2.1 General definit ion

Making very few assumptions about the kinds of
knowledge that might be available, we define a
configuration task as follows:

Given: (A) a f ixed, pre-defined set of components, where
a component is described by a set of properties, ports for
connecting it to other components, constraints at each
port that describe the components that can be connected
at that port, and other structural constraints (B) some
description of the desired configurat ion; and (C) possibly
some criteria for making optimal selections.

Build: One or more configurations that satisfy all the
requirements, where a configuration is a set of
components and a description of the connections
between the components in the set, or, detect
inconsistencies in the requirements.

There are three important aspects to this definit ion.
[1], the components that can be used to design some
artifact are f ixed, i.e., one cannot design new
components. [2], each component can be connected to
certain other components in fixed and pre-defined
ways, i.e., the components cannot be modified to get
arbitrary connectivity. We use the idea of a "por t " as
an abstraction for places where a component can be
connected to other components. Each component
locally describes constraints on the other components
that can be connected at each of its ports. For now we
make no assumptions about languages for specifying
such connectivities. [3], a solution not only specifies the
actual components but also how to connect them
together. In other words, it is not enough to just
identify the components.

This definit ion clearly includes computer
configuration problems. There one is given a fixed and
pre-defined set of components (e.g., printers, displays,
processors, keyboards, memory modules, operating
systems), some description of the kind of computer
system one wants configured (e.g., "a Xerox PC that
can do word processing, accounting, can be used
bilingually, prints letter quality documents, ...") and
possibly some optimization criteria (e.g., should be
extendable in the future, cheapest). A solution to a
computer configuration problem is a set of actual
components and a precise description of how they
should be connected to build a computer out of these
parts.

The definit ion we have given is general enough to
cover a broad array of tasks. A customer buying a car in
effect configures it from a fixed set of components (car
models, engines, brakes, transmissions, etc.). Design of
many single-board computer systems [Birmingham et
al., 1988; Bowen, 1985] can be largely viewed as a task
of selecting from a set of components such as

1396 Knowledge Representation

microprocessors, memory chips, encoders, decoders,
and bus drivers. Similar examples can be found in other
domains.

2.2 Analysis of the general configuration task

Without making any further assumptions about what
knowledge is available about components, how
desired configurations are specified, or how the
specifications are mapped onto components, a
configuration task presents a formidable challenge.
Given N components and p ports per component, the
space of all possible configurations is on the order of
sqrt[(pN)!] For even moderate sized N and small p, the
space is quite formidable, and one does not expect real
configuration tasks to be solved wi thout further
knowledge.

One can actually do much better than the
worst-case shown above by considering, at an early
stage, the local composition constraints specified at the
level of each component. Based purely on the port
constraints, one can pre-compute the number of
components that can connect at a port. Let k be the
upper-bound on the number of components that can
be connected at each port. Let us also assume that S is
the upper-bound on the size of the largest
configuration we are interested in. Now one can
estimate the size of the space of legal configurations as
follows. A generator can be built that progressively
generates larger configurations upto some size S,
starting wi th size one. Given a configuration of size k,
the generator produces all configurations of size (k + 1)
by extending it along any of the open ports by any of
the allowable components at that port. In [Mittal and
Frayman, 1989], we show that the number of possible
configurations produced by the above generator is on

the order of O(Nksps).

2.3 Restricted version of configuration tasks

We now introduce two restrictions on the general
configuration task. These restrictions reduce the
complexity of the task and help in identifying
additional kinds of knowledge that can further reduce
the complexity, at least in typical cases.

2.3.1 Functional architecture

Our first restriction is based on the fol lowing
observations about design practice. Artifacts are
typically (but not always) designed wi th some purpose
in mind. Experience wi th designing a class of artifacts
leads to an understanding of the functions that must
be provided to achieve the original purpose and rules
on how these functions compose and interact. Often,
such functional decompositions and the accompanying
constraints are codified in the form of an architecture
that guides the design of such artifacts. Thus, one can
talk about the "Von-Neumann architecture" (or the

stored program architecture) for computers which
specifies the functions of memory as a place to store
data and instructions and a processor as a device that
uses a program counter to fetch the next instruction to
be executed. Architectures of actual computer systems
such as the IBM 370, IBM PC or DEC VAX describe in
detai l the functions provided by these computers and
rules for composing these functions. In a similar vein,
one can describe architectures for other complex
artifacts such as operating systems, copiers,
automobiles, or pr int ing presses.

Our first restriction is that the artifacts are
configured according to some known functional
architectures. In other words, instead of trying to
assemble all possible artifacts that can be created from
the given set of components, one restricts the problem
to those artifacts that are similar in their
architecture(s). This clearly restricts the scope of the
task but not in an arbitrary way.

This restriction also simplifies the task. Without
knowing the functions to be achieved, one might have
to compute the behavior of an arbitrary assembly of
components and match it against the specifications.
However, once certain architectures have been
def ined, it is possible to configure systems by using the
architecture in a more top-down fashion. Thus, one can
view conf igurat ion as a generative task. Alternatively,
it can be viewed as a "recogni t ion" or "ver i f icat ion"
task, where the input is a particular arrangement of
components, and the task is to verify that the
conf igurat ion actually matches one of the
architectures.

As far as we can tel l , most of the implemented
conf igurat ion expert systems embody some knowledge
of the permissible architectures. A system such as
R1/XCON which configures VAXes in effect checks that
a given set of components wi l l actually result in a valid
VAX system. To do this, XCON's knowledge of legal
VAX architectures is implicitly represented in its rules
Similarly, MICON only configures single-board
computers that match the basic architecture defined in
the knowledge base, even though it might be possible
to configure other kinds of computer systems from the
same set of components.

Similar assumptions are made in Cossack [Frayman
and Mi t ta l , 1987], an expert system for configuring
Xerox personal computers. In Cossack, the permissible
architectures of a Xerox PC are explicitly represented
and it instantiates one of these architectures using a set
of standard components.

2.3.2 Key components per funct ion

Even w i t h pre-defined functional architectures, one
might have arbitrary ways of implementing the
individual functions f rom the given set of components.

This might again require a problem solver to generate
arbitrary configurations and test if that configuration
can indeed provide the desired functions.

However, we have noticed that in many design
domains, one can identify some particular component
(or a small set) that is crucial to implementing some
function. For example, the print ing function in a
computer system crucially needs a printer component.
Other components needed for the pr int ing function
such as hardware interface, data cables, power cable,
fonts, and driver software can be determined once a
printer has been selected. Thus, one does not need to
consider arbitrary configurations for pr int ing functions
- one need only start w i th a printer and build suitable
configurations f rom there. We call this a "key
component" assumption. Notice, that this assumption
both restricts the task (certain solutions would not be
considered) and simplifies it (see sec. 2.3.3 below). Also
note that this observation might help explain why
functions are often given names that are the same or
similar to those for their key components.

Systems such as XCON, Cossack, and MICON
crucially depend on this assumption. XCON actually
relies on this assumption to " in fer" the functional
requirements from the set of components it is given to
verify. It has rules which look for certain "key"
components and then ensures that other components
needed to have consistent sub-systems around those
components are included in the configurat ion. Cossack
and MICON use this assumption in a generative fashion
to build sub-systems which are then composed
together.

2.3.3 Definit ion of the restricted task

These restrictions can be combined w i th the def ini t ion
given in sec. 2.1 to arrive at an abstract def in i t ion, as
fol lows:

Given: (A1) one or more functional architectures for
desired configurations, each abstractly def ined by
functions { r f 1 , rf2 , ... r f n ; of1 , of2 , o f m } , where rfj are
always needed and ofj are opt ional ; (A2) a f ixed,
pre-defined set of components, where a component is
minimally described by a set of properties, ports for
connecting it to other components, constraints at each
port that describe the components that can be connected
at tnat port , and other structural constraints ; (A3) a
mapping f rom each funct ion fj to components cj that are
key components in providing fj and a description of other
functions that are required by C I in order to funct ion as f j ;
(B) some description of the desired conf igurat ion, usually
in the form of addit ional constraints on some of the fj or
the associated components; and (C) possibly some criteria
for making opt imal selections.

Build: One or more configurations that satisfy all the
requirements, where a conf igurat ion is a set of

Mittal and Frayman 1397

components and a description of the connections
between the components in the set, or, detect
inconsistencies in the requirements.

These two assumptions - functional architecture
and key component per function - actually dovetail
quite nicely. An architecture allows one to decompose
an artifact along functional lines, possibly identi fying
constraints that always hold regardless of how the
functions are achieved. The second assumption allows
this decomposition to be carried all the way to the
actual physical components by identi fying key
components that are crucial in implementing a
function along w i th addit ional constraints identi f ied
during the mapping f rom function to components.

These assumptions reduce each of p, k, and S that
define the complexity of configuration tasks. The "key
component" assumption limits both the ports (p) and
the components (k) that are relevant at each port. This
is because, of all the ways that a component can
participate in some configurat ion, one is only
interested in those that lead to one of the functions
defined by the architecture(s). These architectural
limits can be realized by restricting the representation
of a component to include only those ports that
participate in desired functions and by imposing
additional constraints on the composability of a
component. Also, by l imit ing the space of
configurations to only those that provide certain
functions, we in effect put a t ighter bound on S, i.e.,
not all sizes of configurations can possibly constitute a
valid solution.

These two assumptions also transform a
tightly-coupled problem (since one can extend a partial
configuration in arbitrary ways) into a more
loosely-coupled problem because an architecture
specifies a functional decomposition and each of the
required functions can be configured somewhat
independently around their key components. In a real
sense, the key components act like "planning islands".
Arguably, good architectures have the property that
they decompose an artifact into nearly independent
functions. Note that in general the problem is still
coupled because of reusability of components and
function sharing.

3.0 KNOWLEDGE FOR THE CONFIGURATION TASK

In the rest of this paper, we focus on this restricted
version of the configuration task, though for brevity
we shall not use the qualifier. In the previous section,
we effectively performed a knowledge-level analysis of
the configuration task. To summarize, a problem solver
for the task needs three kinds of knowledge. [1],
available components; [2], functional decomposition
specified by the given architectures; and [3],

1398 Knowledge Representation

knowledge for mapping from functions to key
components. A detailed treatment is beyond the scope
of this paper so we l imit ourselves to a discussion of
some of the important issues and describe some
representation ideas.

3.1 Components

Components can be described independent of how
they are used by a set of physical properties (or
predicates). For example, physical properties of a
printer include its dimensions and weight. Components
have ports to represent "places" at which other
components can be attached, e.g., typical ports for a
printer include data port, power supply port, paper
feeder attachment port, and a paper guide attachment
port.

Ports themselves can be described in terms of some
set of properties. More importantly, one can specify
constraints at these ports that l imit what components
can be attached there. Typically, these constraints
would describe properties of the components that can
be connected at that port or more specifically
properties of a port on another component. Thus, a
printer w i th a "3-prong female power supply port"
would have a constraint that any component that
attaches to this port must have a matching
"connector" port.

Finally, the sub-component relationship between
components has to be explicitly represented since the
available components can include two components
which only differ by a particular sub-component, i.e.,
one already has the sub-component connected and the
other does not

3.2 Functional architecture

A functional architecture specifies a functional
decomposition of the artifacts and constraints on their
composition. For example, the architecture of the
original IBM PC specified: [1], necessary functions such
as a processor, bus, main memory, keyboard, and a
booting store; [2], constraints on their composition
such as, "how the booting store is accessed by the
processor", "which addresses are available for main
memory", "how peripheral devices are addressed by
the processor", and "which addresses are set aside for
the display memory"; and [3], constraints on how other
optional functions may be composed w i th the required
functions, e.g., constraints on connecting to the bus. As
experience develops in connecting certain other kinds
of components, one can develop a functional model of
some of these options (e.g., pr int ing, data
communication, point ing device in the PC case).

Individual functions can be simply modelled by a set
of properties that characterize them. For example, the
printing function may be described by properties such

as speed, resolution, directionality, character and font
sets.

3.3 Mapping f rom functions to components

Finally, we need to model the knowledge for mapping
from functions to components. In general, the
mapping between functions and components is
many-to-many. A function can be implemented by a set
of components. For example, the print ing function on
a PC needs as components a printer, a cable, and an
interface board that connects to the bus. On the other
hand, actual components are often multi-functional.
For example, a motherboard on a PC contains
components that can provide many functions such as
the main processor, bus, memory, and data ports.

The "key component per funct ion" assumption can
be used to simplify the representation. Additional
requirements for implementing a function once a key
component has been selected, can be indexed via that
key component. These additional requirements can be
expressed as other required functions (and
components directly) along wi th constraints on each of
these.

This simplifies (but does not solve the problem
entirely, also see sec. 4.2.4) the mapping between
functions and components and has the added
advantage that variations at the level of components
can be easily accounted for because each key
component can have a separate description of
addit ional requirements. The fol lowing simple
example wil l clarify this point. Suppose a function A
can be implemented by decomposing it into
sub-functions A1 and A2, each of which can be directly
implemented by some components. Furthermore, we
are given three components C1, C2, and C3 such that Q
implements both A1 and A2, C2 only implements A1,
and C3 only implements A2. Using the key component
assumption, we make C1 and C2 be two separate key
components for A, bypassing its functional
decomposition. There are no additional requirements
for C1 implementing A. However, C2 additionally
requires A2 (or C3 if expressed at the component level).

Notice that this augmentation of component-level
knowledge to include knowledge about the functions
provided and other functions needed in support of the
former funct ion, begins to blur the distinction between
functions and components. One can easily imagine a
continuum of concepts f rom purely functional concepts
to actual physical components. This insight has been
used by systems such as Cossack and MICON to
represent components in a functional lattice.

3.4 Specification of desired configuratron

Limiting the scope of the task to a given set of

architectures has an important consequence for
describing the input specifications. Since we are no
longer interested in specifiying any arbitrary
configuration that can be assembled f rom the available
components, the input specifications simply become a
way to constrain one or more of the fo l lowing.

[I] Choices at the architectural level. For example, in
the case of Cossack, this might involve specifying which
of the possible PC architectures should be used. [II]
Constraints on the functions allowed by an
architecture. For example, a typical constraint on the
processor would specify the clock rate or MIPS.
Similarly, the printing function could be constrained to
certain print speed or print quality. [Ill] Constraints on
the actual components that are used to ful f i l l some
functional requiement. For example, a user might
simply state that they want a particular word
processing program, as opposed to giving a set of
functional constraints. [IV] Finally, the requirements
might include some local or global criteria for
specifying optimal configurations, e.g., cost,
expandability, and compatibility in the computer
domain.

4.0 PROBLEM SOLVING METHODS

Our criteria for the methods we look at wi l l be: [1],
soundness (a solution is indeed correct); [2],
completeness (if a solution exists wi th in the available
knowledge it wil l be found); and [3], exhaustivity (all
possible solutions can be found). We shall ignore issues
of optimization (finding the best solution under some
set of criteria). These methods represent a progression
towards more efficient search. Space limitations do not
permit a detailed treatment of any of the methods so
we wil l try to cover only the essential ideas (see [Mittal
and Frayman 1989a] for more details).

4.1 Bottom-up method

A simple way to solve a configuration task is wi th a
bottom-up generate-and-test method. A generator can
be built (such as the one described in sec. 2.2) that
starts wi th one of the available components and
creates viable candidates by composing other
components satisfying the structural composition
constraints. The test part checks a candidate against
the input specifications. This method is general, sound
and exhaustive, but not very efficient. The complexity
of the generator directly depends on the number of
components and the degree of connectivity between
components (see sec. 2.2). Thus, it is viable only when
there are only a small number of components and they
have low connectivity.

Rest of the methods only work for the restricted
version of the task and mix top-down (from function to
components) and bottom-up (from components to

Mittal and Frayman 1399

functions) strategies.

4.2 Mixed strategy methods

4.2.1 A Top-down method

One can build a two-stage method. In the first
stage, start wi th the functions required by an
architecture and the input specifications. For each
function, select one of the key components. The key
component in turn may "post" additional
requirements which are in terms of additional
functions, or constraints on existing functions. If a
contradiction is detected, e.g., a component used to
implement some function is not consistent w i th
additional constraints on the same function, then
backtrack. The second stage starts w i th the
components identif ied during the previous stage, and
checks that they can be consistently connected
together. Failure at this stage causes backtracking to
the previous stage to look for an alternative to one of
the inconsistent components. Let us call this method
M 1 . This method is also sound and exhaustive but is

deficient in other ways, three of which we wil l cover in
this paper.

4.2.2 Reducing Search

The first problem wi th M1 is the inefficiency of its
search. There are at least two causes of this
inefficiency: sequencing of functional and structural
stages and thrashing.

Interleaving. M1 searches unnecessarily because the
structural constraints are only checked after all the
components have been identif ied. Thus, violation of
structural constraints can be very expensive. This is
because the choice of a component can recursively
introduce many other constraints (and additional
functions), all of which would be retracted by a
contradiction. This problem can be partially f ixed by
interleaving stages one and t w o in such a way that the
structural constraints are checked as early as possible,
i.e., as soon as two components are identif ied that
need to be connected together, their structural
constraints are checked. Let us call this method M2.

Search ordering. The second cause of search
inefficiency is thrashing caused by similar
contradictions. Suppose some function A can be
implemented by one of n components, only some of
which can be consistently composed w i th components
that implement another function B. Both M1 and M2
wil l thrash, though M1 may do much additional wasted
computation also, as they repeatedly try di f ferent
components for implementing the function A, fai l ing
in the same place, i.e., inconsistency wi th components
for B. This problem can be partially solved by
domain-specific heuristics, that impose an order on the
sequence in which the function to component

1400 Knowledge Representation

mapping is performed. Many of the implemented
expert systems including XCON rely on such heuristics.
A better way to handle this problem is to employ some
kind of least commitment strategy that postpones
making a choice as late as possible. This can improve on
heuristic ordering but still suffers from the atomicity of
the component as a choice.

Partial choice. An even better solution would be
some kind of partial choice strategy as described by
[Mi t ta l and Frayman, 1987; Mit tal and Frayman,
1989b]. The basic idea here is to enable a partial
component to be selected that might represent a set of
possible solutions. In our example, a partial choice for
the set of components implementing function A which
are inconsistent w i th components for B might include
the description of the relevant port and structural
constraints (assuming they were the same for all the
of fending components). A later contradiction would
enable the whole set to be rejected, eliminating the
thrashing. Note that a function abstraction hierarchy
for components, as discussed in section 3.3, would
facil i tate such partial choices naturally (see the longer
paper for details).

4.2.3 Re-usable components

The second set of problems wi th M1 and the
variants discussed above deals wi th reusable (e.g.,
serially or temporally) components or component
sharing. The methods described above assume that if
the need for the same function is identif ied in two or
more places during search (typically as a requirement
by some component) it has to be satisfied by the same
component (hence the term reusable). This is not true
in general. In the computer domain, bus slots can not
be shared by two circuit boards. A port cannot be
usually shared, except by using some kind of switch.
Memory can be shared by programs but not disk space.
Part of the problem is representational, i.e., one needs
to indicate whether a function (or component) that
needs a component (or function) does so exclusively or
not. The methods would have to be modif ied to handle
the extra information about exclusive use. Problems
still remain f rom the point of view of search efficiency.
However, the search problems are similar to those
already discussed earlier and many of the same
solutions can be adapted.

4.2.4 Mult i - funct ion components

The last problem deals w i th multi-function
components, i.e., components that can simultaneously
implement more than one funct ion. There are actually
two problems here. The simpler one deals w i th the
opportunistic use of components. Thus, if a component
C1, selected for function A1, can also implement
functions A2 and A3 that are identif ied later during
problem solving, one would like our method to be able

to notice that and not select new components for A2

and A3. Extending M1 to handle this is not hard. In fact,
Cossack did this routinely.

The harder problem is biasing the search towards
preferring solutions that use minimal number of
components, which mult i-function components
enable. While an exhaustive search method that
incorporates opportunistic use of components is
gauranteed to f ind solutions that are minimal, it might
not do so soon enough for real problems where one
could not af ford to examine all solutions. A simple
heuristic for achieving this would be to order the
component choices of a funct ion on the basis of the
number of functions they implement. However, this
heuristic is just as likely to be bad since it biases the
search towards configurations that have multi-function
components many of whose functions are not needed
by the specifications. Variations on least committment
and partial choice ideas might also help here since they
can help in early identif ication of required functions.
Clearly more work is needed here.

It is also possible to map a configuration problem
into a hierarchical constraint problem where variables
and constraints can be hierarchically nested, and
introduced (or retracted) dynamically as the search
progresses. One proposal for such a hierarchical
constraint language has been implemented and is
described elsewhere [Mit tal and Davis, 1989].

ACKNOWLEDGEMENTS

We appreciate discussion and comments from Dan
Bobrow, Brian Falkenhainer, Dan Russell, John
McDermott, Mark Shirley, and Mark Stefik on earlier
drafts of this paper. Bryan Kramer collaborated wi th us
on the Cossack system and has helped in refining many
of the ideas presented here

REFERENCES

Bennet J.S. and Lark J.S (1986), Hierarchical Knowledge Systems,
US patent number 4,591,983.

Birmingham, W. P., A. Brennan, A. P. Gupta, and D. P. Sieworek
[1988], MICON: A Single Board Computer Synthesis Tool, IEEE
Circuits and Devices, Jan 1988

Bowen J. (1985), Automated Conf igurat ion using Functional
Reasoning Approach, in Artif icial Intelligence and its Applications,
(eds) Cohn A.G. and J.R. Thomas, John Wiley & Sons, Proceedings
of Art i f ic ial Intelligence in Simulation of Behaviour, 1985, pp.
79-106.

Frayman, F., and S. Mi t ta l [1987], Cossack: A constraints-based
expert system for conf igurat ion tasks, in D Sriram and R. A. Adey
(eds), Knowledge-based expert systems in engineering: Planning
and Design, Sept. 1987.

Haugeneder H., Lehmann E., and Struss P. (1985),
Knowledge-Based Configurat ion of Operating Systems - Problem
in Model ing the Domain Knowledge, Proceedings of the Gl
Congress on Knowledge-Based Systems, 1985

Lan M.S., Panos R.M., and Balban M.S. (1987), A
Knowledge-based Approach to Printing Press Configurat ion,
Proceedings of the Third IEEE Conference on Art i f icial Intelligence
Applications, Orlando, Florida, 1987

McDermott J (1982), R1: A Rule-Based Configurer of Computer
Systems, Artif icial Intelligence, Vol 19, No. 1, September 1982

Mi t ta l , S , and F. Frayman (1987), Making Partial Choices in
Constraint Reasoning Problems, Proceedings of the Sixth National
Conference on Artif icial Intelligence, Seattle, Washington, 1987.

Mi t ta l , S, and H Davis [1989], Representing and solving
hierarchical constraint problems, SSL Technical Report, Xerox
PARC, 1989.

Mi t ta l , S, and F. Frayman [1989a], Domain-independent
representations and problem-solving methods for conf igurat ion
tasks, SSL Technical Report, Xerox PARC, 1989

Mit ta l , S , and F. Frayman [1989b], Partial choice search strategies
for dynamic constraint problems, SSL Technical Report, Xerox
PARC, 1989

Parunak, H. V. D., Kindrick J D , and Muralidhar K. H. [1988],
MAPCon: a case study in a configuration expert system, AIEDAM,
2(2), 1988, pp. 71-88

Pierick J (1986), A Knowledge Representation Technique for
Systems Dealing w i th Hardware Configurat ion, pp 991-995,

Proceedings of the Fifth National Conference on Art i f icial
Intelligence, Philadelphia, 1986

Rolston D (1986), An Expert System for DPS 90 Configurat ion,
Proceedings of the Fifth Annual International Phoenix Conference
on Computers and Communications, Scotsdale, Arizona, March
1986

Searls D.B., and Norton LM (1988), Logic-Based Configurat ion
wi th Semantic Network. UNISYS internal report. To appear in the
Journal of Logic Programming.

Wu H., Chun H. W , Mimo A. (1986), ISCS - A Tool Kit for
Constructing Knowledge-Based System Configurators, pp
1015-1021, Proceedings of the Fifth National Conference on
Artificial Intelligence, Philadelphia, 1986

Mittal and Frayman 1401

