
Towards a generic observer/controller architecture for
Organic Computing

Urban Richter1, Moez Mnif2,
Jürgen Branke1, Christian Müller-Schloer2, Hartmut Schmeck1

1Institute of Applied Informatics
and Formal Description Methods

Universität Karlsruhe (TH)
D-76128 Karlsruhe, Germany
{uri,jbr,hsch}@aifb.uka.de

2Institute of Systems Engineering
Universität Hannover

Appelstr. 4
D-30167 Hannover, Germany

{mnif,cms}@sra.uni-hannover.de

Abstract: Technical scenarios in areas like automotive or production systems will
increasingly consist of a large number of components cooperating in potentially un-
limited and dynamically changing networks to satisfy the functional requirements of
their execution environment. Due to the high complexity it will be impossible to ex-
plicitly design the behaviour of the components for every potentially arising situation.
Therefore, it will be necessary to leave an adequate degree of freedom allowing for a
self-organised behaviour. Organic Computing (OC) has developed the vision of self-
organising systems adapting robustly to dynamically changing environments without
running out of control. This paper focuses on the design of a generic system archi-
tecture which allows for self-organisation but at the same time enables adequate reac-
tions to control the – sometimes completely unexpected – emerging global behaviour
of these self-organised technical systems.

1 Introduction

In 1850 more than 700 French soldiers marched lock-step over the rope bridge of Angers.
The bridge began to vibrate, collapsed, and 226 soldiers died. Today, it is not allowed to
march lock-step over a bridge. This tragedy is often quoted as an example of a resonance
catastrophe which denotes a situation where a building (or any other technical system)
is destroyed by vibrations. It is based on eigenfrequency; energy is accumulated in the
system due to periodic stimulation. The stored energy and the continuous energy addition
excite the system und lead to its destruction by exceeding a system specific energy thresh-
old. Vibration absorbers are used to protect a system and dissipate the energy.
Similar phenomena increasingly occur also in informatics. Analogous to the example
above technical scenarios in the domain of informatics are becoming more and more
complex and unmanageable. Our daily life provides various situations where we are
surrounded by self-organising, interacting systems showing unknown and emergent be-
haviour.
Emergent phenomena are often identified when the global behaviour of a system appears

112



more coherent and directed than the behaviour of individual parts of the system (the whole
is more than the sum of its parts). More generally, such phenomena arise in the study of
complex systems, where many parts interact with each other and where the study of the
behaviour of individual parts reveals little about system-wide behaviour.
Based on these trends, the question is not whether complexity increases or informatics is
confronted with emergence, but how we will design new systems that have the possibility
to cope with the emerging global behaviour of self-organising systems by adequate control
actions, e. g. by using analogous to vibration absorbers as seen above.
Organic Computing (OC) [DFG05] has developed the vision of self-organising systems
adapting robustly to dynamically changing environments without running out of control.
This paper focuses on the design of a generic system architecture (an observer/controller
architecture) which allows for self-organisation but at the same time enables adequate re-
actions to control the – sometimes completely unexpected – emerging global behaviour of
these self-organised technical systems. Our proposed architecture can be used in a cen-
tralised, distributed or multi-levelled way.
The paper is structured as follows: Section 2 outlines our motivation and provides high-
lights of the organic methodology. We describe our computational model, including input
process, metrics for observation and control algorithms in Section 3 and 4. We outline
possible future work and present concluding remarks in Section 5.

2 Observer/controller architecture

Looking at the anticipated information and communication technologies of the year 2010
and beyond [VDE03], we have to acknowledge the fact that we shall be surrounded by
large systems of intelligent devices interacting and cooperating in potentially unlimited
networks. The design complexity of these systems calls for new design paradigms, and due
to the effects of interaction in dynamically changing environments the global behaviour of
these systems might be unexpected [Sch05]. In particular, to some degree, these sys-
tems will organise themselves, independently of initial designs or external interventions.
The major idea is to tame design complexity of technical systems by leaving consider-
able degrees of freedom for their structure and behaviour and by bestowing upon them
some life-like characteristics, allowing them to learn and adapt with respect to dynami-
cally changing environments. Such systems would be able to maintain themselves and
would not need scores of humans to set them up and keep them running. They would be
able to learn about their environment over time, survive attacks and breakdowns, adapt
to their users, and react sensibly, even if they encounter a new situation for which they
have not been programmed explicitly. OC defines an organic computer as a self-organised
system that can adapt to a dynamically changing context and achieves the so called self-
x-properties as postulated for Autonomic Computing [KC03, Ste05]: self-configuration,
self-optimisation, self-healing, self-explanation, and self-protection. But in spite of being
self-organised, an essential feature of organic systems will be their ability to react sensibly
to external – in particular human – requirements and to allow for control actions that might
be necessary to keep their behaviour within preferred regions of the configuration space

113



taking into account the effects of emergence.
As indicated above, emergent global behaviour is a key aspect of OC systems. We assume
that one way to achieve the desired goals is to move from a centralised system to a de-
centralised system, consisting of a large number of interacting sub-systems. In order to
assess the behaviour of such a system and – if necessary – for a regulatory feedback to
control its dynamics, we assume that a generic observer/controller architecture is required
as depicted in Figure 1 [MS04, MSvdMW04, SMS05]:

Figure 1: Observer/controller
architecture

The decentralised system is termed system under observa-
tion/control (SuOC), the observer and the controller are re-
sponsible for an appropriate surveillance and feedback.
Sensors and actuators are at the heart of our organic archi-
tecture. On top of the SuOC a control loop is created. It
observes behaviour through sensors, compares results with
expectations, decides what action is necessary and controls
the SuOC with the best known action through actuators.
To compare with expectations knowledge of historical and
current data, rules and beliefs is assumed, i.e. this is not
necessarily a trivial task. It is the observer’s task to mea-
sure, quantify, and predict emergent behaviour with basic
metrics. The observer collects and aggregates information
about the SuOC. The aggregated values (system indicators)
are reported to the controller who takes appropriate actions

to influence the SuOC. The observation behaviour itself is variable. The observer model in-
fluences the observation procedure, e. g. by selecting certain detectors or certain attributes
of interest. The feedback from the controller to the observer directs attention to certain
observables of interest in the current context. Based on the aggregate results from the ob-
server, the controller can benchmark the data with an objective function and either knows
or learns which actions are best to guide the SuOC in the desired direction.
It is important to note that an organic system continues to work and does not break down
if observer and controller stop working. Thus, the main objective of our architecture is
to achieve a controlled self-organised behaviour. In comparison with classical system de-
sign, OC systems have the ability to adapt and to cope with some emergent behaviour for
which they have not been programmed explicitly. In this paper we describe a centralised
observer-controller architecture. The goal of OC is to build systems that perform their
tasks by using (controlled) self-organisation. However, this is independent of using cen-
tralised or decentralised observer/controller architectures, since the elements of the system
work autonomously and the controller affects some local control parameters only and does
not control single elements in detail.

3 Observer

The aim of the observer is to perform an aggregation of available information about the
SuOC in form of indicators to give a global description (called situation parameters) of

114



the state and the dynamics of the underlying system. The main tasks of the observer are
basically: (a) identifying and characterising the nature of the phenomenon representing the
current system status, and (b) predicting the future status of the system. Figure 2 outlines
a generic observer architecture. The observer is guided by an observation model, which
is responsible for the following tasks: (1) selection of observable attributes, (2) selection
of appropriate analysis tools with regard to the purpose given by the controller and (3)
selection of appropriate prediction methods.

Figure 2: Generic observer architecture consisting of a monitor, a pre-processor, a data analyser, a
predictor, and an aggregator.

The observation process involves the following steps and components:

• Monitor: The SuOC is considered as a set of elements possessing certain attributes
(in terms of multi-agent systems). The monitor samples the attributes of the SuOC
according to a sampling frequency given by the observation model. The information
coming from the SuOC constitutes raw data (unprocessed) for the observer, which
can be classified into individual data common to all elements of the system and
some global system attributes. From a chronological point of view, monitoring the
SuOC is nothing else than the generation of a time series, reflecting the current state
of the system as well as its history. The sensory equipment of the SuOC limits the
selection of observable attributes and the resolution of the measurement.

• Log file: All measured data is stored in a log file for every loop of observing/con-
trolling the SuOC. This stored data can be used within the predictor or for the cal-
culation of time-space-patterns in the data analyser.

• Pre-processor: In the next step (pre-processing) some derived attributes can be com-
puted from the raw data. E. g. an attribute velocity can be derived from the at-
tributes x-coordinate and y-coordinate taking into account the history of these two
attributes. The pre-processing of the raw data includes also a selection of the rel-
evant data which is required to compute aggregated system-wide parameters. The
pre-processed data is passed to the data analyser and the predictor components.

115



• Data analyser: The data analyser applies a set of detectors to the pre-processed data
vector. These detectors could be a kind of computation of clustering, emergence
following the definition in [MMS06] or some mathematical and statistical values.
At the end of this step a system-wide description of the current state is provided.

• Predictor: The predictor processes the data coming from the pre-processor and re-
sults coming from the data analyser with the objective of giving a prediction of the
future system state. The predictor can use its own methods [MMS06] or some meth-
ods of the data analyser combined with prediction methods taken e. g. from technical
analysis. Prediction involves an analysis of the system history. For this purpose the
predictor is equipped with a memory to store a given time window. We are espe-
cially interested in the prediction of future behaviour in order to reduce the reaction
time of the controller and – hence – to increase the probability to prevent unwanted
behaviour in due time, or to perceive the success of a controller intervention at an
early stage.

• Aggregator: The results of data analyser, predictor and possibly some raw data com-
ing from the pre-processor are handed on to the aggregator. The aggregator also has
a memory, in which current values as well as their history are stored forming a set
of data vectors (one for each given result). These vectors are needed to perform
filtering as e. g. a smoothing of the results to eliminate the effects of noise. The
aggregator delivers a set of filtered current and previous values to the controller.
This constitutes an abstract description of the current state and the dynamics of the
SuOC.

The observer can be customised to different scenarios by adapting the observation model
(selection of observable attributes and tools). Both, data analyser and predictor, can be
regarded as a toolbox of observation methods.

4 Controller

We explore possibilities to influence the emergent behaviour of complex systems, as-
suming that the system consists of a large number of relatively simple, interacting ele-
ments/agents. There exist three possible objectives: (1) to influence the system such that
a desired emergent behaviour appears, (2) to disrupt an undesired emergent behaviour as
quickly and efficiently as possible and (3) to construct the system in a way such that no
undesired emergent behaviour can develop.
It is the controllers’ task to guide the self-organisation process between the elements, but to
interfere only when necessary (e. g. when a system parameter exceeds a certain threshold).
At least three general types of control can be identified to generate or disrupt emergent
behaviour:

1. Influencing the local decision rules of the simple agents modifies the local behaviour
of the individual.

116



2. Influencing the system structure: We assume that the elements base their actions
on local information, where “local” is defined by a neighbourhood and an inter-
connection network. Modifying this network, in particular with respect to global
characteristics, will change the global behaviour of the system. Also, changing the
absolute number of elements influences neighbourhoods and at last the behaviour of
the SuOC.

3. Influencing the environment allows indirect control of the SuOC and works only
if system elements have sensors to measure and react to a modified environment,
and the controller has actuators to influence the environment. In our theoretical dis-
cussion we should mention that the environment cannot be controlled at all and it
is not clear where the environment of the SuOC starts and ends really. One pos-
sibility would be to declare some of the actuators to be part of the controller, not
the SuOC. Then the controller can actually modify the environment to change the
overall behaviour of the SuOC.

Figure 3: Generic controller architecture

In the following, we present a generic architecture of the controller for OC, which has to be
customised to each individual scenario. The controller has three interfaces, see Figure 3:
(1) The aggregated data are obtained from the observer. (2) The objectives are imposed
on the controller by the user or developer using the second interface. This global objec-
tive function defines the goal of the controlled self-organising process and is also used for
the evaluation routine of further actions. (3) The third interface contains all information
needed for interaction and reconfiguration of the SuOC. Every controlled system provides
a number of different parameters and interfaces for manipulation. This information is pre-
determined, depends on the scenario, and is not learned by the controller.
The decision module called action selector and the mechanisms of machine learning are
the most important components. We distinguish three main loops of planning and learn-
ing: The first loop recieves the observed data, selects the best weighted action (Ai) that is
most appropriate for the current situation (Ci), and the action selector forwards the chosen

117



action to the SuOC. This loop simply applies the best out of a given set of actions and does
not involve learning. It is aimed at quick reaction in real-time. The second loop proceeds
concurrently to the first one and keeps track of history data. For every action at time t, the
situation at t + Δt is measured by the observer and written to a memory. We use these
tuples of actions and resulting situation parameters for evaluation and calculation of new
fitness values (Fi), which are updated in the mapping. In order to avoid overcontrol we
define a fixed time delay Δt to assign results to preceding actions.
The generic architecture does not specify the mechanisms of machine learning in detail.
Possible methods could be artificial neural networks, learning classifier systems, rein-
forcement learning or evolutionary algorithms. Adaptation can occur online and/or by
a model-based internal learning process, which is introduced by the simulation model in
combination with the adaptation module in a third control loop. OC scenarios are mostly
real-time systems with hard time restrictions. Thus, offline learning is often not feasible,
but e. g. evolutionary algorithms could be used for generating completely new rules, and
for modification of existing rules with genetic operators (mutation and crossover). Simu-
lation would be needed to predict the success of control actions.
Below, the different decisions are listed, which have to be taken for every control loop.
The workflow may differ with respect to the scenarios and may depend on implemented
mechanisms of machine learning.

• Is there an action of the controller expected? Is there some kind of unanticipated be-
haviour observed? Are there some indicators exceeding their predefined thresholds?
The decisions are based on local reference values for the indicators and degradation
of the objective function.

• In order to avoid repeated action and overshooting control, the system has to re-
member recent responses to a situation and to wait some time Δt for the effect to
show.

• What is the best action for the observed situation parameters? The mapping is
browsed for a best matching tupel consisting of condition (Ci) and action (Ai).

• If no suitable control rule exists in the mapping, the adaptation module has to gener-
ate a new one. If the controller has access to a system model, it can assess such new
control actions in a simulation model before actually applying them to the real sys-
tem. If time permits, such a model would allow an internal response-optimisation.

• What is the reward for the action responsible for the present situation(s)? The cor-
responding fitness value is changed depending on the success of the rule.

5 Conclusion and Outlook

The journey to get closer to the overarching vision of OC has just started. Our ideas will
involve an evolution of innovation in systems and software engineering as well as collab-
oration with many other diverse fields. In this paper we discussed an organic architecture

118



consisting of two parts – an observer and a controller – and presented OC as a vision
based on the urgent necessity to find methodologies for managing the complexity and con-
trolling the behaviour of large scale distributed embedded systems. It was shown how
observer and controller are designed, which functions should be implemented and how the
loop consisting of the SuOC, an observer (observing the behaviour of the SuOC in terms
of well defined system parameters) and a controller (selecting adequate actions to optimise
system behaviour with respect to certain global objectives) work together.
The components of the OC architecture strongly relies on other established scientific ar-
eas like data mining, time series analysis, machine learning, or control theory. Results
and methods from these areas will be used to extend the observer toolbox and to test our
metrics and control strategies with different scenarios. Currently, our concepts are tested
with respect to some multi-agent like scenarios (a multi-elevator system and a collection
of freely moving simple robots showing some undesired emerging effects). As a next step
we plan to use our framework in a practically usable traffic control system with local and
global observer/controller components.

Acknowledgment: This work has been done within the DFG Priority Program 1183 Or-
ganic Computing [DFG05]. We are especially indebted to Fabian Rochner, Universität
Hannover, and Holger Prothmann, Universität Karlsruhe (TH), for their valuable sugges-
tions.

References

[DFG05] DFG Priority Program 1183 Organic Computing. http://www.organic-
computing.de/SPP, 2005. visited May 2006.

[KC03] J. O. Kephart and D. M. Chess. The vision of autonomic computing. IEEE Com-
puter, 1:41–50, 2003.

[MMS06] M. Mnif and C. Müller-Schloer. Quantitative Emergence. In Proceedings of the
2006 IEEE Mountain Workshop on Adaptive and Learning Systems (IEEE SMCals
2006), July 2006.

[MS04] C. Müller-Schloer. Organic computing: On the feasibility of controlled emer-
gence. In Proceedings of the 2nd IEEE/ACM/IFIP international conference on
hardware/software codesign and system synthesis, pages 2–5, 2004.

[MSvdMW04] C. Müller-Schloer, C. von der Malsburg, and R. P. Würtz. Aktuelles Schlagwort
Organic Computing. Informatik Spektrum, 27(4):332–336, 2004.

[Sch05] H. Schmeck. Organic computing: A new vision for distributed embedded systems.
In Proceedings Eighth IEEE International Symposium on Object-Oriented Real-
Time Distributed Computing (ISORC 2005), 18-20 May 2005, Seattle, WA, USA,
pages 201–203. IEEE, IEEE Computer Society 2005, May 2005.

[SMS05] T. Schöler and C. Müller-Schloer. An observer/controller architecture for adaptive
reconfigurable stacks. In M. Beigl and P. Lukowicz, editors, Systems aspects in
organic and pervasive computing – ARCS 2005, pages 139–153, March 2005.

[Ste05] R. Sterritt. Autonomic computing. Innovations in systems and software engineering,
1(1):79–88, March 2005.

[VDE03] VDE/ITG/GI. Positionspapier Organic Computing. http://www.gi-ev.de/
fileadmin/redaktion/Presse/VDE-ITG-GI-Positionspapier_
20Organic_20Computing.pdf, 2003. visited May 2006.

119


