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Towards a genome-scale kinetic model of cellular
metabolism
Kieran Smallbone1,2†, Evangelos Simeonidis1,3*†, Neil Swainston1,4, Pedro Mendes1,4,5

Abstract

Background: Advances in bioinformatic techniques and analyses have led to the availability of genome-scale
metabolic reconstructions. The size and complexity of such networks often means that their potential behaviour
can only be analysed with constraint-based methods. Whilst requiring minimal experimental data, such methods
are unable to give insight into cellular substrate concentrations. Instead, the long-term goal of systems biology is
to use kinetic modelling to characterize fully the mechanics of each enzymatic reaction, and to combine such
knowledge to predict system behaviour.

Results: We describe a method for building a parameterized genome-scale kinetic model of a metabolic network.
Simplified linlog kinetics are used and the parameters are extracted from a kinetic model repository. We
demonstrate our methodology by applying it to yeast metabolism. The resultant model has 956 metabolic
reactions involving 820 metabolites, and, whilst approximative, has considerably broader remit than any existing
models of its type. Control analysis is used to identify key steps within the system.

Conclusions: Our modelling framework may be considered a stepping-stone toward the long-term goal of a fully-
parameterized model of yeast metabolism. The model is available in SBML format from the BioModels database
(BioModels ID: MODEL1001200000) and at http://www.mcisb.org/resources/genomescale/.

Background
Recent advances in genome sequencing techniques and
bioinformatic analyses have led to an explosion of sys-
tems-wide biological data. In turn, the reconstruction of
genome-scale networks for micro-organisms has become
possible. Whilst the first stoichiometric models were
limited to the central metabolic pathways, later efforts
such as iFF708 [1] and iND750 [2] were much more
comprehensive. A recent community-driven reaction
network for S. cerevisiae (bakers’ yeast) consists of 1761
reactions and 1168 metabolites [3].
The ability to analyse, interpret and ultimately predict

cellular behaviour is a long sought-after goal. The gen-
ome sequencing projects are defining the molecular
components within the cell, but describing their inte-
grated function will be a challenging task. Ideally, one
would like to use enzyme kinetics to characterize fully
the mechanics of each reaction, in terms of how changes

in metabolite concentrations affect local reaction rates.
However, a considerable amount of data and effort is
required to parameterize even a small mechanistic
model; the determination of such parameters is costly
and time-consuming, and moreover much of the
required information may be difficult or impossible to
determine experimentally. Instead, genome-scale meta-
bolic modelling has relied on constraint-based analysis
[4], which uses physicochemical constraints such as
mass balance, energy balance, thermodynamics and flux
limitations to describe the potential behaviour of an
organism. Such methods, however, ignore much of the
dynamic nature of the system and are unable to give
insight into cellular substrate concentrations. These
methods are more suitable for defining the wider limits
of systems behaviour than making reliable and accurate
predictions about metabolism.
In a previous paper, we presented a method for con-

structing a kinetic model for a metabolic pathway based
only on the knowledge of its stoichiometry [5]. Here, we
present a first attempt at the creation of a parameter-
ized, genome-scale kinetic model of metabolic networks,
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through appending existing kinetic models of constitu-
ent metabolic pathways from the BioModels database
[6] to a stoichiometric model of yeast metabolism [3].
The results (see Additional file 1) are presented in
SBML (Systems Biology Markup Language; http://sbml.
org/) [7], using MIRIAM-compliant annotations (Mini-
mal Information Requested In the Annotation of Mod-
els; http://www.ebi.ac.uk/miriam/) [8]. Critically, such
markup allows automated reasoning about the model’s
assumptions and provenance.

Results and Discussion
Algorithm
Model construction
A number of reconstructions of the metabolic network
of yeast based on genomic and literature data have been
published. However, due to different approaches utilized
in the reconstruction, as well as different interpretations
of the literature, the earlier reconstructions differ signifi-
cantly. A community effort resulted in a consensus net-
work model of yeast metabolism, combining results
from previous models ([3], available from http://www.
comp-sys-bio.org/yeastnet). In all, the resulting consen-
sus network consists of 1857 reactions (of which 1761
are metabolic) involving 2153 chemical species (of
which 1168 are metabolites). Species in the model are
annotated using both database-dependent (e.g. ChEBI
[9]) and database-independent (e.g. InChI [10]) refer-
ences, generating for the first time a representation that
allows computational comparisons to be performed.

Species are localized to 15 compartments, including
membranes. To limit complexity, we decompartmenta-
lize the model, restricting entities to intra- or extra-cel-
lular space. We also lump together reactions catalyzed
by isoenzymes; the resultant model is reduced in size to
1059 reactions, of which 956 are metabolic, involving
1748 species, of which 820 are metabolites (the remain-
ing 938 species are enzymes and enzyme complexes).
Estimation of unknown system fluxes are addressed with
the use of flux balance analysis (FBA) [11]. FBA allows
the identification of an optimal path through the net-
work in order to achieve a particular objective, assuming
(in a biological sense) that the organism has evolved
towards maximal metabolic efficiency, within its under-
lying physicochemical, topological, environmental and
regulatory constraints [12]. Mathematically, FBA is
framed as a linear programming (LP) problem

maximize  
subject to   

                  

Z f v
N v

v

T ,
,

min

0

v vmax

(1)

That is, we define an objective function Z, a linear
combination of the fluxes vj, that we maximize over all
possible steady state fluxes (N v = 0; where N is the m
× n stoichiometric matrix) satisfying certain constraints.
In many genome scale metabolic models, a biomass pro-
duction reaction is defined explicitly that may be taken
as a natural form for the objective function. The meta-
bolic reconstruction used here [3] lacks such a sink for

Figure 1 An example of the SBML model’s MIRIAM-compliant annotations. The (concentration) parameter is taken from BioModels ID 70.
Since the parameter is not available from yeast, it is flagged as originating from taxonomy 9606 (H. Sapiens).

Smallbone et al. BMC Systems Biology 2010, 4:6
http://www.biomedcentral.com/1752-0509/4/6

Page 2 of 9

http://sbml.org/
http://sbml.org/
http://www.ebi.ac.uk/miriam/
http://www.comp-sys-bio.org/yeastnet
http://www.comp-sys-bio.org/yeastnet


metabolism. We accomplish this by adding a pseudo-
reaction representing cellular growth (sometimes
referred to as “biomass production”). The biomass com-
position used here is taken from the iND750 model [2].
In a previous paper [5], we defined a method for the

generation of kinetic models of cellular metabolism,
based solely on the knowledge of reaction stoichiome-
tries. This modelling framework requires little experi-
mental data regarding variables and no knowledge of
the underlying mechanisms for each enzyme; nonethe-
less it allows inference of the dynamics of cellular meta-
bolite concentrations. The fluxes found through FBA
are allowed to vary dynamically [13]. To create a kinetic
model (of minimal complexity), four sets of information
are required:

• Network stoichiometry (N).
• Reference fluxes (v*) through the network.
• Reference metabolite concentrations (x*).
• Elasticities (ε) – changes in reaction rates with
effector levels.

To the stoichiometric model, we append kinetics
(fluxes, concentrations and elasticities) from the set of
models available from the BioModels database (11th

release) [6]. As metabolites in BioModels are annotated

using computer-readable references, it was possible to
curate the mapping to our stoichiometric model in a
semi-automated manner. Where available, the para-
meters are taken as the median value from all yeast
models. Where unavailable, these are taken from species
other than yeast, or estimated as described below if not
available for any species. An example of the SBML code
used to mark up a typical kinetic parameter is presented
in Figure 1.
Flux estimation
55 reactions in the (decompartmentalized) genome-scale
model have fluxes that are defined in models stored on
the BioModels database. Of these, the 21 data specific to
yeast are presented in Table 1. For the rest of the flux
space, our reference flux (v*) is found by solving the lin-
ear programming problem described in formulation 2
below, by minimizing the distance to these 55 target
fluxes (vT):

minimize 

subject to 

v v

N v

j j
T

j BM

*

* 0

(2)

where BM denotes the subset of j that includes all the
reactions with fluxes defined in BioModels. A unique
reference flux (see additional file 2) is chosen from the
space of all solutions to the above problem, by finding
the box that defines the maximum and minimum values
attainable by each vj, then choosing a flux as close as
possible to the centre of the box. Iterating, the method
minimizes and centres the flux through the network
and, in this case, fixes all 956 fluxes to unique values.
The algorithm [14] that produces the unique solution
from the available flux space is described briefly below.
A simple FBA formulation is solved, in order to iden-

tify the maximum achievable growth rate, Z*. For the
first iteration, we minimize the total flux required to
achieve Z*. This assumption (i.e. that the cell minimizes
its total flux. [15]) may be posed as a LP problem by
decomposing fluxes vj into their positive and negative
parts. The solution of this first iteration provides the
minimal total flux through the network (Z1). We then
find the bounds on each reaction flux, subject to the
new constraint that the total flux through the network
cannot be larger than Z1. The bounds are calculated by
solving an optimisation problem for maximizing and
minimizing the flux of each reaction iteratively. These
limits are set as the new upper and lower bounds for
the fluxes. The “centre” for each flux is the mean of the
new bounds, as the most representative value of all
solutions.
In the second iteration, we place a box around the

hull (defining new bounds), before minimizing the

Table 1 Selected reaction fluxes used in the model
Reaction Flux (mM/

s)

acetaldehyde transport 0.00141

adenylate kinase 0

alcohol dehydrogenase, reverse rxn (acetaldehyde ®
ethanol)

1.17

ATPase, cytosolic 0.595

enolase 1.76

ethanol transport 0.0134

fructose-bisphosphate aldolase 0.733

glycerol-3-phosphate dehydrogenase (NAD) 0.149

glycerol-3-phosphatase 0.051

glyceraldehyde-3-phosphate dehydrogenase 1.06

glucose transport (uniport) 0.59

glycerol transport via channel 0.00141

hexokinase (D-glucose:ATP) 0.866

phosphofructokinase 0.606

glucose-6-phosphate isomerase 0.733

phosphoglycerate kinase 0.875

phosphoglycerate mutase 1.76

pyruvate kinase 1.06

pyruvate decarboxylase 1.25

triose-phosphate isomerase 0.395

alpha, alpha-trehalose-phosphate synthase (UDP-forming) 0.04

The data are taken from those models in the BioModels database specific to
yeast.
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distance between the flux of each reaction and the cen-
tre value, subject to the constraint that the total network
flux cannot exceed Z1, as found in the first iteration. In
turn, this leads to new bounds and a corresponding cen-
tre. Each iteration of the algorithm adds an additional
constraint, and the flux is drawn towards the centre of
the bounds. After a finite number of iterations, the
bounds converge to a single solution, within a specified
tolerance.
The algorithm is explained in detail in a previous paper

[14], which described a method for finding a unique solu-
tion within the space of all possible flux distributions in
FBA. In that paper, the algorithm is used on four recent
genome-scale metabolic reconstructions. Using an itera-
tion of linear programs, unique flux solutions are found
in the available flux space for each organism.
Concentrations
82 intracellular metabolites’ concentrations are defined
in various models within BioModels. Of these, the 22
specific to yeast are presented in Table 2. As concentra-
tions must be given for all intracellular metabolites, the
undefined remainder are set to the median concentra-
tion of ~0.18 mM. Extracellular metabolites are defined
as in the “metabolic footprinting” medium [16] and
reproduced in Table 3 for completeness.

Elasticities
151 elasticities are calculated from models within BioMo-
dels, using symbolic differentiation. For the remaining
values, we follow the tendency modelling approach of
Visser et al. [17], whereby the elasticities are estimated as
the negative of the corresponding stoichiometric coeffi-
cients [5]. The exception is irreversible reactions - pro-
ducts here are assumed to have no effect on reaction
rates. These elasticities are identical to those that would
be found through the assumption of mass action kinetics.
Consider, as an example, an irreversible reaction

2A B C

An assumption of irreversible mass-action kinetics
would lead to reaction rate v = k A2 B and hence elasti-
city dv

dA
A
v 2 , the negative of its stoichiometry

(-2).
Linlog kinetics
To produce our genome-scale, kinetic model of yeast
metabolism, the above parameters may be combined in

Table 2 Selected intracellular metabolite concentrations
used in the model
Metabolite Concentration (mM)

3-Phospho-D-glyceroyl phosphate 2.75 × 10-4

D-Glycerate 2-phosphate 0.0371

3-Phospho-D-glycerate 0.278

Acetaldehyde 0.17

ADP 1.63

AMP 0.796

ATP 1.13

CO2 1

Dihydroxyacetone phosphate 0.59

Ethanol 50

D-Fructose 2,6-bisphosphate 0.02

D-Fructose 6-phosphate 0.112

D-Fructose 1,6-bisphosphate 2.82

Glyceraldehyde 3-phosphate 0.069

D-Glucose 6-phosphate 1.02

D-Glucose 0.0906

Glycerol 2.27

Glycerol 3-phosphate 0.457

Nicotinamide adenine dinucleotide 1.5

Nicotinamide adenine dinucleotide - reduced 0.0861

Phosphoenolpyruvate 0.0302

Pyruvate 8.36

The data are taken from those models in the BioModels database specific to
yeast.

Table 3 Extracellular metabolite concentrations used in
the model
Metabolite Concentration (mM)

4-Aminobenzoate 0.0015

L-Arginine 1

L-Aspartate 1

Biotin 8.2 × 10-5

Citrate 1

Fumarate 1

D-Glucose 11.1

L-Glutamate 1

L-Histidine 1

myo-Inositol 0.055

potassium 7.11

L-Leucine 1

L-Lysine 1

L-Malate 1

L-Methionine 1

Sodium 1.71

Ammonium 38

(R)-Pantothenate 0.0042

Pyridoxine 0.0019

Pyruvate 1

Riboflavin 5.3 × 10-4

L-Serine 1

Sulfate 42.2

Succinate 1

Thiamin 0.0012

L-Threonine 1

L-Tryptophan 1

L-Valine 1

Values are as defined in the “metabolic footprinting” medium [16].
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a phenomenological rate law such as linlog kinetics:

diag( )c
dx
dt

N v (3)

v v
x

x
* log *1 (4)

where c denotes the compartment volumes. The bene-
fit of this approximation lies in the existence of analytic
forms for steady states and their stability matrix [5],
thus avoiding computational problems associated with
models of this size [18]. In a recent investigation, the
linlog approximation was proved better than its alterna-
tives (linear, power laws, generic and convenience) at
describing E. coli sugar metabolism [19].

Testing
Control analysis
To test the resultant genome-scale model, and to try
and indentify key steps in the metabolic network of
yeast, we calculate the flux control coefficients for reac-
tions, as defined by metabolic control analysis (MCA).
MCA studies how the control of fluxes and intermediate
concentrations in a metabolic pathway is distributed
among the different enzymes that constitute the path-
way. Developed independently by Kacser and Burns [20]
and Heinrich and Rapoport [21], the main theorems of
MCA were given rigorous theoretical backing by Reder
[22]. Of particular interest is the connectivity theorem,
highlighting the close relationship between the local
properties of individual reactions (elasticities) and global
properties of the system (control coefficients). This the-
orem links the properties of the individual reactions
(elasticities) to the properties of the system (control
coefficients).

Whilst Reder’s formula is often used in computational
applications, it assumes that a certain matrix is inverti-
ble; this may not be true, especially if some reference
reaction rates are zero. For example, the number of
independent metabolites is often defined solely in terms
of stoichiometry as rank(N) (here = 616). However, once
kinetics are taken into account, this number drops dras-
tically to rank(N·diag(v*)·ε) = 205. Reder’s method only
holds if these two values are identical. Thus, in Meth-
ods, we derive again the main results of MCA without
relying on such an assumption.
In Tables 4 and 5 we present those fluxes which have

most control over glucose uptake and biomass produc-
tion (which may be assumed proportional to growth),
respectively (see additional files 3 and 4 for complete
lists). The tables demonstrate the utility of the connec-
tivity theorem, allowing calculation of global control
coefficients from local elasticities. The results also
demonstrate the necessity of genome-scale modelling
when intimating system behaviour. For example, study-
ing Table 4 (control over glucose transport), whilst one
expects glycolytic reactions to exert strong control over
glucose uptake, the regulation by L-asparaginase comes
as a surprise. Also, from Tables 4 and 5, one can
observe glucosamine-6-phosphate deaminase, glutamine-
fructose-6-phosphate transaminase and glutamine
synthetase at or near the top of both tables. These 3
reactions are closely related to the production of gluta-
mate in amino acid metabolism. The negative control
over glucose transport and the positive control over bio-
mass production from these reactions would seem to
suggest that an increase in their flux would increase
growth while reducing glucose consumption. This is an
example of the kind of hypotheses that can only be
made with a genome-scale model, like the one produced
using the methodology presented here. Such hypotheses
can then be tested experimentally to help us expand our
understanding of metabolism.

Table 4 Reactions exerting most control over glucose
transport
Reaction CJ

glucose transport (uniport) 1.149

glucosamine-6-phosphate deaminase -0.787

glutamine-fructose-6-phosphate transaminase -0.655

glutamine synthetase -0.520

inorganic diphosphatase 0.421

L-asparaginase 0.323

ATPase, cytosolic 0.250

phosphofructokinase 0.235

glycerol-3-phosphate dehydrogenase (NAD) -0.233

adenylate kinase (GTP) 0.231

Reactions are ranked in terms of their flux control coefficient. See additional
file 3 for the complete list.

Table 5 Reactions exerting most control over biomass
production
Reaction CJ

glucosamine-6-phosphate deaminase 0.532

glutamine-fructose-6-phosphate transaminase 0.441

glutamine synthetase 0.358

H2O transport via diffusion 0.212

inorganic diphosphatase -0.193

glycerol-3-phosphate dehydrogenase (NAD) 0.189

L-asparaginase -0.146

adenylate kinase (GTP) -0.142

glucose transport (uniport) -0.132

ribonucleoside-triphosphate reductase (UTP) -0.104

Reactions are ranked in terms of their flux control coefficient. See additional
file 4 for the complete list.
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Implementation
The systems biology approach often involves the devel-
opment of mechanistic models, such as the reconstruc-
tion of dynamic systems from the quantitative
properties of their elementary building blocks. Typically,
this is performed in a ‘bottom-up’ manner, whereby
models built as individual elements are experimentally-
determined. Here we propose an alternative, ‘top-down’
mechanism, whereby an approximative model of the
whole system is built initially; this model can then be
used to guide experimental design and can subsequently
be updated as specific knowledge becomes available
from experimental results, following the iterative ‘cycle
of knowledge’ approach [23]. At any point of this itera-
tive approach, detailed kinetic rate laws can be included
if they become available, in which case the approach is
then a hybrid top-down and bottom-up approach.
The genome-scale model that is produced with the

presented methodology is offered in SBML format, with
MIRIAM-compliant annotations. Such markup allows
automated reasoning about the model’s assumptions
and provenance [24]. A variety of software programs (e.
g. COPASI [25]) have been designed to interface with
SBML, but do not generally encounter models of this
size. Indeed, the kinetic model produced here has over
an order of magnitude more metabolites and reactions
than any other kinetic model found in the BioModels
repository. As the field develops, so larger models will
be built, and software programs will be required to
interface with models of at least this size. Thus, this
methodology also allows software testing and advance-
ment. The presence of analytic solutions facilitates vali-
dation of new tools, and avoids the usual problems with
the high demands on computational power that models
of this size have.

Conclusions
In this paper, we present a novel methodology that can
be used to create a parameterized, genome-scale kinetic
model of the metabolic network of an organism. The
methodology is demonstrated by its application on yeast
metabolism, through appending existing kinetic submo-
dels from the BioModels database to a stoichiometric
model of yeast. The final model has 956 metabolic reac-
tions involving 820 metabolites and, to our knowledge
has significantly wider scope than any previous models
of comparable type. We demonstrate the usefulness of
such a model, by applying the principles of metabolic
control analysis to identify key steps within the network.
Critically, both the original stoichiometric model, and

the kinetic model that constitutes the end-result of the
method are available in SBML, using MIRIAM-compli-
ant annotations. Models in BioModels are annotated
with computer-readable references such as ChEBI [9] or

InChI [10], which made it possible to curate the map-
ping to the stoichiometric model in a semi-automated
manner. While fully-automated mapping of BioModels
reactions to those in our stoichiometric model would be
preferable, inconsistencies such as unbalanced reactions
in either data resource prevent this at the current time.
As systems biology is still a new and emerging field, it
should be expected that discrepancies and other annota-
tion issues will improve considerably. This, combined
with greater availability of kinetic models for reactions
and pathways in model repositories such as BioModels
in the future, would mean that our methodology could
be used to provide an increasingly more accurate and
detailed genome-scale, kinetic model for an organism, in
an efficient and automated manner. Furthermore, the
approach should benefit from expanding its scope in
order to exploit other resources containing kinetic data,
such as SABIO-RK [26] and BRENDA [27].
Our methodology clearly has limitations, in that the

linlog framework is only valid in a region near the cho-
sen reference state. Moreover, due to the vast lack of
information, many of the parameters used in building
the model are unknown and must be estimated through
techniques such as flux balance analysis. Nonetheless,
our modelling framework is a necessary stepping stone
at creation of a genome-scale kinetic model, and may
thus be considered the first step in the deductive-induc-
tive ‘cycle of knowledge’ crucial for systems biology [23].
We have demonstrated that this first model can be used
to pinpoint, through sensitivity analysis, reactions that
have the most control over the network, or reactions for
which small perturbations of the values of their kinetic
parameters lead to significant changes in the predictions
of the model. Subsequent experimental work, such as
kinetic assays may be used to improve the model’s reso-
lution. In the present case this includes glucosamine-6-
phosphate deaminase, glutamine-fructose-6-phosphate
transaminase and glutamine synthetase. The model (see
additional file 1) is publically available for download in
SBML format from the BioModels database (BioModels
ID: MODEL1001200000) and at http://www.mcisb.org/
resources/genomescale/.

Methods
Control analysis
Let us return to Equation (3), a generalized description
of the temporal evolution of a metabolic network in dif-
ferential equation format. Let us also assume that the
reference state x = x* corresponds to a steady state - i.e.
N v* = 0, where v* = v(x*). Writing ˆ *x x x (for alge-
braic simplicity), N = diag(c)-1·N and ˆ( ˆ) ( )v x v x , and
dropping hats for convenience, we transform the system
into the more recognisable form
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dx
dt

N v x( ) (5)

where x = 0 now corresponds to the steady state. Lin-
earizing about this steady state

dx
dt

N v N x N x* ’ ’ (6)

where ε’ is the n × m unscaled elasticity matrix.
In general, the rank(N ε’) = m0 <m and the system

defined above will display moiety conservations - certain
metabolites can be expressed as linear combinations of
other metabolites in the system. Note that the number
of independent metabolites is not given simply by rank
(N), as is generally (and erroneously) suggested; rather
the local dynamics of the system must also be taken
into account via the elasticity matrix. The conservations
may be removed through matrix decomposition, using a
m × m0 link matrix L that relates the complete vector of
internal metabolites to the vector of independent meta-
bolites [28]. Writing A = N ε’ and letting Ar denote a
m0 × m matrix composed of linearly independent rows
of A, the corresponding link matrix is defined as
L A Ar , where ‘+’ denotes the Moore-Penrose pseu-
doinverse [29]; hence A = L·Ar.
From Equation (6), and noting that the rows of L cor-

responding to the independent metabolites xr form the
identity matrix, we find x = L xr and hence

dxr
dt

A L x N L xr r r r’ (7)

where the m0 × m0 matrix (Nr·ε’. L) is invertible
through introduction of the link matrix L.
Having transformed the system, we add a small per-

turbation to reaction j

dxr
dt

N v x e

dxr
dt

N L x N

r j

r r r j

( )

’ ,

(8)

where δ is our perturbation; ej denotes the jth standard
basis vector and the notation Nr, j is used to denote the
jth column of Nr. The new steady state resulting from
this perturbation is given by

x L x L N L Nr r r j’ ,
1 (9)

Using Equation (9), we may resolve the definition of
(unscaled) flux control and concentration control coeffi-
cients as

C
dv J
dv j

I L N L NJ

n n

r r’ ’ ’ 1
(10)

and

C
dxi
dv j

L N L NS

n m

r r’ ’ 1
(11)

respectively. If we compare our expressions to those
given in Reder [22], we see that they are identical, save
in her case r’ is defined as the independent rows of N,
leading to L N N r’ ’ . If r = r’ (i.e. if rank(N ε’) = rank
(N)), then L = L’ and the two results are equivalent.
As such, we may see that we have extended Reder’s

work to encompass the possibility that rank(N ε’) < rank
(N), as is the case for our model (rank(N ε’) = 205,
whilst rank(N) = 616). From Equations (10) and (11),

Table 6 Nomenclature
Index Description Size

i species/metabolites m

j reactions n

BM subset of j: reactions with fluxes defined in
BioModels

55

r subset of i: all independent metabolites m0

Variable Description Dimensions

A N·ε’ m × m

c compartment volumes m × 1

CJ scaled flux control coefficients n × n

CJ’ unscaled flux control coefficients n × n

CS’ unscaled concentration control coefficients m × n

ej denotes the jth standard basis vector n × 1

f vector specifying the optimized fluxes n × 1

N stoichiometric matrix m × n

L link matrix m × m0

t time

x metabolite concentrations m × 1

x* reference metabolite concentrations m × 1

xr independent metabolite concentrations m0 × 1

v flux vector n × 1

v* reference flux vector n × 1

vmin lower bounds vector n × 1

vmax upper bounds vector n × 1

vT fluxes defined in the Biomodels database 55 × 1

Z optimization objective

Z* maximum achievable growth rate

Z1 minimal total flux through the network

δ perturbation

ε elasticity m × n

ε’ unscaled elasticity matrix m × n
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one may trivially deduce the summation and connectiv-
ity theorems.
Equation (10) may be used to calculate flux control

coefficients for our genome-scale model. These para-
meters may also be defined in their more usual scaled
form

C v C vJ Jdiag diag( ) ( )’ (12)

diag diag( ) ’ ( )v x (13)

Nomenclature
The indices and variables appearing throughout the
paper are defined in Table 6.

Additional file 1: Genome-scale model for yeast. Compressed ZIP file
(220 KB) containing the model in SBML format.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1752-0509-4-6-
S1.zip ]

Additional file 2: Reference fluxes. Excel spreadsheet (XLS, 105 KB)
containing the reference flux for all reactions, as estimated by application
of the algorithm [14].
Click here for file
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S2.XLS ]
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S4.XLS ]
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