
Towards a GreenQuotient for Software Projects

Rohit Mehra†, Vibhu Saujanya Sharma†, Vikrant Kaulgud†, Sanjay Podder‡, Adam P. Burden*
†Accenture Labs, India

‡Accenture, India
*Accenture, USA

{rohit.a.mehra,vibhu.sharma,vikrant.kaulgud,sanjay.podder,adam.p.burden}@accenture.com

ABSTRACT
As sustainability takes center stage across businesses, green and
energy-efficient choices are more crucial than ever. While it is be-
coming increasingly evident that software and the software industry
are substantial and rapidly evolving contributors to carbon emis-
sions, there is a dearth of approaches to create actionable awareness
about this during the software development lifecycle (SDLC). Can
software teams comprehend how green are their projects? Here we
provide an industry perspective on why this is a challenging and
worthy problem that needs to be addressed. We also outline an
approach to quickly gauge the “greenness” of a software project
based on the choices made across different SDLC dimensions and
present the initial encouraging feedback this approach has received.

KEYWORDS
Sustainable Software Engineering, Green Software, Carbon Emis-
sions, Software Metrics

1 INTRODUCTION
Multiple studies have estimated that the internet and communi-
cations technology industry currently accounts for 2-7% of the
global greenhouse gas emissions, and is expected to increase to 14%
by 20401. These rapidly growing emissions can have a disastrous
impact on the sustainability of our environment. A major share
of these emissions can be attributed to the design, development,
and distribution of software systems and the corresponding infras-
tructure required to run them. The software development process
itself, and the choices/decisions that a project team makes during a
typical SDLC, can have a major impact on the greenness (energy
consumption and carbon emissions) of the software system.

Although there exists some body of knowledge on software
sustainability, it is often overlooked and hence, its industry adoption
is still limited [2]. For example, multiple recent studies concerning
professional software developers have reported software quality,
bug resolution, effective collaboration, etc. as their top priorities,
but the lack of sustainability-related questions and priorities poses
a major cause for concern [3, 8]. In our experience, we believe that
this limited adoption can be attributed to the following challenges:

• Lack ofAwareness: Despite being a first-class non-functional
requirement, software sustainability is under-represented
in the current software engineering curriculum [9]. While
the focus is predominantly on software performance, qual-
ity, security, usability, etc., software sustainability is rarely
taught as an area. Moreover, we are witnessing a dearth of
such courses/trainings in the open-source community as
well. This acts as a major challenge for an environmentally
inclined practitioner (developer, tester, program manager,

1https://c2e2.unepdtu.org/wp-content/uploads/sites/3/2020/03/greenhouse-gas-
emissions-in-the-ict-sector.pdf

etc.) who wants to adopt sustainable practices in her project,
but is unaware of a starting point.

• IntrusiveApproaches: Existing approaches require in-depth
access to software code, project artifacts, deployment envi-
ronment, etc., to gather relevant information and suggest
optimizations. This intrusive approach becomes a challenge
for organizations due to adherence to multiple security, pri-
vacy, and compliance-related protocols, and hence acts as an
initial barrier to adoption. The problem further amplifies for
a software services organization where these artifacts are
predominantly owned by the clients.

• Siloed Focus Areas: The majority of research in this area
focuses on a very specific/isolated part of the larger problem,
without usually considering respective tradeoffs (impact on
other parts of the project). For example, studying the effects
of design patterns on energy consumption [7]. In some cases,
introducing a design pattern might increase the energy con-
sumption of the underlying code, but removing it might have
a negative impact on other software engineering dimensions
like maintainability, reusability, etc. Moreover, these existing
approaches tend to focus more on the technological aspects
of the software project, leaving behind other project aspects
such as process, team, collaboration, etc., which are equally
responsible for generating emissions. This restricts the prac-
titioner from gauging a holistic 360° view of the sustainability
of a software project - as a whole.

• Lack of GreenMetrics in Practice: In the current literature,
there is a dearth of standardized metrics to evaluate/predict
the greenness of a particular software system, especially dur-
ing the design phase [4]. It is a major challenge for the prac-
titioners (especially architects) to proactively comprehend
the impact of their design choices on the overall greenness
of the software project and the to-be-developed software sys-
tem. For example, how does choosing a white background
color for the mobile application impacts the greenness of the
software system? While there exist certain green metrics to
evaluate this once the software has been developed, but in
most industrial cases, it becomes an effort- and cost-intensive
process to then make amends.

• Hidden Impact: Unlike seeing carbon reductions from other
activities like driving a car, it is a challenge for the practi-
tioners to comprehend the potential benefits of a recommen-
dation in terms of just reduction in emissions. This further
limits the adoption. The eventual goal of any research in this
area should be to convey the insights in a manner that high-
lights the potential impact in a relatable way (e.g., correlating
potential emission savings with operational cost savings, or
the number of rural households that can be lighted) and
nudges the practitioner in adopting that recommendation
(e.g., using gamification techniques).

DOI: https://doi.org/10.1145/3510457.3513077

ar
X

iv
:2

20
4.

12
99

8v
1

 [
cs

.S
E

]
 2

7
A

pr
 2

02
2

https://c2e2.unepdtu.org/wp-content/uploads/sites/3/2020/03/greenhouse-gas-emissions-in-the-ict-sector.pdf
https://c2e2.unepdtu.org/wp-content/uploads/sites/3/2020/03/greenhouse-gas-emissions-in-the-ict-sector.pdf
https://doi.org/10.1145/3510457.3513077

Conference’17, July 2017, Washington, DC, USA Rohit Mehra† , Vibhu Saujanya Sharma† , Vikrant Kaulgud† , Sanjay Podder‡ , Adam P. Burden*

Figure 1: A slice of the report generated by PGQ approach.

In the next section, we’ll discuss the potential impact on the
carbon emissions of the software projects, if they can be effectively
guided towards making green decisions.

2 INDUSTRY POTENTIAL OF MAKING
GREEN DECISIONS

Throughout the SDLC, practitioners are faced with multiple de-
cision points that guide the software development process going
forward. For example, choice of programming language, choice of
a third-party library, choice of a cloud provider, etc. If effectively
guided, these decision points reserve the potential for making a
software project - greener. For example:

• Programming Language: By selecting Java over Python for
developing a software system, typically about 97.4% energy
savings can be achieved [6]. For a large-scale software, used
by millions/billions of users, this might correspond to major
operational cost savings (in terms of reduced data center
energy consumption), in addition to being pro-environment.
Moreover, if a greener choice is not selected initially, the
cost, effort, and potential emissions of code refactoring at a
later stage might be exceptionally high.

• UI Color Scheme: By choosing dark color schemes for de-
veloping a mobile application, energy consumption of the
smartphone’s display can be reduced by an average of 64%,
as compared to lighter color schemes [1].

• Collaboration:While collaborating remotely, by simply switch-
ing from a video meeting to an audio meeting (by turning
off the camera), a typical team can reduce the carbon foot-
print of such meetings by about 96% [5]. This is even more
important during the current pandemic scenario when the
majority of such meetings are happening remotely.

3 PROJECT GREEN QUOTIENT
To overcome these aforementioned challenges, we have started
to explore a questionnaire-based approach, Project Green Quotient
(PGQ), that enables a practitioner to quickly gauge the overall green-
ness of a software project in a non-intrusive way while receiving
relevant advisory for further in-depth investigations into different
non-green aspects of the project. PGQ spans multiple project as-
pects such as technology, process, metrics, and team. The intent
is to be the first and overarching step in a software project’s jour-
ney towards being green. The approach relies on a novel metric
Green Quotient, that quantifies the overall greenness of a software

Feedback (%)

Question No Probably Yes

Q1 Did the assessment raise awareness, curiosity, and interest for
further deep dive into the adoption of green practices?

100

Q2 Are these insights and recommendations helpful in incorporating green
practices in the project?

33.33 66.66

Q3 Did the assessment enable the team to think of new ideas regarding
the greenness of the project?

100

Q4 Did the green quotient metric (and its breakdown) allow the team to
gauge the overall sustainability of the project?

16.66 83.33

Q5 According to you, will a similar assessment be helpful for other
project teams seeking to adopt green practices in their projects?

100

Table 1: Descriptive analysis of the qualitative feedback re-
ceived from six early adopters of the PGQ approach.

project on a scale of 0 to 1 (0 representing non-adoption of any
green practices and 1 representing adoption of all green practices
that the approach has been trained on). Moreover, to increase adop-
tion, the approach also highlights the potential benefits in terms of
operational cost savings, emissions reduction, etc. which can be re-
alized by adopting the system-generated recommendations. Figure
1 showcases an early snapshot of our prototype implementation.

To understand the applicability and effectiveness of our ap-
proach, we recruited six different software projects from our deliv-
ery centers and asked them to take the PGQ assessment for their
respective projects. Post completion of the assessment and gen-
eration/walkthrough of reports, the project teams were asked to
complete a small qualitative feedback assessment. The results of
the study are showcased in Table 1 and appear very promising.

4 CONCLUSION
Here we introduced the challenges, potential impact, and ongoing
research on gaining a holistic perspective on the adoption of green
decisions/practices by a software project. While the challenges and
potential impact are aimed at fostering further research in this
important area, the ongoing research is aimed at industry practi-
tioners who have a desire/mandate to incorporate sustainability
practices into their projects but are unaware of a starting point.

REFERENCES
[1] P. Dash and Y. C. Hu. 2021. HowMuch Battery Does DarkMode Save? An Accurate

OLED Display Power Profiler for Modern Smartphones. In Proceedings of the 19th
International Conference on Mobile Systems, Applications, and Services (MobiSys).

[2] J. A. García-Berna, J. Carrillo de Gea, B. Moros, J. L. Fernández-Alemán, J. Nicolás,
and A. Toval. 2018. Surveying the Environmental and Technical Dimensions of
Sustainability in Software Development Companies. Applied Sciences (2018).

[3] H. Huijgens, A. Rastogi, E. Mulders, G. Gousios, and A. V. Deursen. 2020. Questions
for Data Scientists in Software Engineering: A Replication. In Proceedings of
the 28th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering.

[4] P. Lago, Q. Gu, and P. Bozzelli. 2014. A systematic literature review of green software
metrics. VU Technical Report.

[5] R. Obringer, B. Rachunok, D. Maia-Silva, M. Arbabzadeh, R. Nateghi, and K. Madani.
2021. The overlooked environmental footprint of increasing Internet use. Resources,
Conservation and Recycling 167 (2021).

[6] R. Pereira, M. Couto, F. Ribeiro, R. Rua, J. Cunha, J. P. Fernandes, and J. Saraiva. 2017.
Energy Efficiency across Programming Languages: How Do Energy, Time, and
Memory Relate?. In Proceedings of the 10th ACM SIGPLAN International Conference
on Software Language Engineering (SLE 2017).

[7] C. Sahin, F. Cayci, I. L. M. Gutiérrez, J. Clause, F. Kiamilev, L. Pollock, and K.
Winbladh. 2012. Initial explorations on design pattern energy usage. In 2012 First
International Workshop on Green and Sustainable Software (GREENS).

[8] V. S. Sharma, R. Mehra, and V. Kaulgud. 2017. What Do Developers Want? An
Advisor Approach for Developer Priorities. In 2017 IEEE/ACM 10th International
Workshop on Cooperative and Human Aspects of Software Engineering (CHASE).

[9] D. Torre, G. Procaccianti, D. Fucci, S. Lutovac, and G. Scanniello. 2017. On the
Presence of Green and Sustainable Software Engineering in Higher Education
Curricula. In Proceedings of the 1st International Workshop on Software Engineering
Curricula for Millennials (SECM ’17).

	Abstract
	1 Introduction
	2 Industry Potential of Making Green Decisions
	3 Project Green Quotient
	4 Conclusion
	References

