
RESEARCH Open Access

Towards a HPC-oriented parallel implementation of
a learning algorithm for bioinformatics applications
Gianni D’Angelo1,2, Salvatore Rampone1,2*

From Tenth Annual Meeting of the Italian Society of Bioinformatics (BITS)

Udine, Italy. 21-23 May 2013

Abstract

Background: The huge quantity of data produced in Biomedical research needs sophisticated algorithmic

methodologies for its storage, analysis, and processing. High Performance Computing (HPC) appears as a magic bullet

in this challenge. However, several hard to solve parallelization and load balancing problems arise in this context. Here

we discuss the HPC-oriented implementation of a general purpose learning algorithm, originally conceived for DNA

analysis and recently extended to treat uncertainty on data (U-BRAIN). The U-BRAIN algorithm is a learning algorithm

that finds a Boolean formula in disjunctive normal form (DNF), of approximately minimum complexity, that is consistent

with a set of data (instances) which may have missing bits. The conjunctive terms of the formula are computed in an

iterative way by identifying, from the given data, a family of sets of conditions that must be satisfied by all the positive

instances and violated by all the negative ones; such conditions allow the computation of a set of coefficients

(relevances) for each attribute (literal), that form a probability distribution, allowing the selection of the term literals. The

great versatility that characterizes it, makes U-BRAIN applicable in many of the fields in which there are data to be

analyzed. However the memory and the execution time required by the running are of O(n3) and of O(n5) order,

respectively, and so, the algorithm is unaffordable for huge data sets.

Results: We find mathematical and programming solutions able to lead us towards the implementation of the

algorithm U-BRAIN on parallel computers. First we give a Dynamic Programming model of the U-BRAIN algorithm,

then we minimize the representation of the relevances. When the data are of great size we are forced to use the

mass memory, and depending on where the data are actually stored, the access times can be quite different.

According to the evaluation of algorithmic efficiency based on the Disk Model, in order to reduce the costs of the

communications between different memories (RAM, Cache, Mass, Virtual) and to achieve efficient I/O performance,

we design a mass storage structure able to access its data with a high degree of temporal and spatial locality. Then

we develop a parallel implementation of the algorithm. We model it as a SPMD system together to a Message-

Passing Programming Paradigm. Here, we adopt the high-level message-passing systems MPI (Message Passing

Interface) in the version for the Java programming language, MPJ. The parallel processing is organized into four

stages: partitioning, communication, agglomeration and mapping. The decomposition of the U-BRAIN algorithm

determines the necessity of a communication protocol design among the processors involved. Efficient

synchronization design is also discussed.

Conclusions: In the context of a collaboration between public and private institutions, the parallel model of

U-BRAIN has been implemented and tested on the INTEL XEON E7xxx and E5xxx family of the CRESCO structure of

Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), developed

in the framework of the European Grid Infrastructure (EGI), a series of efforts to provide access to high-throughput

computing resources across Europe using grid computing techniques. The implementation is able to minimize

* Correspondence: rampone@unisannio.it
1Department of Science and Technology (DST), University of Sannio,

Benevento, Italy

Full list of author information is available at the end of the article

D’Angelo and Rampone BMC Bioinformatics 2014, 15(Suppl 5):S2

http://www.biomedcentral.com/1471-2105/15/S5/S2

© 2014 D’Angelo and Rampone; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

mailto:rampone@unisannio.it
http://creativecommons.org/licenses/by/2.0
http://creativecommons.org/publicdomain/zero/1.0/


both the memory space and the execution time. The test data used in this study are IPDATA (Irvine Primate splice-

junction DATA set), a subset of HS3D (Homo Sapiens Splice Sites Dataset) and a subset of COSMIC (the Catalogue of

Somatic Mutations in Cancer). The execution time and the speed-up on IPDATA reach the best values within about 90

processors. Then the parallelization advantage is balanced by the greater cost of non-local communications between

the processors. A similar behaviour is evident on HS3D, but at a greater number of processors, so evidencing the direct

relationship between data size and parallelization gain. This behaviour is confirmed on COSMIC. Overall, the results

obtained show that the parallel version is up to 30 times faster than the serial one.

Background

The huge quantity of data produced in Biomedical

research needs sophisticated algorithmic methodologies

for its storage, analysis, and processing [1]. Examples of

the huge databases available throughout the world are

given in the annual Database Issue of Nucleic Acids

Research and in the on line Molecular Biology Database

Collection [2-4].

Furthermore in many applications one must deal with

data that have been collected incompletely [5,6]. For

example in medical studies, measurements on some sub-

jects may be partially lost at certain stages of the treatment

[7]; in DNA analysis, gene- expression microarrays may be

incomplete due to insufficient resolution, image corrup-

tion, or simply dust or scratches on the slide [8]; in sensing

applications, a subset of sensors may be absent or fail to

operate at certain regions [9].

Incomplete data problems are often solved by filling the

missing data with specific values (imputation method).

Common algorithms that have been used to complete

missing data include: semidefinite programming [10], the

EM algorithm [11,12], Naïve Bayes classifiers [13], C4.5

[14], Gibbs sampling [15], gradient descent [16]. Since

these methods rely on the assumption that data are Miss-

ing at Random (MAR) [17] or they treat the missing data

as fixed known data [18], they suffer of dramatic decrease

in accuracy. A full discussion can be found in [17-21].

Along with the growth of the data and the need for solu-

tions in the problem of missing data, there is a great

necessity of computationally efficient and scalable algo-

rithms able to extract useful information from data sets of

very large size [22-28]. This is one of the main challenges

in computational biology, since the tools and the methods

capable of transforming the heterogeneous available data

into biological knowledge [29] must be implemented effi-

ciently and effectively on the available computer systems.

Recently, in order to deal with incomplete training data,

a machine learning algorithm, BRAIN (Batch Relevance-

based Artificial INtelligence) [30], for binary classification

rules has been generalized (U-BRAIN) [31]. This algorithm

was originally conceived for recognizing splice junctions in

human DNA (see also [32,33]). Splice junctions are points

on a DNA sequence at which “superfluous” DNA is

removed during the process of protein synthesis in higher

organisms [34]. The general method used in the algorithm

is related to the STAR technique of Michalski [35], to the

candidate-elimination method introduced by Mitchell

[36], and to the work of Haussler [37]. The BRAIN algo-

rithm was then extended by using fuzzy sets [38], in order

to infer a DNF formula that is consistent with a given set

of data which may have missing bits. The new algorithm

(U-BRAIN) has low error rates and keeps the polynomial

computational complexity of the original BRAIN

algorithm.

Unfortunately the algorithm computational complex-

ity, while polynomial, is unaffordable for large scale

data. In fact, the algorithm is based on time-consuming

nested cycles that need a lot of memory space to store

partial results.

Overview of the U-BRAIN algorithm

The U-BRAIN algorithm [31] is a learning algorithm

that finds a Boolean formula (f) in disjunctive normal

form (DNF) [39], of approximately minimum complex-

ity, that is consistent with a set of data (instances). The

conjunctive terms of the formula are computed in an

iterative way by identifying, from the given data, a family

of sets of conditions that must be satisfied by all the

positive instances and violated by all the negative ones;

such conditions allow the computation of a set of coeffi-

cients (relevances) for each attribute (literal), that form

a probability distribution, allowing the selection of the

term literals.

The given instances are vectors of n variables. The

instances for which f gives the value 1

u1, u2, ..., up (1)

where for each ui

uik ∈ {0, 1, 1/2}, k = 1, ..., n (2)

(1/2 means an uncertain value)

are called positive, while those for which f gives 0

v1, v2, ..., vq (3)

where for each vj

vik ∈ {0, 1, 1/2}, k = 1, ..., n (4)

D’Angelo and Rampone BMC Bioinformatics 2014, 15(Suppl 5):S2

http://www.biomedcentral.com/1471-2105/15/S5/S2

Page 2 of 15



are called negative [31].

We denote

n the number of variables.

2n the number of literals (n in true and n in negated

form)

p the number of positive instances.

q the number of negative instances.

i the index of positive instances, ranging from 1 to p.

j the index of negative instances, ranging from 1 to q.

In order to build a formula consistent with the given

data, U-BRAIN compares each given positive instance

with each negative one and builds a family of sets Sij of

literals, each representing a condition:

Sij =

{

xk|(uik > vik)or

(

uik = vik =
1

2

)}

∪

{

x̄k|(uik < vik)or

(

uik = vik =
1

2

)}

(5)

The k-th literal is present in the Sij set if the elements in

the position k, belonging to the i-th positive instance (uik)

and to the j-th negative instance (vjk), are different or both

equal to 1/2.

Depending on the type of pair (uik, vjk) the literal is

taken in true (xk) or negated form (x̄k). In the following a

generic literal will be signed lk for xk and ln+k for x̄k.

For each literal belonging to each Sij set a relevance Rij is

computed as follows:

Rij(lk) =
χij(lk)

#Sij
; #Sij =

∑2n

m=1
χij(lm) (6)

Where c is a membership function, defined as:

χij(xk) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1 if uik = 1 and vjk = 0
(

1
2

)(p+q)
if uik > vjk and (uik = 1

2 or vjk = 1
2 )

(

1
2

)(p+q + 1)
if uik = 1

2
and vjk = 1

2
0 otherwise

(7)

for literals in true form, and

χij(x̄k) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1 if uik = 0 and vjk = 1
(

1
2

)(p+q)
if uik < vjk and (uik = 1

2 or vjk = 1
2 )

(

1
2

)(p+q + 1)
if uik = 1

2
and vjk = 1

2
0 otherwise

(8)

for literals in negated form.

Then, for each fixed i-th positive instance the Ri rele-

vance is calculated:

Ri(lk) = 1
q

∑q

j=1
Rij(lk) (9)

Finally, the overall R relevance for each literal ranging

from 1 to 2n is computed as it follows:

R(lk) = 1
p

∑p

i=1
Ri(lk) (10)

R(lk) is a 2n dimensional vector in which each element

represents a probability value:

∑2n

k=1
R(1k) = 1; with R(lk) ≥ 0 ∀ k (11)

The literal lk having maximum relevance value is cho-

sen as the next literal of the term of the function f.

After the literal choice, the sets (5) are updated: all the

Sij’s including lk (satisfied condition) are erased as the Sij’s

belonging to

{Sij|lk /∈ Sij for j = 1 ... q} (12)

The cycle is then repeated and the term is completed

when there are no more elements in the Sij sets or there

are no more Sij sets. Finally the term is added to the func-

tion f. Then the process starts again after erasing from

the given data (1) the positive instances satisfying the

term found, and updating the uncertain values and the

instances. This last step is very important, since each

time a term is produced, the implicit choices over the

uncertain components of the negative instances, if any,

must be explicated to avoid contradiction with the terms

to be generated from now on. Moreover, it is possible

that there are some instances that are repeated one or

more times, either since the beginning or as a result of

the reduction step. The results of this updating phase are

checked by a consistency test.

The algorithm ends when there are no more data to

treat.

The following is the U-BRAIN algorithm schema.

1. Initialize f = Ø

2. While(∃ positive instances)

2.1. Uncertainty Reduction

2.2. Repetition Deletion

2.3. Initialize term = Ø

2.4. Build Sij sets

2.5. While(∃ elements in Sij)

2.5.1. Compute the Rij relevances

2.5.2. Compute the Ri relevances

2.5.3. Compute the R relevances

2.5.4. Choose Literal

2.5.5. Update term

2.5.6. Update Sij sets

2.6. Add term to f

2.7. Update positive instances

2.8. Update negative instances

2.9. Check consistency

Algorithm complexity

The algorithm complexity refers to both the amount of

memory it requires to run to completion (space complexity)

D’Angelo and Rampone BMC Bioinformatics 2014, 15(Suppl 5):S2

http://www.biomedcentral.com/1471-2105/15/S5/S2

Page 3 of 15



and the amount of time it needs to run to completion (time

complexity) [40]. According to the Landau’s symbol [41], in

the following a big O notation will be used to describe the

upper bound complexity.

In order to build a family of sets Sij and to calculate the

Rij(lk) elements, U-BRAIN compares each given positive

instance with each negative one.

The cardinality of each Sij is at most 2n, since there are

n literals in true and n in negated form. So Rij(lk) is also

valued on 2n literals. This means that the dimensions of

{Sij} and {Rij(lk)} are as it follows:

#({Sij}) = p × q (13)

#({Rij(lk)}) = p × q × 2n (14)

So the space complexity is in the order of O(pqn) ≈ O

(n3) for large n.

Since each element of a Rij vector is an element of a

probability distribution, it is represented by a floating-point

number, which, depending on the coding, occupies several

Bytes in a computer’s internal memory. Thus, storing of Rij

for large scale data in a computer memory is space

consuming.

Example 1: Using the Java language and a data set

having

p = 2000, q = 3000, n = 560

the Rij and Sij dimensions are about 430 GByte and

200 GByte respectively for the first iteration.

From the time point of view, since the external cycle

(2.) is iterated at most p times, the internal cycle (2.5.) is

iterated at most n times (the maximum length of a term),

the inner relevance computation (2.5.1.-2.5.3.) and the Sij
update (2.5.6.) are both of O(pqn), and all the other

operations are minorities of these, the overall algorithm

time complexity is O(p2qn2) ≈ O(n5) for large n.

Methods

We find mathematical and programming solutions able to

effectively implement the algorithm U-BRAIN on parallel

computers. First we give a Dynamic Programming model

[42] of the U-BRAIN algorithm; then we minimize the

representation of the relevances; finally, in order to reduce

the communication costs between different memories and,

then, to achieve efficient I/O performance, a mass storage

structure is designed to access its data with a high degree

of temporal and spatial locality [43]. Then a parallel

implementation of the algorithm is developed by a Single

Program Multiple Data (SPMD) technique together to a

Message-Passing Programming paradigm.

Dynamic programming model of the U-BRAIN algorithm

In the U-BRAIN algorithm the Sij sets are built in the

external cycle (2.4.), and then, for each resulting Sij set, the

Rij relevance vectors are calculated (2.5.1.-2.5.3.). Thus,

two memory areas are required, one for the Sij sets and

one for the relevance vectors. Moreover, for each choice

of a literal, a Sij updating step is done (2.5.6.), consisting in

a reduction (erasing) of some Sij sets. Starting from here,

the inner cycle (2.5.) is repeated and the new Rij relevance

vectors, based on the new Sij sets, are calculated, again.

This last step is repeated until there are no more Sij sets

corresponding to the production of the term.

It is worth to note that for each inner iteration, the Sij
sets are not modified but only erased, and so the recal-

culation of the Rij relevances on the survivor sets it is

not necessary because the new Rij relevances are equal

to the ones calculated on the first cycle.

Moreover, it is easy to see that it is possible to calcu-

late the Rij relevance vectors directly from the given

data (1) and (2) without using the Sij sets. Then, the Sij
sets are unnecessary. Therefore, the Rij relevance vec-

tors can be calculated only once (before and out of the

inner cycle) reused and, in case, erased at each inner

iteration. So, we modify the U-BRAIN algorithm as

follows:

1. Initialize f = Ø

2. While(∃ positive instances)

2.1. Uncertainty Reduction

2.2. Repetition Deletion

2.3. Initialize term = Ø

2.4. Compute the Rij relevances

2.5. While(∃ elements in Rij)

2.5.1. Compute the Ri relevances

2.5.2. Compute the R relevances

2.5.3. Choose Literal

2.5.4. Update term

2.5.5. Update Rij

2.6. Add term to f

2.7. Update positive instances

2.8. Update negative instances

2.9. Check consistency

These changes involve a dramatic reduction in both

space of memory, by avoiding the Sij computation, and

execution time, by avoiding the Rij computation in the

inner cycle.

Minimizing the Rij representation

Since the Rij relevances are valued for each of the 2n lit-

erals as floating-point numbers, a lot of memory space is

required to represent them during the algorithm inner

cycle execution. Then, a reduced representation form for

the Rij’s is desirable.

Now each Rij is given by (6), (7) and (8). Aim of the

(½)(p+q+1) values in (7) and (8) is to represent the very

low probability of the uncertain literals. This can be also

D’Angelo and Rampone BMC Bioinformatics 2014, 15(Suppl 5):S2

http://www.biomedcentral.com/1471-2105/15/S5/S2

Page 4 of 15



obtained through the following replacement:

χij(lk) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

1
(

1
2

)(α)

(

1
4

)(α)

0

with α = p + q. (15)

Now, let:

βij(lk) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

0

1

1
2

1
4

(16)

Then:

χij(lk) = βα
ij (lk) (17)

and Rij becomes:

Rij(lk) =
βα

ij (lk)

�2n
m=1 βα

ij (lm)
(18)

In this way it is possible to view the Rij relevances as

function of the four valued coefficients bij, each one

representable by 2 bits only. This implies a significant

reduction of the required memory space.

Example 2: Compared to the previous Example 1, for

p = 2000, q = 3000, n = 560

the Rij dimension is decreased from about 430 GByte to

1,7 GByte.

bij data structure and storage system

Since the Rij computation relies on bij’s, we define a data

structure to hold them. The bij’s related to the i-th positive

instance form the i-th bi set. We represent this set as an

array (inner array). Each element of the inner array con-

tains a bij vectors of 2n dimension whose elements are the

2 bits representation of a bij value. Then we define an

array containing each bi, named outer array.

A schematic representation of the bij Data Structure is

shown in Figure 1.

The storage of a such data structure in the computer’s

internal memory, for large data, is unaffordable. Moreover,

if this were possible, the huge dimensions may cause

delays in I/O operations. In fact, as largely treated in [43],

the access times to the computer’s internal memory is

usually considered to be constant and independent from

the address of the memory cell involved and, then, inde-

pendent from the involved data size. Unfortunately, this is

not true for data larger than the internal memory space,

forcing the virtual memory use. Depending on where the

data are actually stored, the access times can be quite dif-

ferent. Thus, for massive amounts of data, the communi-

cation between levels of memory is often a bottleneck.

Here, according to the evaluation of algorithmic efficiency

based on the Disk Model, performed by Vitter in [43], in

order to reduce the costs of the communications between

different memories and, then, to achieve efficient I/O per-

formance, a mass storage structure, representing the data

structure proposed in Figure 1, has been designed to

access its data with a high degree of temporal and spatial

locality, as shown in Figure 2.

The elements of the mass storage structure are in

sequence. Each element contains three different typology

of data: Data Size representing the dimension in bytes of

the data to be stored, a Delete Flag that indicates whether

the item has been deleted and, finally, the Data section.

Each Data section contains a bi set, according with the bij
data structure reported in Figure 1.

As shown in the Figure 2, the data are stored in a man-

ner that the bi vectors are close together as much as possi-

ble (spatial locality). The mass storage structure has been

Figure 1 bij data structure. Each element of the inner array bi contains the 2 bits representation of a bij value. The outer array collects each bi.

D’Angelo and Rampone BMC Bioinformatics 2014, 15(Suppl 5):S2

http://www.biomedcentral.com/1471-2105/15/S5/S2

Page 5 of 15



built-out through a random access file which exchange the

data section with the computer’s internal data structure,

typically a vector, through a stream of bytes, as shown in

Figure 3. Furthermore, according to the temporal locality,

the bi data that are referred repeatedly in the same time

interval are in a unique block and sequentially ordered. In

this way, it is possible to use the data several times and

load them in the internal memory only once. Therefore,

the access time to the storage device, usually high,

becomes negligible compared to the transfer time between

internal memory and storage device.

Replacing Rij by bij
In order to choose a literal with the highest relevance, the

Ri and R vectors must be calculated in the inner cycle (2.5.)

of the U-BRAIN algorithm. For each positive instance

(fixed i-th index), the Ri vector calculation requires the

sum of the Rij relevances related to each of the negative

instances (j ranging from 1 to q). This sum must be per-

formed for each of the 2n literals. Thus, the Ri vector cal-

culation need two cycles, one on the negative instances

and one on the 2n literals. However, the introduction of

the bij vectors has led to the following Ri formula:

Ri(lk) = 1
q�

q
j=1

βα
ij (lk)

�2n
m=1 βα

ij (lm)
(19)

This allows to compute Ri directly by bij. So the algo-

rithm is further modified as follows:

1. Initialize f = Ø

2. While(∃ positive instances)

2.1. Uncertainty Reduction

2.2. Repetition Deletion

2.3. Initialize term = Ø

2.4. Compute the bij values
2.5. While(∃ elements in bij)

2.5.6. Compute the Ri relevances

2.5.7. Compute the R relevances

2.5.8. Choose Literal

2.5.9. Update term

2.5.10. Update bij
2.6. Add term to f

2.7. Update positive instances

2.8. Update negative instances

2.9. Check consistency

By noting that the denominator in (19) does not

change with the lk literals but only by j index, its value,

for a fixed i index, can be calculated once and for all

the 2n different literals lk. In Figure 4 a comparison

between the different methods to calculate Ri for n = 2

is presented. The new manner of calculate the Ri,

Figure 2 The temporal and spatial locality based mass storage structure. Data Size represents the dimension of the data to be stored, the

Delete Flag indicates whether the item is deleted and the Data section contains a bi set.

Figure 3 Schematic representation of the communications between mass storage and internal memory.

D’Angelo and Rampone BMC Bioinformatics 2014, 15(Suppl 5):S2

http://www.biomedcentral.com/1471-2105/15/S5/S2

Page 6 of 15



considers the rows of the table (right side in Figure 4)

instead of the columns (left side in Figure 4). Thus, for

each fixed j index the cardinality (denominator of Ri for-

mula) is calculated first and, then, the relevance on the

2n literals is carried out.

Parallel programming model

Here we model a parallel implementation of the U-

BRAIN algorithm.

There are three common strategies for creating paral-

lel applications [44]. The first two, implicit parallelism,

are based on the automatic parallelization of a sequen-

tial program, and on the use of parallel libraries that

encapsulate some of the parallel code commonly used.

The third one, explicit parallelism, involves the writing

of the parallel application from the beginning. It was

observed that the use of explicit parallelism, when prop-

erly applied, obtains a better efficiency than parallel lan-

guage or compilers that use implicit parallelism [44].

This is the strategy we adopt here.

From a Flynn’s taxonomy [45] point of view, we adopt

a MIMD/Master-Slave strategy, and, specifically, a

SPMD programming approach [46,47], together to the

Message-Passing Programming Paradigm. In SPMD,

multiple autonomous processors simultaneously execute

the same program at independent points. That is, a sin-

gle program is written so that different processes carry

out different actions, and this is achieved by simply hav-

ing the processes branch on the basis of their process

rank. The Message-passing paradigm provides routines

to initiate and configure the messaging environment,

sending and receiving packets of data between proces-

sors of a parallel system.

The portability, the network transparency and the het-

erogeneity are other goals of interest. Currently, one of

the most high-level message-passing systems is MPI

(Message Passing Interface) defined by the MPI Forum

[48]. MPI is a specification, not an implementation;

there are multiple implementations of MPI including

versions for COW (Cluster Of Workstation) [49], dis-

tributed-memory multiprocessors (MPP) and shared-

memory machines (SMP). Here, we adopt a version for

the Java programming language, MPJ [50]. Compared

with C or Fortran, the advantages of the Java program-

ming language include higher-level programming con-

cepts, improved compile time and runtime checking,

and, as a result, faster problem detection and debugging.

In the context of “Java for HPC”, the performance

evaluation of the Java version reveals that it could

achieve comparable performance to the original C code

and the Java code performs better in the computation

stages [51].

Although MPI offers great vantages, a significant

amount of tasks of the parallelization are delegated to

the programmer. So, a design methodology that allows

the programmer to focus on machine-independent

issues is desirable. According with Foster [52] we adopt

a methodology organized into four stages: partitioning,

communication, agglomeration and mapping.

Partitioning

Each iteration of the U-BRAIN algorithm relies on the R

relevance computation, that is:

R(lk) = 1
pq �

p
i=1 �

q
i=1

βα
ij (lk)

�2n
m=1β

α
ij (lm)

(20)

= 1
p
�

p
i=1 Ri(lk) (21)

This computation can be easily decomposed into

nProc tasks sh, where each task computes a partial sum-

mation as it follows:

R(lk) = �nProc
h=1 σh (22)

= 1
p
�

p1
i=1 Ri(lk) + 1

p
�

p2
i=p1+1 Ri(lk) + ... + 1

p
�

p
i=pn Ri(lk) (23)

Figure 4 A schematic comparison between two different methods for Ri evaluation (n = 2). On the left side of the figure the

straightforward method is reported. On the right side the alternative one, considering the rows of the table instead of the columns. In the latter

case, for each fixed j index, the cardinality (denominator of Ri formula) is calculated first and, then, the relevances are carried out. A pseudo-code

is also reported.

D’Angelo and Rampone BMC Bioinformatics 2014, 15(Suppl 5):S2

http://www.biomedcentral.com/1471-2105/15/S5/S2

Page 7 of 15



Each sum treats some of the positive instances and all

the given negative instances; Ri, indeed, is calculated by

using all the q negative instances. This representation is

a typical domain decomposition [52] that moves towards

a parallel implementation where each process executes

concurrently a partial summation (Figure 5).

The (22) leads to the implicit decomposition of the

other tasks of the algorithm; in fact the uncertainty

reduction, the repetition deletion and the updating of

positives and negatives instances are performed concur-

rently by each process on their own partial data.

Communication

The decomposition (22) of the U-BRAIN algorithm deter-

mines the need of a communication protocol among the

processors involved; efficient synchronization design is

essential. In our implementation each partial summation

in (22) of R is performed by a single process (slave) which

must communicate its own results to a unique master-

process. The master process (also calculating a partial

summation) waits the results from all the others processes

and then it choose the term literal. Then, the master pro-

cess sends the literal to all the processes involved. When

the slave processes receive the literal, they continue their

execution. When a negative instance is updated by a pro-

cess, (2.7.), the new instance must be sent to all the pro-

cesses. In this way, each process updates its own negative

instance dataset in order to save the data consistency. All

the processes receive a stop signal whenever an inconsis-

tency issue arises. After each uncertainty reduction, repeti-

tion deletion or instance updating step, each process

communicate its own results to all the others processes.

So, for these tasks an all-gather technique [48] is used in

order to implement a total exchange of data among the

processes. A schematic representation of the communica-

tion protocol is shown in Figure 6.

This decomposition can be considered as the problem

of performing a parallel reduction operation, that is, an

operation that reduces nProc values, distributed over

nProc tasks, at a single destination task using a commu-

tative associative operator, in this case a summation.

Because the master (RANK 0 process, see Figure 6) can

receive and sum only one Ri vector at a time, this

approach takes O(nProc) time. A better performance

could be obtained by using a divide and conquer strat-

egy, commonly known as recursive doubling, that

involves the splitting of the computation into pairs of

sub-computation that can be performed concurrently.

This approach would require O(log nProc) time.

However the divide and conquer strategy introduces

new communication and synchronization costs among

the processes, especially when the process interconnec-

tion is made by switches. Figure 7 depicts an example of

connection bottleneck; indeed, if a recursive doubling

technique is used by coupling the processes 0-1, 2-3,

4-5, 6-7, each pair must wait the end of the communica-

tion between the previous pairs before starting.

Agglomeration and mapping

In order to move the previous abstract phases toward

the concrete implementation on a specific parallel sys-

tem, we adapt the number of the partial summations in

(23) to exactly one per processor. So, assuming to use

nProc processors, each processor will treat, on average,
⌊ p

nProc

⌋

positives instances. If p is not multiple of

nProc, the division between p and nProc leads to a

remainder (p mod nProc) different from zero. The

remaining instances are distributed on p mod nProc pro-

cessors that are charged of an additional task. In this

case, our design is already largely complete, since in

defining the nProc tasks that will execute on nProc pro-

cessors, we have also addressed the mapping problem.

This method of load balancing [53] is static because the

tasks are assigned to the processors before the process

starts and no information is collected about the state in

real time of each single processor. Each processor, by

acting on different positive instances, has different

Figure 5 Parallel implementation of U-BRAIN: each processor executes concurrently a partial summation.

D’Angelo and Rampone BMC Bioinformatics 2014, 15(Suppl 5):S2

http://www.biomedcentral.com/1471-2105/15/S5/S2

Page 8 of 15



execution times. Thus it may finish the job and remains

idle. In this case no further load balancing is made, so

avoiding NP- Complete problems [54,55]. Nevertheless,

the mapping between tasks and processors, used here,

follows a semi-dynamic load balancing algorithm able to

adapt the load to the number of available processors.

Each process, on the basis of both its own identifier

number (RANK) and the given number of positive

instances (p), loads a fraction of the positive data. Each

processor compute the bij values and stores them in its

own random access file according to the mass storage

structure of Figure 2; in this way a reduction of data

storage for each processor is also obtained and no file

access synchronization is required.

Results and discussion

In the context of a collaboration between public and

private institutions (Figure 8), the implementation has

been tested on the INTEL XEON E7xxx and E5xxx

family of the CRESCO structure of Italian National

Agency for New Technologies, Energy and Sustainable

Economic Development (ENEA), developed in the fra-

mework of the European Grid Infrastructure (EGI), a

series of efforts to provide access to high- throughput

Figure 7 Example of connection bottleneck when the process interconnection is made by switches by using a recursive doubling technique.

By coupling the processes 0-1, 2-3, 4-5, 6-7, each pair must wait the end of the communication between the previous pairs before starting.

Figure 6 Schematic representation of the synchronization and communication protocol. The RANK 0 process waits the results from all the

others processes and then it chooses the term literal. Then, it sends the literal to all the processes involved. When a negative instance is

updated by a process, the new instance is sent to all the processes. All processes receive a stop signal whenever an inconsistency issue arises.

D’Angelo and Rampone BMC Bioinformatics 2014, 15(Suppl 5):S2

http://www.biomedcentral.com/1471-2105/15/S5/S2

Page 9 of 15



computing resources across Europe using grid comput-

ing techniques.

The computing resources and the related technical

support used for this work have been provided by

CRESCO/ENEAGRID High Performance Computing

infrastructure and its staff.

Cluster architecture

A schematic representation of the computer cluster used

is shown in Figure 9. Such a distributed-memory system

consists of a collection of core-memory pairs connected

by a network, and the memory associated to a core is

directly accessible only to that core. Each core is based

on INTEL XEON E7xxx and E5xxx CPU family with a

2.40 GHz clock frequency. According to the specific

cluster used (CRESCO1, CRESCO2, CRESCO3) the core

memory size ranges from 16 GB to 64 GB, while the

system storage is virtually unique, obtained by a GPFS

distributed network file system. The communication

network is based on multi-level Cisco switches on Infi-

niBand architecture.

Data sets

The test data used in this study are IPDATA (Irvine Pri-

mate splice-junction data set) [56], a subset of HS3D

(Homo Sapiens Splice Sites Dataset) [57,58] and a subset

of COSMIC (the Catalogue of Somatic Mutations in

Cancer) [59].

IPDATA is a data set of human splice sites, and it

consists of 767 donor splice sites, 765 acceptor splice

sites, and 1654 false splice sites. According to previous

usage [30] we consider 464 positive instances and 1536

negative instances each one coded by 240 bits.

HS3D is a data set of Homo Sapiens Exon, Intron and

Splice sites extracted from GenBank Rel.123. It includes

2796 + 2880 donor and acceptor sites, as windows of 140

nucleotides (560 bits) around a splice site, and 271,937

+332,296 windows of false splice sites, selected by search-

ing canonical GT-AG pairs in not splicing positions. In

this study we adopt a subset of 2974 donor sites and 161

false ones. COSMIC curates comprehensive information

on somatic mutations in human cancer. Release v48 (July

2010) describes over 136,000 coding mutations in almost

Figure 8 The Collaboration Framework between Futuridea Association, ENEA-CRESCO, University of Sannio and E4 Computer

Engineering S.p.A.

Figure 9 Schematic of the distributed-memory sub-system of

ENEA-CRESCO.

D’Angelo and Rampone BMC Bioinformatics 2014, 15(Suppl 5):S2

http://www.biomedcentral.com/1471-2105/15/S5/S2

Page 10 of 15

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=Rel.123


542,000 tumour samples. Here we focus on the tumor sup-

pressor p16 [60]. 60 positive instances are generated from

missense and nonsense mutations, while 62 negative

instances are generated from synonymous mutations [60].

Each instance is of 1884 bits.

The dimension of each dataset used is estimated as

p×q×n. In this way the size of HS3D sub-dataset is greater

than IPDATA which is greater than p16 COSMIC.

Experimental results

Speed-up is the most basic methods to evaluate the per-

formance of a parallel program [61]. Speed-up refers to

how much the parallel program is faster than the corre-

sponding sequential one. It is defined as follows:

S(nProc) =
TS

TnProc
(24)

where nProc is the number of processors, TS is the

execution time of the sequential program and TnProc is

the execution time of the parallel one with nProc pro-

cessors. Ideal speed-up is obtained when S(nProc) =

nProc, while for one processor S(1) = 1.

An estimate of this parameter has been taken into

account during all the design and the testing of the paral-

lelization process. The use of several data sets has been

useful in order to show the effect of the granularity on the

performance varying the problem size. The granularity is a

qualitative measure of the ratio of computation to com-

munication [61]. Two graphs, reporting the execution

time and the speed-up of the parallel version, respectively,

are shown for each data set.

The execution times of the parallel implementation

varying the number of processors on IPDATA are

reported in Figure 10, while the speed-up of the parallel

implementation varying the number of processors on

IPDATA is reported in Figure 11.

As evidenced in Figure 10 and 11, the execution times

and the speed-up on IPDATA reach the best values within

about 90 processors. Then the parallelization advantage is

balanced by the greater cost of non-local communications

between the processors.

As shown in Figure 12 and 13, a similar behavior is

evidenced by running the program on HS3D, but at a

greater number of processors; this confirms the direct

relationship between data size and parallelization gain.

The results on COSMIC, reported in Figure 14 and 15,

evidence that, in this case, as the number of processors

grows, the workload of the processors remains higher

than the cost of the non-local communications. In the

Figures the maximum number of processing elements is

60, since it is upper bounded by the number of positive

examples p.

Overall, the results obtained on the data sets used

show that the parallel version is up to 30 times faster

than the serial. Moreover, increasing the problem size,

at constant number of processors, the speed-up aver-

agely increases.

Conclusions

High-throughput technologies are producing an increas-

ing amount of experimental and clinical data. In such a

scenario, large-scale databases and bioinformatics meth-

ods are key tools for organizing and exploring biological

Figure 10 Execution times, of the U-BRAIN parallel implementation on IPDATA varying the processor number (log scale).

D’Angelo and Rampone BMC Bioinformatics 2014, 15(Suppl 5):S2

http://www.biomedcentral.com/1471-2105/15/S5/S2

Page 11 of 15



and biomedical data with the aim to discover new

knowledge in biology and medicine.

High-performance computing may play an important

role in many phases of life sciences research, from raw

data management and processing, to data analysis and

integration, till data exploration and visualization. In par-

ticular, at the raw data layer, Grid infrastructures may

offer the huge data storage needed to store experimental

and biomedical data, while parallel computing can be

used for basic pre-processing and for more advanced

analysis. In such a scenario, parallel architectures coupled

with specific programming models may overcome the

limits posed by conventional computers to the mining

and exploration of large amounts of data.

Here we investigated the problems arising from the

HPC implementation of a general purpose learning algo-

rithm able to treat uncertainty on data (U-BRAIN). The

U- BRAIN algorithm can be used in many fields of the

biology in order to extract the laws that govern the bio-

logical process, in the form of mathematical formulas.

The U- BRAIN parallel implementation aims to override

the computational limits that make the algorithm unaf-

fordable for huge data sets. We found mathematical and

programming solutions able to effectively implement the

algorithm U-BRAIN on parallel grid computers. The

implementation is able to minimize both the memory

space and the execution time, while maintaining the

results of the sequential version. The solutions adopted

Figure 11 Speed-up of the U-BRAIN parallel implementation on IPDATA varying the processor number.

Figure 12 Execution times, of the U-BRAIN parallel implementation on HS3D varying the processor number (log scale).

D’Angelo and Rampone BMC Bioinformatics 2014, 15(Suppl 5):S2

http://www.biomedcentral.com/1471-2105/15/S5/S2

Page 12 of 15



in this paper, e.g. dynamic programming, data represen-

tation minimization, efficient use of memory, mass sto-

rage unit structure with a high degree of temporal and

spatial locality, SPMD parallel implementation and Mes-

sage-Passing Programming Paradigm, are tailored for

the U-BRAIN algorithm, but they can be used for many

others HPC-oriented parallel implementations.

As evidenced in the experiments, the execution times and

the speed-up reach the best values within a data dependent

number of processors. Then the parallelization advantage is

balanced by the greater cost of non-local communications

between the processors. This evidences the direct relation-

ship between data size and parallelization gain.

The obtained results, though not excellent in terms of

performance, encourage the algorithm application on

larger data sets. By applying the U-BRAIN algorithm on

the full HS3D data set (p = 2796, q = 271937, n = 560),

and using a single processor, 0,17 × 108 seconds (197

days) are needed to reach the result, while, by assuming

a linear relation among the dimension and the execution

time, the time reduces to 0,57 × 106 seconds (about 6

days) in a parallel configuration with speed-up = 30.

Figure 13 Speed-up of the U-BRAIN parallel implementation on HS3D varying the processor number.

Figure 14 Execution times of the U-BRAIN parallel implementation on COSMIC p16 gene varying the processor number (log scale).

D’Angelo and Rampone BMC Bioinformatics 2014, 15(Suppl 5):S2

http://www.biomedcentral.com/1471-2105/15/S5/S2

Page 13 of 15



Open problems rest in adopting a dynamic load balan-

cing algorithm, capable of migrating the load among the

processors. Load balancing problem is a most critical

point in parallel computing design [53]. A more thor-

ough assessment of how the synchronization and com-

munication costs affect the total performance varying

the problem size is another issue that we refer to future

works. In order to increase the performance it would be

useful implement U-BRAIN algorithm by using a hybrid

MPI/OpenMP programming on clusters of multi-core

with shared-memory nodes [62].

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

SR conceived of the project idea. Both authors contributed to the

implementation design. GDA implemented the algorithm on the CRESCO

structure, and performed the simulations. Both authors contributed to the

test cases analysis and interpretation, and wrote the final manuscript.

Acknowledgements

This work was supported by the collaboration agreement between Futuridea

Association, ENEA, University of Sannio and E4 Computer Engineering S.p.A.

The authors wish to thank the CRESCO/ENEAGRID High Performance

Computing staff and in particular Ing. Silvio Migliori, Ing. Antonio Perozziello,

and Ing. Guido Guarnieri. CRESCO/ENEAGRID High Performance Computing

infrastructure is funded by ENEA, the Italian National Agency for New

Technologies, Energy and Sustainable Economic Development and by

national and European research programs.

Declarations

The publication costs for this article were funded by DST University of

Sannio.

This article has been published as part of BMC Bioinformatics Volume 15

Supplement 5, 2014: Italian Society of Bioinformatics (BITS): Annual Meeting

2013. The full contents of the supplement are available online at http://

www.biomedcentral.com/bmcbioinformatics/supplements/15/S5

Authors’ details
1Department of Science and Technology (DST), University of Sannio,

Benevento, Italy. 2Futuridea Innovazione Utile e Sostenibile, Benevento, Italy.

Published: 6 May 2014

References

1. Kodama Y, Shumway M, Leinonen R: The sequence read archive: explosive

growth of sequencing data. Nucleic Acids Research 2012, 40:D54-D56.

2. Baxevanis AD: The Molecolar Biology Database Collection: 2003 update.

Nucleic Acids Research 2003, 31(1).

3. Galperin MY, Fernández-Suárez Xosé M: The 2012 Nucleic Acids Research

Database Issue and the online Molecular Biology Database Collection.

Nucleic Acids Research 2012, 40(Database).

4. Fernández-Suárez Xosé M, Galperin MY: The 2013 Nucleic Acids Research

Database Issue and the online Molecular Biology Database Collection.

Nucleic Acids Research 2013, 41(Database).

5. Rubin D: Multiple Imputation for Nonresponse in Surveys. John Wiley &

Sons, Inc; 1987.

6. Dick U, Haider P, Scheffer T: Learning from Incomplete Data with Infinite

Imputations. Proceedings of the 25th International Conference on Machine

Learning Helsinki, Finland; 2008, 232-239.

7. Ibrahim JG: Incomplete data in generalized linear models. Journal of the

American Statistical Association 1990, 85:765-769.

8. Wang X, Li A, Jiang Z, Feng H: Missing value estimation for DNA

microarray gene expression data by support vector regression

imputation and orthogonal coding scheme. BMC Bioinformatics 2006,

7:32.

9. Williams D, Carin L: Analytical kernel matrix completion with

incomplete multi-view data. Proceedings of the International Conference

on Machine Learning (ICML) Workshop on Learning with Multiple Views

2005, 80-86.

10. Graepel T: Kernel matrix completion by semidefinite programming.

Proceedings of the International Conference on Artificial Neural Networks 2002,

2415:694-699.

11. Dempster AP, Laird NM, Rubin DB: Maximum Likelihood from Incomplete

Data via the EM Algorithm. Journal of the Royal Statistical Society Series B

(Methodological) 1977, 39(1):1-38.

12. Tsuda K, Akaho S, Asai K, Williams C: The em algorithm for kernel matrix

completion with auxiliary data. Journal of Machine Learning Research 2003,

4:67-81.

13. Duda RO, Hart PE: Pattern Classification and Scene Analysis New York: Wiley;

1973.

14. Quinlan JR: Programs for Machine Learning San Francisco: Morgan Kaufmann

Publishers; 1993.

15. Geman S, Geman D: Stochastic Relaxation, Gibbs Distributions, and the

Bayesian Restoration of Images. IEEE Transactions on Pattern Analysis and

Machine Intelligence 1984, 6:721-741.

16. Ahmad F, Isa NAM., Osman MK, Hussain Z: Performance comparison of

gradient descent and Genetic Algorithm based Artificial Neural

Figure 15 Speed-up of the U-BRAIN parallel implementation on COSMIC p16 gene varying the processor number.

D’Angelo and Rampone BMC Bioinformatics 2014, 15(Suppl 5):S2

http://www.biomedcentral.com/1471-2105/15/S5/S2

Page 14 of 15

http://www.biomedcentral.com/bmcbioinformatics/supplements/15/S5
http://www.biomedcentral.com/bmcbioinformatics/supplements/15/S5
http://www.ncbi.nlm.nih.gov/pubmed/22009675?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22009675?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16426462?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16426462?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16426462?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22499653?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22499653?dopt=Abstract


Networks training. Proceedings of the 10th International Conference on

Intelligent Systems Design and Applications (ISDA) 2010, 604-609.

17. Rubin DB, Little RJA: Statistical Analysis with Missing Data. 2 edition. New

York: Wiley Interscience; 2002.

18. Rässler S: The Impact of Multiple Imputation for DACSEIS. Technical Report

DACSEIS Research Paper Series 5 Univ. of Erlangen-Numberg, Numberg,

Germany; 2004.

19. Schafer JL, Graham JW: Missing Data: Our View of the State of the Art.

Psychological Methods 2002, 7(2):147-177.

20. Chen J, Xue X, Tian F, Huang H: An algorithm for Classifying Incomplete

Data With Selective Bayes Classifiers. Proceedings of the IEEE International

Conference on Computational Intelligence and Security Workshops 2007, 445-448.

21. Williams D, Liao X, Xue Y, Carin L, Krishnapuram B: On Classification with

Incomplete Data. IEEE Transactions on Pattern Analysis and Machine

Intelligence 2007, 29(3):427-436.

22. Li D, Zhong C, Li J: An attribute weighted fuzzy c-means algorithm for

incomplete data sets. Proceedings of the IEEE International Conference on

System Science and Engineering (ICSSE) 2012, 449-453.

23. Thangaparvathi B, Anandhavalli D, Mercy Shalinie S: A high speed decision

tree classifier algorithm for huge dataset. Proceedings of the IEEE

International Conference on Recent Trends in Information Technology (ICRTIT)

2011, 695-700.

24. Menon AK: Large-Scale Support Vector Machines: Algorithms and

Theory. Research Exam University of California, San Diego; 2009, 1-17.

25. Guosheng W: A Survey on Training Algorithms for Support Vector

Machine Classifiers. Proceedings of the Fourth IEEE International Conference

on Networked Computing and Advanced Information Management, NCM ‘08

2008, 123-128.

26. Lu C, Li X, Pan H: Application of SVM and Fuzzy Set Theory for

Classifying with Incomplete Survey Data. Proceedings of the IEEE

International Conference on Service Systems and Service Management 2007,

1-4.

27. Chen J, Xue X, Fengzhan T, Huang H: An Algorithm for Classifying

Incomplete Data with Selective Bayes Classifiers. Proceedings of the IEEE

International Conference on Computational Intelligence and Security

Workshops, CISW 2007, 445-448.

28. Amado N, Gama J, Silva F: Parallel Implementation of Decision Tree

Learning Algorithms. Progress in Artificial Intelligence Lecture Notes in

Computer Science 2001, 2258:6-13.

29. Larranaga P, Calvo B, Santana R, Bielza C, Galdiano J, Inza I, Lozano JA,

Armananzas R, Santafe G, Perez A, Robles V: Machine learning in

bioinformatics. Briefings in bioinformatics 2006, 7(1):86-112.

30. Rampone S: Recognition of spline-junctions on DNA sequences by BRAIN

learning algorithm. Bioinformatics Journal 1998, 14(8):676-684.

31. Rampone S, Russo C: A fuzzified BRAIN algorithm for learning DNF from

incomplete data. Electronic Journal of Applied Statistical Analysis (EJASA)

2012, 5(2):256-270.

32. Rampone S: An Error Tolerant Software Equipment For Human DNA

Characterization. IEEE Transactions on Nuclear Science 2004,

51(5):2018-2026.

33. Aloisio A, Izzo V, Rampone S: VLSI implementation of greedy-based

distributed routing schemes for ad hoc networks. Soft Computing 2007,

11(9):865-872.

34. Green MR: Pre-mRNA splicing. Annual Review of Genetics 1986, 20:671-708.

35. Michalski RS: A theory and methodology of inductive learning. Artificial

Inteligence 1983, 20:111-116.

36. Mitchell TM: Generalization as search. Artificial Inteligence 1982, 18:203-226.

37. Haussler D: Quantifying inductive bias: AI learning algorithms and

Valiant’s learning framework. Artificial Inteligence 1988, 36:177-222.

38. Zadeh LA: Fuzzy sets. Information and Control 1965, 8(3):338-353.

39. Mendelson E: Introduction to Mathematical Logic London: Chapman & Hall;

1997.

40. Bürgisser P, Clausen M, Shokrollahi MA: Algebraic Complexity Theory

Springer; 1997.

41. Knuth D: Big Omicron and big Omega and big Theta. SIGACT News 1976,

18-24, Apr.- June.

42. Cormen TH, Leiserson CE, Rivest RL, Stein C: Introduction to Algorithms.. 3

edition. Boston: The MIT Press; 2009.

43. Vitter JS: External Memory Algorithms and Data Structures: Dealing with

Massive Data. ACM Computing Surveys 2001, 33(2):209-271, June.

44. Kasim H, March V, Zhang R, See S: Survey on Parallel Programming

Model. NPC Proceedings of the IFIP International Conference on Network and

Parallel Computing 2008, 266-275.

45. Flynn MJ: Very high-speed computing systems. Proceedings of the IEEE

1966, 54(12):1901-1909.

46. Auguin M, Larbey F: OPSILA: an advanced SIMD for numerical analysis

and signal processing. Microcomputers: developments in industry, business,

and education, Ninth EUROMICRO Symposium on Microprocessing and

Microprogramming, Madrid, September 13-16 1983, 311-318.

47. Darema F: SPMD model: past, present and future, Recent Advances in

Parallel Virtual Machine and Message Passing Interface. Proceedings of

the 8th European PVM/MPI Users’ Group Meeting 2001, 2131:1-1, Santorini/

Thera, Greece, September 23-26, Lecture Notes in Computer Science .

48. Message Passing Interface Forum. 2013 [http://www.mpi-forum.org/],

Online, last access October 4.

49. Jing Y, Weichang S, Gongxiao Y: Construct COW Based on MPICH in Linux

Environment. Proceedings of the First International Workshop on Education

Technology and Computer Sciense 2009, 895-898.

50. MPJ Express. 2013 [http://mpj-express.org/], Online, last access October 4.

51. Shafi A, Hussain A, Raza J: A Parallel Implementation of the Finite-

Domain Time-Difference Algorithm using MPJ Express. Proceedings of the

IEEE International Symposium on Parallel and Distributed Processing IPDPS;

2008, 1-6.

52. Foster I: Designing and Building Parallel Programs Addison Wesley; 1996.

53. Nian S, Guangmin L: Dynamic Load Balancing Algorithm for MPI Parallel

Computing. Proceedings of the IEEE International Conference on New Trends

in Information and Service Science 2009, 95-99.

54. Ullman JD: NP-Complete Scheduling Problems. Journal of Computer and

System Sciences 1975, 10:384-393.

55. Sinnen O, Sousa LA, Sandnes FE: Toward a Realistic Task Scheduling

Model. IEEE Transactions on Parallel and Distributed Systems 2006,

17(3):263-275.

56. Bache K, Lichman M: UCI Machine Learning Repository Irvine, CA: University

of California, School of Information and Computer Science; 2013 [http://

archive.ics.uci.edu/ml].

57. Pollastro P, Rampone S: HS3D: Homo Sapiens Splice Site Data Set. Nucleic

Acids Research 2003, Annual Database.

58. Pollastro P, Rampone S: HS3D, a Dataset of Homo Sapiens Splice Regions,

and its Extraction Procedure from a Major Public Database. International

Journal of Modern Physics C 2003, 13(8):1105-1117.

59. Forbes SA: COSMIC: mining complete cancer genomes in the Catalogue

of Somatic Mutations in Cancer. Nucleic Acids Research 2011, 39(suppl 1):

D945-D950.

60. Liggett WH Jr, Sidransky D: Role of the p16 tumor suppressor gene in

cancer. J Clin Oncol 1998, 16(3):1197-206, Mar.

61. Barney B: Introduction to Parallel Computing. Lawrence Livermore National

Laboratory 2013 [https://computing.llnl.gov/tutorials/parallel_comp/], Online,

last access October 4.

62. Rabenseifner R, Hager G, Jost G: Hybrid MPI/OpenMP Parallel

Programming on Clusters of Multi-Core SMP Nodes. Proceedings of the

17th Euromicro International Conference on Parallel Distributed and Network-

based Processing IEEE Press; 2009, 427-436.

doi:10.1186/1471-2105-15-S5-S2
Cite this article as: D’Angelo and Rampone: Towards a HPC-oriented
parallel implementation of a learning algorithm for bioinformatics
applications. BMC Bioinformatics 2014 15(Suppl 5):S2.

D’Angelo and Rampone BMC Bioinformatics 2014, 15(Suppl 5):S2

http://www.biomedcentral.com/1471-2105/15/S5/S2

Page 15 of 15

http://www.ncbi.nlm.nih.gov/pubmed/12090408?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17224613?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17224613?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16761367?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16761367?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2880558?dopt=Abstract
http://www.mpi-forum.org/
http://mpj-express.org/
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://www.ncbi.nlm.nih.gov/pubmed/20952405?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20952405?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9508208?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9508208?dopt=Abstract
https://computing.llnl.gov/tutorials/parallel_comp/

	Abstract
	Background
	Results
	Conclusions

	Background
	Overview of the U-BRAIN algorithm
	Algorithm complexity

	Methods
	Dynamic programming model of the U-BRAIN algorithm
	Minimizing the Rij representation
	βij data structure and storage system
	Replacing Rij by βij
	Parallel programming model
	Partitioning
	Communication
	Agglomeration and mapping

	Results and discussion
	Cluster architecture
	Data sets
	Experimental results

	Conclusions
	Competing interests
	Authors’ contributions
	Acknowledgements
	Authors’ details
	References

