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Abstract: The tremendous number of Internet of Things (IoT) applications, with their ubiquity, has

provided us with unprecedented productivity and simplified our daily life. At the same time, the

insecurity of these technologies ensures that our daily lives are surrounded by vulnerable computers,

allowing for the launch of multiple attacks via large-scale botnets through the IoT. These attacks have

been successful in achieving their heinous objectives. A strong identification strategy is essential to

keep devices secured. This paper proposes and implements a model for anomaly-based intrusion

detection in IoT networks that uses a convolutional neural network (CNN) and gated recurrent

unit (GRU) to detect and classify binary and multiclass IoT network data. The proposed model

is validated using the BoT-IoT, IoT Network Intrusion, MQTT-IoT-IDS2020, and IoT-23 intrusion

detection datasets. Our proposed binary and multiclass classification model achieved an exceptionally

high level of accuracy, precision, recall, and F1 score.

Keywords: anomaly detection; deep learning; convolutional neural network; recurrent neural

network; gated recurrent unit; Internet of Things; machine learning; network security

1. Introduction

The evolution of the IoT network infrastructure has influenced the increasing number
of embedded devices and intelligent applications. The IoT objective is to build intelligent
environments capable of improving human life quality, comfort, and competitiveness.
Devices in smart architectures communicate with one another to execute different tasks.
IoT-enabled systems have been used in manufacturing settings as well as for a variety of
commercial uses. These intelligent systems include a broad spectrum of capabilities, from
smart houses to smart cities, intelligent buildings, and other intelligent utilities such as
factory automation and management, power generation networks, and transportation [1].
The IoT raises several challenges, including privacy and security. The security challenges
associated with the IoT will grow as it develops and progresses over the next several
years [2], which further raises the possibility of cyberattacks. Cybercriminals attacked IoT
devices in 2020, according to recent reports, indicating a significant rise in IoT vulnerabil-
ities on wireless networks [3]. There would be more substantial motivations and desire
for attackers to discover innovative and creative ways to hack IoT applications due to the
increased rewards for effective IoT breaches.

Traditional approaches and strategies used in the conventional Internet to safeguard
against cyberattacks prove ineffective in defending against the specific weaknesses discov-
ered on the Internet. Security issues in a network are managed by three general methods:
prevention, detection, and mitigation. All three steps will have to be taken to ensure
effective mitigation strategies for IoT networks. Cybersecurity is an essential component of
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the information technology system of today’s IoT world. Although the IoT improves per-
formance and competitiveness by smart control, it also raises cyberattacks. The IoT privacy
security paradigm is important in today’s new technologies. The increased diversity of IoT
systems in the market shows that the industry is making strides toward revolutionizing IoT
architecture. As a result, the specifications governing IoT system connectivity are complex,
requiring the development of a unified system to facilitate device communication. The
growing range of IoT devices designed for different applications means that IoT manufac-
turers constantly develop IoT technology and reduce their time to market their products.
Customers have benefited from these technologies on one side, while critical facilities have
successfully incorporated IoT devices to implement their operations. Apart from requiring
significant security enhancements, the IoT exposes users’ details to cyberattacks. Although
IoT technologies have helped humanity in a variety of respects, they still have several
flaws. Despite the fact that many security protocols have been implemented to defend
IoT devices from cyber threats, security guidelines are not well established [4]. More than
85% of companies worldwide would switch to IoT devices in one way or another, and
90% of these companies do not know about IoT device security [5]. A new HP report has
also found that 70% of Internet-connected devices are susceptible to multiple attacks [1].
Additionally, active launches of cyberattacks such as Mirai [6], Shamoon-2 [7], and Ransom-
like [8] attacks on critical infrastructure indicate that current IoT security measures have
been inefficient.

1.1. Motivation

Anomaly identification techniques have been the primary source of motivation for
many researchers due to their capacity to identify new threats. Massive IoT devices are
integrated into our daily lives in many ways. They are commonly employed in several
sectors, such as healthcare, manufacturing, delivery, road traffic management, city life
safety, shopping, sustainability, city protection, smart communities, transportation, waste
management, smart street lighting, traffic signs, and vehicle networks [9]. Designing a fully
safe device is impossible because there is no such thing as total security; humans can make
mistakes, most current networks contain security vulnerabilities, insider misuse is common,
and all types of intrusions remain unknown. At present, attackers use sophisticated
techniques to execute increasingly serious attacks efficiently with little technical knowledge
of the network. Currently, a practical attack has a significant impact on IoT infrastructure,
while the time taken to carry out these attacks continues to decrease. IoT systems have
evolved into an attractive goal for attackers looking to launch destructive attacks, and the
threat surface of IoT networks will continue to increase as a result of their rapid growth.
The most difficult challenge, which is embedded in expanding the network’s stability,
is cybersecurity.

Classification of malicious activity in big data is becoming more complex in IoT
networks. An important factor for protecting IoT networks is an intrusion detection
system (IDS). Anomaly-based and misused-based approaches in the field of intrusion
detection research are generally focused and inspired detection methodologies. IDS is now
a crucial part of protecting complex IoT networks. IDS can detect malicious activity or
protocol failure in an operating system or network. IDS can be divided into a centralized
intrusion detection system (CIDS) and a distributed intrusion detection system (DIDS).
Data analysis may be done at a single location in CIDS, while DIDS consists of multiple
IDSs at various locations where the data analysis is conducted. Security companies have
had to develop IoT defense strategies alongside existing ones in response to the popularity
of the Internet. In addition to using standard network-based intrusion detection techniques,
several alternative tools are provided for those investigating intrusions or identifying
network threats. Machine learning has shown to be both essential and useful in detecting
cyberattacks in real-time. Various mechanisms can be used to generate knowledge from
collected and analyzed data. Supervised learning uses the current anomalous data to
define the inconsistency to a reference point. In contrast, unsupervised learning determines
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the anomalous activity by inferential learning to draw a decision based on identified
evidence. Popular machine learning techniques are support vector machine, Markov-
based, grammar-based, neural network, change detection, Bayesian, decision tree, nearest
prototype, hierarchical, and outlier-based identification techniques for classification and
clustering [10].

1.2. Contribution

Machine learning advances have resulted in new solutions, and they can adapt to
changes in the environment by continuous learning. Although machine learning is increas-
ingly being applied to IoT intrusion detection, it has some shortcomings, which should
be considered. Firstly, comparatively single types of intrusions are analyzed, and diverse
types of attacks are not considered. Second, it is incredibly time-consuming to identify
effective features for training the machine learning algorithm during the data processing
stage. Extracting a huge number of features consumes many resources. As a result,
a lightweight method for extracting the relevant and limited number of features for
machine-learning-based detection of various IoT attacks is needed. To address these
issues, first, we select the four most recent intrusion detection datasets’ pcap files and
generate adapted datasets using CICFlowmeter [11]. Next, we combine these datasets into
large attack classes. Our proposed, adopted datasets have 80 network and flow features.
We select the 48 best features using the recursive features elimination (RFE) approach.
Although multiple techniques have been developed to detect anomalies, CNN and GRU
networks for classifying attacks have received much fewer attempts. The model proposed
in this paper is an extension of a model employing convolutional neural networks that
we previously proposed [12], in which we used three different models of convolutional
neural networks. In this paper, we propose a deep learning model based on CNN and GRU
for binary and multiclass class anomaly detection and classification in IoT networks. The
proposed model uses an input layer, two convolutional layers, two GRU layers, a flatten
layer, a dense layer, and an output layer. The proposed scheme classifies 15 different attacks
using a convolutional and GRU-based neural network model in the multiclass classifier,
essentially separating them from normal network traffic. A novel anomaly-based intrusion
detection system for IoT networks using convolutional and gated recurrent unit neural net-
works is presented in this article. Our proposed binary classification model achieved
an accuracy of 99.96%, while our proposed multiclass classification model achieved
an accuracy of 99.92%.

Artificial intelligence has made tremendous improvements in closing the distance
between human and computer capabilities. A CNN is a deep neural network that can take
in an image as data, allocate significance to various aspects of the image, and distinguish
one from the other. In comparison to other classification algorithms, a CNN needs signif-
icantly less preprocessing [13]. The spatial and temporal properties can be successfully
captured by the CNN using related filters in an image. A CNN consists of several artificial
neuronal layers. Each neuron has its weights to determine its action. CNNs are fed with
the image values and find different features in them. A CNN is typically made up of many
convolution layers, but it may also include other elements. Convolution is the initial layer
in which the characteristics of an image are extracted. Convolution retains a link between
pixels via the use of tiny input squares to learn picture attributes. If the images are too large,
the pooling layers section reduces the number of parameters. Spatial pooling, also known
as subsampling or downsampling, is a technique for reducing the dimension of each map
while retaining critical information. Max pooling, average pooling, and sum pooling are
three types of spatial pooling. A fully connected layer flattens the matrix into a vector and
feeds it into a fully connected layer, similar to a neural network. A classification layer is the
final layer of a CNN, and it uses the output of the previous convolution layer as input. The
classification layer generates a series of confidence values (score between 0 and 1) based
on the activation function of the final convolution layer, which indicates how probable
the object is to correspond to a “class” [14]. Short-term memory is a limitation in recur-
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rent neural networks (RNN). If a series is too long, it would have difficulty transporting
knowledge from earlier to subsequent time steps. RNNs encounter the vanishing gradient
problem during backpropagation [15]. Gradients are the variables that are used to change
the weights of a neural network. When a gradient value becomes quite minimal, it does not
add significantly to learning. Therefore, layers obtaining a small gradient update struggle
to learn in recurrent neural networks. As a result of the lack of learning in these layers,
RNNs will overlook what they saw in longer sequences, resulting in short-term memory.
GRUs have been developed to address the issue of short-term memory. The GRU is a more
recent generation of RNN that is very close to the LSTM. The GRU is equipped with two
gates: a reset and an update, while the LSTM has three gates [16,17]. The update gate
operates similarly to an LSTM’s forget and input gates. The update gate assists the model
in determining how much past data should be transmitted to the future. It determines
what data to discard and what new data to use. The reset gate determines how much
previous knowledge is to be forgotten. Since GRUs have fewer tensor operations, they are
slightly faster to train than LSTMs [15].

The rest of the paper proceeds as follows: in Section 2, the related work is presented.
The proposed model, data collection, and preprocessing dataset are discussed in Section 3.
The analysis of the results is presented in Section 4. Finally, Section 5 concludes the paper
and offers ideas for future work.

2. Related Work

Internet infrastructure is increasingly evolving because of advances in computing
technology. However, we have seen issues such as vulnerabilities because of these advances.
Kim et al. [18] use a convolutional neural network to classify malicious traffic using
packet size and arrival time. They achieved an accuracy of 95%, which is considered
very low for modern IoT networks. Internet traffic is increasing at an exponential rate,
with daily data generation ranging from zettabytes to petabytes. Along with this increase
in use, security risks to networks, the web, databases, and organizations are increasing.
Hassan et al. [19] suggest a hybrid deep learning model for effectively detecting network
intrusions focused on the convolutional neural network and a long-term memory network.
They used a deep convolutional neural network to extract important features from IDS big
data and LSTM characteristics to keep longer-term correlations between derived features
to avoid the overfit on recurring connections. The accuracy was measured at 97.10%, which
is insufficient for today’s IoT networks. The advancement in information technology and
economic progress have also accelerated the IoT industry. IoT networks are susceptible
to attacks due to the limited infrastructure available to sensor nodes, the difficulty of
networking, and the free wireless broadcast transmission characteristics. Li et al. [20]
suggest an algorithm for extracting IoT features and detecting intrusions in a smart city
built on a deep migration learning paradigm and incorporate deep learning and intrusion
detection technologies. Their proposed model has a faster detection time and a better
detection performance than previous models. IoT technologies for smart cities have risen
to prominence as a primary focus for threats such as botnets. Vinayakumar et al. [21]
suggest a botnet identification algorithm built on a two-tier deep learning architecture
for semantically distinguishing botnets from valid activities at the domain name system
implementation layer. Due to its potential architecture for analyzing the domain name
system, the results are highly portable on heterogeneous computing servers.

Intrusion detection and prevention mechanisms continue to be the primary line of
protection against severe threats. Kaur et al. [22] suggest an image-based deep neural
network model for classifying various attacks using two large datasets, CICIDS2017 and
CSE-CICIDS2018. They also provide a selection of the best network flow features for detect-
ing these attacks. Their convolutional neural network model produced poor performance
for some attack categories. Most cybercriminals currently use encrypted communica-
tion networks to shield malicious activities and mimic legitimate user activity. These
threats over a protected channel raise the vulnerability of interconnected networks to
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emerging threats and the risk of significant harm to many other end users. Ullah and
Mahmoud [23,24] proposed a two-level intrusion detection system for IoT networks. The
level-1 model categorizes network traffic as regular or irregular, while the level-2 model
categorizes observed malicious behavior by category or subcategory. Their model pre-
cision, recall, and F1 score are 99.90% for levels 1 and 2. Yang and Lim [25] present a
novel deep-learning-based approach for detecting malicious SSL traffic. The suggested
method extracts the unencrypted contents of the reconfigured record and produces a series
of unencrypted data from successive SSL records for classification using deep learning.
A long short-term memory encoder generates SSL sequences and uses them to build an
encoded feature map for each flow.

These feature maps are forwarded to the convolutional network classifier to see if the
SSL is abnormal or not. The massive number of IoT devices and their pervasive nature have
drawn hackers looking to perform cyberattacks and data breaches. Ran et al. [26] propose
a framework for intrusion detection focused on bidirectional long short-term memory
stacks (LSTM). They used the KDD99 dataset for model evaluation. Their model achieved
91.6% accuracy. The authors did not use an early stopping strategy, which may cause
overfitting of the model. Ahmad and Alsemmeari [27] proposed the extreme learning
machine (ELM) approach to enhance intrusion detection. The authors examine, investigate,
and apply well-known activation functions such as sine, sigmoid, and radial basis to
quantify their success on the GA (genetic algorithm) features subset and the full features
set. Their findings indicate that the radial base and sine functions work stronger on the GA
feature set than the complete feature set. In contrast, the sigmoid function performs almost
identically on both feature sets. GA-based function selection achieved 98% accuracy and
improved the overall performance of the intrusion detection extreme learning machine.

Ling et al. [28] developed a bidirectionally simple recurrent unit-based intrusion
detection system. Their suggested approach is more precise and needs far less training
time than alternative approaches. Kunang et al. [29] used a pretraining strategy with
a deep autoencoder and a deep neural network to build a deep learning intrusion detection
framework. An automatic hyperparameter optimization method helps determine hyper-
parameter importance and the best categorical hyperparameter configuration to improve
detection accuracy. Additionally, the performance outcomes exceed prior techniques in
terms of multiclass evaluation criteria. A convolutional neural network model was used to
develop an intrusion detection system that interprets network activity data as character
sequences. The input matrices of the convolutional networks are united to form a complex
matrix structure to perform image classification. Their model worked well on training
data but performed poorly on testing data. To build an attack prevention mechanism and
a secure network, Sicato et al. [30] offer a comprehensive summary of emerging intrusion
detection systems for IoT environments, address cyber-security risks, and evaluate and an-
alyze transparent issues and concerns. They suggest a distributed cloud infrastructure built
on software-defined IDS for securing the Internet of Things. Standard intrusion prevention
techniques based on rules are insufficient to handle the highly dynamic network intrusion
traffic. However, the potential of an intrusion detection system based on a traditional
machine learning approach to generalize is still limited, and the false alarm rate is strong.
Wu et al. [31] suggest SRDLM, a modern intrusion detection approach focused on deep
learning and semantic reencoding. Their suggested model approach reencodes the syntax
of network activity, improves the traffic’s distinguishability, and strengthens the system’s
generalizability through deep learning technology, significantly increasing the system’s
efficiency and performance. They used the NSL-KDD data set, and the average score
was improved by more than 8% compared to the standard machine learning approach.
Sheu et al. [32] use a reinforcement learning algorithm to design a system for identifying
the opening time and load restrictions of electrical equipment. The suggested systems are
based on a wireless communication network. They can monitor the energy consumption of
home appliances, control smart appliances, and reduce the rate of fires caused by electrical
appliance overload. Wireless sensor networks are vulnerable to hostile activity because of
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their security limits. Tariq [33] has designed an anticipatory and proactive mechanism to
predict host and grid anomalies. The proposed anomaly identification system’s architecture
has been widely distributed to provide an accessible and adaptive technique for avoiding
a single point of failure. Table 1, adapted from [12], provides an overview of the related
literature that was evaluated. In Table 1, DR represents detection rate, Acc means accuracy,
Pr represents precision and F1 represent F1 score.

Table 1. Overview of related literature.

Article Dataset Classification Model Year Performance

[34] AWID Binary D-FES 2017 Acc = 99.90
[35] NSL-KDD Multiclass CNN 2018 Acc = 85.07
[36] NSL-KDD Binary DNN 2018 Acc = 99.29
[37] AWID Binary LSTM 2018 Acc = 98.22
[38] UNSW-NB15 Multiclass Autoencoder 2018 DR = 68.91
[39] UNSW-NB15 Binary Bidirectional LSTM 2018 Acc = 95.71
[40] NSL-KDD Multiclass DNN 2019 Acc = 78.10
[41] NSL-KDD Multiclass DNN 2019 Acc = 97.00
[42] NSL-KDD Binary MLP, CNN, DNN, AE 2019 Acc = 99.24
[43] NSL-KDD Binary SMO 2019 Acc = 99.02
[44] NSL-KDD Multiclass GA optimized DBN 2019 Acc = 99.45
[45] NSL-KDD Multiclass MLP, CNN 2019 Acc = 82.60
[46] AWID-CLS Binary Autoencoder 2019 Acc = 98.00
[47] Personal Multiclass GRU 2019 Acc = 95.60
[48] Personal Multiclass GRU 2019 F1 = 80.30
[49] AWID Multiclass Autoencoder, NN 2019 Acc = 99.90
[50] ISCX2012, Binary LSTM 2019 Acc = 99.99
[51] UNSW-NB15 Binary Autoencoder, SVM 2019 Acc = 97.00
[52] BoT-IoT Multiclass FNN 2019 Acc = 98.09
[31] NSL-KDD Binary SRDLM 2020 DR = 99.50
[53] NSL-KDD Multiclass RNN 2020 Acc = 79.00
[54] Kitsune Multiclass Autoencoder 2020 Acc = 83.30
[55] NSL-KDD Multiclass RNN 2020 Acc = 92.18
[56] NSL-KDD Binary CNN 2020 Acc = 86.95
[57] NSL-KDD Multiclass DNN 2020 Acc = 97.64
[58] CIC-IDS2018 Multiclass DNN, RNN, CNN 2020 Acc = 97.38
[59] Varied Dataset Binary CNN 2020 Acc = 99.41
[60] BoT-IoT Multiclass FFN 2020 Acc = 99.80
[61] Multiple Binary CNN and GRU 2020 Acc = 99.42
[62] MedBIoT Multiclass Fast GRNN 2020 F1 = 99.99
[63] SWaT Multiclass CNN 2020 Acc = 98.02
[64] KDD Binary GAN 2020 Pr = 88.80
[65] UNSW-NB15 Binary CNN 2020 Acc = 96.00
[65] UNSW-NB15 Binary ANN 2020 Acc = 97.00
[65] UNSW-NB15 Binary RNN 2020 Acc = 96.00
[66] Mixed Multiclass FNN 2020 Acc = 99.73
[67] Webscope S5 Binary CNN 2020 Acc = 98.36
[68] KDD Binary DNN 2020 Acc = 92.90
[69] NSL-KDD Multiclass DBN 2021 Acc = 97.10
[70] NSL-KDD Multiclass CNN + LSTM 2021 Acc = 90.67
[71] UNSW-NB15 Binary LNN 2021 Acc = 97.54

We studied deep neural network models from 2017 to 2021. Most of the models used
the KDD99 dataset for evaluation. The KDD99 dataset is very old and was not created for
use in IoT networks. As a result, the KDD99 dataset cannot be used to assess an intrusion
detection framework for IoT networks. Many deep learning models for binary classification
were created with accuracy as the only performance metric. Multiclass classification models
show a very poor degree of accuracy. To perform intrusion detection, neither of the models
merged CNN and GRU. This paper used CICFlowmeter [11] to retrieve network features
from four publicly available datasets’ pcap files. These datasets were developed using real
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and simulated IoT networks. We evaluate our proposed model using binary and multiclass
classification. The proposed model was evaluated using accuracy, precision, recall, and
F1 score as performance metrics. The proposed model achieved a high detection rate and
a low false rate.

3. Proposed Model

Recently, convolutional neural networks have shown better performance in voice and
picture recognition. Recurrent neural networks are frequently used in speech understand-
ing, language synthesis, language modeling, and language generation. Both convolutional
neural networks and recurrent neural networks generate interesting results in these areas,
and their use is becoming more popular. Intrusion detection concerns can be more effec-
tively repurposed into convolution neural network problems known as feature mapping.
In this paper, we used a convolution neural network and a gated recurrent neural network.
Our proposed multiclass CNNGRU model is described in Figure 1a, while our proposed
binary class CNNGRU model is shown in Figure 1b. The multiclass model consists of an
input layer, two convolutional layers, two GRU layers, a flatten layer, a fully connected
dense layer, and an output layer. The binary class model consists of an input layer, one
convolutional layer, one GRU layer, a flatten layer, a fully connected dense layer, and an
output layer. The reshaping system sends information to the input layer. The convolution
layer extracts feature characteristics from the input image and maintains the connection
between pixels while also learning new image properties from small squares of input data.
The batch normalization process seeks to equalize all of a neural network layer’s input.
The batch normalization layer normalizes the performance of the convolution layer ahead
of the average pooling layer. The pooling layer enables the enhancement of functionality by
condensing them into sub-maps of robust features. The average pooling layer determines
each patch’s total number of features by averaging the total number of features in each
upgrade around the entire function map.

Overfitting may occur when neural networks have difficulty distinguishing between
valid and invalid results; thus, further performance optimization of the test dataset param-
eters is often required. A dropout layer prevents overfitting by cutting out some training
neurons in the process of model building. The tensor is restructured to provide a flat
operation on a tensor with an element count equivalent to the element count of the tensor,
except the batch size. A flat layer is entirely linked to a dense layer. The dense layer
uses 512 neurons. The number of neurons in the output layer is equal to the number of
classes used for classification. The CNNGRU model was trained, validated, and tested
using six IoT intrusion detection datasets. Determining which features to use is a critical
phase in machine learning. Model improvements known as feature selection require the
identification and selection of those features required to increase prediction. The feature
selection technique minimizes overfitting, accelerates model training, and strengthens
the model’s resistance to test inaccuracies. In this article, we extract important features
from our proposed datasets using a feature selection method known as recursive feature
elimination [72,73]. The feature selection method estimates the overall significance of
features using a random forest classifier. Tenfold cross-validation tests were performed
to ensure that the feature selection model was not suffering from overfitting. The feature
selection algorithm uses the IoT-DS-2 dataset and selects the 48 best features. The IoT-DS-2
dataset was used for feature selection since it contains attack data from all datasets.

We can measure convolution in 1D using temporal access and single-direction kernel
movements. Convolution 1D uses two-dimensional input and output data, which is often
seen in time series data. The input layer received an input vector (48, 1) that contains
48 best features. Two convolution layer blocks were used after the input layer. Each block
consists of a convolution layer, activation layer, and dropout layer. Convolution layers
collect input layer features and compute vector properties for small data samples within
the input. The convolution first layer uses a relu activation function, 64 filters, and kernel
size 8. The second convolution layer uses 128 filters and the relu activation function. Batch
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normalization ensures that the inputs are continuously normalized. The normalization
process substantially reduces the difficulty associated with organizing changes across many
levels. The average pooling layer downsamples feature maps by summarizing features.
We used a dropout layer with a drop value of 0.1 to regularize the training data model and
minimize overfitting. There are two GRU layer blocks. Each GRU block consists of the
GRU layer, activation layer, and dropout layer. The two GRU layers use 512 units. The
activation layer uses the relu activation function, and the dropout layers use a dropout
value of 0.1. The flatten layer converts the tensor to a shape as the tensor components.
Five hundred and twelve neurons are used in the dense layer, while the number of neurons
in the output layer is equal to the number of classes in the dataset.

 
(a) 

 
(b) 

Figure 1. (a) Multiclass CNNGRU model. (b) Binary CNNGRU model.
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Many rounds of training are required to reach the convergence point for deep learning
models. However, the number of training rounds can be minimized by selecting a par-
ticular parameter configuration that allows for further convolution in the training phase,
generating and directing the network structure. Overfitting can be avoided using regu-
larization. We tuned the multiclass model using kernel_regularizer, bias_regularizer, and
activity_regularizer regularization approaches. The binary classification model was trained
using the same hyperparameters. To help in feature learning over time, we assign random
values to the CNN model layers at the beginning. To prevent overfitting, we use L1, L2,
and dropout regularization. To modify optimizer weights, we use adam optimizers and
sparse categorically cross-entropy loss functions.

A key machine learning algorithm variable is the learning rate, which affects the
amount of change each model takes from one iteration to the next. We conducted many
tests with various learning rates for the adam optimizer and determined that 0.0001 was the
optimum learning rate for the greatest detection rate. Finally, we adopted an early stopping
technique to avoid overfitting. The model monitors the validation loss and ends the training
phase if it does not reduce after a specified number of cycles. To ensure the maximum
possible network performance over the monitoring cycle, the epoch value must be changed
before the network accuracy vs. epochs no longer improves. For the proposed model, we
used 50, 100, 200, 500, and 1000 epochs. We chose 100 epochs as the optimum number
of epochs since all trials using the model converged within this time frame. Activation
functions are critical parameters for deep learning algorithms. Convolution, GRU, and
dense layers use the relu activation function. Recurrent sigmoid activation in GRU and
softmax activation is used in the output layer. The batch size is an essential hyperparameter
in deep learning models. A larger batch size can reduce processing time and speed up
the training process across multiple nodes. Bigger batch sizes provide similar training
losses as smaller batch sizes, but larger batch sizes seem to generalize worse for testing
results. For training and testing the proposed model, a batch size ranging from 64 to 128
was determined to be the most optimum option.

3.1. Data Collection

The initial phase includes the management of raw network traffic. This paper used four
publicly available datasets’ pcap files and extracted network features using CICFlowme-
ter [11]. The CICFlowmeter is open-source software that generates CSV files from pcap
data. The CICFlowmeter generates 80 unique network features. The BoT-IoT dataset was
developed by Koroniotis et al. [74]. The testbed environments incorporated five IoT devices
and were used to create a practical smart home architecture. These devices were operated
locally and connected to cloud networks using the node-red scheme, which allowed for
the development of normal network traffic. The new BoT-IoT data collection was shown
in Table 2. There are four attack types, which are further subdivided into ten subtypes. A
comprehensive description of the testbed settings and attacks can be found in the described
article [74]. The newly developed botnet dataset has been made publicly available, and
a link is included in [75]. Kang et al. [76] created a dataset for detecting IoT network
intrusions. The IoT network intrusion dataset was created using a typical smart home
device consisting of a smart home SKT NGU and an EZVIZ Wi-Fi camera. These two IoT
devices are connected to a smart home Wi-Fi router and are used as victim devices. There
are four attack categories and eight subcategories. The dataset for IoT network intrusions
is shown in Table 3. A connection to the newly developed IoT network intrusion dataset is
included in [77].
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Table 2. BoT-IoT dataset instances.

No Category With Redundancy Without Redundancy

0 Normal 105,202 77,511
1 DoS 57,027,372 17,420,085
2 DDoS 37,077,674 18,199,716
3 Scan 1,831,558 256,951
4 Data Theft 6390 6257

Table 3. IoT network intrusion dataset instances.

No Category With Redundancy Without Redundancy

0 Normal 40,073 39,851
1 DoS 59,391 59,391
2 MITM 35,377 32,909
3 Mirai 415,677 366,971
4 Scan 75,265 72,122

The MQTT-IoT-IDS2020 dataset was created by Hindy et al. [78]. From the MQTT
networking platform, this dataset consists of both regular network traffic and brute-force
attacks. The network comprises 12 MQTT sensors, a broker, a device for replicating
a camera stream, and an attacker. The dataset includes the most popular MQTT attacks
and scenarios for analyzing real-world IoT devices. The MQTT-IoT-IDS2020 dataset is
presented in Table 4. The MQTT-IoT-IDS2020 dataset contains four attack categories. The
new MQTT-IoT-IDS2020 dataset can be accessed at [79]. The Stratosphere Laboratory of the
CTU in the Czech Republic created the IoT-23 dataset [80]. There are 20 malicious activities
and 3 non-malicious activities. The IoT-23 dataset was created to provide researchers with
a large and labeled dataset of real-world IoT devices and IoT malware infections to design
a machine learning model. The IoT-23 dataset contains 20 separate network operation
models to prototype various IoT device use cases. This dataset aims to provide the world
with two distinct datasets: one that comprises benign and malicious network capture
and another that only contains benign IoT network capture. The IoT-23 dataset can be
seen in Table 5. The IoT-23 dataset contains nine attack categories. The IoT-23 dataset is
available at [79]. We merged BoT-IoT, IoT Network Intrusion, and MQTT-IoT-IDS2020
datasets to increase the number of attack classes in the dataset. Nine attack classes and
one normal class comprise the new dataset. Table 6 describes the latest dataset known
as IoT-DS-1. The latest IoT-DS-1 dataset can be found at [79]. The BoT-IoT, IoT Network
Intrusion, MQTT-IoT-IDS2020, and IoT-23 datasets were then merged. The new dataset,
named IoT-DS-2, includes 15 attack classes and 1 normal class, as shown in Table 7. The
data collection IoT-DS-2 can be accessed at [79].

Table 4. MQTT-IoT-IDS2020 dataset instances.

No Category With Redundancy Without Redundancy

0 Normal 334,318 167,159
1 MQTT_Bruteforce 2,002,780 2,001,972
2 Scan-A 31,245 29,276
3 Scan-U 33,404 27,843
5 Sparta 1,252,259 1,217,198
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Table 5. IoT-23 dataset instances.

No Category With Redundancy Without Redundancy

0 Normal 4,313,776 226,451
1 Attack 1,716,778 1,699,608
2 Mirai 756 756
3 File Download 8035 7707
4 HeartBeat 12,895 12,648
5 C&C 23,981 20,612
6 Torii 33,858 24,492
7 Port Scan 65,944,863 2,999,999
8 DDoS 20,768,988 4,619,869
9 Okiru 13,718,252 12,908,506

Table 6. IoT-DS-1 dataset instances.

No Category BoT-IoT IoT Net-ID MQTT Total

0 Normal 77,511 - 167,159 244,670
1 DDoS 17,420,085 - - 17,420,085
2 DoS - 59,391 - 59,391

3
MITM ARP

Spoofing
- 32,909 - 32,909

4
MQTT

Bruteforce
- - 2,001,972 2,001,972

5 Mirai - 366,971 - 366,971
6 OS Scan 35,675 - - 35,675
7 Port Scan - - 57,119 57,119
8 Sparta - - 1,217,198 1,217,198
9 Theft 6257 - - 6257

Table 7. IoT-DS-2 dataset instances.

No Category BoT-IoT IoT Net-ID MQTT IoT-23 Total

0 Normal - - - 4,253,672 4,253,672
1 DDoS 17,420,085 - - - 17,420,085
2 DoS - 59,391 - - 59,391

3
MITM ARP

Spoofing
- 32,909 - - 32,909

4 Mirai - 366,971 - - 366,971

5
MQTT

Bruteforce
- - 2,001,972 - 2,001,972

6 Sparta - - 1,217,198 - 1,217,198
7 Theft 6257 - - - 6257
8 Attack - - - 1,699,608 1,699,608
9 C&C - - - 20,612 20,612

10 File Download - - - 7707 7707
11 HeartBeat - - - 12,648 12,648
12 Okiru - - - 12,908,506 12,908,506
13 OS Scan 35,675 - - - 35,675
14 Port Scan - - - 2,999,999 2,999,999
15 Torii - - - 24,492 24,492

3.2. Preprocessing Dataset

When features from pcap files have been extracted and analyzed, the next step is
to label individual dataset instances based on specified criteria. To distinguish between
regular and malicious dataset instances, each dataset has its own set of criteria for evaluat-
ing whether an instance was normal or malicious. Our proposed model can cover all IoT
networks; however, the flow ID, source IP, and destination IP characteristics are unique to
a particular IoT network. As a result, these features were removed from all datasets.
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We filled NaN values with 0 in all datasets. Redundant instances were generated by
CICFlowmeter when the pcap file was converted to CSV files. These duplicate instances
were removed from all datasets. After removing redundant instances, we may use previ-
ously unseen data to evaluate the model performance throughout the testing phase. We
normalize the input feature columns within a specified range (−1, 1) to remove extreme val-
ues and significantly accelerate the computations. A non-numeric column is converted to
a numeric column. An anomaly is represented by a value of 1, whereas a normal value
is represented by 0 in binary classification. The multiclass label encoded 0 to 3 for the
BoT-IoT dataset, 0 to 4 IoT for the network intrusion detection dataset, 0 to 4 for the
MQTT-IoT dataset, and 0 to 9 for the IoT-23 dataset. The multiclass-encoded label in these
datasets represents normal network traffic, and the rest-encoded label represents the desire
attack type.

We merged BoT-IoT, IoT network intrusion, and MQTT-IoT-IDS2020 datasets to in-
crease the number of attack classes in the dataset. The updated dataset contains nine attack
classes and one normal class. Table 6 describes the latest dataset known as IoT-DS-1. The
IoT-DS-1 dataset was classified into normal and attack categories using a multiclass labeling
system ranging from 0 to 9. The BoT-IoT, IoT network intrusion, MQTT-IoT-IDS2020, and
IoT-23 datasets were then combined. The new dataset, named IoT-DS-2, includes 15 attack
classes and one normal class, as shown in Table 7. The IoT-DS-2 dataset was classified
into normal and attack categories using a multiclass labeling scheme ranging from 0 to
15. We made class weights more distinctive to better expose the classifiers to each class
since there is a clear imbalance in the training set. Google Colab Pro was used to develop
the models, which included the TensorFlow framework and Keras implementations. In
order to perform the classification, the data are first run through the preprocessing pro-
cess and are then split into three sets: training, validation, and testing. The dataset was
initially split into 80% for training and 20% for testing. The training set is then subdivided
into two groups: 80% for training and 20% for validation, with each group being split in
a stratified way.

4. Evaluation Results

The proposed model accuracy and loss were measured for training and validation sets
at each epoch value. This allows us to evaluate whether the model has been sufficiently
trained to differentiate between different kinds of anomalies. The gradient is measured
from the loss and is used to change the neural network weights. TensorFlow has a variety
of loss functions that may be used to tackle a wide variety of issues. We used the adam
optimizer and a sparse categorically cross-entropy loss function. The proposed model loss
during training and validation using the IoT-DS-2 dataset is represented in Figure 2a, and
model accuracy during training and validation using the IoT-DS-2 dataset is represented in
Figure 2b. The early stopping technique will stop the training phase if the validation loss
does not decrease after a certain number of iterations, reducing the overfitting issue. We
used 100 epochs, a batch size of 64, and a patience of 5 iterations to train the proposed model.
The average accuracy was 99.20 for training, 99.30 for validation, and 99.38 for testing
using the IoT-DS2 dataset. The accuracy did not improve by increasing the epochs beyond
100. Consequently, running a model over many epochs results in the model overfitting to
the training data. The effectiveness of the CNNGRU model is evaluated using accuracy,
precision, recall, and F1 score evaluation metrics. The accuracy of a system is expressed as
the proportion of correctly identified instances to the total number of identified instances.
Precision is defined as the ratio of correctly categorized items to the total quantity of
TP (true positive) and FP (false positive). The recall value is calculated by dividing the
total number of TP measurements by the total TP and FN (false negative) measurements.
Precision and recall are combined to form the F1 score, which is the harmonic mean of
precision and recall. High F1 scores indicate excellent precision and recall.

Accuracy =
(TP + TN)

(TP + FP + TN + FN)
(1)
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Precision =
TP

(TP + FP)
(2)

Recall =
TP

(TP + FN)
(3)

F1 Score = 2 ×
(Precision × Recall)
(Precision + Recall)

(4)

Accuracy = (TP + TN)(TP + FP + TN + FN)
Precision = TP(TP + FP)

Recall = TP(TP + FN)
F1 Score = 2 × (Precision ×  Recall)(Precision + Recall)

  

(a) Loss (b) Accuracy 

Figure 2. Multiclass CNNGRU model loss and accuracy in training and validation.

4.1. Multiclass Classification

The dataset was classified using a multiclass classification as either normal network
traffic or the attacks listed in Tables 2–7. It takes fewer than 100 epochs to complete the
training and validation processes. The early stopping technique with a patience of five
iterations reduces overfitting. Training and validation loss decreased gradually up to
100 epochs. The average training loss level is 0.0049, while the average validation loss is
0.0039. This evidence demonstrates that our proposed CNNGRU model will accurately
classify the different types of cyberattacks found in datasets or real-world IoT networks. The
BoT-IoT, IoT network intrusion, MQTT-IoT-IDS2020, IoT-23, IoT-DS-1, and IoT-DS-2 datasets
are used to demonstrate the multiclass CNNGRU model performance. The BoT-IoT dataset
consists of three attack categories and a normal category. The model performed well for
normal and malicious categories. The theft class has a limited number of instances, which
indicates why the model received a high FNR for the theft class. Next, we used the IoT
network intrusion dataset to evaluate the model. The model performance for the IoT
network intrusion dataset is at the moderate level for attack categories. A high false nega-
tive rate was accomplished for Mirai and scan categories. The proposed model achieved
a high detection rate and low false positive and false negative rates for normal and all attack
categories in the MQTT-IoT-IDS2020 dataset. The CNNGRU model’s capacity to classify
large numbers of classes was evaluated using the IoT-23 dataset. The proposed model
achieved a high detection rate for normal and all attack classes except the C&C attack class.
By combining the BoT-IoT, IoT Network Intrusion, and MQTT IoT-IDS2020 datasets, the
CNNGRU model capacity to identify large numbers of classes was also evaluated.

The multiclass classification for BoT-IoT, IoT network intrusion, MQTT-IoT-IDS2020,
IoT-23, IoT-DS-1, and IoT-DS-2 datasets is presented in Table 8. This table shows the
average performance of the CNNGRU model for each dataset. The proposed model
achieved excellent performance for all datasets except the IoT intrusion detection dataset.
The highest accuracy, 99.92%, was measured for the BoT-IoT dataset. The performance of
the CNNGRU model when applied to the IoT-23 dataset is summarized in Table 9. The
average accuracy for the IoT-23 dataset was 99.88%. The instances of Mirai and Okiru were
correctly detected and classified. The categories of File Download and HeartBeat have
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the lowest detection rate of all the categories. Table 10 summarizes the CNNGRU model
performance using the IoT-DS-1 dataset. The false positive rate was low for all classes,
but the false negative rate for MITM, Mirai, and Scan attacks was high compared to other
attacks. To check the model capability for several attack classes, we combined BoT-IoT,
IoT network intrusion, MQTT IoT-IDS2020, and IoT-23 datasets. The new dataset was
named IoT-DS-2, which contains 15 attack classes and a normal class. Table 11 shows the
CNNGRU model performance utilizing the IoT-DS-2 dataset. The detection rate for the
normal class was measured at 99.56%, and all malicious categories also had high detection
rates except MITM, Mirai, Theft, C&C, and HeartBeat. MITM had the lowest detection rate
of 64.25%.

Table 8. Average multiclass classification accuracy, precision, recall, and F1 score.

Dataset Accuracy% Precision% Recall% F1 Score%

BoT-IoT 99.92 99.91 99.91 99.91
IoT NID 96.77 97.34 96.77 96.91
MQTT 99.91 99.90 99.90 99.90
IoT-23 99.88 99.89 99.88 99.88

IoT-DS-1 99.10 99.32 99.10 99.15
IoT-DS-2 99.38 99.49 99.38 99.41

Table 9. IoT-23 multiclass classification.

Class Precision% Recall% F1 Score%

Normal 99.82 99.26 99.54
Attack 99.92 99.93 99.93
Mirai 100.00 100.00 100.00

File Download 95.44 99.75 97.55
HeartBeat 81.24 99.96 89.64

C&C 91.52 90.70 91.11
Torii 99.96 99.98 99.97

PortScan 99.99 99.99 99.99
DDoS 99.99 99.99 99.99
Okiru 100.00 100.00 100.00

Table 10. IoT-DS-1 multiclass classification (BoT-IoT, IoT network intrusion, and MQTT-IoT-
IDS2020 datasets).

Class Precision% Recall% F1 Score%

Normal 99.50 99.78 99.64
DDoS 99.99 99.96 99.97
DoS 99.74 99.38 99.56

MITM ARP Spoofing 60.61 95.93 74.30
MQTT Bruteforce 99.85 99.88 99.87

Mirai 99.54 93.20 96.27
OS Scan 99.94 99.87 99.91

Port Scan 80.35 93.55 86.45
Sparta 99.85 99.84 99.84
Theft 100.00 99.76 99.88
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Table 11. IoT-DS-2 multiclass classification (BoT-IoT, IoT network intrusion, MQTT-IoT-IDS2020, and
IoT-23 datasets).

Class Precision% Recall% F1 Score%

Normal 99.56 99.36 99.46
DDoS 99.99 99.99 99.99
DoS 99.70 99.40 99.55

MITM ARP Spoofing 64.25 97.78 77.55
Mirai 99.58 93.89 96.65

MQTT Bruteforce 99.85 99.74 99.80
Sparta 99.53 99.50 99.52
Theft 98.78 99.28 99.04

Attack 99.66 99.90 99.78
C&C 96.15 91.55 93.79

File Download 96.12 99.50 97.78
HeartBeat 90.71 99.81 95.04

Okiru 99.99 100.00 99.99
OS Scan 99.94 99.90 99.92

Port Scan 99.99 99.99 99.99
Torii 99.98 99.96 99.97

4.2. Binary Classification

The dataset was classified using binary classification, either normal network traffic
or an anomaly. The classification of normal and anomaly traffic inside each subcategory
achieves a high accuracy, precision, recall, and F1 score of greater than 99.50%, which
signifies low FP and FN forecasts. We used the IoT-DS-2 dataset for binary classification.
The reason for using the IoT-DS-2 dataset for binary classification is that the IoT-DS-2
dataset contains all malicious network traffic from the BoT-IoT, IoT network intrusion,
MQTT-IoT-IDS2020, and IoT-23 datasets. In comparison to multiclass classification, the
binary CNNGRU model required less time to train and validate. Early stopping and
dynamic learning rates track the number of training epochs during the training phase,
improving the performance of the adam optimization method. The binary CNNGRU model
used the same tuning parameter as multiclass classification. Table 12 shows confusion
matrices of the binary classification of the IoT-DS-2 dataset. A binary CNNGRU model
with a limited amount of wrongly identified instances has a high value of precision, recall,
and F1 score. The attack category HeartBeat achieved low accuracy, precision, recall, and F1
score. Eighteen malicious network flows were classified as normal network flows, while 43
normal network flows were classified as malicious network flows. The evaluation matrices
of the binary classification of the IoT-DS-2 dataset are presented in Figure 3. The accuracy of
binary classification was measured at 99.50% or higher for all malicious categories, except
File Download and HeartBeat.

4.3. Discussion and Comparison of Results

Several recent advances in deep learning technology have shown their capacity to
recognize trends in various research fields. The CNNGRU model results are related to
previous study results in this segment. Our proposed model performed substantially
better at detecting anomalies in various IoT networks. We have developed a neural net-
work model that utilizes convolutional and gated recurrent units to identify anomalies
in IoT networks. Our effective architecture is based on CNN and GRU models. The CN-
NGRU model is evaluated using the BoT-IoT, IoT network intrusion, MQTT-IoT-IDS2020,
IoT-23, IoT-DS-1, and IoT-DS-2 datasets. Numerous experiments have been performed
with the primary goal of binary and multiclass classification of attack categories. For binary
classification, we used the IoT-DS-2 dataset. The IoT-DS-2 dataset is used since it includes
all malicious network traffic from the BoT-IoT, IoT network intrusion, MQTT-IoT-IDS2020,
and IoT-23 datasets. The confusion matrices of the binary classification are presented in
Table 12. Figure 3 shows the accuracy, precision, recall, and F1 score of binary classifica-
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tion. In Table 13, the CNNGRU model binary classification results are compared to those
previously presented in other research articles. Our proposed binary classification model
performs better than other deep learning models on all performance measures (accuracy,
precision, recall, and F1 score).

Table 12. Confusion matrices binary CNNGRU model.

Normal (Predicted) DDoS (Predicted) Normal (Predicted) DoS (Predicted)

Normal (True) 45,450 0 Norma l(True) 45,243 18
DDoS (True) 0 45,056 DoS (True) 9 4059

Normal (Predicted) MITM (Predicted) Normal (Predicted) Mirai (Predicted)

Normal (True) 45,335 0 Normal (True) 45,371 0
MITM(True) 0 1991 Mirai (True) 1 18,354

Normal (Predicted) MQTT-BF (Predicted) Normal (Predicted) Sparta (Predicted)

Normal (True) 45,223 5 Normal (True) 45,156 73
MQTT-BF (True) 10 10,164 Sparta (True) 49 16,470

Normal (Predicted) Theft (Predicted) Normal (Predicted) Attack (Predicted)

Normal (True) 45,241 6 Normal (True) 45,332 12
Theft (True) 0 1265 Attack (True) 0 3723

Normal (Predicted) C&C (Predicted) Normal (Predicted) FileDWNLD (Predicted)

Normal (True) 45,102 36 Normal (True) 45,117 8
C&C (True) 9 4558 FileDWNLD (True) 3 1649

Normal (Predicted) HeartBeat(Predicted) Normal (Predicted) Okiru (Predicted)

Normal (True) 45,152 30 Normal (True) 45,433 2
HeartBeat (True) 3 2555 Okiru (True) 1 30,455

Normal (Predicted) OS Scan (Predicted) Normal (Predicted) Port Scan (Predicted)

Normal (True) 45,682 0 Normal (True) 45,435 0
OS Scan (True) 0 27,265 Port Scan (True) 3 30,453

Normal (Predicted) Torii (Predicted)

Normal (True) 45,235 6
Torii (True) 3 4945

Figure 3. Performance metrics binary CNNGRU model.
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Table 13. Binary classification comparison.

Article Model Accuracy% Precision% Recall% F1 Score%

[19] CNN 94.54 95.65 90.74 93.00
[56] CNN 86.95 89.56 87.25 88.41
[65] ANN 96.00 95.00 100.00 99.00
[68] DNN 92.70 99.90 91.20 95.40

Proposed CNNGRU 99.96 99.90 99.95 99.93

We classify IoT network traffic into four, five, ten, and sixteen categories using multi-
class classification. Numerous publications in the literature concentrated exclusively on
binary classification when designing an intrusion detection model using deep learning.
Table 8 summarizes the proposed model average accuracy, precision, recall, and F1 score
for multiclass classification. Our proposed model achieved high accuracy, precision, recall,
and F1 score for BoT-IoT, IoT network intrusion, MQTT-IoT-IDS2020, IoT-23, IoT-DS-1, and
IoT-DS-2 datasets. The CNNGRU model multiclass classification for the Bot-IoT dataset
findings contrast with those previously published in other papers in Table 14. Our pro-
posed multiclass classification model outperforms other deep learning models in accuracy,
precision, recall, and F1 score. Previously referenced publications focused mainly on binary
classification when creating an intrusion detection deep learning platform. We categorize
IoT network traffic into four, five, ten, and sixteen classes using multiclass classification. In
all datasets, our proposed CNNGRU model outperforms all existing implementations.

Table 14. Multiclass classification comparison.

Article Model Accuracy% Precision% Recall% F1 Score%

[19] CNN 98.43 98.00 98.00 98.00
[21] CNN 99.20 85.20 88.25 91.16
[52] FFN 98.07 99.03 99.03 99.03
[56] CNN 86.00 60.00 56.00 54.00
[60] FFN 99.80 99.79 99.79 99.79
[63] CNN 98.02 97.71 98.39 98.05
[66] FFN 99.73 99.86 98.67 98.77
[67] LSTM 99.62 98.78 97.20 97.98

Proposed CNNGRU 99.92 99.91 99.91 99.91

5. Conclusion

The effective application of deep learning has shown its capacity to recognize trends
for various research fields. There are constantly more novel and evolving methods of
launching cyberattacks. A network intrusion detection model for IoT networks has been
proposed. It is built on a deep learning model that includes a convolutional neural network
and gated recurrent units. We tested model effectiveness for multiclass and binary classifi-
cation on six datasets of real-world network traffic. Our proposed multiclass and binary
classification models demonstrated high accuracy, precision, recall, and F1 score compared
to current classification techniques and recent deep learning models. The obtained results
demonstrate the suggested technique’s effectiveness.

In the future, we will investigate these attacks utilizing a variety of deep learning
models and generative adversarial networks and compare the results to the current model.
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