(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 1, 2022

Towards a Low-Cost FPGA Micro-Server for Big
Data Processing

Mohamed Abouzahir®
Ecole Supérieure de Technologie de Salé
Laboratoire LASTIMI
Université Mohammed V de Rabat

Rachid Latif?

Ecole Nationale des Sciences Appliquées d’Agadir
Laboratoire d’Ingénierie des Systemes et Technologies de 1’Information (LISTI)

Université Ibn Zohr, Agadir

Abstract—The development of big data in the era of data
explosion and the growing demand for micro-servers in place of
traditional servers to adapt to lightweight tasks in recent years
has put into question how to integrate and make use of these
two important domains. During the same era, CPU performance
growth has reached a certain maturity. In order to surpass
these issues and to reach high performances computing, a new
trend now is to use multiple processing units or heterogeneous
components in micro-servers to reduce computational complexity.
The implementation of Big Data processing algorithms using
embedded heterogeneous architectures rises a new challenges
due to constraints of the used architecture-based system on chip
which require a special attention and imposed new demands to
our works. In this article, we focus on using embedded FPGA
accelerator to give a solution to this problem. Precisely, we will
attempt to prototype a micro-server for the processing of big
data on FPGA and compare its performances with a high-end
GPGPU using existing benchmarks. The implementation on the
FPGA is done using a High-Level Synthesis based-OpenCL (HLS)
instead of the traditional description language. The obtained
results shows that FPGA is an interesting alternative and can
be a promising platform to design a micro-server when it comes
to process a hug amount of data, in particular with the emerging
technologies for FPGA programming using HLS approach and
by adopting the OpenCL optimization strategies.

Keywords—Arria 10 FPGA (Field Programmable Gate Arrays);
GPGPU (General Purpose Graphics Processing Unit) ; big data;
parallel computing; (HLS) High-Level Synthesis

I. INTRODUCTION

BIG data, produced from online transactions, emails,
videos, audios, picture, posts, search interrogation, medical
records, social networking interface and science applications,
has become one of the most important domain in the informa-
tion technology industry [1]. According to IBM (2015), around
2.5 nonillion (10 to the power of 30) bytes of data is created
every day. The overwhelmingly large amount of data leads to
challenges including storage, analysis and fetch. To define the
properties of big data, Doug Laney (2001) has proposed the
3Vs (Volume, Variety, Velocity) [2]. In current hypercompeti-
tive industry environment, several challenges related to big data
processing are imposed on the companies, which include to
meet with the need for speed, to understand the data, to address

Khalifa Elmansouri2

Institut Supérieur des Sciences de la Santé (ISSS)
Laboratoire des Sciences et Techniques de la Santé
Université Hassan ler, Settat

Mustapha Ramzi*
Ecole Supérieure de Technologie de Salé
Laboratoire LASTIMI
Université Mohammed V de Rabat

the data quality, to display significant results and to distin-
guish the outliers. There is growing interest in FPGA (Field
Programmable Gate Array) as a solution. FPGA has always
been considered as the generation of integrated circuit that
could replace ASIC (application specific integrated circuit).
Able to be fully reconfigured by user, an FPGA is commonly
claimed higher performance, shorter time to market, lower
cost, high reliability, less needs for long-term maintenance.
Being reprogrammable results is the main difference between
an FPGA and an x86 processor: the FPGA does not waste
compute cycles doing unnecessary processing. In other words,
FPGA excels for doing one simple and repetitive task like
pattern matching. This great advantage of FPGA has catalyzed
investigations on its potential usage in big data processing. One
of the most important assets of FPGA is its exceptional ability
in the computation of finegrained tasks in clock-cycle basis.
This ability is extremely interesting especially regarding Big
Data management. However, this high-potential acceleration
constrains drastically the possibilities of implementation. After
having chosen the FPGA design, the aim is to reproduce this
precise organization of the blocks matrix using OpenCL code
and the IntelFPGA OpenCL SDK, which generates a board
organization and the full setups given an OpenCL code. In this
article, we investigate the challenges for speeding up Big Data
algorithms and provide a roadmap for further improvement.
Ultimately, our aim is seamless integration of FPGAs to build
a micro-server for Big Data processing. Many recent research
has been conducted to strengthen the niche of FPGA in big
data business [3], [4], [5]. However, the current available tool
sets to build FPGAs are still complex. On the other hand,
GPUs are leveraged well with the implementation of CUDA
language. Besides, GPUs where instructions are executed in
fixed instruction set are more flexible; they are also more
adapted for floating point arithmetic.

The paper is organised as follow: Section II present the
related work and our contribution, Section III presents our
methodology applied for performance evaluation. In Section
IV, we will give a description of the test benchmarks im-
plemented in our work. Section V presents the hardware
specification as well as the software tools and the adopted par-
allel programming technology. In Section VI we will present

www.ijacsa.thesai.org

874 |Page



(IJACSA) International Journal of Advanced Computer Science and Applications,

the algorithms implementation as well as the performance
evaluation. Section VII gives a holistic overview and conclude
the work

II. RELATED WORK AND CONTRIBUTION

Authors in [6] presented an FPGA-Accelerated Big Data
implementation. The proposed system is based on the pop-
ular Apache Spark framework on the software side, and on
an OpenCAPI-based POWERY platform with Xilinx VU37P
FPGA on the hardware side. Their system is able to generate
a high-performing FPGA circuit from very high-level code
descriptions in Spark.

The work in [7] present a case study of accelerating Apache
Spark using re-configurable architecture. The authors proposed
a framework to integrate FPGA accelerator into a Spark cluster.
The Spark tasks are accelerated on the FPGA using Python.
The performance results are evaluated with a case study of 2D
FFT algorithm acceleration. The obtained results showed that
FPGA based Spark implementation acquires 1.79x speedup
than a conventional CPU implementation.

The author in [8] proposed the use of distributed databases
and high-performance computing architecture in order to ex-
ploit multiple re-configurable computing and application spe-
cific processing. The proposed a 4-layer general architecture
for smart agriculture, which is able to collect, store and
process data from [oT nodes, integrate external data from other
sources and allows efficient treatments of data coming from
several sources with a cloud high-performance heterogeneous
architecture.

A collaborated research team from George Mason Uni-
versity and University of California, guided by Netshatpour
[3] has discovered a significant speedup with respect to K-
means, KNN, SVM and Naive Bayes while implementing the
mentioned machine learning algorithms in a Hadoop Platform
with Intel Atom C2758 and Xeon ES as master nodes and
several Xilinc Zynq devices as slave nodes.

Besides, [4] have presented an FPGA-based hardware

accelerator platform for big data matrix processing. A com-
parison of performance has been conducted between an Intel
17-4770 CPU (3.4GHz) and an FPGA of the model VC707
(125 MHz).
Furthermore, a recent research published by the University
of Science and Technology of China [5] has presented a
software-defined operating system framework for FPGA based
accelerator with the implementation on Xilinc Zynq FPGA.

On the other hand, ITRS Semiconductor roadmap foresees
that hundreds of processors would be the base for the next
generation embedded multicore designs. Recently, Microsoft
in 2015 collaborated with Bing to investigate the use of FPGA.
The project, also known as Project Catapult, has showed an
improvement of nearly a factor of two of the operations per
second in a critical component of Bing search engine [9].

With the demand for high speed network and computing,
speed and parallel algorithms have become essential tools for
development. Many of these operations were performed by
a general purpose processor. But now days due to the avail-
ability of FPGAs, many researchers try to implement various
algorithms on FPGAs more efficiently. FPGAs are often used

Vol. 13, No. 1, 2022

TABLE I. PERFORMANCE METRICS

Metrics used for FPGA and GPU Additional metrics for FPGA

% of DSP blocks
% Logic Elements
% of Memory Block

Execution time

Memory bandwidth

as hardware accelerators. Our work aimes to implement big
data benchmarks and to compare the performance of GPUs and
FPGAs when it comes to big data processing. The main idea of
our targets is to construct a scaled up platform of FPGA-based
micro-server for big data processing. To date, among all the
current research and works in the state of the art, none of them
targets the application of FPGA in big data processing. To our
knowledge, this is the first work to evaluate and optimize big
data algorithms on a dedicated architecture by adopting the
high level synthesis approach.

III. PERFORMANCE EVALUATION METHODOLOGY
A. Performance Metrics

The FPGA and the GPU we plan to use does not have the
same I/O maximum speed, which will result in a comparison
error if the slowest computing unit is limited by its I/O
maximum bandwidth. Therefore, for each algorithm and each
implementation, we plan to save the different metrics during
the computing of the same series of test files on the two
components. These metrics will then be compared by being
put into charts and analysed.

For the GPU: We use Nvvp which is a built-in tool of
Nsight to evaluate the performance of GPU. This tool allows
us to measure the running time and the throughput of each
function implemented, hence, allows us to know which parts
of the code can be improved. For FPGA: Assuming that
there is still no benchmark available regarding FPGA for the
algorithms we decided to propose our own implementation.
There is no implicit way of evaluating their performances
precisely. Therefore, our study is based on a data-processing
speed comparison between an FPGA and a GPU, the last being
already used for massive parallel computing. The performances
of our algorithms will also be verified by the IntelFPGA SDK
for OpenCL, which includes an optimization report. The Table
I gives some important metrics evaluated in our results.

B. Multiobjective Optimization and Pareto Optimality

FPGA programming is about finding algorithms that op-
timize some aspects of the performance regarding different
limited resources. Therefore, there is no unique solution to
those problems, and the optimal computation depends on the
factors that we want to optimize. No single FPGA implemen-
tation for all benchmarks can be an optimal <P, E, A> with
P for Performance, E for Energy and A for Chip Area [10].
Therefore, with N benchmarks each being potentially individu-
ally implemented Pareto like with numerous configurations the
automatic optimization variations on concurrency E against A
is needed.

www.ijacsa.thesai.org

875 | Page



(IJACSA) International Journal of Advanced Computer Science and Applications,

TABLE II. EXECUTION OUTPUT AND DATASET STATISTICS

Average path distance 3.692507
Network diameter 8
Global efficiency 0.306578

Clustering coefficient 0.632353

Transitivity % 0.000073

Betweenness centrality 4051.734470

Closeness centrality 0.261441
Degree Distribution 0.023026
Pearson correlation coefficient -1.536665

C. Graph Measures Results

The implemented big data algorithms were tested on the
Stanford Large Network Dataset Collection provided by SNAP
(Stanford Network Analysis Project) [11]. We have executed
our algorithms on the dataset consisting of <circles> (and
<friends lists>) from Facebook, which can be represented by
an undirected graph of 4039 vertices and 88234 edges. Table
II represent the execution outputs of the created graph. We
have implemented the graph using C language and produce
the algorithms to measure the dataset statistics: the Average
path distance, Network diameter, Global efficiency, Clustering
coefficient, Transitivity, Betweenness centrality, Closeness cen-
trality, Degree distribution and Pearson correlation coefficient.

D. Test-bed Setup

To evaluate the OpenCL FPGA implementation, we used a
host computer, operating at 2.5 GHz under CentOS Linux 7.0
with a 32 GB RAM, with FPGA board mounted on the PCle
slot. We used the De5a-Net board embedding the IntelFPGA
Arria 10, Fig. 1 shows the test-bed setup.

IV. ALGORITHM DESCRIPTION
A. K-means

K-means is a popularly-used algorithm for clustering. The
aim of clustering is to divide the given set of data X composed
of n points into partition {C;}1<;<x such that points in
each subset are similar to each other; otherwise, points from
different groups are dissimilar [12]. The similarity is defined
by a distance function; therefore, clustering task is able to
be interpreted quantitatively as minimizing the cost function
desired by user, which is normally formulated as below:

ex(X,C) = min(D(x;,c;)) (1)
i=1

where c; is the center of subset C

For K-means, we set the distance D (z,y) by the square
of Euclidean distance ||z —y||? (this is not a metric, because it
does not have triangular inequality property). Hence, K-means
cost function is defined by:

n
ex(X,C) = min ||z; — ¢;||? 2
{(X,0) =37 min o — o @

i=1
Given a set of data points, a clustering algorithm aims to
the similarity which is defined using distance measure. In our

Vol. 13, No. 1, 2022

work, the Euclidean distance is utilized. Basically, we start by
choosing K points called centroids randomly among the given
points then form K clusters, each of which contains a centroid
and the points that accept this centroid as the nearest one.
We gradually update these centroids by calculating the center
of mass in each group. This algorithm terminates when the
number of iterations exceeds a chosen number or the change
after each iteration is less than a chosen threshold

1) Lloyds heuristic algorithm for Kmeans: The Lloyds
heuristic algorithm [13] for clustering high-dimensional data is
usually described by 4 steps. Firstly, stop condition is defined
as following: algorithm terminates after exceeding a number
of loops or whenever the difference of e (X; C) between two
consecutive loops is less than a real positive threshold r given.

e  Step I: Initialize k temporary centroids. Start loop of
N iterations:

e Step 2: For each x in given data set, search for the
nearest centroid ¢ from x and assign x to this cluster.

e  Step 3: For each cluster C;, calculate the new centroid
of C; by following formula :

ci:éZx 3)

v zecy

e  Step 4: Calculate the new value of e, (X; C?, then the
difference A = e (X;0)™" — ex (X;C)”. If A is
smaller than r, return the contemporary assignment
and end the loop.

2) Initialization Method.:

a) Method 1 (Forgy [I4]): : Choose arbitrarily k
points from data set, this method gives us no guarantee about
how close the cost function will be to the global minimum.
Therefore, to increase the chance to get well-accepted result,
we repeat this initialization 1 times and pick out which gives
the best output.

b) Method 2 (K-means++): : This method guarantees
that:
Elex] € 8(2+1nk)e

where e is the global minimum, hence allows us to control the
performance of heuristic algorithm.

Algorithm 1 K-means++

Choose ¢; uniformly from data set: C' + + = {c; }
for i =2 to k do
Choose ¢; = v € X with the probability
p(r) = LECED
> D2(y,C++)

end

B. Sorting Network

One of the commonly used operations in high speed data
processing is data sorting. A sorting network consists of
two types of items: comparators and wires. The wires are

www.ijacsa.thesai.org

876 |Page



(IJACSA) International Journal of Advanced Computer Science and Applications,

thought of as running from left to right, carrying values (one
per wire) that traverse the network all at the same time.
Each comparator connects two wires. When a pair of values,
traveling through a pair of wires, encounter a comparator, the
comparator swaps the values if and only if the top wire value
is greater than the bottom wire value. Sorting networks differ
from general comparison sorts in that they are not capable
of handling arbitrarily large inputs, and in that their sequence
of comparisons is set in advance, regardless of the outcome
of previous comparisons. This independence of comparison se-
quences is useful for parallel execution and for implementation
in hardware. Some well-known methods to construct a sorting
network can be listed such as Batcher odd-even merge sort
[15], bitonic sort [16], Shell sort [17] and the Pairwise sorting
network [18], whose depth efficiency is O(log?(n)). Basically,
the sequential sorting algorithm requires at least comparisons.
To boost the performance on treating massive volume of
data, some specified algorithms are chosen to be parallelized
depending on their characteristics (data dependency, device
architecture, methods of communication, network topology,
etc.). The most commonly used sorting algorithm is Bubble
sorting. For efficient and reduced operations implementation
of sorting, [15] proposed a technique of sorting using sorting
networks.

1) Bitonic Sort Algorithm: The bitonic sort [19] is a
divide and-conquer comparison sort usually implemented with
recursion. Keys are first ordered into bitonic sequences and are
then sorted using a bitonic merger. The number of comparators
required can be reduced by a factor of log? (V) by combining
the perfect shuffle with bitonic sorting. This sort fits the SIMD
(single instruction multiple data) model because it is readily
implemented in hardware using a parallel sorting network.
Given sufficient hardware, this sort is capable of achieving
0] (log2 (N )) performance. A sequential, recursive version of
the bitonic sort with running time O (N log? (N )) is used
on the microprocessor. The FPGA implementation uses a
visualized, parallel sorting network. Both implementations sort
in-place and require the input key quantity to be a power of 2;
however, on the FPGA, we were able to use the same SIMD
controller to schedule keys for an eight input sorting network

Vol. 13, No. 1, 2022

7
T
i
T
o

L]

T

i

CECECEC R NS N

Fig. 2. Bitonic Sorting Network Illustration .

and a four input sorting network simultaneously. This allowed
the use of all six memory banks. Bitonic sortings goal is to
sort a bitonic sequence (a sequence (a,) is called bitonic if
and only if there exist an unique index 7 such that for all
integer m, if a,,; G415 ---; @mys are monotonically increasing
(or decreasing), then @y, 1i+1; -..; @m42; Must be monotonically
decreasing (or increasing)), which is easy to be parallelized and
applied on hardware or software. For an arbitrary sequence, we
can sort the first half of sequence in increasing order and the
other in decreasing order, this transforms the sequence into a
bitonic sequence in order to apply bitonic sort. For each ¢ from
1 to n = 2, match two elements z; and x; /2 into a pair and
swap them to form a pair in order (min; max). Consequently,
we obtain two bitonic sequences whose lengths are a half of
the given one (bitonic property is invariant by step 1) and
also every element in the first half is smaller than every the
second half. Apply recursively this procedure to each of two
sub sequences until the length of sequence is less than 2.

C. Correlation Algorithms

Correlation algorithms such as Pearson [20] and Spearman
[21] measure the dependence between variables. Popular appli-
cations may include calculating the relationship between age
and number of hours spent watching TV, or the relationship
between product sales and temperature. Assuming that com-
parisons and simple operations are both done in time O (1),
Pearson and Spearman correlations are done respectively in
time O (n) and O (nlog (n)). The Pearson correlation coeffi-
cient is given by the formula (4), assuming that a and b are

www.ijacsa.thesai.org

877 |Page



(IJACSA) International Journal of Advanced Computer Science and Applications,

two zero-mean real valuad random variables.

plan) = 20 @
Uaa O’b

where F (a,b) is the cross-correlation between a and b, and
o2 =F (az) and 07 = E (bz) are the variance of a and b
respectively. It is more convenient to work with the squared
pearson correlation coefficient given by (5)

2 E 2 (aa b)

p~ (a,b) 2,02 ®
The squared Pearson correlation coefficient give an insight
about the strength of the linear relationship between two
random variables. When p? (a,b) = 0, then two random
variables a and b are uncorrelated. When the value of p? (a, b)
is near to 1, then a and b are said to be correlated. The squared
Pearson correlation coefficient detects only linear dependencies
between the two variables a and b. Indeed, If ¢ and b are
independent, then p? (a,b) = 0, but the converse is not true.
The Pearson correlation coefficient p,, is defined according to
equation 6:

N
i1 G4, b;
Pp = Lizy (6)

N N
>t azz D1 bi2

The Spearman correlation coefficient p is calculated in the
same manner as p,, except that p, is calculated after both a
and b have been rank transformed to values between 1 and
N (Equation 7). When calculating p,, a fractional ranking is
used, which means that the mean rank is assigned in case of
ties. For example, suppose that the two smallest numbers of a
are equal, then they will be both ranked as 1.5 (frac[l + 2]2).
A mean centering is first performed (by subtracting N/2 + 1/2
from each of the two ranked vectors).

N
0y = D i1 @i bir
s =
N 0,2 N b2
Ei:l 1,7 1

=1 ",r
V. HARDWARE SPECIFICATION

@)

A. Field Programmable Gate Arrays

1) Arria 10 Architecture: As a dedicated architecture, We
used the Arria 10 FPGA as a target platform for our algorithm
implementation Fig. 3. Arria 10 is one of the latest chip
produced by IntelFPGA delivering the highest performance at
20 nm. Arria 10 FPGA is a low power embedded architecture
up to 40% lower power than previous FPGAs generation. It
allows up to 1500 GB/s floating-point operation with DSP
blocks. The system clock is 100 MHz. The chip also includes
a Dual-Core ARM operating at 1.5 GHz. Table III shows
the available resources in terms of logic elements, DSP and
memory blocks of the Arria 10 FPGA.

2) High Level Synthesis: The Arria 10 FPGA programming
is done using OpenCL based High Level synthesis [22]. This
is to achieve an efficient and fast parallel implementation of
the algorithm on FPGA. OpenCL (Open Computing Language)
is the first open, royalty-free, unified programming model for
accelerating algorithms on heterogeneous systems. Based on

Vol. 13, No. 1, 2022

QUL TCaNL I o [ oori- [l ook [l corie
SRAM A SRAM B SRAM C SRAM D
L

was wa wa Ims Mini USB
Connector

DDR4 X84 4
SDRAM A -

DDR4 X64
SDRAM B —

Flash Memory X32
(Two Chips) [

—
X16 QSFP+x4
¥ 4 Connector
X8

PCle Gen3
x8 Edge

X32

e
Configure

!

Switch x2
Button x4

Temp Sensor

SMA
Connector

b Power Monitor
Bracket LED x4 = e
7-segment x2

Fig. 3. Arria 10 Architecture .

TABLE III. RESOURCES OF ARRIA 10

Arria 10 device
Resource
10AX115N2F45E1SG
Logic Elements (LE) (K) 1,150K
ALM 251,680
Register 1,006,720
[ 32MB QDRII+ SRAM
Memory
16GB DDR4 SO-DIMM SDRAM
DSP Blocks 1,518
18 x 19 Multiplier 3,036
17.4 Gbps Transceiver 48
PCle Hard IP Block 4
Embedded memory 67-Mbits

C (C99), it supports four kinds of processing units: CPU,
GPU, FPGA and DSP (digital signal processors). The real
asset of this language is to use different units at the same time,
processing them in parallel, and using each one of them for
what it is the best. However, because of the total differences
in processing algorithms between the different sorts of units,
an OpenCL code has to be optimized for each device. The
IntelFPGA SDK for OpenCL allows avoiding the traditional
hardware FPGA development, which is too complicated for the
use when it comes to high performance computing, in order to
achieve a much faster and higher level software development
flow. It includes multiple optimizations and can produce deep
reports of the compilation and the code optimization. The
IntelFPGA SDK for OpenCL requires the Quartus Prime (Pro
version for Arria 10 board), also known as Quartus II, to
function optimally. Fig. 4 shows the compilation process of
OpenCL code for FPGA.

www.ijacsa.thesai.org

878 |Page



(IJACSA) International Journal of Advanced Computer Science and Applications,

Kernel Source
Host Cod
et

IntelFPGA Offline FPGA
Compiler for Standard Compiler

OpenCL Kernels
|:>‘ Host Binary /’/

Fig. 4. The Flowchart of Compilation Process of the FPGA .

Load runtime

Consolidated
Kernel Binary
(*.aoco, *. aocx)

3) Quartus TCL Scripting: The Quartus II development
software provides the scripting environment, particularly Tcl
(tool command language) scripting. We use scripting support,
to achieve custom analysis, automation and reproducibility.
Custom analysis allows to build test procedures into the script
and change design processing based on the test results. Scripts
can automate design flows to perform on the computer and
easily archive and restore projects. Reproducibility ensures that
scripts use the same project setup and assignments for every
compilation.

B. General Purpose Graphical Processing Unit GPGPU

1) GPU Architecture: In our work, we used the Nvidia
GPU Quadro K2200 (Table IV). This GPU uses the first
generation of Maxwell architecture released by Nvidia in
February 2014 (the newest and second generation was released
in September 2014). Maxwell introduces an all-new design for
the Streaming Multiprocessor (SM) called SMM that dramat-
ically improves energy efficiency compared to its predecessor
Kepler. SMM uses a quadrant-based design with four 32-
core processing blocks each with a dedicated warp scheduler
capable of dispatching two instructions per clock. Each SMM
provides eight texture units, one polymorph engine (geometry
processing for graphics), and dedicated register file and shared
memory. Maxwell improves on Kepler by separating shared
memory from L1 cache, providing a dedicated 64KB shared
memory in each SMM (for Quadro K2200). It provides native
shared memory atomic operations for 32-bit integers and native
shared memory 32-bit and 64-bit compare-and-swap (CAS),
which can be used to implement other atomic functions.

2) Programming the GPGPU: CUDA is a parallel com-
puting platform and application programming interface (API)
model created by Nvidia. It allows software developers to use
a CUDA-enabled graphics processing unit (GPU) for general
purpose processing an approach known as GPGPU. The CUDA
platform is a software layer that gives direct access to the GPU
virtual instruction set and parallel computational elements.
The CUDA platform is designed to work with programming
languages such as C, C++ and Fortran. Quadro K2200 uses
the version CUDA 5.0. We are using Nsight Eclipse Edition
(CUDA SDK 6.0) for algorithm implementation. This is a full-
featured IDE powered by the Eclipse platform that provides
an all-in-one integrated environment to edit, build, debug and
profile CUDA-C applications.

Vol. 13, No. 1, 2022

VI. ALGORITHM IMPLEMENTATION AND PERFORMANCE
EVALUATION

A. FPGA Design and OpenCL Optimization

The conception of the design is a crucial step in the
development process. We dispose of four types of blocks
(Logic blocks, Memory blocks, Logic Register and Digital
Signal Processing Blocks). Each one is able to perform a
particular list of actions. Given these four sorts of blocks and
their amount on the board, the aim is to associate to each one
of them simple and statics instructions to do and to link them
in a network. For instance, if we want to compute the sum of
four 64-bytes integers 1, i3, i3 and ¢4, we chose to dedicate:

e  One Logic Blocks programmed to do the summation
of 71 and 4o, then send the data directly to the third
block.

e  One Logic Blocks programmed to do the summation
of i3 and i4, then send the data directly to the third
block.

e  One Logic block programmed to do the summation of
the two previous results

On this example, we see an important characteristic of FPGA:
the temporary variable of summation doesnt have to be stored,
so there is no need for write/read operations, reducing the total
amount of clock-cycles. If we want to be able to compute a
new set of data every clock-cycle, the path taken by the data
has to be the same regardless of the data themselves, even
though we increase the number of comparison or assignment.

OpenCL is a language developed in order to support
multi-platform computing. Considering the deep differences
between computing units (CPU,GPU), the same OpenCL code
is implemented highly differently on different platforms on a
hardware level. Therefore, even though an OpenCL code for
GPU will work on other platforms, it will only be optimized
for GPU, and will certainly be highly inefficient if run on
other computing units. It is the same for FPGAs: multiple
valid implementations are inefficient, and there are multiple
ways of coding that have to be promoted or avoided.

The first coding optimization specific to Inte]lFPGA
OpenCL is the command #pragma unroll that has to be put
in the OpenCL kernel file. Used before a loop, this command
is read by the compiler, that process what is called the
unrolling of the loop. On a hardware level, each iteration of
a nonunrolled loop is by default done by the same area of
the computing unit. The process of unrolling by a factor N
consists in replicating the hardware (N — 1) time in order
to be able to compute N iteration of the loop at the same
time. If it seems efficient to unroll the loops, it is important
to notice that the factor of the unroll has to be defined
during the synthesis step, and cant be changed during the
computation. Moreover, the hardware resources being limited,
before unrolling it is important to be sure that the concerned
loop results in a bottleneck of the overall computing process. It
is useless to unroll a loop more than the number of iterations,
and difficult to unroll it if the number of iterations is not easy to
determine. It is important to underline the differences between
the two kinds of parallelization that we have presented: the
loop unrolling is a hardware-parallelization, whereas the ability

www.ijacsa.thesai.org

8719 |Page



(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 13, No. 1, 2022

TABLE IV. SPECIFICATIONS FOR THE QUADRO K2200

Processing Power Memory Clock Memory
(GFLOPS) (MHz)
Size (MB) Bandwidth Bus type Bus width
GB/s (bits)
Quadro 1280 (Single 1250 (5000) 4096 80 GDDR5 128
K2200 precision)
40 (double
precision)

of computing a new set of data every clock-cycle is a time-
parallelization. Their combination can theoretically lead to
drastic computing acceleration.

In order to simplify the unrolling process, it is important to
avoid nested loops as much as possible. A nested loop is a loop
called in another loop. The more loops inside a loop there are,
the harder it is to unroll them. Therefore, an OpenCL code
should promote one, maximum two loop levels with explicit
amount of iterations. For these reasons, the OpenCL kernel for
our algorithms are implemented with only two levels of loops
having an explicit amount of iterations.

Another optimization possible to perform is the balance
of reducing a set of data using an associative operation. For
instance, if you want to add a set of N integers, the usual loop
unrolled will use N —1 Logic Blocks. However, by doing a tree
summation, the number of blocks can be reduced to N/2. This
optimization can be managed by the compiler, even for more
complex operations. Moreover, if the overall computation tree
implies non-associative operations, the compiler can identify
parts of the computation tree that can be balanced and balance
them. Because of the difficulty in identifying such parts, the
compiler proposes this optimization as an option. It is to the
programmer to understand if this auto-balancing function is
relevant, or to balance manually by modifying the code when
the compiler cant extract the balancing. Many other constrains
and way of coding are to consider when producing OpenCL
code for FPGA, like the impossibility to use pointer to pointer
parameter in the kernel functions, or the simplicity of indexes
when arrays are called. In order to show the efficiency of
OpenCL kernel optimization, we have implemented two ver-
sion of Summary Statistics algorithm: Optimized (Algorithm
2 ) and unoptimized (Algorithm 3) kernels. This algorithm
calculate the column-wise min, max, mean, variance, count,
and number of non-zeros in a given dataset. (assuming each
simple is done in O(1), all these statistics share the same
complexity of O(n)).

Table V shows the estimated resource usage before kernel
optimization. The problem reported by the optimization report
is that too many kernels attempted to access the same variable
at the same time (hereby is the variable sum), but there is
only limited amount of access possible on the same variable
each clockcycle. Therefore, the blocks that try to access have
to wait, blocking the overall process and retarding it by N
clock-cycle. An efficient way to avoid this problem is to use a
shift-register with the size N, the maximum encountered late.
The amount of clock-cycle is revealed by the optimizer.

Table VI shows the estimated resource usage after kernel
optimization. The kernel optimization has improved the com-
putation speed. The processing time is divide by a factor N,
which is the number of clock-cycles that were lost because

TABLE V. ESTIMATED RESOURCE USAGE SUMMARY (UNOPTIMIZED
SUMMARY STATISTICS)

Resource [ usage ‘

Logic utilization 16%

Dedicated Logic registers 8%
Memory blocks 28%
DSP blocks 4%

of blocking access. The IntelFPGA optimization report ensure
to identify the most important bottlenecks and processes that
slow down the computing and increase the number of clock-
cycles taken by an overall computation. These optimizations
strategy are adopted for the other algorithm in order to achieve
an efficient parallel implementation with less resources usages.

Algorithm 3 Unoptimized OpenCL kernel

__kernel void summarystat (_ global float *A,
unsigned int size, _ global float*rep, _ global
int*non_zero)

min = A[0]; max = A[0]; sum = 0.0f; sqsum = 0.0f;
nonzero_count = 0;

#pragma unroll
for (i=1; i < size; i+ +) do
x = Alil;
sum + = z;
sqsum + = T * x;
if = £ 0 then
| nonzero_count ++
end
if £ < min then
| min = x
end
if £ > max then
| max = min
end

0]
1] =min;

2] =sum/size;

3] =sqsum/size - (sum/size)?;
*NON_ZEero = Nonzero_count;

B. OpenCL Implementations of Bitonic Sort Algorithm

If we consider a regular optimal sorting algorithms like the
Quick sort, which has a O (nlog(n)) complexity in term of

www.ijacsa.thesai.org

830 |Page



(IJACSA) International Journal of Advanced Computer Science and Applications,

Algorithm 2 Optimized OpenCL Kernel

___kernel void summarystat_optimized (_ _global
float *restrict A, unsigned int size, _ global
float*restrict rep, _ global int*restrict non_zero)
min_temp = A[0]; max_temp = A[0]; min_rep = min_temp;
max_rep = max_temp; sum = 0.0f; sqsum = 0.0f;
nonzero_count = 0;

float shift_reg_x_s[N + 1]; float shift_reg_sqx[N + 1];
float shift_reg_min[N + 1]; float shift_reg_max[N + 1];
int shift_reg_non_zero[N + 1];

for (i=0;i<N+1;i++) do

shift_reg_x_s[i]=0;

shift_reg_sqx[i]=0;

shift_reg_min[{]=min_temp;
shift_reg_max|[i]=max_temp;
shift_reg_non_zero[i]=0;

end

or (i =0; i < size; i+ +) do

x= Ali]; shift_reg x_s[N]= shift reg x_s[0] + x;
shift_reg_sqx[N] = shift_reg_sqx[0] + x * x; if z <
shift_reg_min[0] then

| shift_reg_min[N]=x

end

else

| shift_reg_min[N] = shift_reg_min[0]

end

if © < shift_reg_max[0] then

| shift reg max[N]|=shift reg_max[0]

()

end

else

| shift_reg max[N] = x

end

if © # 0 then

| shift_reg_non_zero[N] = shift_reg_non_zero[0] + 1
end

#pragma unroll for (j =0; j < size; j++) do
shift_reg_x_s[j]= shift_reg_x_s[j + 1]
shift_reg_sqx[j]= shift_reg_sqx[j + 1]
shift_reg_min[j]= shift_reg_min[j + 1]
shift_reg_max[j]= shift_reg_max[j + 1]
shift_reg_non_zero[j]= shift_reg_non_zero[j + 1]

end

end

pragma unroll for (j =0; j < size; j+ +) do

sum +=shift_reg_x_s[j]; sqsum += shift_reg_sqx[j];
nonzero_count += shift_reg_non_zero[j]; if min_rep >
shift_reg_min[j] then

| min_rep = shift_reg_min[j]
end
if max_rep > shift_reg_max[j] then

| max_rep = shift_reg_max[j]
end

=

end
rep[0] = max_rep; rep[l] = min_rep; rep[2]= sum/size;
rep[3]=sqsum/size - (sum/size)?; *non_zero = nonzero_count;

Vol. 13, No. 1, 2022

TABLE VI. ESTIMATED RESOURCE USAGE SUMMARY (OPTIMIZED
SUMMARY STATISTICS).

Resource [ usage ‘

Logic utilization 8%
Dedicated Logic registers 4%
Memory blocks 10%
DSP blocks 1%
1000 GPU
FPGA
800
m
£
g 600
=
=4
K]
3400 1
x
w
200 1
0 L T T T T T T T T
21(] 2I2 214 216 218 220 222 22"1

Number of float sorted

Fig. 5. Execution time of the Sort Algorithm for Many Input Sizes.

comparisons, it seems impossible to find a fixed organization of
blocks that applies the algorithm to any input data. Whereas
sorting networks, like Bitonic Sort present a complexity of
O (nlog” (n)), seems highly optimized for FPGA, because
they use a fixed data path. For the Bitonic sort algorithms, we
configure the logic blocks to have two input and two output:
the first one returning the max of the two input and the second
one returning the minimum of these two. With these sorting
networks, each new list to sort is computed every p clock
cycles, p being the number of clock-cycle taken by logic block
to return the max and min of the two inputs. In order to
achieve a parallel implementation of Bitonic sort we divide
the dataset onto multiple threads (one thread occupies at least
one data). For each step of bitonic sort as we can notice in
Fig. 2, all of comparing operations are executed simultaneously
on available threads. Fig. 5 shows the performance evaluation
of sort implementation on the GPU and FPGA. We run the
GPU and FPGA implementation to sort a set of different
float ranging from 2'° to 22*. The obtained results shows
the parallel computing power of the FPGA. For even large
number of sorted float (224) the FPGA implementation is
always efficient compared to the GPU implementation which
need more then 1 second to process (22%) floats.

C. OpenCL Implementations of K-means Algorithm

K-means has the difference of data independence from
Bitonic Sort. In fact, to find the nearest centroid from one
point, we can assign each points from data set onto available
threads and perform the calculation and comparison; on the
other hand, new centroids calculation needs data from the
membership matrix, this step can be parallelized by assigning

www.ijacsa.thesai.org

881 |Page



(IJACSA) International Journal of Advanced Computer Science and Applications,

“irput-2-125000.08" +

output txt

B3 - - 2 ° 2 ‘ 5 8

,,,,,,,,,,,,,

Fig. 7. K-mean FPGA Result of Clustering 125000 3D-points into 15
Clusters .

each cluster to a thread and carrying out the calculation sepa-
rately for each of them. However in this implementation, we let
the host device take the task sequentially. For K-mean imple-
mentation, the test data is generated by the Spark benchmark.
Firstly, we tested the algorithm on small dimensional data (2D
and 3D) in order to test the output. Then the algorithm is
tested on 10 and 100 dimension points sets. Finally, we tested
on high dimensional data (500D). The size of data ranged from
12500 to 125000 points for small dimensional sets and up to
31250 points on high dimensional sets (up to 300MB). Figures
Fig. 6 and Fig. 7 shows respectively the GPU and FPGA
results of the k-mean implementation. Each red point is the
visualization of a point in the given data set and each green
point is a centroid found by the heuristics. The obtained results
confirm the functional validation about clustering. Indeed, the
cost function (sum of square of the distance from each point to
the centroid of the cluster containing it) is shown to decrease
after each iteration.

Table VII shows the performance evaluation of k-mean
implementation on the GPU and FPGA. The running time to
cluster 125000 3D points is 380 ms for the GPU implementa-
tion and 33 ms for the FPGA implementation. For 31250 500D
points is 12 seconds on the GPU and 158 ms on the FPGA. The
occupancy achieved is 98.8 percent in the first measurement
and 49.5 percent (over the theoretical 50 percent) in the second.
This shows that the occupancy is well controlled. The GPU

Vol. 13, No. 1, 2022

TABLE VII. GPU AND FPGA K-MEAN EXECUTION TIME

Execution Times
Platform 125 000 (3D) 31250 (500D)
GPU 380 (ms) 12 (s)
FPGA 33 (ms) 158 (ms)

implementation is far from real time performances. Indeed, the
choice of block and grid size strongly affects the efficiency. For
example, if the block size is reduced from (256 x 1 x 1) to (64
x 1 x 1), the time to find the centroids for the 125000 3D point
set goes down from 380 ms to 250 ms. This can be explained
by the use of synchronization in each block. By contrast, if
the block size is increased from (61 x 1 x 1) to (1024 x 1
x 1) the running time on the data set of 31250 500D points
goes down significantly from 12 seconds to 1.9 seconds. This
can be explained by the large size of shared memory in each
block. In the GPU implementation, the low DRAM utilization
may come from the non-coalesced access to memory. Reducing
this can also result in the better performance. The FPGA
implementation is shown to outperform the GPU one. Only 158
ms is needed to cluster a very high dimensional data (500D).

D. OpenCL Implementations of Correlation Algorithms

The Pearson Correlation Algorithm was implemented using
two reductions to find the mean of both input vectors, followed
by the computation of the covariance of both entries and each
one of the standard deviations. The final result is given by
cov (X;Y) / (0x * oy). To calculate the Spearman coefficient
we need to calculate the Pearson coefficient of the ranks. For
the computation of the ranks, we first sort both samples by
the values of the first one and calculate the ranks for the
first sample by using a simple kernel that for each position
position in the sample that has an element different from the
next one, goes back and counts all the occurrences of that
element and then finally fills all the position with that same
value with the mean of the ranks. This part of the code is not
very parallelizable and can run in O (n) if all the elements
in the initial sample are the same, opposed to O (1) with
all elements different from one another [23] . But since in
normal samples with float values this is unlikely to happen
the approach works well. Then we sort again the first, the
second and the ranks of the first by the values of the second
sample, calculate now the ranks of the second sample using
the same method and now that we got both ranks array, we
use the Pearson Correlation Coefficient algorithm in this data
to find the Spearman Correlation Coefficient. For measuring
the execution time of both correlation algorithms, we first
generated 5 input files for different sizes of samples, then
we ran each one of those input files and took the mean of
the execution times for each one of the 5 input files. Fig. 8,
Fig. 9 shows the performance evaluation respectively of the
Pearson and Spearman Correlation algorithm implementation
on the GPU and FPGA. We test both implementation using a
number of elements in sample ranging from 2!° to 224, For
a high number of elements 224 the GPU process the pearson
correlation algorithm in 1 seconds and the Spearman algorithm
in 5.5 seconds. For the same number of elements, the FPGA
implementation process the pearson and spearman correlation
in 90 ms and 400 ms respectively. The processing time
of the correlation algorithms on the FPGA implementation

www.ijacsa.thesai.org

882 |Page



(IJACSA) International Journal of Advanced Computer Science and Applications,

has been decreased by a factor x12 compared to the GPU
implementation.

1000 opy
FPGA

800 1
7
S

£ 600
<
2
2

3400
x
w

200 1

01

: T r T T T T T
211) 212 214 21(5 r_)lﬁ 22[] 222 224

Number of elements in sample

Fig. 8. Execution Time of the Pearson Algorithm for Many Input Sizes .

GPU
5000 FPGA
4000
@
£
o
£ 3000 A
c
S
2
5
g 2000
X
w
1000 A
0
T T T T T T T T
210 212 214 216 218 220 222 224

Number of elements in sample

Fig. 9. Execution Time of the Spearman Algorithm for Many Input Sizes .

E. Synthetic Results

Our work adopted the high level synthesis for FPGA
implementation using OpenCL. Despite of the advantage of
high level programming, its use is still limited. The Intel
offline compiler takes a lot of time in order to generate the
hardware configuration files (aocx) (duration of compilation
hours for more complex function and if more optimization are
requested from the compiler). However, we can achieve higher
acceleration using OpenCL, which provides better memory
management. We can freely access the local, global and
constant memory in the OpenCL kernel. This allows us to
better manage the data transmission and data structure. In
addition, the FPGA is considered as the generation of inte-
grated circuit claimed higher performance and reliability, and
the emerging high level software tools make it easily accessible
to the community. The encouraging results we obtained on the
FPGA in term of acceleration performance, demonstrates that
a dedicated architecture can be used to prototype a micro-
server for big data that operates under real-time constraints.

Vol. 13, No. 1, 2022

As a future work, we intend to achieve a full embedded
implementation for Big Data algorithms on FPGA using the
integrated ARM processor of the Arria 10 SoC.

VII. CONCLUSION

In this work, we have implemented and optimized three
algorithms: Bitonic Sorting network, K-means, Spearman and
Pearson correlation. The purpose behind this implementation is
to prototype a micro-server for processing big data algorithms
on both GPU and FPGA and compare their performance.
We have implemented and quantitatively evaluated the exe-
cution times of some of the most important algorithms for
big data. We present performance results on a heterogeneous
architectures: high-end CPU-GPU and a dedicated CPU-FPGA
architecture. The choice of using dedicated architecture was
made principally because the big data algorithms can be
massively parallelized. This property is exploited by using a
dedicated FPGA-based architecture as a target platform for
an efficient embedded micro-server. The performance of the
optimized algorithms on the FPGA show a promising prospect
of utilizing them in solving real-world problems.

REFERENCES

[11 A. K. Tiwari, H. Chaudhary, and S. Yadav, “A review on big data
and its security,” in 2015 International Conference on Innovations in
Information, Embedded and Communication Systems (ICIIECS). 1EEE,
2015, pp. 1-5.

[2] D. Laney et al, “3d data management: Controlling data volume,
velocity and variety,” META group research note, vol. 6, no. 70, p. 1,
2001.

[3] K. Neshatpour, M. Malik, M. A. Ghodrat, and H. Homayoun, “Ac-
celerating big data analytics using fpgas,” in 2015 IEEE 23rd Annual
International Symposium on Field-Programmable Custom Computing
Machines. 1EEE, 2015, pp. 164-164.

[4] C.-C. Chung, C.-K. Liu, and D.-H. Lee, “Fpga-based accelerator
platform for big data matrix processing,” in 2015 IEEE International
Conference on Electron Devices and Solid-State Circuits (EDSSC).
IEEE, 2015, pp. 221-224.

[5S] C. Wang, X. Li, and X. Zhou, “Soda: Software defined fpga based
accelerators for big data,” in 2015 Design, Automation & Test in Europe
Conference & Exhibition (DATE). 1EEE, 2015, pp. 884-887.

[6] J. Hoozemans, J. Peltenburg, F. Nonnemacher, A. Hadnagy, Z. Al-Ars,
and H. P. Hofstee, “Fpga acceleration for big data analytics: Challenges
and opportunities,” IEEE Circuits and Systems Magazine, vol. 21, no. 2,
pp- 3047, 2021.

[71 J. Hou, Y. Zhu, L. Kong, Z. Wang, S. Du, S. Song, and T. Huang, “A
case study of accelerating apache spark with fpga,” in 2018 17th IEEE
International Conference On Trust, Security And Privacy In Computing
And Communications/12th IEEE International Conference On Big Data
Science And Engineering (TrustCom/BigDataSE). 1EEE, 2018, pp.
855-860.

[8] O. Debauche, S. A. Mahmoudi, S. Mahmoudi, and P. Manneback,
“Cloud platform using big data and hpc technologies for distributed
and parallels treatments,” Procedia Computer Science, vol. 141, pp.
112-118, 2018.

[9] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constantinides,
J. Demme, H. Esmaeilzadeh, J. Fowers, G. P. Gopal, J. Gray et al., “A
reconfigurable fabric for accelerating large-scale datacenter services,”
in 2014 ACM/IEEE 41st International Symposium on Computer Archi-
tecture (ISCA). 1EEE, 2014, pp. 13-24.

[10] Y. Censor, “Pareto optimality in multiobjective problems,” Applied
Mathematics and Optimization, vol. 4, no. 1, pp. 41-59, 1977.

[11] J. Leskovec and A. Krevl, “Snap datasets: Stanford large network
dataset collection,” 2014.

www.ijacsa.thesai.org

883 |Page



[12]

[13]

[14]

[15]

[16]

[17]

(IJACSA) International Journal of Advanced Computer Science and Applications,

A. Ahmad and L. Dey, “A k-mean clustering algorithm for mixed
numeric and categorical data,” Data & Knowledge Engineering, vol. 63,
no. 2, pp. 503-527, 2007.

R. Ostrovsky, Y. Rabani, L. J. Schulman, and C. Swamy, “The effec-
tiveness of lloyd-type methods for the k-means problem,” Journal of
the ACM (JACM), vol. 59, no. 6, pp. 1-22, 2013.

P. S. Bradley and U. M. Fayyad, “Refining initial points for k-means
clustering.” in ICML, vol. 98. Citeseer, 1998, pp. 91-99.

K. E. Batcher, “Sorting networks and their applications,” in Proceedings
of the April 30-May 2, 1968, spring joint computer conference, 1968,
pp. 307-314.

K. J. Liszka and K. E. Batcher, “A generalized bitonic sorting network,”
in 1993 International Conference on Parallel Processing-ICPP’93,
vol. 1. IEEE, 1993, pp. 105-108.

M. T. Goodrich, “Randomized shellsort: A simple oblivious sorting
algorithm,” in Proceedings of the twenty-first annual ACM-SIAM sym-
posium on Discrete Algorithms. SIAM, 2010, pp. 1262-1277.

[18]

[19]
[20]

[21]

[22]

[23]

Vol. 13, No. 1, 2022

1. Parberry, “The pairwise sorting network,” Parallel Processing Letters,
vol. 2, no. 02n03, pp. 205-211, 1992.

D. E. Knuth, “Sorting and searching,” 1973.

J. Benesty, J. Chen, Y. Huang, and I. Cohen, “Pearson correlation
coefficient,” in Noise reduction in speech processing. Springer, 2009,
pp. 1-4.

L. Myers and M. J. Sirois, “Spearman correlation coefficients, differ-
ences between,” Encyclopedia of statistical sciences, vol. 12, 2004.

J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang,
“High-level synthesis for fpgas: From prototyping to deployment,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 30, no. 4, pp. 473—491, April 2011.

S. Kim, M. Ouyang, and X. Zhang, “Compute spearman correlation
coefficient with matlab/cuda,” in 2012 IEEE International Symposium
on Signal Processing and Information Technology (ISSPIT). 1EEE,
2012, pp. 000 055-000 060.

www.ijacsa.thesai.org

884 |Page



