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Abstract

The theoretical setting of hierarchical Bayesian inference is gaining acceptance as a framework for understanding cortical
computation. In this paper, we describe how Bayesian belief propagation in a spatio-temporal hierarchical model, called
Hierarchical Temporal Memory (HTM), can lead to a mathematical model for cortical circuits. An HTM node is abstracted
using a coincidence detector and a mixture of Markov chains. Bayesian belief propagation equations for such an HTM node
define a set of functional constraints for a neuronal implementation. Anatomical data provide a contrasting set of
organizational constraints. The combination of these two constraints suggests a theoretically derived interpretation for
many anatomical and physiological features and predicts several others. We describe the pattern recognition capabilities of
HTM networks and demonstrate the application of the derived circuits for modeling the subjective contour effect. We also
discuss how the theory and the circuit can be extended to explain cortical features that are not explained by the current
model and describe testable predictions that can be derived from the model.
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Introduction

Understanding the computational and information processing

roles of cortical circuitry is one of the outstanding problems in

neuroscience. The circuits of the neocortex are bewildering in

their complexity and anatomical detail. Although enormous

progress has been made in the collection and assimilation of data

about the physiological properties and connectivity of cortical

neurons, the data are not sufficient to derive a computational

theory in a purely bottom-up fashion.

The theoretical setting of hierarchical Bayesian inference is gaining

acceptance as the framework for understanding cortical computation

[1–5]. Tai Sing Lee and David Mumford [1] suggested that

algorithms for Bayesian belief propagation might model the

interactive feed-forward and feedback cortical computations. Con-

currently, Karl Friston [5] reviewed the structure of the anatomical

organization of the neocortex and suggested its strong correspon-

dence to hierarchical Bayesian generative models. Friston recently

expanded on this to suggest an inversion method for hierarchical

Bayesian dynamic models and to point out that the brain, in

principle, has the infrastructure needed to invert hierarchical

dynamic models [6]. However, there still remains a gap between

our understanding of learning and inference in hierarchical Bayesian

models and our understanding of how it is implemented in cortical

circuits. In a recent review, Hegde and Felleman pointed out that the

‘‘Bayesian framework is not yet a neural model. [The Bayesian]

framework currently helps explain the computations that underlie

various brain functions, but not how the brain implements these

computations’’ [2]. This paper is an attempt to fill this gap by deriving

a computational model for cortical circuits based on the mathematics

of Bayesian belief propagation in the context of a particular Bayesian

framework called Hierarchical Temporal Memory (HTM).

Belief propagation techniques can be applied to many different

types of networks. The networks can vary significantly in their

topology, in how they learn (supervised, unsupervised, or non-

learning), and in how they incorporate or do not incorporate time.

Therefore, to map the mathematics of Bayesian belief propagation

onto cortical architecture and microcircuits we must start with a

particular Bayesian framework that specifies these variables. The

starting point for the work presented in this paper is a model called

the Memory-Prediction Framework, first described by one of this

paper’s authors, Hawkins, in a book titled ‘‘On Intelligence’’ [7].

The Memory-Prediction Framework proposed that the neocortex

uses memory of sequences in a hierarchy to model and infer causes

in the world. The Memory-Prediction Framework proposed

several novel learning mechanisms and included a detailed

mapping onto large scale cortical-thalamic architecture as well

as onto the microcircuits of cortical columns. However, the

Memory-Prediction Framework was not described in Bayesian

terms and was presented without the rigor of a mathematical

formulation.

This paper’s other author, George, recognized that the

Memory-Prediction framework could be formulated in Bayesian

terms and given a proper mathematical foundation [8,9]. We call

this formulation Hierarchical Temporal Memory (HTM) and it is

currently being applied to problems of machine learning and

inference. The final step in this theory is to map the mathematics

of HTM directly to cortical-thalamic anatomy and the microcir-

cuits of cortical columns. That is the goal of this paper. We will

work back from the formal expression of HTM and derive cortical

microcircuits by matching the computational specifications of the

theory with known biological data. The resultant biological circuit

supports all the Bayesian computations required for temporal,

feed-forward, and feedback inference. The elements of the circuits
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are also consistent with each other in that they operate under the

same set of assumptions and work together in a hierarchy.

Several researchers have proposed detailed models for cortical

circuits [10–12]. Some of these models exhibit interesting pattern

recognition properties and some have been used in the explanation

of physiological phenomena. However, these models do not

incorporate the concepts of Bayesian inference in a hierarchical

temporal model. Other researchers [4,13] have proposed detailed

mechanisms by which Bayesian belief propagation techniques can

be implemented in neurons. Their work suggests that, at a neuron

level, machinery exists for implementing the types of computations

required for belief propagation. However, they did not attempt to

map these implementations to detailed cortical anatomy. To our

knowledge, the work in this paper is the first attempt to map the

theory of Bayesian belief propagation and hierarchical and

temporal inference onto cortical circuitry. (Partial details of this

work have been published earlier [9,14].)

Deciphering the functional connectivity of the cortical circuits is

a formidable task and is associated with the perils involved in the

reverse engineering of a complex system. The circuits derived in

this chapter can provide a hypothesis-driven framework for

examining the neural connectivity. As with any theory, it is

expected that the particular instantiation described here will need

to be revised as more data is obtained and more aspects of cortical

computations, like attention, timing, and motor action, are

incorporated. The circuit derived here could act as a basis for

such explorations. In addition to providing a template for

understanding cortical circuits [15], the theory presented here

can be useful in the modeling of physiological phenomena. As an

example, we simulate the subjective contour effect using feedback

from a high-level belief using the derived circuits. Having a

complete biological mapping of a computational theory can also

help in the design of hypothesis-driven biological experiments.

The rest of this paper is organized in such a manner that the

computational parts are clearly separated from the biological

aspects. The Model section deals exclusively with the computa-

tional aspects of HTMs. In this section, we briefly describe the

HTM theory and take a detailed look at the inference mechanism

in HTM nodes. The Bayesian belief propagation equations for the

computations in an HTM node are described. We then describe

an abstract circuit implementation of these equations using

neuron-like elements. The Results section of the paper, which

deals primarily with the biological implementation, maps this

abstract neural implementation to the laminar biological cortical

circuitry by matching the computational specifications with

anatomical data. This section also provides example applications

of this circuit in the modeling of physiological phenomena. In the

Discussion section we discuss variations, omissions, and extensions

of the proposed circuits.

Model

Hierarchical Temporal Memory
Hierarchical Temporal Memory is a theory of the neocortex

that postulates that the neocortex builds a model of the world

using a spatio-temporal hierarchy. According to this theory, the

operation of the neocortex can be approximated by replicating a

basic computational unit – called a node – in a tree structured

hierarchy. Each node in the hierarchy uses the same learning and

inference algorithm, which entails storing spatial patterns and then

sequences of those spatial patterns. The feed-forward output of a

node is represented in terms of the sequences that it has stored.

The spatial patterns stored in a higher-level node record co-

occurrences of sequences from its child nodes. The HTM

hierarchy is organized in such a way that higher levels of the

hierarchy represent larger amounts of space and longer durations

of time. The states at the higher levels of the hierarchy vary at a

slower rate compared to the lower levels. It is speculated that this

kind of organization leads to efficient learning and generalization

because it mirrors the spatio-temporal organization of causes in

the world.

In our research, HTMs have been used successfully in invariant

pattern recognition on gray-scale images, in the identification of

speakers in the auditory domain and in learning a model for

motion capture data in an unsupervised manner. Other research-

ers have reported success in using HTMs in content-based image

retrieval [16], object categorization [17], and power system

security analysis [18]. Another set of researchers has explored

hardware implementations and parallel architectures for HTM

algorithms [19].

HTMs can be specified mathematically using a generative

model. A simplified two-level generative model is shown in

Figure 1. Each node in the hierarchy contains a set of coincidence

patterns c1,c2, � � � ,c Cj j and a set of Markov chains g1,g2, � � � ,g Gj j

where each Markov chain is defined over a subset of the set

coincidence patterns in that node. A coincidence pattern in a node

represents a co-activation of the Markov chains of its child nodes.

A coincidence pattern that is generated by sampling a Markov

chain in a higher level node concurrently activates its constituent

Markov chains in the lower level nodes. For a particular

coincidence pattern and Markov chain that is ‘active’ at a

higher-level node, sequences of coincidence patterns are generated

concurrently by sampling from the activated Markov chains of the

child nodes.

The process of learning an HTM model for spatio-temporal

data is the process of learning the coincidence patterns and

Markov-chains in each node at every level of the hierarchy.

Although algorithms of varying levels of sophistication can be used

to learn the states of an HTM node, the basic process can be

understood using two operations, (1) memorization of coincidence

patterns, and (2) learning a mixture of Markov chains over the

space of coincidence patterns. In the case of a simplified generative

model, an HTM node remembers all the coincidence patterns that

are generated by the generative model. In real world cases, where

it is not possible to store all coincidences encountered during

learning, we have found that storing a fixed number of a random

selection of the coincidence patterns is sufficient as long as we

allow multiple coincidence patterns to be active at the same time.

Motivation for this method came from the field of compressed

Author Summary

Understanding the computational and information pro-
cessing roles of cortical circuitry is one of the outstanding
problems in neuroscience. In this paper, we work from a
theory of neocortex that models it as a spatio-temporal
hierarchical system to derive a biological cortical circuit.
This is achieved by combining the computational con-
straints provided by the inference equations for this
spatio-temporal hierarchy with anatomical data. The result
is a mathematically consistent biological circuit that can be
mapped to the cortical laminae and matches many
prominent features of the mammalian neocortex. The
mathematical model can serve as a starting point for the
construction of machines that work like the brain. The
resultant biological circuit can be used for modeling
physiological phenomena and for deriving testable pre-
dictions about the brain.
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sensing [20]. The HMAX model of visual cortex [21] and some

versions of convolutional neural networks [22] also use this

strategy. We have found that reasonable results can be achieved

with a wide range of the number of coincidences stored. We have

not yet developed a good heuristic for determining an optimal

value of this parameter. For simplicity, we will only illustrate the

case where a single coincidence pattern is active in a node at a

time, but in our real implementations we use sparse distributed

activations of the coincidence patterns. Each Markov chain in a

node represents a set of coincidence patterns that are likely to

occur sequentially in time. This temporal proximity constraint is

analogous to the temporal slowness principle used in the learning

of of invariant features [23–26]. The learning of the mixture of

Markov chains is simplified considerably because of the slowness

constraint. We have found that a simple way to learn the mixture

of Markov chains for real world cases is to learn a large transition

matrix that is then partitioned using a graph partitioning

algorithm [27]. Details of one method of learning higher order

Markov chains is available in [28].

For the rest of this paper, we will focus on the inference

mechanism in HTM nodes that have finished their learning

process. A node that has finished its learning process has a set of

coincidence patterns and a set of Markov chains in it. Figure 2(A)

shows a node that has 5 coincidence patterns and 2 Markov

chains.

The inference mechanism in an HTM network is based on the

propagation of new evidence from anywhere in the network to all

other parts of the network. The presentation of a new image to the

first level of an HTM vision network is an example of new

evidence. Propagation of this evidence to other parts of the

network results in each node in the network adjusting its belief

states given this evidence. For example, a new image can lead to a

different belief in the top level of the network regarding the

identity of the object in that image. In general, HTM networks

infer on time-varying inputs. Inference on a static input is a special

case of this computation. Information can also be propagated

down in the hierarchy for attention, segmentation, and filling in

missing inputs.

HTM networks use Bayesian belief propagation for inference.

Bayesian belief propagation originally was derived for inference in

Bayesian networks [29]. Since an HTM node abstracts space as

well as time, new equations must be derived for belief propagation

in HTM nodes. These equations are described in the next section.

Belief propagation in HTM nodes
In general, the messages that come into an HTM node from its

children represent the degree of certainty over the child Markov

chains. The node converts these messages to its own degree of

certainty over its coincidence patterns. Based on the history of

messages received, it also computes a degree of certainty in each of

Figure 1. Generative model for HTM. Hierarchical Temporal Memory (HTM) is a model of neocortical function. HTMs can be specified using a
generative model. Shown is a simple two-level three-node HTM-type generative model. Each node in the hierarchy contains a set of coincidence
patterns (labeled with c0s) and a set of Markov chains (labeled with g0s) defined over the set of coincidence patterns. A coincidence pattern in a node
represents a co-activation of particular Markov chains of its child nodes. HTM generative model is a spatio-temporal hierarchy in which higher levels
remain stable for longer durations of time and can generate faster changing activations in lower levels.
doi:10.1371/journal.pcbi.1000532.g001
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its Markov chains. This is then passed up to the next higher-level

node. What the node receives from its parent is the parent’s degree

of certainty over this HTM node’s Markov chains. The Markov

chains are then ‘unwound’ in a step-by-step manner to find the

top-down probability distribution over coincidence patterns. From

this, the node’s degrees of certainty over its child nodes’ Markov

chains are calculated. These feedback messages are then sent to

the child nodes.

Table 1 summarizes the computation of belief propagation

messages in an HTM node. We will now describe the notation and

meaning of these equations using the reference HTM node shown

in Figure 2. Detailed derivations of these equations are given in

supporting information Text S1. A summary of the notation in

these equations is given in Table 2. Each equation is considered in

detail in the sections that follow.

In these equations, the coincidence patterns are referred to

using ci
0s and the Markov chains are referred to using gi

0s. The

HTM node shown in Figure 2(A) contains 5 coincidence patterns

and 2 Markov chains. The transition probability matrix of the

Markov chain gr is denoted by P(ci(t)jcj (t{1),gr ). This term

appears in Equations 4 and 7. Each coincidence pattern in the

node represents a co-occurrence of the temporal groups from its

children. Coincidence pattern specifications are used in the

computations described in equations 2 and 9.

Each node receives feed-forward input messages from its

children and sends feed-forward messages to its parent. The

feed-forward input messages are denoted by lchild node index. The

feed-forward output message of the node is denoted by l.

Similarly, the node receives feedback messages from its parent

and sends feedback messages to its child nodes. The feedback

input message to the node is denoted by p. The feedback output

messages that the node sends to its child nodes are denoted by

pchild node index. The equations shown in Table 1 describe how the

output messages are derived from the input messages. From the

viewpoint of the node, the feed-forward messages carry informa-

tion about the evidence from below. Evidence from below at any

time t is denoted by {et. Similarly evidence from the parent is

denoted by zet.

Equation 2 describes how the node calculates its likelihood of

coincidence patterns, using the messages it gets from the children.

The bottom-up likelihood of coincidence pattern ci at time t is

represented by yt(i)~P({etjci(t)). The likelihood of each

coincidence pattern is calculated as the product of the message

components corresponding to that coincidence pattern.

In Equation 3, the bottom-up likelihood of Markov chain gr
at time t is denoted by P({et0jgr (t)), where the term {et0
represents the sequence of bottom-up evidences from time 0 to

time t. This reflects that the likelihood of the Markov chains

depends on the sequence of inputs received by the node. The

variables a and b defined in Equations 4 and 7 are state

variables that are updated in a recursive manner at every time

instant. These are dynamic programming [30,31] variables,

each defined over all pairwise combinations of coincidence

patterns and Markov chains. For example, at(ci,gr ) is value of

the feed-forward dynamic programming variable at time t

corresponding to coincidence ci and Markov chain gr . In

Figure 2. Structure and flow of a reference HTM node. (A) Structure of the reference node, with five coincidence patterns and two Markov
chains. This is an HTM node that has finished its learning process. It is assumed that this is the first node at level 2 of a network and is therefore
labeled as N2,1. Each coincidence pattern represents a co-occurrence of the Markov chains of the children. This node has 2 children. Child 1 has 3
Markov chains and child 2 has 4 Markov chains – hence there are seven elements in each coincidence pattern. The portions of the coincidence
pattern coming from the first and second child are shown in different shades of gray. (B) Information flow in the reference node for the computation
of the belief propagation equations shown in Table 1. The rectangles inside the node are processing units for the equations in the rows
corresponding to the number displayed in each rectangle. We will use ‘feed-forward’ or ‘bottom-up’ to qualify messages received from children and
messages sent up to the parent of this node. We will use ‘feedback’ or ‘top-down’ to qualify messages received from the parent and messages sent to
the child nodes of this node. The node shown in the figure has two bottom-up input messages coming from the two children and has two top-down
outputs which are the messages sent to these children. The arrows show vectors of inputs, outputs, and intermediate computational results. The
number of components of each vector is represented using an array of boxes placed on these arrows.
doi:10.1371/journal.pcbi.1000532.g002
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Equations 4 and 7, the states are updated every time step by

passing the state from the previous time step through the

Markov transition matrices and by combining them with

bottom-up/top-down evidence.

An illustrative example showing how the belief propagation

equations map onto a toy visual pattern recognition problem is

given in supporting information Text S2. Readers who are not

familiar with belief propagation can use this example to develop

intuition for the nature of the messages. We examine the equations

in Table 1 in more detail in the next section as we consider how to

implement them using neuron-like elements.

Neuronal implementation of HTM belief propagation
This section describes an implementation of the HTM belief

propagation equations using neuron-like elements. The imple-

mentation will be described with respect to the reference HTM

node in Figure 2. The neuronal implementation of the equations

in Table 1 is described in the following subsections. The

subsections follow the order of table row numbers.

The purpose of this section is to show how the equations of

HTM belief propagation can map onto a hypothetical neuronal

system. In the Results section, we map this hypothetical model

onto actual cortical anatomy.

Table 1. Belief propagation equations for an HTM node.

1) Calculate likelihood over coincidence patterns. yt(i)~P({etjci(t))! P

M

j~1
l
m

j

t (r
m

j

i ) ð2Þ

where coincidence pattern ci is the co-occurrence of r
m

1

i ’th Markov chain from child

1, r
m

2

i ’th Markov chain from child 2, � � � , and r
m

M

i ’th Markov chain from child M.

2) Calculate the feed-forward likelihood of
Markov chains using dynamic programming

lt (gr )~P({et0jgr (t))!
X

ci (t)[C k

at (ci ,gr ) ð3Þ

at (ci ,gr )~P({et jci(t))
X

c
j
(t{1)[C k

P(ci(t)jcj (t{1),gr )at{1(cj ,gr ) ð4Þ

a0(ci ,gr )~P({e0jci(t~0))P(c
i
(t~0)jg

r
) ð5Þ

3) Calculate the belief distribution over coincidence patterns
Belt (ci)!

X

g
r
[Gk

bt (ci ,gr ) ð6Þ

bt (ci ,gr )~P({e
t
jc

i
(t))

X

c
j
(t{1)[C k

P(c
i
(t)jc

j
(t{1),g

r
)bt{1(cj ,gr ) ð7Þ

b0(ci ,gr )~P({e0jci(t~0))P(ci jgr )p0(gr ) ð8Þ

4) Calculate the messages to be sent to child nodes.
pmi (gr )!

X

i

I (ci)Bel(ci) ð9Þ

where

I (c
i
)~

1, if gmi
r is a component of c

i

0, otherwise

�

ð10Þ

doi:10.1371/journal.pcbi.1000532.t001

Table 2. Summary of notation used for belief propagation in HTM nodes.

Symbol Meaning

ci ith coincidence in the node

gr rth Markov chain in the node.

{e Bottom-up evidence. {et indicates the evidence at particular instant t and {et0 indicates the sequence of bottom-up evidence from time 0 to time t.
ze Top-down evidence. Time indexing is similar to that of {e

l Feed-forward output message of the node. This is a vector of length equal to the number of Markov chains in the node.

lmi
Feed-forward input message to the node from the child node mi . This is a vector of length equal to the number of Markov chains in the child node.

p Feedback input message to the node. This is a vector of length equal to the number of Markov chains in the node.

pmi
Feedback output message of the node to child node mi . This is a vector of length equal to the number of Markov chains in the child node.

y The bottom-up likelihood over coincidence patterns in a node. This is one of the inputs for the feed-forward sequence likelihood calculation.

a Bottom-up state variable for the Markov chains in a node. This a vector of length equal to the total number of states of all Markov chains in the node.

b State that combines bottom-up and top-down evidence for the Markov chains in a node. This state variable has the same dimension as that of a.

Bel(ci) Belief in the ith coincidence pattern in a node.

doi:10.1371/journal.pcbi.1000532.t002
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Calculating the likelihood of coincidence patterns. The

bottom-up input to the HTM node is the feed-forward output

messages from its children. These output messages carry

information about the degree of certainty of the Markov chains

in the child nodes. Each message is a vector of length equal to the

number of Markov chains in the corresponding child. The

likelihood of coincidences is derived from these input messages

according to Equation 2. This operation is performed by the

rectangle marked 1 in Figure 2(B). Figure 3 shows an abstract

neuronal implementation of this calculation for the reference

HTM node.

In Figure 3, each neuron corresponds to a stored coincidence

pattern. The pattern corresponding to the co-occurrence is stored

in the connections this neuron makes to the messages from the

child input nodes. For example, the neuron corresponding to

coincidence pattern c1 has connections to the first position of the

message from the first child and the third position of the message

from the second child. These connections correspond to first row

of the coincidence-pattern matrix C2,1 in Figure 2(A). Each

neuron calculates its output by multiplying its inputs. For example,

the output of neuron c3 is proportional to the product of l1,1(2)

and l1,2(2). The output, denoted by y in Figure 2(B), is a vector of

5 components, one component corresponding to each coincidence

pattern. This vector represents the likelihood of coincidence

patterns, based on the messages received from the child nodes.

Calculating the feed-forward likelihood of Markov

chains. The next step in the computation of feed-forward

messages, corresponding to the rectangle marked 2 in Figure 2(B),

is the calculation of the degree of certainty of the HTM node in

each of its Markov chains. The quantity that needs be to

calculated is P({e0,
{e1, � � � ,

{et jgi) for each Markov chain gi
where {e0,

{e1, � � � ,
{et represent the bottom-up evidence

distributions received from time 0 to time t. The likelihood of

Markov chains depends on the sequence of messages that the node

has received from its children. A brute-force computation of this

quantity is not feasible because this requires the enumeration of

the likelihoods of an exponentially growing number of sample

paths. To calculate P({et0jgi) efficiently, all the past evidence

needs to be collapsed into a state variable that can be updated

recursively every time instant. This is done using a technique

called dynamic programming [30,31] as represented in Equation

4. The derivation of this equation is described in supporting

information Text S1.

Equation 4 can have a very efficient neuronal implementation

as shown in Figure 4. The ‘circle’ neurons in this circuit implement

the sequence memory of the Markov chains in the HTM node.

The connections between the circle neurons implement the

transition probabilities of the Markov chain. As the ‘axons’

between these neurons encode a one time-unit delay, the output of

a circle neuron is available at the input of the circle neuron that it

connects to after one time step. (This is a very limited method of

representing time. We will discuss more sophisticated representa-

tions of time in a later section.)

All the circle neurons co-located in a column have the same

bottom-up input. They are all driven by the same coincidence-

pattern likelihood neuron – represented by diamonds – from

below. Each column, considering only bottom-up input, can be

thought of as representing a particular coincidence pattern. In

addition to the bottom-up input, these circle neurons also have

‘lateral’ inputs that come from other circle neurons in the same

Markov chain. The lateral connections specify the meaning of a

neuron in a sequence. A circle neuron that is labeled as cigj
represents the coincidence pattern ci in the context of Markov

chain gj . The same coincidence pattern can belong to different

Markov chains and can hence be active under different temporal

contexts. For example, the circle neuron c2g1 will be activated only

in the context of Markov chain g1, whereas the circle neuron c2g2
will be activated only in the context of Markov chain g2.

Each circle neuron in this circuit does the same computation. Each

neuron calculates its output by multiplying the bottom-up input with

the weighted sum of its lateral inputs. The output of a circle neuron is

denoted using a(coincidence number, markov chain number). With

this, the output of any circle neuron cigr is calculated as

at(ci,gr )~y(i)
X

j

w(i,j) � at{1(cj ,gr ) ð1Þ

That is, the output of the a circle neuron at any time is the weighted

sum of the outputs of the neurons in the same Markov chain at the

previous time step multiplied by the current bottom-up activation.

(Again, the above equation assumes a simple step-wise notion of time

which is insufficient for encoding duration and for non-discrete time

problems. We believe that in real brains, time duration is captured

using a separate mechanism. This will be discussed in the Results

section.) The above equation corresponds to Equation 4 if we replace

w(i,j) by P(cijcj ,gr ). Therefore, the circle-neuron circuits shown in

Figure 4 implement Equation 4 and the weights on the lateral time-

delayed connections correspond to the transition matrix entries in

each Markov chain.

Now consider the third kind of neurons – the ‘rectangle’

neurons – in Figure 4. The rectangle neuron marked g1 receives its

inputs from the outputs of all the circle neurons in the Markov

chain g1. The rectangle neurons pool the outputs of all the

coincidence-pattern neurons in the context of a Markov chain. At

any time point, the output of a rectangle neuron is calculated as

the sum (or maximum) of the inputs to that neuron.

Note that the operation of the rectangle neurons corresponds to

pooling over the activations of all the circle neurons of the same

Markov chain. It is easy to verify that this is the operation involved

Figure 3. Coincidence likelihood circuit. Circuit for calculating the
bottom-up probability over coincidence patterns. Coincidence pattern
neurons are represented by diamond shapes. The inputs to the circuit
are the messages from the children, which are denoted by l1,1 and l1,2 .
The output of the circuit is y, as calculated by Equation 2 in Table 1. The
input connections to each neuron represent its coincidence pattern. For
example, c2 is the co-occurrence of Markov chain 3 from the left child
and Markov chain 1 from the right child. The probabilities are calculated
by multiplying the inputs to each neuron.
doi:10.1371/journal.pcbi.1000532.g003
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in the calculation of the message this node sends to its parent

according to Equation 3. The concatenated outputs of the

rectangle neurons is the message l that this node sends to its

parent. As noted in Figure 2(B), this message is a vector of two

components, corresponding to the two Markov chains in the

reference node in Figure 2(A). This completes the description of

the abstract neuronal implementation of equations in the second

row of Table 1 and of the operations performed by the rectangle

marked (2) in Figure 2(B).

Calculating the belief distribution over coincidence

patterns. An HTM node calculates its degree of belief in a

coincidence pattern by combining bottom-up, top-down, and

temporal evidences according to the equations on the third row of

Table 1. This corresponds to the operations of the rectangle

marked (3) in Figure 2(B). The top-down input to the node is a

vector of length equal to the number of Markov chains of the

node. The output of this computation is the belief-vector over the

coincidence patterns, in this case, a vector of length 5.

The belief calculation, described in Equation 6, has almost the

same form as the forward dynamic programming Equations 4.

The state variable b has the same form as the state variable a and

a very similar update equation. The only difference between these

two is the multiplication by a top-down factor P(gk j
z
e0) in the

belief calculation equations. Therefore, the neuronal implemen-

tation of the dynamic programming part of the belief calculation

equation is very similar to that of the forward dynamic

programming variable a. This implementation is shown in

Figure 5. The filled-circle neurons correspond to the circle

neurons in the forward calculation. Note that, in contrast to the

circle neurons in Figure 4, the filled-circle neurons now also have a

top-down multiplicative input that corresponds to P(gk j
z
e0).

The pentagon neurons in Figure 5 are the belief neurons. These

neurons pool over the activities of the same coincidence neurons in

different Markov chains to calculate the belief value for each

coincidence pattern. This operation corresponds to the
X

g
k

operation in Equation 6. Note that the operation of the pentagon

neuron is different from that of the rectangle neuron in Figure 4.

The rectangle neuron pools over different coincidence patterns in

the same Markov chain. The pentagon neuron pools over the

same coincidence pattern in different Markov chains.

Calculating the messages to be sent to child nodes. The

step that remains to be explained is the conversion of the belief

messages to the messages that a node sends to its children. This

step is described by Equation 9 and corresponds to the operations

performed by the rectangle marked (4) in Figure 2(B). The input

for this operation is the belief vector. The outputs are the p

messages that are sent to the child nodes. A message is sent to each

child and the message describes the degree of certainty this node

has about the child nodes’ Markov chains.

Figure 6 shows how this equation can be implemented using

neurons. The input belief is fed to ‘hexagonal neurons’ that

compute the messages for child nodes. Figure 6 shows two sets of

hexagonal neurons corresponding to the two child nodes of this

node. Each hexagonal neuron corresponds to a Markov chain of

the child node. The left child node has 3 Markov chains and the

right child node has 4 Markov chains. The outputs of these

hexagonal neurons are the messages that are sent to the respective

children.

The connections between the input and the hexagonal neurons

encode the constituents of coincidence patterns. For example, the

first input is connected to the hexagonal neuron representing the

first Markov chain of the left child and to the hexagonal neuron

Figure 4. Markov chain likelihood circuit. The circuit for calculating the likelihoods of Markov chains based on a sequence of inputs. In this
figure there are five possible bottom-up input patterns (c1–c5) and two Markov chains (g1, g2). The circle neurons represent a specific bottom-up
coincidence within a learned Markov chain (two Markov chains are shown, one in blue and one in green). Each rectangular neuron represents the
likelihood of an entire Markov chain to be passed to a parent node. This circuit implements the dynamic programming Equation 4 in Table 1.
doi:10.1371/journal.pcbi.1000532.g004
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representing the third Markov chain of the right child. This is

because the coincidence pattern c1 is defined as the co-occurrence

of the first Markov chain from the left child and the third Markov

chain from the right child. The hexagonal neurons calculate their

outputs as a sum of their inputs as described in Equations 9 and

10.

The operation of the hexagonal neurons shown in Figure 6 can

be thought of as the reverse of the operations performed by the

diamond neurons that were described in Figure 3. The weights on

the inputs to both these kinds of neurons define the coincidence

patterns. In the case of the diamond neurons, they calculate the

probability over coincidences from the probability distribution

over Markov chains from each child. The hexagonal neurons do

the reverse; they calculate the probability distributions over the

Markov chains from each child from the probability distribution

over coincidence patterns.

Further considerations of belief propagation equations
The equations in Table 1 are self-consistent and sufficient for

some learning and inference tasks. However, they do not address

several issues required for many real world problems. Specifically,

they do not address how feedback from a parent node to a child

node can influence the child node’s feed-forward output, and they

do not address issues of specific timing. The following sections

address these issues.
Role of feedback in the current model. Even though

feedback propagation in the current model does not affect feed-

forward propagation, it plays an important role in understanding

the evidence presented to a network. For example, for an image

given as input to the network, feed-forward propagation results in a

distribution at the top level about the objects that could be present in

the image. Feedback propagation can then be used to identify the

features in the input image that produced a particular hypothesis at

the top, to identify whether a particular edge in the image belongs to

an object or to the background, and to assign ownership of features

if there are multiple objects in the scene. In the Results section we

give examples of feedback propagation in the current model.

Role of feedback in loopy graphs. In the general case,

nodes in an HTM network will have overlapping receptive fields.

This gives rise to HTM network structures where each node in the

Figure 5. Belief circuit. Circuit for calculating the belief distribution over coincidence patterns by integrating the sequence of bottom-up inputs
with the top-down inputs. The pentagon-shaped neurons are the belief neurons. These neurons pool over all the neurons representing the same
coincidence in different Markov chains to calculate the belief value for each coincidence pattern. This circuit implements the Equation 6 in Table 1.
doi:10.1371/journal.pcbi.1000532.g005

Figure 6. Feedback message circuit. The circuit for computing the
messages to be sent to children according to Equation 9. The two sets
of hexagonal neurons correspond to the Markov chains of the two
children of the reference node.
doi:10.1371/journal.pcbi.1000532.g006
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network can have multiple parents. Such network structures are

‘loopy’ because of the cycles in their underlying graphs. Belief

propagation is theoretically guaranteed to give accurate results in

non-loopy graphs. Even though theoretical guarantees do not exist

for belief propagation in loopy graphs, it is found to work well in

practice on many problems involving loops [32,33].

HTM nodes with multiple parents can be treated like the causal

poly-tree structures described by Pearl [29]. Poly-tree structures

imply that multiple higher-level causes influence a lower level

cause. Belief propagation computations in poly tree structures

have the property that the message from a child to a parent is

influenced by the messages from all other parents to the child. This

modifies the flow of information in the HTM node in Figure 2(b)

by introducing an arrow between box 3 and box 2. Local poly-tree

structures can produce loops if repeated in a hierarchy. These

sources of loops are likely to be common in brains. Multiple top-

down causes can be combined efficiently using the noisy OR-gate

structures described in Pearl’s book [29].

For the sake of simplicity of exposition, we deal exclusively with

singly connected (non-loopy) networks in this paper. It is

straightforward to extend belief propagation in HTMs to include

multiple parents for each node.

Role of feedback for attention. The propagation equations

in Table 1 compute approximate posterior distributions at every

node in the hierarchy given the evidence. Calculating the posterior

distributions at every node is one type of query that can be answered

using such propagation techniques. Making inferences about real

world situations often requires more complex queries involving a

subset of nodes. Pearl discussed this need in his book as a motivation

for controlling attention [29] (page 319), ‘‘In many cases, there is a

small set of hypotheses that stand at the center of one’s concerns, so

the reasoning task can focus on a narrow subset of variables, and

propagation through the entire network is unnecessary.’’

For example, one interesting query to answer is what would be

the evidence in support of top-level hypothesis 1, if all other top-level

hypotheses are assumed to be inactive. This is a form of top-down

attention. It can be achieved using local computations by

propagating down the influence of hypothesis 1, and inhibiting, at

all levels, the bottom-up support that conflicts with the high level

hypothesis. In the case of vision, such a mechanism can be used to

pay attention to a single object when multiple objects are present in

the scene. The top-down propagation of a higher-level hypothesis

will, in this case, identify the lower level nodes and coincidence

patterns that support the hypothesized object. Turning off all other

nodes can increase or decrease the certainty in that hypothesis.

Another form of query that can be answered is to ask what other

hypotheses might be active if the top-level hypothesis is considered

to be inactive. For example, while recognizing a complex scene, it

could be advantageous to not pay attention to an object that is

already recognized so as to focus on other objects in the scene.

This requires a mechanism that propagates down the currently

active hypothesis and turning off all the evidence that supports this

hypothesis exclusively.

Both of the above cases correspond to gating the bottom-up

evidence using top-down activation. The gating signal at each

node, corresponding to an activated top-level hypothesis, can be

derived from the computed beliefs at that node. However,

maintaining this gating during further computations requires

external control mechanisms that are not part of the standard

belief propagation machinery. There are several places where this

gating can be applied, at the inputs to coincidences, at the

coincidences themselves, or at the output of the Markov chains.

Incorporating variable speed and duration into the belief

calculation. As expressed in the equations, the Markov chains

advance their state with every time tick and can model only

sequences that happen at a particular speed. The prime enabler of

sequential inference in those equations is the property that the

outputs of the pre-synaptic neurons at time t is available at the

lateral input of the post-synaptic neuron at time tz1, exactly at the

time when the bottom-up activity of the post-synaptic neuron

arrives. If this lateral activity is maintained at the lateral input of the

post-synaptic neuron for a longer duration, the bottom-up input

activity for the post synaptic cell do not need to arrive exactly at time

tz1. The lateral input that is maintained in the post-synaptic cell

can be extinguished when either sufficient bottom-up activity arrives

at the post-synaptic cell to produce a ‘firing’ event or when a

temporal window is exhausted after the pre-synaptic event. Such a

mechanism that strengthens the correct sequence as long as the next

event arrives within a temporal window after the previous event

would enable variable speed sequential inference that is robust to

local temporal warps. Achieving this in the equations requires

writing the dynamic programming equations using events rather

than time steps, where events are defined using thresholds on the

combined lateral and bottom-up activity. Variable speed inference

can be achieved with the same neuronal connectivity we showed for

fixed speed inference if we assume that mechanisms for maintaining

lateral activity and for determining event thresholds are

implemented within each neuron. Further explication of this

mechanism is left for future work.

Another element missing from the equations in the previous

section is an explicit duration model associated with the states of

Markov chains. In certain cases of temporal inference, the next

event is expected at a precise time after the previous event rather

than in a temporal window as discussed in the above paragraph.

Music is one example. Humans also have the ability to speed up

and slow down this specific duration mechanism. Several

techniques exist for incorporating explicit duration models into

Markov chains [34,35]. Some of these techniques introduce self-

loops into the Markov chain states. However, self-loops lead to an

exponential duration probability density that is inappropriate for

most physical signals [35]. Instead, we assume that durations are

signaled to a node by an external timing unit that determines the

rate of change of the signals using some system-level measure-

ments. This means that the state change computations will have

two components. The first component, as described in the

previous sections, determines the distribution of the next state

without considering when exactly that distribution is going to be

active. The second component, the external timing signal,

determines when the belief distribution is going to be active.

Figure 7 is similar to Figure 5 with the addition of a variable

time-delay mechanism. Two types of belief neurons are shown.

The pentagonal neurons, previously shown in Figure 5, calculate

the node’s belief, and rounded rectangle neurons represent the

belief at a particular time delay. The outputs of the rounded

rectangle neurons are passed through an external variable delay

unit. The rounded rectangle neurons act as a gate that opens only

when a timing signal and a belief value are both available at its

inputs. The activation of these neurons triggers the next timing

cycle. The timing signal is used to gate the a and b calculations.

Only the gating of b calculation is shown in the figure. The

external timing circuit achieves the effect of a specific duration

model whose tempo can be changed.

Results

In this section, we interpret anatomical data of the neocortex

within the context of the computational specifications from the

previous sections. Anatomical data gives us important constraints
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on input and output layers, intra- and inter-laminar connections

and placement of cell bodies and dendrites. Assignment of a

particular function to a particular layer imposes constraints on

what functions can be performed by other layers. The challenge is

to find an organization that is self-consistent in the sense that it

implements the belief propagation equations while conforming to

the constraints imposed by biology.

Our working hypothesis can be stated simply: The cortical

circuits implement the HTM belief propagation equations

described in Table 1. A hypothetical neuronal implementation

of these equations was described in the previous section. Under the

assumption that the cortical circuits are implementing these

equations, what remains to be explained is how the abstract

neuronal implementation of the previous section is physically

organized in the layers and columns of actual cortical anatomy.

This is accomplished by comparing the abstract neural imple-

mentations with anatomical data. We describe the results in two

stages. First we describe the high-level mapping between the

neocortical hierarchy and the HTM hierarchy. Then we describe

how the circuits based on HTM belief propagation equations can

be mapped to cortical columns and laminae.

Mapping between neocortex hierarchy and HTM
network hierarchy
An area of cortex can be thought of as encoding a set of patterns

and sequences in relation to the patterns and sequences in regions

hierarchically above and below it. The patterns correspond to the

coincidence patterns in an HTM node and the sequences

correspond to the Markov chains.

An HTM Node, as described earlier in this paper, encodes a set

of mutually exclusive patterns and Markov chains. A region of

cortex that has several patterns simultaneously active will be

implemented using several HTM nodes. Figure 8(D) shows the

HTM implementation of the logical cortical hierarchy shown in

8(C). This arrangement corresponds to one of the basic organizing

principles of the visual system where neurons in higher-level visual

areas receive inputs from many neurons with smaller receptive

fields in lower-level visual areas [36]. In addition, due to the

Figure 7. Timing circuit. The same circuit as shown in Figure 5 with the addition of circuitry for incorporating variable time delays between
elements of the Markov chains. The pentagon neurons represent the belief at each node. The rounded rectangle neurons represent the belief at each
node at the appropriate time delay. An external variable time delay mechanism provides time duration information to all the neurons involved in
encoding sequences.
doi:10.1371/journal.pcbi.1000532.g007
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temporal nature of HTM, this arrangement corresponds to a

temporal hierarchy analogous to the kind reported by Hasson and

colleagues [37]. In this highly simplified mapping, the area V1 is

implemented using 4 HTM nodes while area V2 is implemented

using 2 HTM nodes. Typically, the number of non-exclusive

patterns that needs to be maintained decreases as you ascend in

the hierarchy. Therefore, higher-level cortical regions can possibly

be modeled using a fewer number of HTM nodes. Note that this is

a representative diagram. A cortex-equivalent implementation of

V1 and V2 could require several thousand HTM nodes for each

cortical area and the receptive fields of the nodes would typically

be overlapping.

The coincidence patterns and Markov chains in an HTM node

can be represented using random variables. A cortical column can

be thought of as encoding a particular value of the random

variable that represents the coincidence patterns in the HTM

node. The feed-forward and feedback connections to a set of

cortical columns carry the belief propagation messages. Observed

information anywhere in the cortex is propagated to other regions

through these messages and can alter the probability values

associated with the hypotheses maintained by other cortical

columns. In HTMs these messages are computed using the

mathematics of Bayesian belief propagation as we described

earlier.

A detailed proposal for the computations performed by
cortical layers
Our proposal for the function, connectivity and physical

organization of cortical layers and columns is shown in Figure 9.

This figure corresponds to the laminar and columnar cortical

circuit implementation of the belief propagation equations for the

reference HTM node in Figure 2. Figure 9 was created by

arranging the neurons of the abstract neuronal implementation of

HTM belief propagation into columns and laminae in such a way

that the resultant circuit matched most of the prominent features

found in mammalian neocortex. In the following sections we de-

construct this picture and examine the anatomical and physiolog-

ical evidences for the specific proposals. This will also illuminate

the process that we went through to arrive at the circuit shown in

Figure 9.

The circuits in Figure 9 provide an exemplar instantiation of the

Bayesian computations in laminar and columnar biological

cortical circuits. Several plausible variations and exceptions of

this circuit can be found because of the degrees of freedom in the

implementation of the belief propagation equations and because of

the incompleteness of anatomical data. We will tackle some of

these exceptions and variations as they come up in the appropriate

context and also in the Discussion section.
Columnar organization. The cortical circuit shown in

Figure 9 is organized as 5 columns corresponding to the 5

coincidence patterns in the reference HTM node that we started

with. The neurons in each column represent some aspect of the

coincidence pattern that the column represents. For example, the

neurons in layer 2/3 represent the coincidence pattern in the

context of different sequences, whereas the neurons in layer 6

represent the participation of the coincidence pattern in the

calculation of feedback messages. The 5 columnar structures

shown represent a set of 5 mutually exclusive hypotheses about the

same input space. For example, these columns can correspond to a

set of columns in the primary visual cortex V1 that receive input

from a small area of the visual field. The 5 coincidence patterns

might correspond to different orientations of a line. If the receptive

field is small enough, the different orientations can be considered

mutually exclusive - the activity of one reduces the activity of the

other. This kind of columnar organization is typical in biology

[38,39].

In the idealized cortical column model, each different aspect

that needs to be represented for a coincidence pattern is

represented using a single neuron. For example, there is exactly

one neuron representing coincidence pattern 1 in the context of

Markov chain 1. This means that there is no redundancy in this

idealized cortical representation. Nothing about the computation

or the representation changes if we replicate each neuron in this

Figure 8. Mapping between neocortex hierarchy and HTM hierarchy. (A) Schematic of neocortex inside the skull. The neocortex is a thin
sheet of several layers of neurons. Different areas of the neocortical sheet process different information. Three successive areas of the visual hierarchy
– V1, V2 and V4 – are marked on this sheet. The connections between the areas are reciprocal. The feed-forward connections are represented using
green arrows and the feedback connections are represented using red arrows. (B) A slice of the neocortical sheet, showing its six layers and columnar
organization. The cortical layers are numbered 1 to 6: layer 1 is closest to the skull, and layer 6 is the inner layer, closest to the white matter. (C) Areas
in the neocortex are connected in a hierarchical manner. This diagram shows the logical hierarchical arrangement of the areas which are physically
organized as shown in (A). (D) An HTM network that corresponds to the logical cortical hierarchy shown in (C). The number of nodes shown at each
level in the HTM hierarchy is greatly reduced for clarity. Also, in real HTM networks the receptive fields of the nodes overlap. Here they are shown
non-overlapping for clarity.
doi:10.1371/journal.pcbi.1000532.g008
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circuit a few times, while maintaining their connectivity. A

coincidence that is represented by a single neuron in our cortical

column can be represented by a cluster of laterally interconnected

neurons.

One prediction of our model is that many of the connections

within a vertical column of cells can be established without any

learning. Figure 10(A) shows a single idealized column. The

connections within this column that can be established a-priori are

shown in black. These connections act as a backbone for carrying

out belief propagation computations. This feature makes our

idealized cortical column a good candidate to be a developmental

feature. The idealized cortical column in Figure 10(A) can

correspond to what is known as the mini-columns or ontogenetic

columns of the cortex [40]. Mini-columns are developmental units

that contain about 80 to 100 neurons. By the 26th gestational

week, the human neocortex is composed of a large number of

mini-columns in parallel vertical arrays [41]. In real brains we

would not want to represent something with a single cell.

Therefore, we assume that in real brains the basic computational

column will consist of many redundant cells bound together using

common input and short-range intra-laminar connections result-

ing in a column as shown in Figure 10(B) [41].

For the rest of the discussion we will focus on the idealized

cortical column and the idealized cortical circuit with no

redundancy.

Layer 4 stellate neurons implement the feed-forward

probability calculation over coincidence patterns. The

excitatory neurons in layer 4 of the cortex consist primarily of

star-shaped neurons called stellate neurons and pyramidal neurons

[42]. Layer 4 is generally accepted as the primary feed-forward

input layer to cortical regions [2]. In the cat primary visual cortex,

the outputs from the retina pass through the lateral geniculate

Figure 9. A laminar biological instantiation of the Bayesian belief propagation equations used in the HTM nodes. The circuit shown
here corresponds exactly to the instantiation of the reference HTM node shown in Figure 2. The five vertical ‘columns’ in the circuit correspond to the
5 coincidence patterns stored in the reference node. Layers 1 to 6 are marked according to the standard practice in neuroscience. Emphasis is given
to the functional connectivity between neurons and the placement of the cell bodies and dendrites. Detailed dendritic morphologies are not shown.
Axons are shown using arrow-tipped lines. Feed-forward inputs and outputs are shown using green axons and feedback inputs and outputs are
shown using red axons. Whether an axon is an input or output can be determined by looking at the direction of the arrows. The blue axons entering
and exiting the region represent timing-duration signals. ‘T’ junctions represent the branching of axons. However, axonal crossings at ‘X’ junctions do
not connect to each other. Inter-columnar connections exist mostly between neurons in layer 2/3, between layer 5 cells, and between layer 6 cells.
The inter-columnar connections in layer 2/3 that represent sequence memories are represented using thicker lines.
doi:10.1371/journal.pcbi.1000532.g009
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nucleus (LGN) of the thalamus and then terminate on layer 4

stellate cells. Most of these connections are known to be proximal

to the cell body and can drive the cells. The major projection

(output) of layer 4 stellate neurons is to layer 3 cells [15].

We propose that the layer 4 stellate cells implement the

probability calculation described in Equation 2 and shown in

Figure 3. This means that layer 4 neurons are coincidence

detectors and that the synapses of the layer 4 neurons represent co-

occurrence patterns on its inputs.

We realize this is a dramatic simplification of layer 4 cell

connectivity. It does not address the very large number of synapses

formed on distal dendrites, nor does it address the fact that many

feed-forward connections from Thalamus terminate in layer 3 cells

and that in some regions of cortex layer 4 is greatly diminished.

These facts can be supported by HTM theory. The horizontal

connections between layer 4 cells can implement spatial pooling or

temporal pooling without timing. Layer 3 cells can also act as

coincidence detectors of inputs from thalamus that make proximal

connections, and layer 3 cells can take the full burden of

coincidence detection. However, we choose to present the simplest

explanation of layer 4 cells for clarity and discuss some of the

variations in the Discussion section.

In Figure 9, the layer 4 neurons are shown in red. The inputs to

these neurons are the outputs of lower levels of the cortical

hierarchy, possibly routed through the thalamus. It is easy to verify

that the connections of these neurons correspond to the ‘diamond’

neurons in our belief propagation implementation shown in

Figures 3 , 4 and 5. Note that in the implementation of the belief

propagation equations shown in Figures 4 and 5, the neurons that

calculate the probability distribution on coincidence patterns (the

diamond neurons) have only feed-forward inputs. This is in

contrast to many other neurons that receive feed-forward,

feedback and lateral inputs. In neuroscience, it is accepted that

the feedback inputs to a cortical region generally avoid layer 4 [2].

This is consistent with our proposal for the function of layer 4

neurons.

Making layer 4 correspond to the feed-forward computation of

the probability over coincidence patterns imposes some constraints

on the computational roles for other layers. For example, the

major projection of layer 4 is to layer 3. This means that any

computation that requires major inputs from layer 4 will need to

be done at layer 3 and should match the general characteristics of

layer 3. The proposals for layer 3 computations, described in a

subsequent section, match these constraints.

Layer 1: The broadcast layer for feedback information

and timing information. Feedback connections from higher

levels of the cortex rise to layer 1. The recipients of these

connections are the cells with apical dendrites in layer 1. Layer 1 is

comprised mostly of axons carrying feedback from higher levels of

cortex, axons from non-specific thalamic cells, apical dendrites,

and a minor concentration of cell bodies [42].

To remain consistent with this biological data, the layer 1 in our

mapping will be the ‘broadcast’ layer for feedback and timing

information. The axons carrying feedback information P(Gjez)

will be available at layer 1 and accessed by the apical dendrites of

neurons that require this information. In addition, the availability

of a timing signal at layer 1 is assumed. The purpose of this timing

signal is discussed in a subsequent section where we discuss the

layer 5 cells.

Layer 2/3 pyramidal cells: Sequence memory, pooling

over sequences, incorporating feedback information. The

primary inter-laminar excitatory input to layer 2/3 is from the

stellate cells of layer 4. In addition, the layer 2/3 neurons receive

excitatory inputs from other layer 2/3 neurons via extensive lateral

connections [43]. Many layer 2/3 neurons project to higher levels

of cortex and to layer 5 [44].

We propose three different roles for the layer 2/3 pyramidal

neurons in cortical circuits: (1) Calculation of feed-forward

Markov chain (sequence) states, (2) Projection of Markov chain

information to higher level cortical areas, and (3) Computation of

sequence states that incorporate feedback information. We now

consider each proposal in detail and then examine anatomical

evidence in support of these circuits.

1. Pyramidal cells for calculating feed-forward se-

quence states: The pyramidal neurons shown in green in

Figure 9 implement the Markov chain sequences and the

dynamic programming computations for feed-forward sequen-

tial inference. These neurons correspond to the ‘circle neurons’

that we described in the Model section and implement the

dynamic programming Equation 4 in Table 1. These

pyramidal neurons receive ‘vertical’ excitatory inputs from

the outputs of layer 4 stellate neurons and ‘lateral’ inputs from

other pyramidal cells within layer 2/3. Circuits in layer 2/3 of

Figure 9 show our proposal for how Markov chain sequences

are implemented in biology. The green pyramidal neurons

with blue outlines and blue axons correspond to Markov chain

g1 in Figure 4 and the green pyramidal neurons with magenta

Figure 10. Columnar organization of the microcircuit. (A) A
single idealized cortical column. This idealization could correspond to
what is often referred to as a biological mini-column. It is analogous to
one of the five columnar structures in Figure 9. (B) A more dense
arrangement of cells comprising several copies of the column (A).
Although we typically show single cells performing computations, we
assume there is always redundancy and that multiple cells within each
layer are performing similar functions.
doi:10.1371/journal.pcbi.1000532.g010
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outlines correspond to Markov chain g2 in Figure 4. The axons

from these pyramidal cells cross column boundaries and

connect to other pyramidal neurons that belong to the same

sequence. Since these connections correspond to learned

sequence memories, they will be very precise about which

columns and which specific neurons within these columns they

target.

2. Pyramidal cells that project to higher order cortex:

The next issue we want to address is how the Markov chain

identities are sent to higher level cortical regions. We see

several possibilities. One is to use a second set of pyramidal

cells in layer 2/3. These pyramidal cells correspond to the

Markov chain identities and get excitatory inputs from the

layer 2/3 pyramidal cells that belong to the same Markov

chain. This second set of pyramidal neurons in layer 2/3

corresponds to the rectangle neurons in Figure 4. These

neurons send their outputs to higher-level cortical regions. In

Figure 9, these pyramidal neurons are shown in blue color in

layer 2/3 and send their axons down to the white matter to

reach higher cortical areas. The second proposal does not

require a second set of neurons but instead relies on long lasting

metabotropic responses of neurons. The cells in layer 3 which

represent the individual elements in Markov chains will

become active in turn as sequences are learned and recalled.

We need a way of generating a constant response that persists

as the individual sequence elements are traversed. If the layer 3

cells that represent the sequence elements project to metabo-

tropic receptors in higher cortical regions, those destination

neurons could stay active for the duration of sequences. Strong

evidence suggesting which of these two, or other, mechanisms

is used is lacking. It is a strong theoretical prediction that a

mechanism must exist in each region of cortex for forming

constant representations for sequences of activity. It is an area

for further study to determine what is the most likely

mechanism for this.

3. Pyramidal cells for computing sequences based on

feedback: In the Model section, we saw that a second set of

dynamic programming states were required for the calculation

of the belief of coincidence patterns and as an intermediate step

in deriving the feedback messages to be sent to the children.

These neurons do the sequence computations while integrating

feedback information from the higher layers. We propose a

third set of pyramidal neurons in layer 2/3 for this purpose.

These neurons correspond to the filled-circle neurons in

Figure 5. In Figure 9, these neurons are represented using

yellow colored pyramidal neurons in layer 2/3. The lateral

connections of these neurons are similar to the lateral

connections of the layer 2/3 green pyramids that we just

described. However, these yellow layer 2/3 neurons also

integrate feedback information from layer 1 using their apical

dendrites in layer 1 as shown in Figure 9. A prediction arising

from this mechanism is that two classes of neurons in layer 2/3

can be differentiated by the connections they make in layer 1.

One class of layer 2/3 neuron will form layer 1 synapses with

feedback axons from higher levels of cortex. The other class of

layer 2/3 neuron will not form synapses with feedback axons,

but will form synapses with axons from non-specific thalamic

cells needed for timing (discussed more in a later section).

Now, let us examine the anatomical evidence that led us to these

proposals. The major bottom-up input required for the above

calculations is the feed-forward probability over coincidence

patterns that was assigned to layer 4 neurons in a previous

section. The major excitatory projection of layer 4 neurons is to

layer 2/3 neurons [45]. For example, L4 spiny neurons in the

barrel cortex of the mouse are characterized by mainly vertically-

oriented, predominantly intra-columnar, axons that target layer 2/

3 pyramidal cells [46]. Note that the green and yellow neurons in

Figure 9 receive inputs from layer 4 neurons that are in the same

column.

Cells in layer 2/3 are known to be ‘complex’ cells that respond

to sequence of motion or cells that respond invariantly to different

translations of the same feature. Unlike cells in layer 4 that

respond to more impoverished stimuli, cells in layer 2/3 of the

visual and barrel cortices strongly prefer richer stimuli, such as

motion in the preferred direction [47]. This is consistent with our

proposal that most layer 2/3 cells represent different coincidence

patterns in the context of different Markov chain sequences. They

become most active only in the context of the correct sequence. In

biology, it is found that axons of the layer 2/3 pyramidal neurons

travel several millimeters parallel to the layer 2/3 – layer 4

boundary and re-enter layer 2/3 to make excitatory connections to

pyramidal cells there [43,48]. This is akin to the blue and magenta

axons that we show in Figure 9 and is consistent with the

implementation of sequence memories and dynamic programming

computations. The green neurons and the yellow neurons in

Figure 9 correspond to this description and are assumed to encode

states within sequences.

We show green and yellow layer 2/3 neurons in Figure 9

because we need to learn two sets of sequences. One set of

sequences is used in feed-forward calculations and the other set of

sequences is used in feedback calculations. In our figures the green

neurons are feed-forward and the yellow neurons feedback. The

yellow neurons need to have apical dendrites in layer 1 to receive

feedback from higher cortical areas. The green neurons may also

have apical dendrites in layer 1 to receive timing information. But

the green feed-forward neurons should not make connections with

the feedback signal. This is a theoretical prediction currently

without experimental data for support or falsification.

The computation that the sequence state cells in layer 2/3 need

to perform for inference involves a weighted sum of their lateral

connections multiplied by a bottom-up input. We found several data

points suggesting that neurons in layer 2/3 are capable of

approximating a similar computation. Yoshimura et al [49] report

that long distance horizontal connections to pyramidal cells in layer

2/3 exhibit different properties than those from vertical connec-

tions. They found that, under depolarized conditions, the EPSP

evoked by the activation of an individual input pathway (either

horizontal or vertical, but not both) was smaller than that evoked

without the depolarization. They also found that when both the

vertical and horizontal inputs were driven simultaneously, the

evoked EPSP was larger than the mathematical summation of the

individual EPSPs. They concluded that this indicated multiplicative

supralinear summation of EPSPs caused by simultaneous activation

of long range horizontal and vertical inputs under depolarized

conditions, and suggested that the observed nonlinear summation is

attributable to the intrinsic membrane properties of the pyramidal

cells or the synaptic properties of the inputs, rather than the

properties of the global neuronal circuitry. Another study [50]

suggested that the projections of layer 4 spiny neurons to layer 2/3

pyramidal neurons act as a gate for the lateral spread of excitation in

layer 2/3.

Our model requires that sequences at higher levels of the

hierarchy represent longer durations of time. The difference in

temporal scales can be orders of magnitude depending on the

depth of the hierarchy. In the Model section, we outlined how

variable durations can be encoded in the same sequence circuit by

maintaining lateral inputs to the post-synaptic neurons for a
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temporal window. The biological mechanisms underlying such

maintained activity is not well understood. One possibility is that

these activities are mediated by pre-synaptic calcium [51]. The

layer 2/3 circuit that we described can be thought of as a minimal

set of circuits that are needed for temporal inference on multiple

scales. If intrinsic properties of neurons are not adequate to

represent the longer time scales required by our model, it can be

achieved via additional network mechanisms. A network mecha-

nism to this effect is described in a subsequent section.

To calculate the belief in a coincidence pattern, the outputs of

all the yellow neurons in the same column have to be summed up.

This corresponds to pooling the evidence for that coincidence

pattern from all the different Markov chains (sequences) in which

the coincidence participates. Layer 5 is ideally suited for doing this.

It is known that layer 2/3 pyramidal cell axons have two distinct

projection fields: one horizontal (the long range axon collaterals),

and one vertical [46]. The horizontal, trans-columnar connections

target other layer 2/3 pyramidal cells [52,53] and correspond to

the sequence memory circuits that were described above. Both the

green neurons and the yellow neurons in Figure 9 take part in

these circuits, with the yellow neurons receiving feedback

information as well. It is known that the trans-laminar projections

of layer 2/3 neurons are to a class of cells known as layer 5-B [44].

It is also known that layer 3 pyramidal cells that connect to layer 5

cells have their apical dendrites in layer 1. The projections from

layer 3 to layer 5 are confined to the same column [46]. In the

next section we will see that this is consistent with our proposal for

the belief calculation cells in layer 5.

Layer 5: Implementation of belief calculation. We

propose that a class of layer 5 pyramidal neurons in cortical

circuits calculate the belief over coincidence patterns according to

Equation 6. This corresponds to the computations performed by the

pentagonal neurons in Figure 5. In the biological implementation

shown in Figure 9, these neurons are shown in light cyan color in

layer 5. These neurons receive inputs from the yellow neurons in

layer 2/3. Logically, the operation of these layer 5 belief neurons

corresponds to the pooling of evidence for a particular coincidence

from the different sequences that this coincidence participates in.

Layer 5 pyramidal cells for duration models. As

mentioned in the Model section, a method of encoding time

duration is needed in memorizing and recalling sequences within

the Markov chains. Exactly how this is done is not critical to the

main ideas in this paper. However, the biological possibilities for

encoding duration are somewhat limited and one possible

implementation suggests itself. In this section we explore this

mechanism starting with some assumptions that led to it.

Our model makes the assumption that cortical circuits store

duration of individual elements within sequences and that the

mechanism used to store duration must be present in many if not all

cortical areas. Further, a human can store specific durations, such as

duration of notes in music, that last up to about a second. This is too

long for typical process delay times in neurons, suggesting the

existence of a separate duration encoding mechanism. Humans also

have the ability to speed up and slow down memorized sequences

during recall, which suggests a partially centralized mechanism that

can influence the rate of recall over multiple elements in a sequence.

Duration information must also be available over broad areas of

cortex so that duration information can be associated between any

subsequent elements in a Markov chain. And finally, encoding

duration between elements in a sequence requires a signal that

marks when a new element has started. This suggests the need for

cells with a brief burst of activity. When we looked for anatomical

data that satisfied these constraints, the cortical projections to and

from non-specific thalamic cells were the best fit.

In the proposed circuit, layer 5 pyramidal cells remember the

precise time at which a belief is going to be active as measured as a

duration from the previous element in the sequence. These

neurons, shown as the dark cyan neurons in the layer 5 of Figure 9,

correspond to the rounded-rectangle neurons in Figure 7. The

timing signal, assumed to be broadly available in layer 1, is shown

as blue colored axons. The dark cyan timing neurons have their

apical dendrites in layer 1 to access this timing signal. It is assumed

that the belief-timing neurons project to non-specific thalamic

regions (the thalamic matrix) [54] which implement a variable

delay mechanism that projects back to layer 1 to complete a timing

loop, as shown in Figure 7. LaBerge’s [55] research has identified

the recurrent connection from layer-5 to the matrix thalamus to

the apical dendrites of layer 2/3 and layer 5 neurons as the circuit

responsible for sustaining activity for extended durations to

support cue-target delay tasks. The connections through the

matrix thalamus have also been proposed as a mechanism for

thalamo-cortical synchrony [54].

Now let us examine the anatomical evidence for these neurons

and connections. There are primarily two kinds of pyramidal

neurons in layer 5 of the cortex. The first type are called ‘regular-

spiking’ (RS) neurons and the second type are called ‘intrinsically

bursting’ (IB) neurons. The IB cells are larger, they extend apical

dendrites into layer 1, and as their name suggests they exhibit a

burst of action potentials when they become active. The RS cells

are smaller, their apical dendrites are mostly in superficial layer 4,

and they exhibit a stream of action potentials when active. It is also

known that the RS cells are mostly pre-synaptic to the IB cells

[43]. That is, RS cells send their outputs to IB cells. In our

mapping in Figure 9, the RS cells are the light-cyan colored

neurons in layer 5. The IB cells are the dark-cyan colored neurons

in layer 5 with their apical dendrites in layer 1. The output of the

RS cell goes to the IB cell. These mappings are consistent with

anatomical data [42,45].

Most of the excitatory connections from the layer 2/3

pyramidal cells (the yellow neurons in Figure 9) to layer 5 go to

the IB cells [42]. This layer 2/3 input, plus the apical dendrite

extending to layer 1, and the bursting behavior, suggest the IB cells

are ideally situated for both the pooling of evidence and encoding

the beginning (and hence timing) of a sequence element.

What role then might the RS cells play? In our survey, we could

not find detailed information about the inputs to RS cells. The

existence of RS cells can be justified if there is utility in

representing a belief in a coincidence pattern that does not

incorporate precise timing information. Introspection leads us to

believe that there is indeed the need for such a neuron. Consider

the case of listening to music. We anticipate which note is going to

happen next, well before it happens. The RS cells in layer 5 can be

thought of as belief cells that ‘anticipate’ the occurrence of the

belief, whereas the IB cells represent the same belief at a precise

time point.

The RS cells are known to project to sub-cortical areas like the

striatum and the superior colliculus [42] where the anticipation

signal could be used to anticipate actions. The IB neurons of layer

5 also project to sub-cortical areas and to motor areas. If a cortical

area is to influence actions, it makes sense that the signals for that

should be based on the belief of that cortical area, because the

belief represents the best possible information about the

coincidence patterns represented in that cortical area. Therefore,

the fact that layer 5 RS neurons and IB neurons project to sub-

cortical areas that influence motor actions is consistent with the

proposal that they compute the belief.

The timing loop requires the projection of the IB neurons to an

external timing circuit. Hawkins [7] has proposed the projections
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of IB cells to the non-specific thalamus as the mechanism for

generating a variable timing signal. Non-specific thalamic cells

were recommended for this role because they have the required

connectivity, receiving input from layer 5 cells and projecting

broadly back to layer 1. Beyond this connectivity there is nothing

else to support this conjecture. Our literature search and private

conversations with several thalamic anatomists have yielded no

evidence of anyone ever recording from non-specific thalamic

cells. For this conjecture to be true we would expect to see

something like a cascade of non-specific cells become active in

sequence in response to a burst on a layer 5 IB cell. The cascade

would last for several hundred milliseconds.

We can imagine alternate mechanisms for encoding duration.

For example, the cerebellum is known to encode specific timing

and its connectivity to the thalamus suggests it could play this role.

However, the layer 1 synapses of layer 5 IB cells appear to be in a

more efficient and logical location for storing duration in that these

synapses are directly connected to the beliefs being calculated in

layer 5. Again the result of this paper, the mapping of a

hierarchical belief propagation model onto cortical anatomy, does

not depend on how duration is encoded, but it does require it is

encoded by some means that can handle time scales varying in

orders of magnitude. LaBerge’s research [55] provides a summary

of arguments for the hypothesis that a recurrent cortico-thalamo-

cortical circuit as proposed here can provide stable levels of

modulatory activity at the soma of cortical pyramidal neurons that

can persist over extended periods of time. However, it is noted that

the biophysical and network mechanisms underlying persistent

temporal representations is still an area of active research.

Layer 6: Computing the feedback messages for

children. We assign to layer 6 pyramidal neurons the role of

computing the feedback messages that are to be sent to regions

that are hierarchically below. This corresponds to the hexagonal

neurons in Figure 6 and Equation 9 in Table 1. In Figure 9, these

are shown as the purple colored neurons in layer 6. Feedback

messages are derived from the results of the belief calculations

from a set of columns. This means that the layer 6 neurons will

receive inputs from the layer 5 neurons involved in the calculation

of beliefs. This is shown in Figure 9. A given set of columns will

send feedback messages to all its ‘child regions’. The feedback

message sent to one child is not the same as the feedback message

sent to the other child. In Figure 9, some of the layer 6 neurons

project to the left child while the rest project to the right child.

Layer 6 is known to be a primary source of cortical feedback

connections [15]. There is a class of pyramidal neurons in layer 6

that have short dendritic tufts extending primarily to layer 5. The

axons of these neurons project cortico-cortically [42] in a feedback

direction. Hence they are appropriately situated for calculating the

feedback messages and their connectivity is consistent with our

proposals for other layers. Note that in Figure 9, the axonal inputs

to layer 6 neurons from layer 5 neurons cross several columns. The

input connections to a layer 6 cell come from the columns

corresponding to the coincidence patterns that have the child

nodes Markov chain as a component.

In Figure 9, different layer 6 neurons project to different child

nodes. An alternative implementation is for these neurons to be

located in layer 2 of the respective child nodes. This implemen-

tation has the advantage that the higher-level node can send the

same feedback signal to all the child nodes. In either case, the

input connections to these neurons represent the participation of

the child node’s Markov chain in the higher-level node’s

coincidence patterns. These connections will need to be learned

through the simultaneous activation of the bottom-up outputs

from children with top-down outputs from the parent.

There are several other neuron types that are identified in

layer 6. We do not attempt to explain the functions of those

neurons. However, it is worth mentioning that some of the layer 6

cortical circuits already identified by other neuroscientists as

possible candidates for the gating of feedforward activation

(control of attention) [56–59] are compatible with our model.

According to these studies, cells in layer 6 of V1 provide extensive

feedback connections to the LGN of the thalamus. These

feedback connections target the distal dendrites of relay cells

and also contact inhibitory interneurons. The same layer 6 cells

also send collateral axons to layer 4 where LGN afferents contact

the cortex.

The connections that a set of layer 6 neurons makes to layer 4

and the thalamus are ideally suited for the attention control

mechanism that we outlined for the HTM belief propagation. We

described how the belief responses generated at every level can be

used for gating feed-forward evidence in accordance with a top-

level hypothesis. These signals need to be passed through control

mechanisms that will maintain the gating while further bottom-up

and top-down propagation for the attended to stimuli alter the

belief neuron responses. A layer 6 neuron that receives input from

layer 5 belief cells is ideally situated for this purpose. Why would

layer 6 neurons feed back to layer 4 and also to thalamus? One

possible explanation is that each connection provides a different

kind of attention modulation. For example, the layer 4 connection

could be for attending to the coincidence pattern corresponding to

the currently active belief and the thalamus connection could be

for attending to every coincidence pattern that is not part of the

current belief. These conjectures about layer 6 cells need further

research and refinement.

Exceptions from model. The six-layered cortical archi-

tecture we have described so far is most typical of sensory regions

of cortex. Many variations in cortical architecture are known to

exist, such as variations in the density and type of cells in a layer,

and variations in the number of layers. In addition, there are many

known common features of cortical architecture that are not

explicitly addressed in our model. Included in this category are the

previously mentioned cell types in layer 6 and all the classes of

inhibitory cells. These variations and omissions are not necessarily

at odds with the model presented in this paper. Not all functions of

the belief propagation equations have to be implemented

exclusively in one layer. Some layers, such as layer 3 and layer 4

may both be implementing feed-forward coincidence detection

and grouping but over differing spatial and temporal resolutions,

which could explain why layer 4 typically gets less prominent as

you ascend the cortical hierarchy. Different cell types may be

needed for short term memory (not included in our model) and

different types of attention. Inhibitory cells are needed to

implement learning. These topics are beyond the scope of this

paper.

Given the behavioral flexibility and resilience of the cortex, we

should expect some flexibility in the mapping between a

theoretical model and its anatomical instantiation. If our model

required a precise and unwavering mapping onto many unique

cell types and their connections it is unlikely such a system could

evolve. However, we suggest that the mapping of our model to

cortical anatomy is sufficiently constrained to suggest its validity

and provide testable predictions, but not so constrained to forbid

useful variations in its biological implementation. The basic model

can remain intact even though variations in timing mechanisms,

attention mechanisms, motor mechanisms, etc. are expressed in

variations in cortical architecture.

Summary. A summary of the proposed computational roles

is given in Table 3.
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Object recognition experiments using HTMs
Although the main purpose of this paper is the exposition of

HTM theory and its connection to biology, we believe it is useful

to discuss our work applying HTMs to practical problems. In this

section, we summarize the results of the work being done at

Numenta in applying HTMs to the problem of visual object

recognition. A detailed treatment of this topic is beyond the scope

of this paper.

We started by applying HTMs to a line drawing recognition

problem that we call the Pictures problem. The Pictures data set

consists of line drawings of 48 categories of objects. These line

drawings are shown in Figure S1. Each pattern is of size 32 pixels

by 32 pixels. The goal was to train an HTM network to recognize

test patterns with translations, severe distortions, scale and aspect

ratio changes, clutter and noise. The Pictures data set has some

properties that make it attractive for applying HTMs. Most objects

occupy only a fraction of the 32632 pixel input. This enables the

creation of test images with large translations and scale variations

while still maintaining the 32632 pixel input dimensions. The

objects are of different sizes. Some objects (for example, the ‘dog’)

contain other objects (the ‘cat’). Most of the objects are constructed

from the same set of local features. This means that techniques

that use local features alone are not adequate to recognize these

objects. The spatial configuration of the local features (i.e, the

shape) is important. Recognizing test patterns despite translations,

distortions and clutter is a challenging task even on this seemingly

simple data set.

We found that HTM network hierarchies with four levels work

best for the Pictures task. Adding more levels did not help in

improving the recognition accuracy on our test set. The HTM

networks are trained in a level-by-level manner, starting with the

coincidence patterns and Markov chains at the first level and then

moving up the hierarchy. During training, the network is shown

programmatically constructed movies in which the objects

undergo translations and scale variations in a smooth manner.

The training strategy we outlined in the Model section was used

for learning the coincidence patterns and Markov chains. More

details about the training methods and the learned coincidence

patterns and Markov chains can be found in [8]. A representative

set of learned Markov chains is shown in Figure S2. A challenging

test set was created by programmatically distorting the training

images and by adding noise. Examples of test images for the ‘table

lamp’ category are shown in Figure S3. The HTM networks

reported in our previous work [9] used Markov chains based

temporal pooling only at level 1 of the hierarchy and gave 49%

recognition accuracy on this test set. We found that incorporating

Markov chains based temporal pooling at higher levels increased

the recognition accuracy on test sets to 72%. In comparison, a

nearest neighbor classifier using exactly the training paradigm

used to train the top level of the HTM gives only 35% accuracy. A

stand-alone demonstration of this project that lets users interac-

tively draw images to test the network is included with the NuPIC

software available for download from Numenta’s website (http://

www.numenta.com). The network performs impressively in

qualitative testing. The Pictures demo, data set, and parameter

files are supplied as part of the NuPIC software available from

Numenta.

We modified the network structure while maintaining the same

spatial and temporal learning/inference algorithms to create an

HTM network that can recognize grayscale images. In this

network, the first level of coincidences were replaced with Gabor

filters of different orientations. At all levels, the coincidence

patterns were restricted to have spatial receptive fields smaller than

that of the Markov chains. With these modifications, we could

successfully train several gray scale image recognition networks.

On the standard Caltech-101 benchmark [60], our initial

experiments with the network achieved 50% recognition accuracy

with 15 training images and 62% recognition accuracy with 30

training images. We used a simple nearest neighbor classifier at the

top of the hierarchy. Experiments on the Caltech-101 dataset were

performed primarily to make sure that we are within the range of

reported accuracies. We share many of the concerns expressed by

Pinto et al [61] that the Caltech-101 data set and the associated

train/test protocols are not sufficiently informative of the overall

recognition capability of a system. For this reason, we did not

spend time optimizing the performance of our networks for this

data set.

Caltech-101 images have low intra-category variation. Most of

the images are centered and approximately of the same size. To

see whether our system can handle large intra-category variations

in gray-scale images, including translations and scale variations,

we trained a network with 4 categories of images. These categories

had a large amount of intra-category variation. The top of the

network was exposed to over 10000 different training images.

Figure S4 shows some examples of training images and Figure S5

shows some examples of test images for this network. On a hold

out set, this network gave 92% accuracy. We also found that the

network performs impressively in qualitative testing. A stand-alone

Table 3. Summary of anatomical features and their proposed computational functions.

# Anatomical feature Proposed computational role

1 Feed-forward thalamic projection to layer 4. Storage and detection of coincidence patterns.

2 Layer 4 cell dendrites are mostly within layer 4.
These cells make vertical projections to layers 2 and 3.

Bottom-up inputs required for the sequence likelihood calculation in
equation.

3 Layer 3 cells with inter-columnar lateral projections to other layer 2/3 cells.
Some of these cells send their outputs to higher order cortex.

Calculation of sequence likelihoods for feed-forward and feedback
calculations.

4 Layer 5 cells with apical dendrites in the superficial layer 4 and bottom of layer 3. Belief calculation without specific timing.

5 Layer 5 cells with apical dendrites in layer 1. These send outputs to
subcortical regions and non-specific thalamus.

Belief calculation with specific timing.

6 Layer 6 neurons with apical dendrites in layer 5. Computation of feedback messages for child regions.

7 Projections to layer 1 from higher level regions
and from non-specific thalamic cells.

High level input is feedback information. Non-specific thalamic input is
timing information for Markov chains.

See [42] for details on the anatomical features summarized in this table.
doi:10.1371/journal.pcbi.1000532.t003
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demonstration of this network that lets users test their own images

under different transformations is available for download from

Numenta’s website (http://www.numenta.com/about-numenta/

demoapps.php). We are also happy to note that researchers

outside Numenta have had success training recognition systems

using HTMs. A case study on recognizing architecture drawings,

including detailed parameter files for NuPIC software, is available

at http://www.numenta.com/links/vision_exp.php

We have done a small set of experiments exploring the use of

temporal information during inference. These experiments were

performed on the Pictures data set. During inference, the network

was shown a sequence of images. The first level of the network

used the sequential information to compute the likelihood of

Markov chains according to the equations we described in the

Model section. We measured the recognition accuracy, on a

frame-by-frame basis, while playing short (4 time frames) of

translating inputs in a noisy background. The temporal boundaries

where the input switched from one category to another were not

marked or transmitted to the network. The recognition accuracy

of the network that used temporal inference was up to 30% higher

compared to the recognition accuracy obtained by a sliding

window averaging (window length = 4) of frame-by-frame instan-

taneous recognition. More details on this experiment is available

on Numenta’s website (http://www.numenta.com/links/tbi_

overview.php). This experiment is also available as part of the

NuPIC software from Numenta. We have not done any studies

incorporating temporal inference for grayscale image recognition

or incorporating it at multiple levels of the hierarchy. These topics

are currently under investigation and development.

We have also done experiments using feedback propagation in

HTMs. The goal of these experiments was to verify that top-down

propagation in HTMs can be used to locate and segment out

objects in cluttered scenes with multiple objects. Figure 11 shows

the results of inference and top-down propagation in a network

that was trained on eight categories of images. During training, the

objects were shown in isolation on a clean background. The test

images contained multiple novel objects superposed on busy

backgrounds. In most cases, one of the objects in the test image

was the top result in the inference. Feedback propagation is

initiated from the top of the network after the first flow of feed-

forward propagation. After bottom-up propagation, the belief

vector at the top of the network is modified such that the winning

coincidence has strength one and all other coincidences have

strength zero. This message is then propagated down in the

network by combining with bottom-up information in the rest of

the levels of the hierarchy. The resultant image obtained at the

lowest level of the network isolates the contours of the recognized

image from the background clutter and from other objects in the

scene. These experiments show how top-down propagation in the

current model can be used for segmentation, for the assignment of

border-ownership, and for the ‘binding’ of features corresponding

to a top-level hypothesis [62]. More examples of top-down

propagation are available at http://www.numenta.com/links/

top_down.php

Example application: a model for the subjective contour
effect
The cortical circuit described in this paper can be used for

studying and modeling physiological phenomena. In this section,

we report some preliminary positive results that we obtained

modeling the subjective contour effect in visual inference [63] using

these circuits. The primary goal of this section is to serve as a proof

of concept for the possible applications of the circuit model. A

detailed investigation of the subjective contours effect is beyond

the scope of this paper.

The subjective contour effect is a well known cognitive and

physiological phenomenon. Figure 12 shows examples of Kanizsa

diagrams that produce this effect. When viewing such diagrams,

humans perceive edges even in regions where there is no direct

visual evidence for edges. Lee and Nguyen [64] found that

neurons in area V1 responded to such illusory contours even

though their feed-forward receptive fields do not have any

evidence supporting the presence of a line. In addition to finding

the neurons in V1 that respond to the illusory contours, Lee and

Nguyen also studied the temporal dynamics of their responses.

The summary of their findings is that the population averaged

response to illusory contours emerged 100 milliseconds after

stimulus onset in the superficial layers of V1 and at approximately

120 to 190 millisecond in the deep layers. The responses to illusory

contours in area V2 occurred earlier, at 70 milliseconds in the

superficial layers and at 95 milliseconds in the deep layers. These

findings suggest that top-down feedback is used in the generation

of illusory contours.

In [1], Lee and Mumford suggested this could be the result of

Bayesian computations. Their argument was that the presented

stimulus, according to the statistics of the visual world, is adequate

to create a high-level hypothesis of the rectangle even though the

edges are missing. The activation of this global hypothesis, at areas

V2 and above, in turn constrains the activity of lower level neurons

through the feedback messages. The HTM theory provides a

mechanism for training a visual cortical hierarchy and the HTM

circuit model gives a detailed anatomical circuit that can be used

to test this hypothesis.

Subjective contour effect in HTMs. We used Numenta’s

NuPIC software environment to train a visual pattern recognition

HTM network on which we tested the subjective contour effect.

We started with an HTM network that was trained to recognize

four different categories of objects: binoculars, cars, cell phones,

and rubber ducks. This network had a three level HTM hierarchy.

Figure 13 shows examples of training and testing images for these

categories. When presented with a test image, the output from the

top-level node is a distribution that indicates the network certainty

in different categories. In addition to recognizing input patterns,

the HTM network can also propagate information down in the

hierarchy using the belief propagation techniques that we

described in earlier sections. Feeding information back in the

hierarchy is used to segment the object from clutter and to locate

the object in the image. More details about the training process for

HTMs is available in [27] and in [8].

In this example the network recognizes a static visual image. This

is a special case of the dynamic programming computations we

described in that it uses only a single instant in time for inference.

(An example that uses temporal inference to recognize time-varying

patterns is available as part of the NuPIC software from Numenta.

More details on this example are available at http://www.numenta.

com/for-developers/education/tbi-overview.php.) HTMs need

time-varying patterns to learn, and the general mode of operation

is to perform inference on time-varying test patterns. However, in

some problem domains such as image recognition, there is often

sufficient information to perform inference without using time-

changing patterns. In such cases, correct recognition can be

obtained by a single feed forward pass through the network. This is

consistent with observations about the speed of processing in the

human visual system [65].

In order to perform the subjective contours experiment, we

trained this network on an additional category: rectangles. This

was done by presenting the network with a few images of
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Figure 11. Top-down segmentation. Figures A and B show the effect of top-down propagation in HTM networks. The top half of each figure
shows the original image submitted to the HTM, along with blue bars illustrating the recognition scores on the top five of the eight categories on
which the network was trained. The bottom-left panel in each figure shows the input image after Gabor filtering. The bottom-right panel in each
figure shows the image obtained after the feedback propagation of the winning category at the top of the HTM network. In these Gabor-space
images, the colors illustrate different orientations, but the details of the color map are not pertinent. A). The input image has a car superposed on
background clutter. The network recognizes the car. Top-down propagation segments out the car’s contours from that of the background. B). The
input image contains multiple objects superposed on a cluttered background and with some foreground occlusions. The network recognition result
identifies teddy bear as the top category. Feedback propagation of this winning category correctly isolates the contours corresponding to the teddy
bear.
doi:10.1371/journal.pcbi.1000532.g011
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rectangles during the training session. Only intact rectangle images

were shown during training. The network then recognized novel

rectangles of different aspect ratios.

We then tested the network on a Kanizsa square test pattern.

Figure 14 shows the response of the network to the Kanizsa square

test pattern. The network classifies this pattern as a rectangle, even

though this type of pattern was not seen during training. We

examined the network for the presence of illusory contour

responses. Illusory contour responses are characterized by top-

down activations with no bottom-up activation. We used the

capability of Numenta’s software to inspect the node states of a

network to probe for illusory contour responses. Figure 15 shows

the feed-forward and feedback inputs to nodes at 4 different

locations. The subjective contour effect can be seen in

Figure 15(C). There are no actual contours in the receptive field

of this node. Therefore, the feed-forward input of this node is zero.

However, the feedback input is nonzero because the network

expects the edges of a rectangle. This is the subjective contour

effect.

We did an additional experiment where we presented a

corrupted Kanizsa square identical to one of the control

experiments used in [64]. As shown in Figure 16, the corrupted

rectangle produces a subjective contour response similar to, but

substantially weaker than, the one produced by an intact Kanizsa

figure. This is consistent with the results that Nguyen and Lee saw

in monkeys. In our experiment the corrupted figure was

recognized as a rectangle at the top of the network, albeit with a

lower level of certainty. This lower level of certainty is reflected in

the lower activation level of the subjective contour. Had we put a

threshold on the strength of recognition at the top level to filter out

input images that were not close to any category, we could have

reduced the subjective contour response to close to zero.

It is proposed that the delayed onset of the illusory contour

response reported by Lee and Nguyen [64] occurs because of the

delays caused by propagating messages up and down in the

hierarchy. Lee and Nguyen also showed that the illusory contour

response occurs first in the superficial layers and then in the deep

layers. This is also consistent with the cortical circuit model in

Figure 9 because the feedback information first reaches the

Markov chain neurons in layer 2/3 (the yellow neurons in Figure 9)

and then is integrated into the layer 5 neurons.

The subjective contour effect in our model was generated

exclusively by feedback circuits. This is in contrast to models that

rely only on lateral connections within a level for contour

completion. For example, [66] uses a stochastic contour

completion algorithm. However, using only local information

completes contours that might not be in agreement with the

higher-level perception. The use of top-down information is more

in agreement with visual experience and with studies that suggest

that visual understanding and awareness might be needed for the

perception of illusory figures [67]. Lee and Mumford [1] suggested

that the formation of illusory contours is primarily a top-down

mechanism, as also suggested in our experiments, in combination

with lateral mechanisms proposed in [66].

Using our cortical circuits theory, it is possible to study this

phenomena in more detail. For example, it is possible to identify

specific neurons in specific laminae and specific columns that will

be active with top-down input and also to study their temporal

characteristics. This is left as future work.

Discussion

The mathematical model and biological mapping for cortical

circuits derived in this paper is a starting point to achieve the final

goal of a complete understanding of cortical circuits at least in

prototypical sensory areas. We see three ways of advancing the

circuits derived here: (1) Incorporation of more elements of HTM

theory including learning, attention, actions, and asynchronous

messages between levels, (2) Incorporation of more biological data

including more detailed modeling of dendritic properties, and

specific inhibitory cells, and (3) Incorporation of other constraints

such as wiring length optimization and ease of learning. In the

following subsections we discuss how a combination of the above

factors could explain many aspects of cortical circuits that are not

modeled in this paper.

Learning mechanisms and inhibitory neurons. The

circuits discussed in this paper have been mapped to the belief

propagation equations in a learned HTM node. We have not

discussed how the learning algorithms themselves can be analyzed

for their biological plausibility. We saw in the Results section that

some of the intra-columnar vertical connections required to

support the belief propagation equations can be pre-wired because

these connections do not depend on external stimuli. Most other

connections, the ones representing sequence memories and

coincidence patterns, are learned. Learning these connections

requires mechanisms that support competition, inhibition and

online learning.

Throughout this paper we have adopted the common

assumption that excitatory neurons provide the prominent

information-processing pathway and that inhibitory neurons

largely play a supporting role in implementing the learning

algorithms. This assumption is partially based on the fact that most

of the inter-laminar and long distance connections within a

cortical area are provided by the spiny excitatory neurons,

whereas the smooth inhibitory interneurons more prevalently

connect locally within their layer of origin. It is the excitatory cells

that connect long distance in both vertical and lateral dimensions

and their activity is then molded by local inhibitory neurons [15].

It is expected that inhibitory neurons will play a prominent role

when biologically realistic mechanisms are considered for the

learning of the HTM node states. Inhibitory mechanisms are

required for competition during learning. Inhibitory neurons could

also be required for avoiding instabilities produced by positive

feedback loops.

Overlapping nodes and sparse representations. The

HTM nodes described in this paper are shown as discrete

entities with abrupt boundaries, which does not correspond to

biology where overlapping receptive fields and imprecise

Figure 12. Kanizsa diagrams. A Kanizsa square (left) and a Kanizsa
triangle (right) are shown.
doi:10.1371/journal.pcbi.1000532.g012
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Figure 13. Examples of training and testing images for an HTM network trained for visual object recognition. The top two rows are
examples of training images. The bottom three rows are examples of correctly recognized test images. The last row shows test images that
incorporated distracter backgrounds.
doi:10.1371/journal.pcbi.1000532.g013
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boundaries are commonly found. The idealized HTM node

instantiation gives us the flexibility to create mathematical

abstractions that can be analyzed; however, it needs to be

modified to make a full biological correspondence. One way to

accommodate this could be to use HTM nodes with heavily

overlapped input fields to construct a region. With overlapped

input fields, the resultant network, viewed as a Bayesian network,

has cycles in it. Although theoretical guarantees do not exist for the

convergence of belief propagation in such hierarchies, successful

systems have been built based on belief propagation in loopy

graphs [32,33] and our limited experience with implementing

overlapping input fields have similarly shown no tendency for

loop-induced failures.

The HTM model in this paper uses sparse-distributed

representations [68,69] when considering the representations

within an entire hierarchical level. However, it does not use

sparse-distributed representations within a node. In domains

where a node is exposed to data that has rich characteristics, the

model would require modifications to include sparse-distributed

representations within an HTM node. This can be achieved by

relaxing the assumption that a node represents a set of mutually

exclusive hypotheses. We have made some recent progress with

this formulation. However, this is beyond the scope of this paper.

Cortical maps. The circuits derived here attempt to explain

only the information processing in a learned model. Any spatial

arrangement of the columns of the circuit that preserves the

connections between columns would still do the same information

processing. Hence, the circuits here provide no explanation for

observed cortical maps [70,71].

We can think of several plausible reasons for the existence of

cortical maps that are consistent with the circuits in this paper.

One reason is that organizing the columns in a particular manner

in space could reduce wiring length or some other resource that

needs to be conserved. Another reason could be that a

topographical organization of ‘‘similar’’ patterns could reduce

the search space for coincidence-detection and sequence-learning

algorithms. Circuits for implementing self organizing map [72]

algorithms need to be incorporated into the theory. This work is

left for the future.

Asynchronous message passing. The belief propagation

messages in this paper were derived under the simplifying

assumption that child-node states change synchronously. This

assumption made the derivations and the circuits easier to

understand. Our preliminary investigations indicate that relaxing

this assumption may require additional communication between

hierarchical levels which may explain the role of some of the layer

6 cells.

Attention mechanisms. As mentioned earlier, the circuits

derived in this paper do not incorporate a detailed mechanism for

attention control. Hypothesis-driven attention is an important

aspect of perception and plays an important role in belief

propagation as well [29]. It is known that thalamus plays an

important role in cortico-cortical communication, acting as a

dynamic control of information passed from one cortical area to

another [57,73]. There are multiple connections to the thalamus.

There are feedback connections that control the gating of feed-

forward information and the feed-forward connections through

the thalamus are viewed as an alternate pathway to the direct

cortico-cortical projections. There are computational reasons why

all these pathways should exist. In belief propagation, the messages

required for attention control are different from those of standard

feedback messages. The attention control messages instantiate

variables at intermediate levels and therefore affect the results of

feed-forward propagation, whereas the standard feedback

messages in belief propagation do not interact with feed-forward

messages.

Figure 14. Recognition of the Kanizsa square by an HTM network. The network was not shown Kanizsa squares during training. The bar
graph displays the order of recognition certainty of the HTM.
doi:10.1371/journal.pcbi.1000532.g014
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Some forms of attention can also be considered as an internal

motor action because the attention control mechanism activates

parts of the network and blocks the other parts. In that sense, the

attention control mechanism can also be thought of as analogous

to the do operator proposed by Pearl [74] to model the effect of

actions in causal Bayesian networks. It is a tantalizing clue that

Guillery and Sherman [75] found that the layer 5 pyramidal cells

that project to the pulvinar of the thalamus also project to motor

structures. Incorporation of the attention pathway into the derived

circuits is left for future research.

Neuron biophysics and dendritic properties. Much is

known about the properties and biophysics of dendrites, dendritic

action potentials, and the biochemical pathways related to

synapses [76]. The model presented here does not address most

of this knowledge. We see the potential for extending the HTM

model in these directions. Indeed, we believe the best way to

understand the detailed properties of neurons is within the context

of a larger scale theoretical framework.

Predictions of the theory. In this section we give a brief

summary of potential predictions that can be generated from the

theory.

N Different cells in layer 2/3 of the same cortical column (same

bottom-up feature) will become active as part of different

sequential contexts.

N Layer 2/3 contains two sets of pyramidal neurons. Neurons in

one set deal exclusively with feed-forward processing and

receive no feedback connections from higher levels and the

Figure 16. Reduced subjective contour effect. When presented
with a corrupted version of a Kanizsa rectangle, the HTM still recognizes
a rectangle but with reduced certainty. Shown are the feed-forward and
feedback inputs to a node analogous to Figure 15(C). The node is
receiving feedback indicating the network expects an edge at this
location, but the strength of this expectation is substantially reduced
compared to a non-corrupted rectangle.
doi:10.1371/journal.pcbi.1000532.g016

Figure 15. Subjective contour effect in HTM. Feed-forward and feedback inputs of 4 different nodes at level 1 of the HTM network for the
Kanizsa rectangle stimulus. Four figures, (a) to (d), are shown corresponding to 4 different nodes from which the responses are recorded. In each
figure, the left top panel is the input stimulus and the left bottom panel is the input stimulus as seen by the network after Gabor filtering. In these
panels, the receptive field of the HTM node is indicated using a small blue square. In each figure, the top-right panel shows the feed-forward input to
the node and the bottom-right panel shows the feedback input to the node. The feed-forward inputs correspond to the activity on thalamo-cortical
projections. The feedback inputs correspond to the activations of the layer 6 cells that project backward from the higher level in the hierarchy. (a) The
receptive field of this node does not contain any edges. There is no feed-forward input and no feedback input. (b) The receptive field of this node has
a real contour in its input field. The node has both feed-forward and feedback inputs. (c) The subjective contour node. The receptive field of this node
has no real contours. Therefore, the feed-forward input is zero. However, the feedback input is not zero because the network expects the edges of a
rectangle. This is the subjective contour effect. (d) The opposite of the subjective contour effect. In this case, a real contour is present in the receptive
field of this node but it does not contribute to the high-level perception of the rectangle. Hence the feedback input to this node is zero even though
the feed-forward response is non-zero.
doi:10.1371/journal.pcbi.1000532.g015
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neurons in the other set deal with the combination of feed-

forward and feedback information. Unintended interactions

between these two sets could produce cognitive defects.

N Long-range lateral connections in layer 2/3 encode sequential

information. These connections can be altered by training with

temporal patterns that have different statistics.

N Some vertical connections in a column pre-exist to provide a

backbone for belief propagation computation. These can be

wired using genetic information. We described several of these

connections.

N A set of layer 5 cells represent the belief that combines both

top-down and bottom-up influences for a stimulus. This

prediction can be tested by examining the information

represented locally in the layer 5 cells after the presentation

of a stimulus that is locally ambiguous but globally coherent.

N Disabling feedback pathways will have the effect of confusing

segmentation and border-ownership assignments. For exam-

ple, subjective contour responses will get disrupted.

N With an appropriately defined training paradigm, top-down

signals can predict missing/occluded bottom-up infor-

mation, even when it cannot be predicted by local contour

continuation.

N In the case of visual pattern recognition, smooth movement of

the stimulus will increase recognition accuracy even in

situations were background subtraction does not explain the

effect. (For example, in a stimulus where background changes

every instant in addition to the foreground object.)

N In cases where sequential information is required to disam-

biguate a stimulus, responses of layer 2/3 cells will become

sparser (reduced activity) as more temporal information is

accumulated.

Degrees of freedom and variations. Even with the com-

bination of computational constraints and available anatomical data,

several degrees of freedom remain in the mapping to biology. Because

of this, the mapping to biology does not produce a unique circuit.

One source of variation can be found at the boundaries between

lamina and between hierarchical regions. Let us consider the boundary

between layer 4 and layer 3. The typical picture of layer 4 neurons is

that they receive inputs from the thalamus and project to layer 3.

However, a layer 4 neuron that projects to layer 3 can do the same

computation even if that neuron is moved to layer 3 and if it receives

direct bottom-up input from the thalamus. A similar degree of freedom

exists between different levels of the hierarchy. For example, a neuron

in layer 6 that sends feedback information to layer 2 of a child region

can actually be moved to layer 2 of the child region.

These variations do not violate the computational principles we

described and can be thought of as variations of the same theme.

We believe that computational constraints will need to be

combined with resource optimization constraints and physical

constraints to completely understand why biology chooses some

implementations over others. For example, some of these

variations could be more advantageous than others for wiring

length optimization [14]. It also is possible that these tradeoffs

change with position in the hierarchy, the amount of convergence

of bottom-up inputs, the need to send outputs and receive inputs

from sub-cortical circuits, etc. The circuit derived in this paper

provides a template to explore such variations.

Conclusion
In this paper we have mapped a model of how the neocortex

performs inference onto neocortical anatomy. The model, called

Hierarchical Temporal Memory (HTM), is a type of Bayesian

network which assumes a hierarchy of nodes where each node

learns spatial coincidences and then learns a mixture of Markov

models over the set of coincidences. The hierarchy of the model

corresponds to the hierarchy of cortical regions. The nodes in the

model correspond to small regions of cortex. We performed the

mapping to biology in two stages. Starting with a mathematical

expression of how each node performs inference, we created an

abstract neuronal implementation. Next we mapped this abstract

implementation onto observed anatomical data of cell types, cell

layers, and micro-circuits in the cortex. We also showed results of

an experiment where an HTM-based vision system exhibited the

effects of illusory contours.

There are many unknowns and variations in cortical anatomy,

and similarly there are many functions of the neocortex that are

not accounted for by the HTM model. However, we believe the

theoretical and anatomical constraints are sufficiently strong that

the merger of the two is non-trivial and instructive. The ultimate

goal of our work is to have a theoretical model of neocortex

sufficiently tied to biological data so that the biology can lead to

refinements of the theory, and the theory can lead to testable

predictions about the biology. The work we have done, including

that in this paper, suggests HTM is a good starting point for such a

biologically grounded neocortical model.

Supporting Information

Text S1 Derivation of belief propagation in HTM networks

Found at: doi:10.1371/journal.pcbi.1000532.s001 (0.29 MB PDF)

Text S2 A toy example for belief propagation in HTM networks

Found at: doi:10.1371/journal.pcbi.1000532.s002 (0.24 MB PDF)

Figure S1 The Pictures data set. The Pictures data set consists of

48 categories of binary line drawings. An example of each category

is shown in the figure. Images are of size 32 pixels by 32 pixels.

Training sequenes for HTMs are generated by animating these

binary images with smooth translations and scale variations.

Found at: doi:10.1371/journal.pcbi.1000532.s003 (0.05 MB PNG)

Figure S2 Learned Markov chain temporal groups. Figure

shows a subset of the Markov chain temporal groups learned at the

first level of the Pictures HTM network. The rows correspond to

different Markov chains. The states of the Markov chains are

shown as two-dimensional representations of their corresponding

coincidence patterns. The connectivity between the elements of

the Markov chains are not shown. The states within a Markov

chain are perceptually similar even though their corresponding

coincidence patterns are not similar in the pixel space.

Found at: doi:10.1371/journal.pcbi.1000532.s004 (0.04 MB PDF)

Figure S3 Test examples for the table lamp category. These test

images were generated by programmatically modifying the

training images through translations, aspect ratio changes, pixel

deletions and insertion of noise pixels.

Found at: doi:10.1371/journal.pcbi.1000532.s005 (0.09 MB PDF)

Figure S4 Examples of grayscale training images. Figure shows

examples of the training images used for training a 4 category

HTM network. Most training images had an uncluttered

background. The images presented to the network were of size

200 pixels by 200 pixels. The training images have a large amount

of intra category variation in shape. In addition, the network was

trained to recognize translations and scale variations of these

categories.

Found at: doi:10.1371/journal.pcbi.1000532.s006 (1.98 MB PDF)

Figure S5 Test images. Examples of test images used for the 4

category gray scale network. The test images were novel examples
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with significant variations in size and location in addition to the

presence of background clutter.

Found at: doi:10.1371/journal.pcbi.1000532.s007 (1.09 MB PDF)
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