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Abstract

In this paper, we present a mathematical theory for Marr’s

primal sketch. We first conduct a theoretical study of

the descriptive Markov random field model and the gen-

erative wavelet/sparse coding model from the perspective

of entropy and complexity. The competition between the

two types of models defines the concept of “sketchability”,

which divides image into texture and geometry. We then pro-

pose a primal sketch model that integrates the two models

and, in addition, a Gestalt field model for spatial organiza-

tion. We also propose a sketching pursuit process that co-

ordinates the competition between two pursuit algorithms:

the matching pursuit [8] and the filter pursuit [12], that seek

to explain the image by bases and filters respectively. The

model can be used to learn a dictionary of image primi-

tives, or textons in Julesz’s language, for natural images.

The primal sketch model is not only parsimonious for im-

age representation, but produces meaningful sketches over

a large number of generic images.

1. Introduction

Objects in natural scenes appear at a wide range of scales

and our perception changes over distance. Looking at Fig.1,

we perceive merely a texture impression for the twigs and

leaves at far distance, but as they appear in larger size or

near distance, we start to notice the individual twigs and

then see the shapes of branches and trunks. In this paper,

we adopt an artist’s notion by calling the image portion with

distinguishable elements as sketchable, e.g., represented by

primitive shapes, and the portion without distinguishable el-

ements is said to be non-sketchable. When we walk in such

a scene, the resolutions and scales may evolve continuously

in raw images (at retina) as a Gaussian pyramid represen-

tation could account for. However, abrupt model switching

must be happening in our inner perception (at visual cortex),

which are quantum jumps between the percepts of texture

and shape/geometry.

Now we come to a long standing puzzle in vision: how

do we divide texture and geometry? In other words, can

we define a mathematical quantity for “sketchability”? Fur-

thermore, as the sketchable and non-sketchable portions are

intimately blended in generic images, what is a generic im-

age model that can account for both patterns seamlessly?

These questions are fundamental to vision, and the answers

to these questions have significant implications to a range

of other important vision problems raised at three levels of

studies: mathematics, neuroscience, and psychophysics.

Figure 1: Scaling and sketchability illustration.

1. Markov random field theory vs. wavelet/sparse coding

theory. There are two prevailing mathematical theories for

image modeling. One is the descriptive Markov random

field (MRF) theory originated from statistical mechanics.

It represents a visual pattern by pooling the responses of a

bank of filters over space and the statistics of the responses

define a so-called Julesz ensemble[11] – a perceptual equiv-

alence class, which is in turn equivalent to the MRF mod-

els [12]. The second theory for image modeling is genera-

tive wavelet/sparse coding theory originated from harmonic

analysis. It represents images by elements selected from

a dictionary of image bases (primitives or token) [10] like

wavelets [3], ridgelets [1] etc. However, the two theories

are almost disjoint at present. By defining sketchability, we

shall quantify the regimes that the two theories work the

best and integrate them seamlessly.

2. Filters vs. bases in V1. It is well known that V1 cells

in primate visual cortex have Gabor like functions, but it is

puzzling what roles the cells play in visual representation,

as a Gabor function can be used as filters for pooling in-
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a. Input b. primal sketch c. sketchable K = 230 d. synthesis e. primitives

Figure 2: Sketching pursuit. (a) Input image. (b) Primal sketch with each element represented by bar or circle. (c)

Sketchable pixels (25%) generated by placing primitives at the elements. (d) Synthesized image with non-sketchable pixels

filled in by texture using sketchable pixels as boundary condition. (e) Collection of primitives or textons.

formation to form the texture perception [7] or be used as

a linear base for representing the image primitive [10]. We

believe that the V1 cells can switch between the two roles

when a critical sketchability condition occurs.

3. Marr’s primal sketch. In his monumental book [9],

Marr proposed primal sketch by extending a number of psy-

chological theories, such as texture/texton theory [6] and

Gestalt psychology. The primal sketch was supposed to be

a first level inner representation of generic images, in terms

of image primitives, such as bars, edges, terminators etc.

However, despite many inspiring observations, Marr pro-

vided neither an explicit mathematical model nor a rigorous

definition for the dictionary of textons and primitives. Thus

a solid model for primal sketch still eludes us.

Image Size 300*240

Sketch Pixels 18,185 ≈ 25%

Primitive Number 230

Primitive Width 7

Primitive Parameters 2,350 ≈ 3.5%

MRF parameters 5*7*13 = 455

Table 1: The parameters in our primal sketch model for the

horse riding image in Fig.2.

In this paper, we propose a mathematical theory of pri-

mal sketch and define sketchability. The theory consists of

four components.

(1). A primal sketch model for natural images, which in-

tegrates the MRF and wavelet theories. An example is illus-

trated in Fig.2 and Table 1. The input image is of 300×240
pixels, of which 18, 185 pixels (or 25%) are considered by

our model as “sketchable” and are shown in Fig.2.c, which

is modeled by 2, 350 parameters. They are mostly located at

the object boundaries as well as distinguishable features on

objects. Each element is represented by a primitive selected

from a dictionary (Fig.2.e).

Then the non-sketchable pixels (75%) are modeled by

MRF models which condition on the sketchable pixels —

so it is seamless. As all distinguished features are explained

by the image primitives, the texture can be modeled and

synthesized easily with a number of 455 parameters or less.

The parameters are for 7 filters for 5 image patches and each

pools a 1D histogram of filter responses in 13 bins. The

synthesized image in Fig.2.d shows vivid texture, e.g., the

grass under the fence. This model is parsimonious and the

sketch in Fig.2.b capture the essence of perception. Similar

results have been obtained for a large set of generic images.

(2). A definition of sketchability is given based on the

log likelihood ratio between the MRF model and linear

sparse coding model. Intuitively, a position with strong fil-

ter response is selected as sketchable primitive, whereas an

area with many weak filter responses are pooled to represent

texture.

(3). A sketching pursuit process, which combines the

matching pursuit procedure (Mallat and Zhang, 1993) for

the sketchable part by adding one base at a time, and the

filter pursuit procedure (Zhu, Wu, and Mumford 1997) for

the non-sketchable part by adding one filter at a time. The

matching pursuit and filter pursuit compete to explain the

image in the sense of maximizing the log-likelihood under

the guidance of the above sketching model.

(4). Learning a dictionary of primitives (or textons)

in image sketch. Traditional image bases, such as Gabor,

DoG, LoG, are found to be ineffective as the matching pur-

suit example shows in Fig.3. Our model can be used to

learn a dictionary of primitives and textons (see Fig.6) from

a large number (> 100) of images.

2. The Primal Sketch Model

2.1. Two mathematical schemes for modeling

The objective of image modeling can be formulated as seek-

ing a model p(I) that approaches an underlying frequency

f(I) of the natural image ensemble, in the sense of min-

imizing the Kullback-Leibler divergence or MLE from an

observed image I on sufficiently large lattice Λ → Z
2

p∗ = arg min
Ω

KL(f ||p) = arg max
Ω

log p(I), I ∼ f(I).

p is pursued in a series of nested probability families which

are general enough to approximate f to any precision.
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a. input b. tokens K = 100 c. image K = 100 d. tokens K = 300 e. image K = 300.

Figure 3: Matching pursuit (Mallat and Zhang, 1993): (b) and (d) are symbolic sketch using bars and circles for the K
pursued Gabor and LoG bases from dictionary DB . (c) and (e) are the reconstructed images with K = 100 and K = 300
bases respectively. These bases not only miss the texture and blur object boundaries, but also do not summarize our percept.

Ω0 ⊂ Ω1 ⊂ · · · ⊂ ΩK → Ωf .

There are two mathematical theories/schemes for aug-

menting the probability family Ω, which we shall combine

into our model.

1. The generative scheme and wavelet theory. Genera-

tive models interpret images by hidden “causes” of famil-

iar structures, such as sparse coding [10], or wavelet [3].

They adopt a dictionary of base functions, DB = {bx,y,l,r :
∀x, y, l, r}.Each base b represents a known image structure

and has x, y for its center, l for its type, such as Gabor, LoG,

DoG, and r for attributes like orientation and scale.

Then the model interprets an image as a linear superpo-

sition of K base functions selected from the dictionary,

I =

K∑

i=1

αibi + n, bi ∈ DB , (1)

where αi is the coefficient of bi and n is the residue image.

Let B = {b1, ...,bK} and α = {α1, ..., αK} denote the

selected bases and coefficients.

With B and α, we write the model of I as

p(I;B,α, σ2) =
1√

2πσ2
exp{−||I −

K∑

i=1

αibi||2/2σ2}.

(2)
We define the penalized log-likelihood as

lsk(B,α, σ2) = log p(I;B,α, σ2) − ǫK. (3)

The penalty term can be interpreted from the AIC, MDL,

and Bayesian perspectives. From MDL perspective, ǫ can

be viewed as the coding cost for each base. Then B,α, σ2

can be estimated by maximizing lsk(B,α, σ2). We define

l̂sk be the maximum. −l̂sk can be interpreted as the min-

imum coding length using this generative wavelet/sparse

coding regime.

This scheme augments the model family Ω by increasing

the number of variables,i.e., K. A greedy, but powerful,

algorithm is matching pursuit[8]. For each step, it selects a

base from the dictionary DB so that the reconstruction error

decreases the most, or equivalently, the likelihood l(B,α)
increases the most. It starts from the white noise model.

At step K + 1, it chooses a new base bK+1 ∈ DB , and

thus augments the set from B and α to

B+ = B ∪ {bK+1}, and α+ = α ∪ {αK+1}.
The increase of the log-likelihood is

∆B(K + 1) = l(B+,α+) − l(I;B,α). (4)

In fact,

∆B(K + 1) = α2
K+1/2σ2 − ǫ =< bK+1,n >2 /2σ2 − ǫ. (5)

It stops when ∆B(K + 1) < 0. Therefore, Matching

pursuit criterion is to choose

(bK+1, αK+1)
∗ = arg max ∆B(K + 1). (6)

Fig.3 displays an example of matching pursuit. Two

drawbacks are obvious. (1) The bases miss the texture and

blur object boundaries. (2) The symbolic sketches do not

represent the objects well, compared with Fig.2.b

2. The descriptive scheme and MRF theory. Descriptive

image models interpret images at the signal level, e.g., raw

pixel intensities, by pooling statistics using features, e.g.,

filters. A typical work is the FRAME model for texture[12],

which pools feature statistics by a dictionary of filters DF =
{Fx,y,l,r : ∀x, y, l, r}. Interestingly these filters have ex-

actly the same form as the image bases in dictionary DB ,

but they play a different role.

Suppose we select a set of K filters F = {F1, ..., FK} ⊂
DF . For each filter, we compute a 1D histogram by pooling

the filter responses around a local neighborhood ∂(x, y) on

image I, and denote it by

hx,y,l,r(z) =
∑

(ξ,η)∈∂(x,y)

ωξ,ηδ(z− < Fξ,η,l,r, I >).

δ() is the Dirac delta function, and
∑

ωξ,η = 1 are the

weights. We keep the location index x, y for inhomoge-

neous patterns. In practice, we may divide the image into

several regions by clustering the histograms. We denote the

histograms by vectors (after discretization)

hx,y,l,r = hx,y,l,r(z), H = {hx,y,l,r : ∀Fx,y,l,r ∈ F}.

The statistics H define a Julesz ensemble[11]

Ω(H) = {I : h(I;x, y, l, r) = hx,y,l,r,∀Fx,y,l,r ∈ F}.
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a. input b. K = 0 c. K = 2 d. K = 3 e. K = 7

Figure 4: Filter pursuit (Zhu, Wu, Mumford,1997): adding K filters in a FRAME model by minimax entropy. The filters

pool the statistical information (histograms) to yield a texture impression – we call it perceptually equivalent reconstruction.

When K is large or H is sufficient, any image I ∈ Ω(H)
from the ensemble is said to be perceptually equivalent re-

construction to the observed image. The Julesz ensemble

is shown to be equivalent to the FRAME model of Gibbs

form[11]

p(I;F, β) =
1

Z
exp{

∑

Fx,y,l,r∈F

βx,y,l,r(< Fx,y,l,r, I >)}. (7)

The potential βx,y,l,r(z) is a 1D function on the filter

response z =< Fx,y,l,r, I > and it depends on location for

inhomogeneous patterns. We denote them by vector βx,y,l,r

and collect them in β = {βx,y,l,r : ∀Fx,y,l,r ∈ F}. β is a

dual representation of the pooled statistics H.

Similar to generative model, we define the penalized

likelihood

lnsk(F,β) = log p(I;F,β) − ǫK. (8)

The ǫ can be interpreted as the coding cost for each filter.

F and β can be estimated by maximizing lnsk(F,β). We

define l̂nsk as the maximum.

This descriptive scheme augments the model family Ω
by increasing the number of filters K and statistics . It starts

from the white noise model. For each step it selects a filter

from the dictionary DF so that l(F,β) increases the most.

At step K + 1, it chooses a new filter FK+1 ∈ DF , and

thus augments the sets from F and β to

F+ = F ∪ {FK+1}, and β+ = {β1, ...,βK ,βK+1}.
The increase of the log-likelihood is

∆F (K + 1) = log p(I;F+,β+) − log p(I;F,β). (9)

Let J ∈ Ω(H) be a “reconstruction” image with K fil-

ters, and hK+1(J) is the local histogram of J pooled by the

new filter FK+1. Let hK+1(I) be the local histogram of

FK+1 on the original image I. Then approximately,

∆F (K+1) ≈
1

2
(hK+1(J)−hK+1(I))

T V −1(hK+1(J)−hK+1(I))

is the “reconstruction” error measured by FK+1, where V
is the variance of hK+1 (conditioning on histograms of pre-

vious filters). V can be estimated from J.

Therefore, Filter Pursuit criterion is to choose

(FK+1,βK+1)
∗ = arg max ∆F (K + 1). (10)

It stops when ∆F (K + 1) < 0.

Fig.4 displays an example of filter pursuit on homoge-

neous texture. With K = 0, the sample image is white

noise. With K = 7 filters, the sampled image in Fig.4.e is

perceptually equivalent to the input image. The main draw-

backs of this model are (1) difficulties in synthesizing sharp

features, like shapes and geometry –i.e., the “sketchable”

features, and (2) computational complexity when filters of

large window sizes are selected for sketchable features.

For computational efficiency, we can use the following

approximation

log p(I;F,β) ≈ l0 +
1

2
(H − H0)

T V −1(H − H0), (11)

where l0 is the log-likelihood of the featureless white noise

model, H0 is the histograms computed from the white noise

model, and V is the variance-covariance matrix of H that

can be estimated from the observed image.

2.2. Two entropy regimes and sketchability

It comes to our attention that the two schemes are effective

on two different entropy (complexity) regimes which are

complementary to each other. Thus by integrating the two

schemes, we can remove their “blind spots”, and resolve

the representational and computational difficulties in both

schemes.

The FRAME/Julesz model targets the high entropy

regime, whereas sparse coding targets the low entropy

regime. This is revealed in the following two propositions.

Proposition 1: Let f(I) be the true distribution that gen-

erates I, p(I) the FRAME model approching f(I) by mini-

mizing KL(f ||p). Then

KL(f || p) = entropy(p) − entropy(f) ≥ 0.

That is, the entropy of the fitted FRAME model is always

no less than the entropy of f .

We rewrite reconstruction eqn (1) in a matrix form J =
BA and I = J + n. The images I and J are |Λ| × 1 vector

and B is a |Λ| × |DB | constant matrix with each column

being a base function in DB , and A is the |DB |×1 vector for

the coefficients. Due to sparsity, elements in A are mostly

close to zero except |α| = O(|Λ|/100) elements are non-

zero. Thus p(A) = p(α) has very low entropy, suppose we

bound it by entropy(p(A)) ≤ C.
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Proposition 2: In sparse coding model, with J = BA,

entropy(p(J)) + entropy(p(A | J))

= entropy(p(A)) +
1

2
log det(BB′).

That is, the resulting p(J) has low entropy bounded by

C + const, and it cannot account for the images generated

from f(I) whose entropy is larger than this bound. In other

words, the sparse coding model puts all the non-sketchable

patterns into the residue n. This is very obvious in Fig. 3

where the texture background are not captured by the bases

at all.

Furthermore, if the sparse coding model is forced to re-

construct the texture n, then it becomes non-sparse and the

computation in that regime is NP-complete. So it is compu-

tationally impaired as well in this regime.

To summarize, the sparse coding (wavelet) model is ef-

fective in low entropy regime where images have order and

structures, such as the shape and geometry. We call this

regime as “sketchable”. The FRAME model is effective

in high entropy regime where images have less structures,

such as stochastic texture. We call this regime as “non-

sketchable”.

The intrinsic connection between the two models are re-

vealed by the following proposition. Here a filter is the same

as a base Fx,y,l,r = bx,y,l,r.

Proposition 3: The FRAME model p(I;F,β) is the equi-

librium distribution of the following PDE

dI(t) =
1

2

∑

b∈F

β′

x,y,l,r(< I(t),bx,y,l,r >)dt×bx,y,l,r+dn(t),

where β′() is the derivative of the potential function.

In this dynamics, each step is a linear superposition of

bases bx,y,l,r, plus a small Brownian noise dn(t). This ad-

dtive form coincides with sparse coding model in eqn (1).

The difference is that this dynamics is iterative and non-

sparse.

The following theorem tells us the behavior of the en-

tropy with the change of scale/distance.

Theorem: Let I be an image defined on a lattice Λ, let p(I)
be the probability density of I. Let Is be a sub-sampled

version of I defined on the smaller lattice Λs. Then 1). the

overall entropy of Is is smaller than or equal to the entropy

of I.
entropy(p(Is)) ≤ entropy(p(I)).

2). the entropy rate (i.e., entropy per pixel) of Is is larger

than or equal to the entropy rate of I.

entropy(p(Is))/|Λs| ≥ entropy(p(I))/|Λ|.

This suggests that when we look at an image at higher

resolution, we see more things (i.e., overall entropy in-

creases), but at the same time, things are getting sparser

(i.e., entropy rate decreases). This suggests that we need

an overcomplete dictionary to achieve more sparsity.

Definition of sketchability: Let I be a local image patch.

Let l̂nsk be the penalized log-likelihood of the fitted FRAME

model, and let l̂sk be the penalized log-likelihood of the fit-

ted linear sparse coding/wavelet model. Then the image

patch I is sketchable if l̂sk > l̂nsk. The sketchability is de-

fined as l̂sk − l̂nsk.

Perhaps the most interesting situation is where the

sketchability is around 0. For example, when we are getting

close to a tree, there is a distance where the pattern of twigs

starts to jump back and forth between being non-sketchable

and being sketchable.

2.3. The primal sketch model

In light of the above analysis, we adopt the following primal

sketch model for early vision. It integrates and improves the

sparse coding and MRF in the following way.

1. The image lattice is divided, automatically, into two

disjoint parts: the sketchable Λsk where structures occur

and the non-sketchable Λnsk.

Λ = Λsk ∪ Λnsk.
2. The sketchable part of I is explained by the sparse

coding model with an unknown number of KB bases,

IΛsk
=

KB∑

i=1

αibi + n, bi ∈ Dtxn.

Note that we replace the generic base dictionary DB by a

texton/primitive dictionary Dtxn. Fig. 6 shows some typical

examples of the primitives in Dtxn. These primitives have

much stronger contrast than the Gabors/LoG bases. They

are “expert” and one location is explained by one primitive.

Thus it will not have the blurring problem of DB as Fig. 3

illustrated. In other words, Dtxn gives much sparser repre-

sentation than DB , and Dtxn is much larger DB .

The image follows the generative model in eqn (2),

Isk ∼ p(IΛsk
;B,α). (12)

Again B,α denote the sets of bases and coefficients

B = {b1, ...,bKB
}, α = {α1, ..., αKB

}.
3. The non-sketchable part of I is explained by the in-

homogeneous Gibbs model (FRAME in eqn.7), using the

sketchable part IΛsk
as boundary conditions

IΛnsk
∼ p(IΛnsk

|IΛsk
;F,β). (13)

It is specified by the set of KF filters and potentials,

F = {F1, ..., FKF
}, β = {β1, ..., βKF

}.
The filters are selected from generic dictionary F ⊂ DF

and vary over space for inhomogeneity.

4. In the original sparse coding model, the base locations

and coefficients are assumed to be iid. Thus they don’t line

up well in space, see Fig. 3.b and d. To resolve this problem,

we introduce a new concept called Gestalt field similar to

the mixed random fields[4].

We organize the bases (like tokens) in a 2D attributed

graph G =< V, E >. Any vertex v ∈ V is a primitive with
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two sets of variables: the attributes (α, x, y, l, r) and up to

5 address variables (a1, ..., a5) which are either empty or

point to neighbors of v and the type of connection, i.e, conti-

nuity, junction etc. Suppose we connect all the neighboring

pairs (s, t) and their relationship ℓ in edge set

E = {ej = (ℓj , sj , tj) : sj , tj ∈ V, j = 1, 2, ..., N}.
Then we have the Gestalt field,

p(B,α) ∝ exp{−λoKB −
∑

ej∈E

ψℓj
(sj , tj)}. (14)

ψℓ(s, t) is the potential function of relationship ℓ on the

attributes of two bases, such as their relative distance and

angle.

Summarizing the sketchable (for textons), non-

sketchable (for texture), and Gestalt field in eqns.12, 13,

and 14, we obtain the primal sketch model,

p(I;B,α,F,β) = p(B,α)p(IΛsk
;B,α)p(IΛnsk

|IΛsk
;F,β).

The above model may need MCMC method for global

inference. Here we propose a greedy method — called

sketching pursuit. Intuitively, the sketching pursuit pro-

cess coordinates the competition between filter pursuit and

matching pursuit, under the guidance of the primal sketch

model.

The sketching pursuit process.

Given the current B, α and F, β,

1. Compute the log-likelihood increase for a primitive b
∗

∆B = max
b ∈Dtxn

log p(I;B+, α+,F, β)−log p(I;B, α,F, β).

2. Compute the log-likelihood increase for a filter F ∗

∆F = max
F ∈DF

log p(I;B, α,F+, β+)−log p(I;B, α,F, β).

3. If ∆F > ∆B and ∆F > ǫ, then augment F and update β.

(F, β) ← (F ∪ {F ∗}, β ∪ {β∗}).

4. If ∆B > ∆F and ∆B > ǫ, then augment B and α.

(B, α) ← (B ∪ {b∗}, α ∪ {α∗}).

5. Stop if ∆B < ǫ and ∆F < ǫ. Otherwise repeat 1-4.

3. Algorithms and experiments

3.1. Sketching pursuit and refinement

In the above sketching pursuit process, we expect that

matching pursuit will win first, and after most of the sketch-

able parts get sketched, filter pursuit will start to win, and

the non-sketchable parts will be filled in. In this paper, we

adopt the following algorithms in our experiment.

First, we whiten the image, so that the texture back-

grounds are closer to white noise, thus we can concentrate

on the sketchable parts by a simplified and fast sketching

pursuit process. Recall that in the matching pursuit algo-

rithm, all candidate bases b ∈ DB are ranked from high to

low according to their coefficient α =< n,b >. The base

with the highest coefficient is selected each time. In con-

trast, in the sketching pursuit, each existing primitive in the

current set B, i.e., bx,y,l,r ∈ B, will erect some preferences

in their neighborhood. For a candidate primitive b
′ in its

neighborhood, we measure the possible type of neighbor-

ing relationship

ℓ∗ = arg max
ℓ

ψℓ(b,b′).

For example, b′ and b form a junction or continuity etc.

Then we rank a combination of ψℓ∗(b,b′) and the coeffi-

cient of b
′. Thus a primitive that fits to existing primitives

are given priority. This is consistent with the primal sketch

model p(I;B,α,F,β).
The above fast sketching process is refined by a second

step. We replace the selected base functions by local seg-

ments of ridge functions estimated from the image patch un-

der the base window. We compute the profiles of primitives

by averaging along their main axis. The primitive windows

can extend or shorten slightly for better alignment. Some

gaps are filled and some isolated primitives are removed to

further minimize the energy of the Gestalt field.

Fig.8 shows two examples of the refinement effects. We

represent an elongated primitive by a line segment, Fig.8.b

is the results of the fast sketching process, which are refined

in Fig.8.c.

After the sketchable parts are identified, we then target

the non-sketchable parts. We first cluster the non-sketchable

pixels into a number of clusters or patches based on lo-

cal histograms of filter responses. Then we model each

patch by a Julesz ensemble or equivalently MRF model, and

synthesize the non-sketchable parts by randomly sampling

from the Julesz ensembles.

3.2. Dictionary of image primitives or textons

(a) Gabor Cosine (b) local image (c) primitive

Figure 5: The comparison of a Gabor Cosine base, the orig-

inal local image which the Gabor base is supposed to fit,

and a primitive in the texton dictionary.

Our model can also be used to learn a large dictionary

Dtxn of image primitives from a larger number of natural

images. Some are shown in Fig. 6. We use a simple al-

gorithm along with the sketching refinement process. We

start with Dtxn = DB . After obtaining a raw sketch and

refine the windows, we collect the windowed image primi-

tive covered by a base b ∈ DB . If b is an elongated base,
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like Gabor cosine and Gabor sine, we average the intensi-

ties of the primitive along the main axis. If b is an isotropic

base, like LoG or DoG, we average the intensities circularly

around its center. Then we add the image primitive to Dtxn.

Figure 6: The primitives (or textons) collected across im-

ages. They are isotropic blobs, bars, step edges, (L, T, Y)-

junctions, and crosses.

Fig.5 shows a typical example. The image structure – a

bar is shown in Fig.5.b. It is captured by a Gcos base (see

Fig.5.a) in matching pursuit. Fig.5.c is the image primitive

with its horizontal pixel intensities averaged along the axis.

In out experiment all primitives are 5 to 7 pixels in width.

The junctions with degrees larger than 2 are obtained from

the Gestalt field.

(a) (b) (c)

Figure 7: Results of the primal sketch model. (a) input im-

age; (b) sketching refinement results; (c) synthesized image

from the model p(I;B,α,F,β)) .

We shall learn Dtxn in a more rigorous setting under an

EM-type learning strategy in future work.

4. Discussion

In this paper, we present a primal sketch model that in-

tegrates three components: a descriptive texture model

(Julesz ensemble), a generative model with image primi-

tives (textons), and a Gestalt field.

The integration of the two modeling schemes merged

two powerful methodologies: MRF and wavelet theories.

This naturally leads to the answer for sketchability as a

model switching/selection problem in statistics.

Our work is interestingly related to the inpainting work

(Chan and Shen, 01 and others) which adopts an PDE for

filling in scrached pictures. The inpainting work is a vari-

ational method for minimizing the smoothness term. Our

method is more general in the potential formulation and

simulates the texture by sampling, instead of maximization.
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(a) (b) (c) (d)

Figure 8: Results of the primal sketch model. (a) input image; (b) fast sketching pursuit result; (c) sketching refinement

result; (d) synthesized image from the model p(I;B,α,F,β)).

Figure 9: Results of the primal sketch model. First row: input image; Second row: sketching refinement result; Last row:

synthesized image from the model p(I;B,α,F,β)).
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