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Abstract

Background: Living systems are associated with Social networks — networks made up of nodes, some of which may be
more important in various aspects as compared to others. While different quantitative measures labeled as ‘‘centralities’’
have previously been used in the network analysis community to find out influential nodes in a network, it is debatable how
valid the centrality measures actually are. In other words, the research question that remains unanswered is: how exactly do
these measures perform in the real world? So, as an example, if a centrality of a particular node identifies it to be important,
is the node actually important?

Purpose: The goal of this paper is not just to perform a traditional social network analysis but rather to evaluate different
centrality measures by conducting an empirical study analyzing exactly how do network centralities correlate with data
from published multidisciplinary network data sets.

Method: We take standard published network data sets while using a random network to establish a baseline. These data
sets included the Zachary’s Karate Club network, dolphin social network and a neural network of nematode Caenorhabditis
elegans. Each of the data sets was analyzed in terms of different centrality measures and compared with existing knowledge
from associated published articles to review the role of each centrality measure in the determination of influential nodes.

Results: Our empirical analysis demonstrates that in the chosen network data sets, nodes which had a high Closeness
Centrality also had a high Eccentricity Centrality. Likewise high Degree Centrality also correlated closely with a high
Eigenvector Centrality. Whereas Betweenness Centrality varied according to network topology and did not demonstrate any
noticeable pattern. In terms of identification of key nodes, we discovered that as compared with other centrality measures,
Eigenvector and Eccentricity Centralities were better able to identify important nodes.
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Introduction

Living systems are associated with Social networks — networks

involve diffusion of information from one node to the other, some

of which may be more important than others. While different

quantitative measures labeled as ‘‘centrality’’ measures have

previously been used in the network analysis community to find

out influential nodes in a network, it is debatable how valid the

centrality measures actually are. In other words, the research

question that remains unanswered is: how exactly do these

measures correlate with the real world? After all, the real world is

not based on just the network ties. Besides circumstances can

change the importance of any given node. So, as an example, will

a node always remain influential and important in the real world

just because it occupies a more central location in a given network?

On its face, the problem may not appear to be grave. However,

in practice this can be a very serious problem especially when

social network methods are used on actual human beings — such

as for the detection of malicious individuals in air travel.

Obviously, in such situations, false negatives can be extremely

detrimental because they would imply that a malicious individual

was able to board an aircraft without being detected by the system.

Whereas, false positives can result in serious economic problems in

air travel thereby not only wasting valuable time as well as

resources while falsely characterizing people and having them

extensively searched due to results from black-box algorithms and

probabilistic models — essentially based on concepts from

mathematical models such as centralities. Thus, there certainly

exists a need to test the efficacy and validity of individual centrality

measures to correctly identify influential nodes in networks.

The goal of this paper is not just to perform a traditional social

network analysis but rather to evaluate the validity of different

centrality measures by conducting an empirical study analyzing

the correlation of various network centralities with real-world data

from published multidisciplinary network data sets. Additionally,

we present first steps towards developing a formal methodology for

the validation of centrality measures by demonstrating how to
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perform validation of centrality measures in a given network. By

examination and correlation of several different commonly used

centrality measures, we believe this study serves as an example lays

out first steps for conducting similar studies for the identification of

relatively stronger candidates among the centrality measures for a

given data set — centralities which are more capable of predicting

real-world important and more central nodes. While we realize

that the study itself may not decisively prove that the same

measures may always be important likewise in any given empirical

network, it does however lay grounds for further studies in the

same context.

We take standard published network data sets in addition to a

random network as a baseline. These data sets included the

Zachary’s Karate Club network, dolphin social network and a

neural network of nematode Caenorhabditis elegans. Each of the

data sets was analyzed in terms of different centrality measures and

compared with existing knowledge about important nodes from

associated published literature to review the role of each centrality

measure in the determination of influential nodes. The peculiar

goal of this paper required the use of standard and relatively

smaller published data sets in contrast to larger, unpublished data

sets because the goal of this study is not just to perform a social

network analysis or present a particular network data set — which

would also not have been exciting. The reason for choosing these

particular data sets was that these have already been examined by

the community of network researchers and thus there is existing

published information available about them. Additionally, for a

more general applicability, we also ensured the use of different

types of data sets rather than only considering human social

networks.

Our empirical analysis demonstrates that, in our chosen data

sets, nodes which have a high Closeness Centrality also had a

high Eccentricity Centrality. Likewise high Degree Centrality

also correlated closely with a high Eigenvector Centrality.

Whereas Betweenness Centrality varied according to network

topology and did not demonstrate any similar noticeable

pattern. In terms of identification of key nodes, we have

discovered that as compared with other centrality measures,

Eigenvector as well as Eccentricity Centralities were better

able to identify important nodes.

The outline of the rest of the paper is as follows:

We first present background about networks and centralities.

Next, in the methodology section, we discuss the data sets and the

centralities analyzed in the networks. Then in the results section,

we discuss the implications of analyzing the network using

centralities in the networks. This is followed by conclusions and

future work section.

Background

Networks allow for modeling complex interactions of

components in the form of a standard set of representations

[25]. These representations can be used to model a wide range

of complex systems — systems as diverse and ranging from

those involving the co-expression of genes to interaction of

online peers in a peer-to-peer file sharing network or humans

connecting together in a social community to animals

communicating and interacting with each other [9]. In all

such networks, a key dynamical process is the fact that each

network spreads some quantity of information from one node

to the other. This information can again be quite diverse

ranging from the amount of disease spread between connected

cities to loss of personal information and privacy in online

social networks such as Twitter, Facebook, LinkedIn or

Google+. For the purpose of analysis of nodes which may be

influential in these networks, various quantitative measures (or

centralities) have previously been devised to identify the key

nodes in the network. Generally a social network is a group of

interconnected social entities such as individuals or organiza-

tions. The growth of Internet and World Wide Web has

enabled us to study large-scale social networks due to an

exponentially growing interest in social network analysis

[23,21,18]. It is pertinent to note here that networks have

previously been described as an alternative approach to

modeling these Complex Adaptive Systems (CAS) [26], in

addition to agent-based [24].

The critical position of a node in a network is considered by

many as a function of its centrality. However, Bampo et al. [2]

notes in contrast to this opinion that that the flow of

information in networks is affected not just by the network

structure (marked by centrality) but actually by three major

factors:

1. Network structure as marked by its centrality [13]

2. Behavioral characteristics of these members

3. Information attributes

Studies such as by Newman [22] have used simulations on

different random and real networks to study the influence of social

power by considering the degrees of the nodes on the development

of continuous opinions in complex networks by employing

numerical simulations.

However, researchers such as Barabasi have identified the

importance of studying the temporal nature of network dynamics

such as in the form of ‘‘hot spots’’ [3]. Likewise, we believe that

typical networks can be considered as a snapshot of real-world

networks and the typical centrality measures alone do not suffice to

capture these more complex dynamics which are hidden inside or

from the real-world network. It is these differences which need to

be examined in more detail with the current paper serving as a first

step in this direction.

Studies such as by Newman [22] have employed simulations on

different random and real networks to study the influence of social

power by considering the degrees of the nodes on the development

of continuous opinions in complex networks by employing

numerical simulations.

However, researchers such as Barabasi have identified the

importance of studying the temporal nature of network dynamics

such as in the form of ‘‘hot spots’’ [3]. Likewise, we believe that

typical networks can be considered as a snapshot of real-world

networks and the typical centrality measures alone do not suffice to

capture these more complex dynamics which are hidden inside or

from the real-world network. It is these differences which need to

be examined in more detail with the current paper serving as a first

step in this direction.

Methodology

Here we present the breakdown of our methodology in figure 1.

This figure highlights the key steps undertaken in the study. We

take three different data sets besides an Erdős–Rényi random

network as a baseline. These networks are presented in figures 2, 3,

4, and 5. And for analyzing the key nodes in these networks, we

use five centralities as shall be discussed later. As mentioned

earlier, the centralities are used to highlight the importance of

nodes in the networks. The breakdown of individual steps is given

as follows:

Validation of Centrality Measures in Complex Networks
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1. First we generate networks from the collected data sets for

random network and empirical networks.

2. Next, we apply visualization and analysis via centralities on

these networks.

3. We measure each of the centralities on these simulated

networks.

4. We scale the networks using these centralities and also plot

centralities.

5. We then evaluate and compare each of the centralities to

interpret the best centralities for measuring influential nodes on

the networks.

Figure 1. Methodology Pipeline. (a) Degree Centrality. (b) Betweenness Centrality. (c) Closeness Centrality. (d) Eccentricity Centrality. (e)
Eigenvector Centrality.
doi:10.1371/journal.pone.0090283.g001
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Data Sets
Numerous published data sets are available online as a rich

source of evidence for examining the underlying formation of

various networks [17] including the dynamics of individual [31]

and group behavior [11], efficacy of viral product recommenda-

tion [16], global properties of email messages [34,19], blog posts

[18] as well as the identification of influential blogs [10,18]. Many

of these studies did not clearly mention the basic structure of their

networks but rather had to be understood from the flow of

Figure 2. Erdős–Rényi (Random) Network. Figure 2 represents the Erdös–Rnyi network formed with the p=0.1. The network consists of a
source, target and intermediate laid randomly in the network. Figure 2a represents the degree centrality of the individual nodes according to the size
and color variation. Nodes (blue) have the highest degree centrality and thus have the largest size in the network where as the nodes (red) have the
smallest value of degree centrality in the network. Figure 2b represents betweenness centrality of the nodes in the network. Nodes (blue) have the
highest betweenness centrality and have the largest size in the network as the betweenness value decreases so the size and also the color changes
ultimately to red. Figure 2c and figure 2d represents closeness centrality and eccentricity centrality of nodes of this network. Both of the centralities
are analyzed on this network, the highest value nodes are represented as the largest nodes in blue color. To see the central node in the network or to
observe which node is most eccentric in the network, reciprocal of these values is taken. Here, smaller the size of a node is more central and eccentric
in the network. Figure 2e represents the eigenvector centrality of the nodes in the network. The highest value nodes are represented in blue color
where as nodes with lowest values are represented in red color. (a) Degree Centrality. (b) Betweenness Centrality. (c) Closeness Centrality. (d)
Eccentricity Centrality. (e) Eigenvector Centrality.
doi:10.1371/journal.pone.0090283.g002
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information from one node to another. As such, for our analysis,

we chose four different data sets including an Erdös–Rnyi random

network [7], and 3 empirical data sets — Zachary’s Karate Club

Network [35], dolphins social network [20] and neural network of

nematode Caenorhabditis elegans [33]. Next, we discuss the

particular data sets used in the study.

Random Network
Random network is a G(n,p) model where nodes forming a

graph are connected randomly. All the edges in a graph are

connected with a probability p where every edge is independent of

other edge. Similarly, the probability of graphs having n nodes and

M edges can be represented as

pM 1{pð Þ

n

2

� �

{M

ð1Þ

Here the parameter p, can be considered as a weighting function;

when p increases from 0 to 1, a graph includes more and more

edges and when p decreases from 1 to 0, a graph becomes more

and more disconnected. In particular, when p~0:5, this

corresponds to a case where all the n vertices of a graph are

chosen with an equal probability. To serve as a baseline/

comparison, we generated a 50 nodes Erdős–Rényi G(n,p)

network [7] depicted in figure 2. The link probability was 0.1

with a total of 135 edges.

Zachary’s Karate Club Network
This contains a network of friendships between 34 members of

Zachary’s Karate Club shown in figure 3 forms 78 edges. This

network is based on a study conducted at a US university

described by Wayne Zachary in 1977 in [35].

Dolphins Social Network
This social network contains the associations between 62

dolphins forming 159 edges in a community living off Doubtful

Sound, New Zealand compiled by [20]. The figure 4 shows the

random layout of this social network of dolphins.

Neural Network
Figure 5 represents the random layout of the network of the

nematode Caenorhabditis elegans compiled by Duncan Watts and

Steven Strogatz from original experimental data done by White et

al. [33]. This network contains 297 nodes and 2359 edges.

Centralities
Freeman notes that the calculation of centrality is a key area of

research focus in the domain of social network analysis research

for an extended period of time [8,15,12]. Most commonly used

centrality measures include degree centrality, closeness centrality,

betweenness centrality, eccentricity centrality [6] and eigenvector

centrality—with degree, closeness and betweenness measures

being proposed by Freeman [8] and eigenvector centrality

proposed by Bonacich [5]. Centrality is considered important by

researchers because centralities formally indicate the value of

nodes in the network topology. Central positions have, however,

often been equated with opinion leadership or popularity

[4,27,29,30,1]. Often, researchers primarily use the degree

measure of centrality, perhaps because it is the easiest in terms

of explanation to non-technical audiences — besides its association

with behavior is intuitive. In the current paper, we are looking to

evaluate and validate the role of commonly-used centralities in the

identification of nodes which are actually influential in the

network.

We focus on the following centralities for the analysis:

1. Degree Centrality: It is defined formally as ‘‘The number of

links incident upon a node’’. Degree is often considered as a

means of analyzing how nodes can be affected by flow inside a

given network. Directed networks can be evaluated using an in-

degree and an out-degree with in-degree counting the number

of links towards the node and out-degree the arcs away from it.

Often links are associated with friendships — in-degree as a

measure of being popular and out-degree as a metric for being

gregarious. In the diffusion of information or infection, degree

may translate to probabilities of receiving information or being

infected’’ [8]. Degree centrality of a node v is calculated as:

CD vð Þ ¼
:

kv

n{1
~

X

j[G

avj

n{1
ð2Þ

where kv is the degree of a node, n is the total number of the

nodes in the network.

2. Betweenness Centrality: Betweenness centrality quantifies ‘‘the

number of times a node acts as a bridge along the shortest path

between two other nodes’’. It was first introduced as for

measuring the control of persons on the communication in an

entire network by Freeman [8]. Freeman notes that ‘‘vertices

that have a high probability to occur on a randomly chosen

shortest path between two randomly chosen vertices also tend

to have a high betweenness’’. In a diffusion process, more a

node is in between the network more it is likely to participate in

the diffusion process. Betweenness centrality is calculated as

follows:

CB(v)~
X

s=v=t

sst(v)

sst
ð3Þ

where sst is total number of shortest paths from node s to node

t and sst(v) is the number of those paths that intersect node v.

3. Closeness Centrality: Connected graphs often require a metric

for distance between node pairs — defined subsequently in the

form of ‘‘length of shortest paths’’. The farness of a node s is

formally defined as ‘‘the sum of its distances to all other nodes’’,

and its closeness is defined as ‘‘the inverse of the farness’’ [28].

Thus, the lesser would be its total distance from other nodes,

the more central a particular node will be. Closeness is

considered as a temporal metric for a sequential spread of

information within a network [23]. In a diffusion process, a

node that has a low closeness centrality is therefore likely to

receive information more quickly than others. It is calculated

using the formula:

CC(v)~
X 1

dist(v,t)
ð4Þ

where v and t are the nodes from the vertices G.

4. Eccentricity Centrality: The eccentricity centrality of a node is

equal to ‘‘the largest geodesic distance between the node and

any other node’’ [6]. Generally, when the Eccentricity

centrality is higher for a node, the rate of diffusion for the

same is lower. It is calculated as follows:

Validation of Centrality Measures in Complex Networks
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Figure 3. Zachary’s Karate Club Network. Figure 3 represents Zachary’s Karate Club network. The network is laid out randomly representing
source and intermediate nodes as club instructor, club president and officers in the network. Club instructor and club president either of them is
considered to be a source node of information flow in the network. Figure 3a represents the degree centrality of the individual nodes according to
the size and color variations. Nodes in blue color have the highest degree centrality and thus have the largest size in the network where as nodes in
red color have the least value of degree centrality. Figure 3b represents betweenness centrality of the nodes in the network. Nodes (blue) have the
highest betweenness centrality and have the largest size in the network as the betweenness value decreases so the size and also the color changes
ultimately to red. Figure 3c and figure 3d represents closeness centrality and eccentricity centrality respectively. Both of the centralities analyzed on
the network show that the highest value nodes are represented as the largest nodes in blue color. To see the central node in the network or to
observe which node is most eccentric in the network, reciprocal of these values is taken. Here, smaller the size of a node is more central and eccentric
in the network figure 3e represents the eigenvector centrality of the nodes in the network. Nodes represented in blue color have the highest value
where as nodes with lowest values are represented in red color. (a) Degree Centrality. (b) Betweenness Centrality. (c) Closeness Centrality. (d)
Eccentricity Centrality. (e) Eigenvector Centrality.
doi:10.1371/journal.pone.0090283.g003
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Figure 4. Dolphins Social Network. Figure 4 represents Dolphins social network. The details of the nodes identity are not given in the originally
compiled data, therefore we assume the network laid out randomly consists of source, target and intermediate nodes. Figure 4a represents the
degree centrality of the individual nodes according to the size and color variation. Nodes (blue) have the highest degree centrality and thus have the
largest size in the network where as nodes (red) have the least value of degree centrality in the network. Figure 4b represents betweenness centrality
of the nodes in the network. Nodes (blue) have the highest betweenness centrality and have the largest size in the network as the betweenness value
decreases so the size and also the color changes ultimately to red. Figure 4c and figure 4d represents closeness centrality and eccentricity centrality of
this social network. Both of the centralities analyzed for the network have the highest value nodes represented as the largest nodes in blue color. To
see the central node in the network or to observe which node is most eccentric in the network, reciprocal of these values is taken. Here, smaller the
size of a node is more central and eccentric in the network. Figure 4e represents the eigenvector centrality of the nodes in this social network. Nodes
in blue color have the highest value of centrality where as nodes with lowest value are represented in red color. (a) Degree Centrality. (b)
Betweenness Centrality. (c) Closeness Centrality. (d) Eccentricity Centrality. (e) Eigenvector Centrality.
doi:10.1371/journal.pone.0090283.g004
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Figure 5. Neural Network. Figure 5 represents a neural network of nematode Caenorhabditis elegans. The details of the nodes identity are not
given by the source from which the data has been collected therefore we assume the network laid out randomly consists of source, target and
intermediate nodes. Figure 5a represents the degree centrality of the individual nodes according to the size and color variation. Nodes (blue) have
the highest degree centrality and thus have the largest size in the network where as nodes (red) have the least value of degree centrality in the
network. Figure 5b represents betweenness centrality of the nodes in the network. Nodes (blue) have the highest betweenness centrality and have
the largest size in the network as the betweenness value decreases so the size and also the color changes ultimately to red. Figure 5c and figure 5d
represents closeness centrality and eccentricity centrality of this neural network. Both of the centralities analyzed for the network have the highest
value nodes represented as the largest nodes in blue color. To see the central node in the network or to observe which node is most eccentric in the
network, reciprocal of these values is taken. Here, smaller the size of a node is more closer and eccentric in the network. Figure 5e represents the
eigenvector centrality of the nodes in the network. The highest value nodes are represented in blue color where as nodes with lowest values are
represented in red color. (a) Degree Centrality. (b) Betweenness Centrality. (c) Closeness Centrality. (d) Eccentricity Centrality. (e) Eigenvector
Centrality.
doi:10.1371/journal.pone.0090283.g005
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CEcc(v)~
1

Max dist(v,t)ð Þf g
ð5Þ

where v and t are the nodes from the vertices G.

5. Eigenvector Centrality: It is defined as a ‘‘Measure of the

influence of a node in a network’’. It is calculated by

assigning relative scores to all nodes in the network with the

underlying idea that connections to high-scoring nodes

should contribute more to the influence of the node than

connections to low-scoring nodes [5]. In a diffusion process,

a node with a high eigenvector centrality is connected to

many such nodes connected to many other similar nodes —

thereby geometrically increasing the factor governing the

diffusion information in a network [5]. Eigenvector is

defined as follows:

lv ¼
:

Av ð6Þ

where A is the adjacency matrix of the graph, l is a constant

(the eigenvalue), and v is the eigenvector.

Results and Discussion

In the next sub-sections, we discuss results based on a centrality-

based comparison of the network data sets under study.

Random Networks
In this Erdös-Rnyi randomly generated network, the links

between the nodes are connected with a probability p~0:1.

Following are observed centrality measures effects on the network:

1. Degree Centrality: We first calculate the degree centrality for

the randomly generated network using equation 2 and shown

in figure 6a. In figure 2a, we see the network nodes scaled and

colored according to the values calculated through the degree

centrality equation. Here, we see node 31 and 46 having the

largest size and colored blue — indicating the highest degree

centrality. Nodes with the smallest size and degree centrality

are node 7 and 26, colored in red.

2. Betweenness Centrality: Likewise, the betweenness centrality

has been calculated using equation 3 and is shown in figure 6b.

The figure 2b shows a scaled network with node 31 having the

highest value and nodes 7 and 26 having the smallest

betweenness centrality values. If we observe the results of

betweenness centrality, we note that the node 31 would be the

most influential node in the network whereas the node 7 and 26

are the least influential nodes here.

3. Closeness Centrality: We have calculated the closeness

centrality of the network nodes using equation 4 as can be

seen in figure 6c. If we examine the scaled network in figure 2c,

we can see that nodes with the lowest degree and betweenness

centralities appear to have the highest closeness centrality. The

closeness centrality value only has a minor variation in all

nodes of this network. The node with the lowest closeness

centrality is of node 31 followed by node 46. On the bases of

Figure 6. The graphs show a correlation between the frequency of the nodes and the centrality in the Erdös–Rnyi model network
with n=50. Figure 6a shows the Degree Centrality; there are 2 nodes having maximum value CD~4:07 and other 3 nodes having the minimum
value CD~3:03. Figure 6b shows the Betweenness Centrality; there is only one node having maximum value CB~8:39 and 8 nodes having the
minimum value CB~0:25. Figure 6c shows the Closeness Centrality; there is only one node having maximum value CC~2:40 and one node having
the minimum value CC~1:41. Figure 6d shows the Eccentricity Centrality; there are 9 nodes having maximum value CEcc~2:53 and 3 nodes having
the minimum value CEcc~1:52. Figure 6e shows the Eigenvector Centrality; there is only one node having maximum value CEi~4:07 and only one
node having the minimum value CEi~0:26. (a) Degree Centrality. (b) Betweenness Centrality. (c) Closeness Centrality. (d) Eccentricity Centrality. (e)
Eigenvector Centrality.
doi:10.1371/journal.pone.0090283.g006
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closeness centrality, it can be seen that either node 31 or node

46 are the most influential nodes in the network.

4. Eccentricity Centrality: We calculate eccentricity centrality

using equation 5 with trends which can be observed in

figure 6d. In figure 2d, the scaled nodes 26, 32 and 41 have

the highest eccentricity centrality whereas the nodes

1,14,17,18,21,31,37,46,48 and 50 have the least centrality

values clearly indicated by means of color and size for ease

of visibility. The less the eccentricity centrality, is more

eccentric the node is in the network. Therefore, if

eccentricity is taken into account for determining the

influential nodes in the network; nodes 1,14,17,18,21,31,37,

46,48 and 50 would be considered as the most influential

nodes.

5. Eigenvector Centrality: In figure 2e, the largest blue node is

node 46 with the highest value of eigenvector centrality and

the smallest red colored node is node 26 with the lowest

value. The calculations are based on equation 6 with the

trends displayed in figure 6e. This centrality indicates node

46 as the most important node in the network.

Zachary’s Karate Club Network
In their paper [35], the authors showed how the social

friendship network of 34 people. In the network, Mr. Hi is the

club instructor and Mr. John A is the club president

represented as either node 1 or node 34 whereas the rest of

the nodes are the officers. Mr. Hi and Mr. John A hold major

positions in the network as they are responsible for information

flow in the network therefore either of them acts as a source

node. On analyzing, we see the nodes which play important

roles in the network also have significant centralities values as

detailed below.

1. Degree Centrality: In the figure 7a, the degree centrality has

been calculated via equation 2. The scaled network in figure 3a

shows the node 34 to have the highest degree centrality where

as the node 12 has the lowest value.

2. Betweenness Centrality: In terms of the betweenness

centrality of this network, using equation 3, we can see

the centrality measures shown in figure 7b. The scaled

network can also be seen in figure 3b with the largest node

identified as node 1, also highlighted in blue color followed

by node 34. There are 12 nodes whose betweenness

centrality measured is the least in the network, indicated

by their small sizes.

3. Closeness Centrality: Closeness centrality for each node in

the network can be calculated via equation 4 and shown in

figure 7c. The scaled network in figure 3c highlights the

largest node in blue color identified as node 17 whereas

node 1 is the smallest node in red color with the lowest

value of the calculated centrality. The network nodes values

are distributed uniformly over the network and vary only

with a slight difference among each other.

4. Eccentricity Centrality: The eccentricity centrality of the

network has been calculated using equation 5 and can be

observed in figure 7d. The scaled network in figure 3d, shows

that nodes vary only slightly over the network. It can be

Figure 7. In the Zachary’s Karate Club network, the graphs show a correlation between the frequency of the nodes and the
centrality in the karate club network with n=34. Figure 7a shows the Degree Centrality; there are 2 nodes having maximum value CD~10:50
and only one node having the minimum value CD~0:64. Figure 7b shows the Betweenness Centrality; there is only one node having maximum value
CB~29:25 and 19 nodes having the minimum value CB~0:05. Figure 7c shows the Closeness Centrality; there are 7 nodes having maximum value
CC~3:71 and one node having minimum value CC~1:86. Figure 7d shows the Eccentricity Centrality; there are 8 nodes having maximum
CEcc~3:80 and 9 nodes having the minimum value CEcc~2:30. Figure 7e shows the Eigenvector Centrality; there are 2 nodes having maximum value
CEi~7:30 and only one node having the minimum value CEi~0:5. (a) Degree Centrality. (b) Betweenness Centrality. (c) Closeness Centrality. (d)
Eccentricity Centrality. (e) Eigenvector Centrality.
doi:10.1371/journal.pone.0090283.g007
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observed that there are 9 nodes in the network which have the

highest values of eccentricity centrality where as node 1,2,3 and

4, each node has the least centrality value; shown in red color.

5. Eigenvector Centrality: Based on equation 6; the centrality

trend can be observed in figure 7e. We see the network layout

in figure 3e with nodes scaled according to their eigenvector

centrality. It can be noted here that the largest node is node 34

followed by node 1 whereas the smallest node is node 17,

shown in red color.

Dolphin’s Social Network
Analysis has been performed based on the data set supplied by

[20]. Details of the information regarding the nodes identity has

not been provided by the authors and also the data sets provided

contradicts with the network used in the paper. Following are the

centralities observed on the network:

1. Degree Centrality: We have calculated the degree centrality of

the network using the equation 2, its trend is shown in figure 8a.

It can be observed in figure 4a, the highest degree centrality is

of the node Grin whereas there are 9 nodes (Cross, Five, Fork,

MN23, Quasi, SMN5, TR82, Whitetip, Zig) which have the

smallest centrality values.

2. Betweenness Centrality: Based on the equation 3, we calculate

the centralities shown in 8b. Here, we note the largest sized

node, SN100 having the highest centrality value as shown in

the figure 4b. It is observed that all nodes having the least

degree centrality values also appear to have the least

betweenness centrality values.

3. Closeness Centrality: Based on the equation 4, figure 8c shows

the closeness centrality values. Figure 4c shows node Zig has

the largest size in the network where as the SN100 has the

smallest size, clearly indicating the highest and lowest values of

the centrality calculated for this network. In previously

calculated centralities, SN100 has the highest values of degree

and betweenness centralities.

4. Eccentricity Centrality: By using equation 5 for calculating

eccentricity of the nodes in the network, we see the centrality

plotted in figure 8d. Whereas in the scaled network in figure 4d,

the nodes Cross, Five, Fork, TR88, TR120, TSN83, SMN5,

Whitetip and Zig have the highest values indicated by their

blue color whereas Beestratch, DN63, Knit, Number1, Oscar,

PL, SN100, SN89, SN9 and Upbang have the least values of

centralities shown as smallest in size and red in color.

5. Eigenvector Centrality: Plotted in figure 8e and shown in

figure 4e, we note that the largest node in blue is Grin whereas

the smallest node in red is Zig with the smallest value of

eigenvector centrality calculated using equation 6.

Neural Network
This data set represents a neural network of the worm

Caenorhabditis elegans which is the only example with a complete

profile of neural network. The paper concludes that ‘‘infectious

diseases are predicted to spread much more easily and quickly in a

Figure 8. In the Dolphin Social Network, the graphs show a correlation between the frequency of the nodes and the centrality in
the dolphin social network with n=62. Figure 8a shows the Degree Centrality; there is only one node having maximum value CD~3:70 and 9
nodes having the minimum value CD~0:31. Figure 8b shows the Betweenness Centrality; there is only one node having maximum value CB~10:20
and 22 nodes having the minimum value CB~0:1. Figure 8c shows the Closeness Centrality; there are 4 nodes having maximum value CC~2:0 and
only one node having the minimum value CC~0:94. Figure 8d shows the Eccentricity Centrality; there are 10 nodes having maximum value
CEcc~2:0 and 8 nodes having the minimum value CEcc~1:30. Figure 8e shows the Eigenvector Centrality; there is only one node having maximum
value CEi~5:60 and 22 nodes having the minimum value CEi~0:25. (a) Degree Centrality. (b) Betweenness Centrality. (c) Closeness Centrality. (d)
Eccentricity Centrality. (e) Eigenvector Centrality.
doi:10.1371/journal.pone.0090283.g008
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small-world; the alarming and less obvious point is how few

shortcuts are needed to make the world small’’ [33]. No details of

the nodes identity are mentioned in the paper.

Following are the centralities observed in the network:

1. Degree Centrality: In figure 9a, the degree centrality has

been calculated through equation 2. In figure 5a, the node

45 has the highest degree centrality and is thus represented

as the largest node in the network. Whereas there are more

than one node whose degree centrality measures are

minimum therefore they are represented in red color

occupying smallest size in the network. If degree centrality

is observed then it is concluded that node 45 is a major

node in the network.

2. Betweenness Centrality: In figure 9b, the betweenness

centrality is calculated through equation 3. Here the largest

sized node is node 178 having the highest value among

other nodes as shown in figure 4. We observe that the nodes

whose degree centrality is smaller also have smaller value of

betweenness centrality. Based on this centrality only, it can

be concluded that node 178 is the influential node in the

network.

3. Closeness Centrality: In the figure 9c, the closeness centrality

calculation is based upon equation 4. Here, the node 265 has

the highest value and is thus represented as the largest node in

the network as shown in figure 5c. Nodes 40, 45 and 191 each

have the least values of this centrality and are thus represented

as smaller nodes.

4. Eccentricity Centrality: In the figure 9d, the eccentricity

centrality has been calculated using the equation 5. Here,

the highest valued node is node 265. This is shown as the

largest node in figure 5d, whereas the smallest nodes have

least values of eccentricity — nodes 40, 45 and 191.

Figure 9. In the neural network, the graphs show a correlation between the frequency of the nodes and the centrality in the neural
network with n=297. Figure 9a shows the Degree Centrality; there is only one node having maximum value CD~3:0 and 250 nodes having the
minimum value CD~0:25. Figure 9b shows the Betweenness Centrality; there is only one node having maximum value CB~20:80 and 258 nodes
having the minimum value CB~0:2. Figure 9c shows the Closeness Centrality; there are 10 nodes having maximum value CC~0:45 and 37 nodes
having the minimum value CC~0:25. Figure 9d shows the Eccentricity Centrality; there are 60 nodes having maximum value CEcc~0:4 and 9 nodes
having the minimum value CEcc~0:2. Figure 9e shows the Eigenvector Centrality; there are 13 nodes having maximum value CEi~1:50 and 56
nodes having the minimum value CEi~0:05.
doi:10.1371/journal.pone.0090283.g009

Table 1. Centralities Effect on Information Diffusion.

Centralities Effects on information diffusion

Higher degree centrality Diffusion rate increases and become skewed

Higher betweenness centrality Diffusion rate increases

Higher closeness centrality Diffusion rate decreases

Higher eccentricity centrality Diffusion rate decreases

Higher eigenvector centrality Diffusion rate increases

doi:10.1371/journal.pone.0090283.t001
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5. Eigenvector Centrality: Next, in the figure 9e, the centrality

calculations are based on the equation 6. Here, node 45 has the

highest value and is thus represented as the largest node in the

figure 5e. Whereas there are more than one node which have

the least Eigenvector centrality values and are shown in

figure 5e as the smallest nodes in the network.

Summary of Discussion
Our analysis shows that each of the centrality measures has a

unique effect on the analysis of the nodes in the network. By

definition, both Closeness and Eccentricity centralities indicate

the reachability of various nodes in the network. Closeness and

Eccentricity centralities are similar but the Closeness centrality

utilizes minimum distance from a target node to all the other

nodes in the network whereas the Eccentricity centrality

gives the maximum geodesic distance from the target node

to all other nodes. While calculating these centralities, we

have noted that the nodes which have a higher Closeness

centrality also have a high Eccentricity centrality. Same is the

case with Degree centrality and Eigenvector centrality, thus

nodes having a high Degree centrality also have a high

Eigenvector centrality. However, Betweenness centrality varies

according to the topology with no noticeable or regular

patterns.

In other words, we can note that there is a need to take

centrality measures with a grain of salt. Not all centralities are

created equal. And even if centrality measures point out important

nodes in a network, this does not necessarily mean that the nodes

will always be important — especially if the subjects are human

users and the results can lead to serious consequences on their lives

or in general, the economy of a country.

Conclusions and Future Work

In this paper, we have carried out experiments to deduce the

effects of centrality metrics for validating the roles of nodes in

complex networks. We focused on the network structure

whereas there are various studies which require complete

influential factors or related actions of the nodes for analysis

[14,15]. Our exercise has demonstrated that such approaches

however are not easy to implement in practice. For example,

two of the analyzed data sets i.e. dolphins social network and

neural network were published without full details of the

identity of nodes in the networks.

This paper contributes by providing first steps towards a

methodological validation of centrality metrics using published

data sets for finding out the influence of various network nodes.

The results shown by our experiments are interesting and lay the

ground for further investigation. Experiments demonstrate that

Eigenvector and Eccentricity centralities play a more role in

determining central nodes.

Inferred concepts based on the experiments conducted in this

study are summarized in table 1. In the future, the work can be

further expanded and formalized to use verification and validation

ideas from the domain of multiagent systems to develop a

framework for performing validation of network centralities. We

also foresee the use of other measures for the evaluation of

important nodes in the case where nodes might be part of inter-

dependent networks [32].
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7. Erdős P, Rényi A (1959) On random graphs. Publicationes Mathematicae
Debrecen 6: 290–297.

8. Freeman LC (1979) Centrality in social networks conceptual clarification. Social
networks 1: 215–239.

9. Gershenson C, Niazi MA (2013) Multidisciplinary applications of complex
networks modeling, simulation, visualization, and analysis. Complex Adaptive
Systems Modeling 1: 17.

10. Gruhl D, Guha R, Liben-Nowell D, Tomkins A (2004) Information diffusion
through blogspace. In: Proceedings of the 13th international conference on
World Wide Web, pp. 491–501, ACM.

11. Hogg T, Lerman K (2009) Stochastic models of user-contributory web sites. In:
Proc. Third International AAAI Conference on Weblogs and Social Media
(ICWSM).

12. Jalili M (2012) Social power and opinion formation in complex networks.
Physica A: Statistical Mechanics and its Applications.

13. Jalili M (2013) Effects of leaders and social power on opinion formation in
complex networks. Simulation 89: 578–588.

14. Kimura M, Saito K (2006) Tractable models for information diffusion in social
networks. In: Knowledge Discovery in Databases: PKDD 2006, pp. 259–271,
Springer.

15. Kimura M, Saito K, Nakano R, Motoda H (2009) Finding influential nodes in a
social network from information diffusion data. In: Social Computing and
Behavioral Modeling, pp. 1–8, Springer.

16. Leskovec J, Adamic LA, Huberman BA (2007) The dynamics of viral marketing.

ACM Transactions on the Web (TWEB) 1: 5.

17. Leskovec J, Horvitz E (2008) Planetary-scale views on a large instantmessaging

network. In: Proceedings of the 17th international conference on World Wide

Web, pp. 915–924, ACM.

18. Leskovec J, Krause A, Guestrin C, Faloutsos C, VanBriesen J, et al. (2007) Cost-

effective outbreak detection in networks. In: Proceedings of the 13th ACM

SIGKDD international conference on Knowledge discovery and data mining,

pp. 420–429, ACM.

19. Liben-Nowell D, Kleinberg J (2008) Tracing information flow on a global scale

using Internet chain-letter data. Proceedings of the National Academy of

Sciences 105: 4633–4638.

20. Lusseau D, Schneider K, Boisseau OJ, Haase P, Slooten E, et al. (2003) The

bottlenose dolphin community of Doubtful Sound features a large proportion of

long-lasting associations. Behavioral Ecology and Sociobiology 54: 396–405.

21. McCallum A, Corrada-Emmanuel A, Wang X (2005) Topic and role discovery

in social networks. Computer Science Department Faculty Publication Series p.

3.

22. Newman M (2009) Networks: an introduction. OUP Oxford.

23. Newman ME (2001) The structure of scientific collaboration networks.

Proceedings of the National Academy of Sciences 98: 404–409.

24. Niazi M, Hussain A (2011) Agent-based computing from multi-agent systems to

agent-based models: a visual survey. Scientometrics 89: 479–499.

25. Niazi MA (2013) Cognitive Agent-based Computing-I: A Unified Framework for

Modeling Complex Adaptive Systems Using Agent-based & Complex Network-

based Methods, vol. 1. Springer.

26. Niazi MA (2013) Complex adaptive systems modeling: a multidisciplinary

roadmap. Complex Adaptive Systems Modeling 1: 1–14.

27. Rogers EM (2003) Diffusion of Innovations. 5th ed., Free Press.

28. Sabidussi G (1966) The centrality index of a graph. Psychometrika 31: 581–603.

29. Valente TW (1996) Network models of the diffusion of innovations.

Computational & Mathematical Organization Theory 2: 163–164.

30. Valente TW, Davis RL (1999) Accelerating the Diffusion of Innovations Using

Opinion Leaders. Annals of the American Academy of Political and Social

Science 566: 55–67.
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