
Software & Systems Modeling (2019) 18:2241–2264

https://doi.org/10.1007/s10270-018-0663-8

REGULAR PAPER

Towards a model-driven engineering approach for the assessment
of non-functional properties using multi-formalism

Simona Bernardi1 · Stefano Marrone2 · José Merseguer1 · Roberto Nardone3 · Valeria Vittorini3

Received: 5 February 2016 / Revised: 27 November 2017 / Accepted: 21 December 2017 / Published online: 16 February 2018

© The Author(s) 2018. This article is an open access publication

Abstract

Model-driven techniques can be used to automatically produce formal models from different views of a system realised by

using several modelling languages and notations. Specifications are transformed into formal models so facilitating the analysis

of complex system for design, validation or verification purposes. However, no single formalism suits for representing all

system’s views. In particular, the assessment of non-functional properties often requires integrated modelling approaches. The

ultimate goal of the research work described in this paper is to develop a comprehensive, theoretical and practical framework

able to support the development and the integration of new or existing model-driven approaches for the automatic generation

of multi-formalism models. This paper defines the core theoretical ideas on which the framework is based and demonstrates

their concrete applicability to the development of a multi-formalism approach for performability assessment.

Keywords Multi-formalism · UML profile · Performability · Model-driven engineering · Generalised Stochastic Petri Nets ·

Repairable fault trees

1 Introduction

In the last two decades, many researchers and practitioners

have been involved in defining and developing model-driven

approaches oriented to the quantitative analysis of software

and systems. Also, several model transformation chains have

Communicated by Dr Gabor Karsai.

B Stefano Marrone
stefano.marrone@unicampania.it

Simona Bernardi
simonab@unizar.es

José Merseguer
jmerse@unizar.es

Roberto Nardone
roberto.nardone@unina.it

Valeria Vittorini
valeria.vittorini@unina.it

1 Departamento de Informática e Ingeniería de Sistemas,
Universidad de Zaragoza, Zaragoza, Spain

2 Dipartimento di Matematica e Fisica, Universitá della
Campania “Luigi Vanvitelli”, Naples, Italy

3 Dipartimento di Ingegneria Elettrica e delle Tecnologie
dell’Informazione, Universitá di Napoli Federico II,
Naples, Italy

been developed, from UML [41], or profiled UML, and from

domain-specific modelling languages (DSMLs), in order to

create analysable models, i.e. models for which solution tech-

niques and tools are available.

On the other hand, multi-formalism refers to the usage

of heterogeneous submodels. It enables different modelling

languages to describe different system views and/or subsys-

tems. Then, multi-formalism tends to reduce the complexity

and effort of the analysis needed in case the system would

be approached as a whole. This notwithstanding, multi-

formalism has not received the same attention as single

formal modelling, especially in the industrial community,

maybe due to its greater modelling complexity and error-

proneness. While a big effort has been spent on the “model–

transform–analyse” chain involving single formalisms, few

approaches have been defined to deal with multi-formalism

models. For example, in [8], MARTE [40] and DAM [11] are

used to allow evaluations of performance and dependability,

but in a separate manner.

The aim of the research work herein described is to

address methods and techniques for defining model-driven

processes that can be applied to the generation and anal-

ysis of multi-formalism models. In particular, the focus

is on the modelling and evaluation of quantitative system

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-018-0663-8&domain=pdf

2242 S. Bernardi et al.

properties, both primitive—performance, maintainability or

reliability—and derived—performability or survivability.

Due to the many issues already open in the multi-

formalism modelling and analysis research, the aim of

solving these problems in a single research paper is not real-

istic. Once we have as a long-term aim the construction of

a theoretical and practical framework for generating multi-

formalism models by means of model-driven techniques. The

choice of the proper languages is made according to the

overall non-functional property (NFP) to evaluate; here, we

address the performability NFP. The main contribution of

this paper is twofold: first, the overall approach in its general

terms is defined and then its application to the performability

case is presented, seeing it as a composition of the traditional

performance and reliability methods.

As for the application of the proposed approach to

performability, we propose a methodology for obtaining

multi-formalism models of complex systems starting from

high-level performance and reliability models, expressed as

UML profiled models. Indeed, we are investigating the issue

of defining an approach to bridge DSMLs (including UML

profiles) with formal languages and their technical spaces:

this is the ultimate goal of our ongoing work. An objective

of the present paper is then to provide a proof of concept by

realising this goal in a restricted application field (performa-

bility) and under proper assumptions.

A practical aim of our approach is to reuse existing

transformation chains, combining them for enabling the

generation of multi-formalism models. In this regard, our

performability methodology leverages two existing chains:

MARTE to Generalised Stochastic Petri Nets (GSPNs)

described in [25] and DAM to repairable fault trees (RFTs)

described in [9,17].

Finally, we raise that little attention has been paid to

the problem of automatically derive performability models

expressed in different formal languages without relying on an

intermediate language. The paper also deals with this specific

aspect, which is a very challenging issue due to the inherent

complexity of the problem. So, this is a further original con-

tribution of our work with respect to the current state of the

art.

The paper is organised as follows. Section 2 contains

the background of our research and a discussion about

related work. Section 3 introduces the main concepts and the

definition of the general approach for model-driven multi-

formalism modelling and evaluation of NFPs. Section 4

focuses on models integration. We explain how the general

approach is instantiated to performability in Sect. 5, and this

section also contains a description of the flexible manufac-

turing system robotic cell used as a running example in the

rest of the paper. Section 6 provides the guidelines of the

methodology for performance and reliability modelling and

presents the supporting model transformations. Section 7

describes how the performance and reliability models are

integrated to obtain the final analysis model and the solution

process. Finally, Sect. 8 contains some closing remarks and

hints about future work.

2 Background and related work

2.1 Themulti-paradigmmodelling domain

Different terms are used in the literature to describe appro-

aches which deal with the heterogeneity of models, such

as multi-paradigm modelling, multi-formalism modelling,

multi-view modelling, multi-modelling or multi-language

modelling, to name a few.1 A unified vision of this research

field has been proposed by Hardebolle and Boulanger [26]

under an extended definition of the Multi-Paradigm Mod-

elling domain, formerly introduced by Mosterman and

Vangheluwe [36].

In the past years, a wide research effort has been devoted

by the scientific community to investigate and propose solu-

tions to many difficulties which arise at different levels when

trying to combine heterogeneous models. A non-exhaustive

list of research issues in this field includes the semantic dif-

ferences among the modelling languages, the abstraction and

refinement relationship existing between models progres-

sively refined during a development process, the consistency

and the correct integration of models used to analyse differ-

ent aspects or views of a same system, the development of

supporting methodologies and tools able to guarantee the

consistency of the models used in different stages of the

development cycle for different purposes.

Several multi-paradigm approaches and techniques have

been proposed to cope with these issues, a classification of

research areas and approaches is provided in [26,45].

Some of the available approaches are specific for a

restricted set of modelling languages, such as the approaches

driven by the necessity of modelling hybrid systems which

have lead to well-known industrial verification tools (e.g.

Simulink/Stateflow2) as well as non-proprietary frameworks

(e.g. Modelica3).

Others solutions support an open set of languages by

basing on metamodelling as a key technique to express

the abstract syntax of DSMLs in the context of model-

driven engineering (MDE) and allow to easily build DSMLs

and tools (e.g. AToM3 [18], MetaEdit+ [49], EMF [47],

GME [29]) or exploit the concept of heterogeneous models

1 The models considered in this paper are oriented to the representation
of discrete event systems.
2 http://it.mathworks.com/.
3 http://www.modelica.org/.

123

http://it.mathworks.com/
http://www.modelica.org/

Towards a model-driven engineering approach for the assessment… 2243

of computation (e.g. Ptolemy II project [15,21], Metropo-

lis [44], ModHel’X [13]).

The techniques used to address the heterogeneity of mod-

els span from the definition of a unifying semantics (e.g.

oriented towards the automation of hardware/software co-

design, as in the Metropolis, or to the modelling and analysis

of discrete event systems, as in the Möbius approach [19]), to

the composition of models and the joint usage of several mod-

elling and analysis tools (e.g. oriented towards simulation as

in Ptolemy II and ModHel’X, or oriented towards the analysis

of non-functional properties as in the SIMTHESys multi-

formalism modelling framework [5] and OsMoSys [35,52]),

to the composition of modelling languages, including tech-

niques for merging metamodels [22,46] and translating

models (e.g. in AToM3).

2.2 Automatic generation of performability models

Although several theoretical and practical results have been

obtained and a number of tools supporting multi-paradigm

modelling are available, a further issue to be investigated is

the automation in the generation of heterogeneous models,

given that the theoretical problems arising from their hetero-

geneity have been addressed and solved (at least for the set of

the modelling languages involved). This is especially impor-

tant when dealing with formal models, which are expressed in

languages that have a formal syntax and a formal semantics.

Formal models are widely advocated for analysing functional

and non-functional properties of systems and they are nec-

essary in the validation and verification process of critical

systems, such as transportation, avionics, automotive, health

care, etc.

A recent trend in critical system modelling for depend-

ability and performability analysis sees the development of

model-driven approaches that may automatically deriving

quantitative models relying on DSMLs or on UML [41].

Model-driven processes are very appealing as they enable

the automatic translation of models and analysis of differ-

ent solutions during the overall system development life

cycle and they can be easily integrated in industrial settings.

The vast majority of these works are focused on the soft-

ware application domain and use UML together with its

profiling extension mechanisms, as source modelling lan-

guage. Although there are also contributions in the systems

engineering and in the software/hardware real-time embed-

ded system domain, considering mainly SysML [42] and

AADL [43] as DSML. The surveys [4] and [10] reveal that

the DSML-to-formal model transformation is nowadays a

well-settled approach to verification and validation of per-

formance and dependability properties.

Focusing on performability assessment, several model-

driven approaches have been proposed [12,14,27,51,54,55].

In [14], Stochastic Activity Networks are obtained from

UML-based specification to evaluate the performability of

mobile software systems. Trowitzsch et al. [51] propose an

automatic derivation of Stochastic Petri Nets from UML

state machines and a software tool as a support. In [12], a

Deterministic and Stochastic Petri Net model is obtained

from UML models (use cases, deployment, state machine

and sequence diagrams). Khan et al. [27] consider instead

Stochastic Reward Net as target modelling formalism. In

order to include the quantitative system parameters necessary

for performability evaluation, all the aforementioned works

exploit the profiling mechanisms of UML. The works [14,

51,54] use the UML profile for Schedulability, Performance,

and Time (SPT) [38], while the works introduced in [12,

27] rely on the complementary use of two UML profiles:

MARTE [40]—for the performance annotations—and QoS-

FT [39] (in [27]) or the DAM UML profile in [11]—for the

dependability-related annotations. The Palladio approach [7]

introduces its own DSML to specify component-based soft-

ware architectures and provides a model-driven tool chain

to perform performance predictions. The KlaperSuite [16]

exploits the pivot language Klaper as an intermediate mod-

elling language in order to separate (source) design models

from (target) quality-related models and facilitate the trans-

formation among them.

In conclusion, multi-paradigm and multi-formalism appro-

aches do not explicitly address the problem to automate

the construction of the resulting analysis models, while

approaches leveraging MDE techniques propose a unique

modelling language as target formalism of the transforma-

tion. An attempt to generate different formal models—i.e.

fault trees, GSPNs and queueing networks—from the same

input UML-based specification to evaluate, respectively, the

reliability, availability and performance of an e-health sys-

tem is proposed in [8]. However, in [8] the formal models

are still analysed separately and no interaction between the

models is considered. Frameworks exist supporting the auto-

matic generation of multi-formalism modelling tools (e.g.

AToM3) or the automatic solution of multi-formalism anal-

ysis models (e.g. Möbius) but not to automatically build

heterogeneous models. We propose to exploit MDE tech-

niques to define a framework able to aid in the automated

generation of multi-formalism models. In doing that our work

has some similarities with approaches to construct bridges

between different notations, as introduced [56] or between

DSMLs and UML profiles [1].

3 Overview of the approach in theMDE
context

The proposed approach is oriented to the modelling and the

analysis of quantitative NFPs of critical systems. Figure 1

gives an overview of the approach.

123

2244 S. Bernardi et al.

Domain-specific model

submodel B

submodel A

MDM-KB

uses

integration model

Multiformalism model

submodel Bintegration

model

uses

uses

Model Transformations

Model Solution

uses

submodel A

Fig. 1 Overview of the general approach

The modeller is in charge of creating a model of the

system: such model should be able to describe meaning-

ful subsystems in a compositional manner. The model can

be built on the base of defined/existing DSMLs and accord-

ing to the specific NFP to analyse. These submodels can

be different diagrams of the same model, specific portions

of the same diagram or different models linked together or,

more generically, different models. According to the NFP

to evaluate, the submodels are translated by model transfor-

mation chains into formal models: different submodels can

be managed by different chains, generating formal models

expressed in different formalisms. A key role is played by

the integration model that is a high-level model that con-

nects the different high-level submodels: one of the pillars

of the entire approach is the application of transformation

chains on integration model able to generate formal models

still connecting the different formal submodels. Once multi-

formalism models have been generated, they can be analysed

by instantiating a solution process able to orchestrate differ-

ent solvers, to compose formal models and to process model

parameters/results.

To tame the huge methodological, linguistic and techno-

logical space of possibilities, the proposed approach needs

the existence of a decision support system including: (1)

a repository of techniques (model-driven multi-formalism

knowledge base, MDM-KB—Fig. 1 on the left) and (2) a set

of (semi-automated) guidelines that specify the modelling

and analysis workflows to be carried out by the engineers.

The complete definition of MDM-KB is a long-term

objective: it requires a comprehensive collection of all the

model-driven experiences for NFPs. As a knowledge base,

it is defined upon a schema and an instance. This paper pro-

poses a tentative domain model of MDM-KB (Sect. 3.1) and

gives an instantiation on this schema with performability in

Sect. 5 and followings.

3.1 Themodel-drivenmulti-formalism knowledge
base

Building such a unifying framework offers several degrees

of freedom for the modeller; he/she might choose among

different combinations of: high-level languages, high-level

model structures, specific metrics to evaluate for the NFP,

model transformations, target formalisms, multi-formalism

integration techniques and multi-formalism model solution

processes. The MDM-KB defines, among all the possible

123

Towards a model-driven engineering approach for the assessment… 2245

Transformation

Language

Model

Analysis

Measure

M-Rule

Guideline

Step

Chain

M2M

Language GPML

Formalism

UML Profile

DSML

UML

<<uses>>

MultiDSM

Model

Multiformalism

target

source

instanceOf

output

input

instanceOf

Solution Process

Step

Solver

integrates

Formal

solvesanalyzes

instanciates

ParameterResult

gets

<<uses>>

M-Integration "integrates"

only DSMLs and/or GPMLs

F-Integration "integrates"

only Formalisms

M-Integration

Integration

F-Integration

DSM

Metamodel
represents

MIM

FIM

Fig. 2 Structure of MDM-KB

choices, proper modelling and analysis guidelines to make

the approach feasible, technically sound and automatable.

Figure 2 represents a tentative schema of MDM-KB that

sketches the main concepts of the approach. The structure of

MDM-KB has four main packages: language, model, trans-

formation and analysis.

The main concept is guideline which embraces all the

main phases of the approach by:

– detecting which are the most proper measures able to

evaluate desired NFPs;

– suggesting a modelling approach in terms of languages to

use and of ways to structure high-level models (M-Rules);

– determining a transformation chain able to generate a

multi-formalism model on the base of the high-level one;

– defining the most suitable solution processes for analysing

the multi-formalism model.

An M-Rule is the part of the guidelines addressing mod-

elling concerns: it contains the rules about the language to

use (i.e. if one wants to model concurrent distributed sys-

tems, UML fits in this scope) as well as the recommendations

about the use of such languages (i.e. in the previous example,

it is suggested to use a UML deployment diagram, different

UML state machine diagrams for the inner evolution of the

components and a UML sequence diagram for the message

exchange).

The language package incorporates the homonymous con-

cept of Language and its derivatives comprehending DSML

and GPML4 (also with their specialisations UML profile and

UML, respectively), as well as formalism. A formalism is a

language used as a target of a model transformation (i.e. a

non-user-centred language, suitable to be analysed). A spe-

cial kind of language is Integration, representing languages

able to connect together different languages. Two special-

isations of integration are present: M-integration which

integrates only DSMLs and GPMLs, and F-integration which

integrates only Formalisms.

In the model package, the main concepts are model

and metamodel. A metamodel represents a language and

a model an instance of a metamodel and it may be a

DSM model (compliant with a DSML/GPML) or a for-

mal model (compliant with a formalism). Specialisations of

model are used for the integration models both at high and low

levels:

4 General-purpose modelling language.

123

2246 S. Bernardi et al.

– a multi-DSM is a model that is composed of different

DSMs and one or more MIMs (multi-DSM integration

model);

– a multi-formalism is a model that is composed of dif-

ferent formal models and one or more FIMs (formalism

integration model).

MIMs and FIMs are the integration models (respectively,

at domain-specific level and formalism level) compliant,

respectively, with M-integration and F-integration languages.

Formal models may have input and output parameters

(respectively, Parameters and Results).

The transformation package collects three concepts: M2M

(model-to-model transformation) which has source and tar-

get metamodels, a transformation step, which instantiates an

M2M by defining one or more output models generated from

input ones, and a transformation chain which is a sequence

of steps.

The analysis package is in charge of defining methods for

the evaluation of the measures by the solution of the multi-

formalism model. The main concept is the solution process

that can be composed of several steps. A step is in charge

of analysing a formal model by instantiating input model

parameters, getting analysis results supported by existing/ad

hoc solvers.

One of the main aims of the entire approach is to fos-

ter and exploit the reuse of existing model-driven artefacts:

mainly metamodels and transformation chains; in fact, the

scientific literature has produced several and assessed “sin-

gle formalism approaches” able to evaluate NFPs with

a simple model–transform–analyse approach. By means

of the modelling methodology and guidelines sketched

here, the MDM-KB may be constructed reusing assessed

approaches and may generalise the traditional model-driven

approach.

4 On the integrationmodel

As stated in Sect. 2.1, the scientific literature addressed the

problem of composing homogeneous and heterogeneous for-

mal models and results [37], but some considerations and

discussions are due on the issues that arise from the inte-

gration steps, mainly during the modelling, transformation

and analysis steps. Some generic examples are presented to

clarify some points.

Modelling integration in the high-level modelling activities

mainly deals with integration between data elements and

between model elements.

The first is related to the integration of the variables and

their data between the models; more in particular, it is the

problem of relating together data present in one submodel

(parameters and results) to data of another submodel (param-

eters). The aim is to define proper procedures (compositional

operators) which transform data. Input data of the operators

can be model parameters or a solution results while output

data are generically constituted by model parameters. These

functions span from the simple copy (the identity function)

to complex data manipulation. An example of this kind of

integration is constituted by the case of a decision algorithm

which estimates the probability P(E) of an event E by inte-

grating the evaluations of three different classifiersA,B and C

(possibly built on different technologies such as fuzzy logic,

neural networks and Bayesian networks). In this situation, a

multi-formal model can be constituted by a function operat-

ing on PA(E), PB(E) and PC (E) as example by calculating

the average of the three probabilities:

PV (E) =
PA(E) + PB(E) + PC (E)

3
(1)

The second aspect of the model integration is the connec-

tion of model elements (graphical or textual) which are more

related to the behaviour or the structure of the modelled sys-

tem. Examples span from the synchronisations of different

activities between workflows models (expressed as example

with UML Activity diagrams, Petri Nets, etc.) to connecting

with edges submodels ports (e.g. between an AADL Pro-

cess port and a UML Component port). Since the integration

model is a model itself, we need to specify it into a defined

modelling language. This problem of choosing the proper

language for the M-integration can be mainly solved in two

different ways:

– ad hoc neutral language (with respect to submodel

languages): while the advantage is to have a single M-

integration metamodel to define and to interoperate with,

the disadvantage of this solution is the necessity to imple-

ment new model transformations from and to this ad hoc

language;

– shared language (with respect to submodel languages):

M-integration language is one of the languages of the

connected models. The advantage is the capability to

reach a higher level of integration among connected mod-

els and multi-DSM since they share the same language. In

this way, existing transformation chains may be reused

as they are or by extending them. The problem here is

constituted by a hardening of the interoperability issue

between the languages.

Transformation once the integration model is built up, a

proper set of model transformation chains has to be applied

to generate formal models. As stated above, the choice of

the M-integration language may require additional effort

in defining proper model transformations: in particular the

123

Towards a model-driven engineering approach for the assessment… 2247

problem addressed here is how to cope with the generation

of n formal models from m high-level models. Two decou-

pling approaches are detected:

– intermediate language by defining an intermediate lan-

guage, a complex model m-to-n model transformation is

decoupled into two transformations. An m-to-1 M2M is

defined to generate a model conformant in an ad hoc inter-

mediate language, and then, this model is transformed

in n different formalism by a 1-to-n M2M according to

the type of analysis to perform. This situation happens,

at a different levels of abstraction in the Möbius [19],

Klaper [16] and CHESS approaches [34]. While the def-

inition of a single intermediate formalism may ease the

construction of a brand new framework, this approach is

not able to reuse legacy transformations;

– no intermediate language an existing M2M can be reused

to generate the i th formal model from the jth high-level

model as if the multi-formal high-level model were not

present. In these cases, the existing transformations are

to be extended to cope with the connected models. Few

works are present in the scientific literature using this

approach; an example is in [31] where two UML pro-

files and related transformation chains are used to model

physical and cyber protection systems: in a joint applica-

tion of them, the two model transformations are extended

to handle concepts of the other profile.

Analysis from the analysis point of view, we explicitly

address the problem of reusing analysis algorithms and

solvers by orchestrating them into a solution process. As solu-

tions of these models are not totally independent from each

other, there are two possibilities according to the dependency

relationships of the model solutions (i.e. the dependency of

a model solution from the results of another one):

– hierarchical structure the model solutions are organised

into a hierarchy with no cycle. Here it is possible to

find an order of invocation of the solvers. An example is

represented by the RAMS (reliability availability main-

tainability and safety) evaluation of the ERTMS/ETCS

(the interoperable European railway signalling system)

where system-level failure is decomposed into subsystem

and component levels (reliability of trains, availability

of central controllers, performance failures of com-

munication networks) and then modelled by different

formalisms [24]. Another example is in the power system

domain [28] where authors use a hierarchical submodel

structure and the analysis of the “upper level” model is

possible after solving “lower level” ones;

– cyclic structure the presence of cycles in the dependency

relationships among solvers does not allow for a linear

solution process but rather than asks for iterative pro-

cess. The problem of convergence methods and times

as well as the problem of the initial condition is open

and can be reported to the fixed-point theory. A concrete

example of this situation is in [6] where two formalisms

are used to model a sensor network: Stochastic Activ-

ity Networks for modelling the node and the Markovian

Agents for modelling the network. Since the solution of

the lifetime of each node depends on the network lay-

out (inter-distance among nodes) as well as the network

depends on the evolution of each node, a fixed-point solu-

tion process is needed. Another example is in [23] where

the author represents a computer controlled water tank by

means of bond graph and VDM models: in this case the

solution process is based on co-simulation and the two

simulators (20-Sim and VDMTools) are orchestrated and

executed together.

5 Amethodology for performability
assessment

The paper has presented in Sect. 3 the framework of the

approach and the MDM-KB that supports it, while Sect. 4

discussed important aspects on model integration. The rest of

the paper is devoted to prove the feasibility of our framework.

To this end, we develop a methodology targeted to the per-

formability assessment. In fact, the framework provides the

concepts and guidelines needed to develop methodologies for

NFP assessment using multi-formalisms. Our methodology

can be applied to different choices of modelling languages,

transformation chains, formal languages and solution pro-

cesses. Concretely, this section presents the choices we did

to present and develop the methodology and the case study

where we will apply it. However, as illustrated by the exam-

ples in Sect. 4, the methodology can be applied to other

choices.

The case study is taken from the flexible manufacturing

system (FMS) domain. In Fig. 3 a simple FMS production

cell is depicted. Machines transform materials and they can

be moved only by armed robots that transport parts from/to

machines and other places inside the cell. Semi-finished parts

need to be further worked by machines in the following

stage, and then, they can be temporarily stored in buffers.5

In the figure, we consider two segments: the first one refers

to Machine1 and Machine2 served by two faulty robots, the

second one is constituted by a single Machine3 and a sin-

gle non-faulty robot. The main difference between robot

and faulty robots is that while the former is assumed to be

unbreakable and the latter may fail according to the failure

rates of their components. Each robot is made of a robotic

arm and a double-redundant control unit. Each control unit

5 Without loss of generality, we suppose an unlimited buffer.

123

2248 S. Bernardi et al.

Fig. 3 An FMS production cell

Entry Exit

Machine1 Machine2 Machine3

Faulty Robots
Robot

Buffer

Table 1 FMS parameters

Description Value (mean)

MTTF of a robot arm 105 h

MTTF of a robot microcontroller 1.35 × 104 h

MTTF of a robot IO card 1.35 × 104 h

MTTF of a robot power unit 5.5 × 103 h

Time to finish a piece for the Machine 1 0.75 h

Time to finish a piece for the Machine 2 1 h

Time to finish a piece for the Machine 3 0.5 h

Period to check the availability of a machine 0.05 h

consists of a power unit, a microcontroller and an I/O card.

When one of these components fails, the entire control unit

fails. The redundancy of the control units allows having repair

facilities (technicians or spare parts) able to restore its func-

tionality. We assume that a failed robot is non-repairable.

Finally, Table 1 summarises the parameters of the case study,

all them were inferred from existing data sheets and similar

case studies. We assume that the time required by the robots

to move materials is negligible compared to that required by

the machines to process them.

The methodology is developed in Sects. 6 and 7 according

to Fig. 4. In particular, it applies our general framework to the

performability case, intended as the performance of a system

under faulty conditions.

Firstly, Sect. 6 provides modelling guidelines aimed at

obtaining performance and reliability models:

– The specification of the Performance View and

Reliability View (cf., Fig. 4) is addressed through

UML profiling. In particular, by MARTE [40] and

DAM [11] profiles, respectively. In the MDM-KB, this

corresponds to Language::UMLProfile.6

– As transformation chains for thePerformance View

and Reliability View, we rely on previous works.

Concretely on [25] for the performance transformation

6 We reference the elements of the MDM-KB prefixing the name of the
package and using roman fonts.

<<Model>>

Performability View

Performability Formal Model

performance

model

reliability

model

<<Submodel>>

Performance View

<<Submodel>>

Reliability View

Model Transformations

<<Submodel>>

Integration View

integration model

Performability Solution Process

Fig. 4 Approach applied to performability assessment

and in [9] for the reliability transformation. It is worth

observing that the two model transformation techniques

have been proposed in the literature, so they are not an

original contribution of this work. In the MDM-KB these

concepts belong toTransformation::Chain, while

in Fig. 4 they are represented by two grey arrows.

– As formal languages, Language::Formalism in the

MDM-KB and performance model and

reliability model in Fig. 4, we propose GSPN

[32] for performance and RFT [17] for reliability.

Secondly, Sect. 7 addresses the rest of the methodol-

ogy. Section 7.1 defines the Integration View (cf.,

Fig. 4), Language::Integration in the MDM-KB.

Section 7.2 describes the model transformation from the

Integration View to the integration model.

123

Towards a model-driven engineering approach for the assessment… 2249

Section 7.3 describes the Performability Solution

Process, which in the MDM-KB is represented by

Analysis::SolutionProcess.

6 Performance and reliability modelling
guidelines

6.1 Performancemodelling

Most of the performance modelling approaches, which

address the analysis of software systems specified with UML,

rely upon the UML-MARTE profile [40]. They incorporate

performance-related parameters in the original UML mod-

els and propose model transformation methods to get formal

models. The latter can be analysed using techniques which

are specific of the target formalism (e.g. in case of GSPN,

typically state-based or simulation techniques). In general,

two types of modelling views of the system are required for

performance analysis purposes:

– structural that can be represented by UML class, compo-

nent or deployment diagrams, and

– behavioural that are typically represented by a (set of)

sequence or activity diagrams.

The structural view defines the system resources, whereas

the behavioural one describes a (set of) system process(es)

or execution scenario(s).

In the running example, we have used a component dia-

gram (Fig. 5) to represent the high-level view of the system

resources and an activity diagram (Fig. 6) to represent the

workflow process of the flexible manufacturing system. In

particular, the actions in the activity diagram (drawn as

rounded rectangles) represent the steps of the process and

the decision/merge nodes (both drawn as diamond symbols)

model conditional flows.

6.1.1 Performance view

Profiling is the mechanism that UML provides to enhance a

system design with specifications beyond the structural and

behavioural views. Concretely, a Profile is a set of stereotypes

and tags that introduce in UML the concepts of a specific

domain. Therefore, a profile converts UML into a DSML for

such domain. In particular, the MARTE profile enables to

enhance the original UML-based specification of the system

with performance-related parameters.

A key feature of MARTE is the framework for the spec-

ification of non-functional properties (NFP) and the value

specification language (VSL). The former allows the mod-

eller to define several properties, such as the source—i.e.

whether the NFP is a requirement or a measure to be

Fig. 5 Component diagram of the system resources

predicted—or the type of statistical measure associated with

the NFP (e.g. a mean). The VSL enables the specification

of variables and complex expressions according to a well-

defined syntax (see examples of the value field and the in$

and out$ variables in the note symbols of Fig. 6).

We have developed the system performance view by

applying the MARTE extensions to the UML basic specifica-

tion. In particular, the key concepts in performance modelling

are those of steps, resources and workload. MARTE defines

an appropriate set of stereotypes and tags for introducing

these concepts in the UML diagrams, as follows.

A workflow process represents a set of steps that are

ordered according to a predecessor–successor relationship.

When a workflow step consumes time, it is modelled as an

action of the activity diagram stereotyped with «gaStep»,

and its execTime tag is used to quantify such consumption

(cf., the last four values of Table 1 and the execTime tagged

values of the gaStep actions in Fig. 6).

Resources represent run-time entities that offer services

needed to carry out the workflow steps. In the compo-

nent diagram, resources are identified by the «resource»

stereotype and when more than one resource of a given

type is needed then the resMult tagged value indicates

it (see the note symbol in Fig. 5). During workflow execu-

tion, resources need to be acquired, in an orderly way, for

performing activities; for example, a robot is needed for mov-

ing a piece. In the same way, resources need to be released

when the activity no longer needs them, so they could be

used by another activity, which can be blocked while wait-

ing for the resource availability. In the activity diagram (e.g.

Fig. 6), the «gaAcqStep» and «gaRelStep» stereo-

types are attached to the transitions that precede and follow

the action(s) which need the resource to be executed. More-

over, the usedResources tag indicates the name of the

resources, while the priority tag indicates the priority of

this step for getting such resource.

123

2250 S. Bernardi et al.

Fig. 6 Activity diagram of the FMS workflow process

The workflow process is executed by an applied load

intensity, that is either open or closed. An open workload

has a stream of requests that arrive at a given rate in some

predetermined pattern (such as Poisson arrivals), whereas a

closed workload has a fixed number of active or potential

users or jobs that cycle executing the workflow and, possibly,

spending an external delay period (sometimes called a “think

time") outside the system, between the end of one response

and the next request. The workload is specified by applying

the «gaWorkloadEvent» stereotype to the initial node of

the activity diagram. In the running example, the workload

is closed and it represents the number of raw material and

unfinished parts that are loaded into the cell.

123

Towards a model-driven engineering approach for the assessment… 2251

start

N

2

checkMachine3Availability

selectAnAvailableMachine

movePieceToExit

workingM3

movePieceToM3

movePieceToBuffer

workingM2workingM1

movePieceToM1 movePieceToM2

t26

M3notavailable

t15
end

t21

t13

t12t11

t8 t7

M3available

M1available M2available

π=2RobotSegment1

Machine2

Machine1

Machine3

RobotSegment2

Workflow processLegend

M1

π=2 transition priority

place

timed transition

immediate

transition

n parameter

p/t place/ transition

name
place label

noneAvailable

π=2
π=2

Fig. 7 Performance GSPN model

Finally, all the input and output variables used in the

tagged values need to be declared: to this aim the UML

diagrams, where such variables are used, are stereotyped

with «gaAnalysisContext» and the associated tag

contextParams lists the variables, each one characterised

by either the in$ or out$ property depending whether it rep-

resents an input or an output parameter. In the FMS example,

there is an input variable (i.e. N), that represents the initial

workload, and an output variable (i.e. thru), that represents

the throughput of the system. The latter is assigned to the

throughput tagged value associated with the last step of

the FMS workflow.

Observe that, in Figs. 5, 6, 8, 9, and 12, the UML note sym-

bol has been used to show explicitly the MARTE extensions,

i.e. the tagged values associated with a given stereotyped

model element. However, when an UML tool with MARTE

profiling facilities is used (e.g. Eclipse—Papyrus [48]), the

stereotypes and tagged values can be easily set using proper

GUI.

6.1.2 Transformation to a performance model

The target performance model is a GSPN model and can

be obtained by reusing the approach [25], where the same

MARTE extensions used in [25] are applied to activity and

component diagrams instead of deployment and sequence

diagrams. In the following, an informal description of the

model transformation is provided considering the running

example. The UML-MARTE diagrams of Figs. 5 and 6 are

the input of the transformation, whereas the resulting GSPN

model is shown in Fig. 7.

Mapping of the system resources The elements of the com-

ponent diagram considered in the transformation are the

«resource» components (Fig. 5, e.g. Machine1, Robot-

Segment1). For each resource component, a GSPN place is

associated (Fig. 7, the labelled places Machine1, RobotSeg-

ment1). The resMult tagged value is used to set the initial

marking of the place. When no tagged values are provided,

a multiplicity one is assumed, then one token is set as initial

marking.

Mapping of the workflow process The translation of activity

diagram to a GSPN model is quite straightforward, since in

UML2.x the former was restructured to have Petri net-like

semantics [41]. Therefore, herein we focus on the mapping

of the MARTE extensions.

The «gaWorkloadEvent» stereotype is used to spec-

ify the workload. In particular, the closed workload popu-

lation is mapped to the initial marking of the GSPN place

representing the initial node of the activity diagram (cf. the

tagged value assigned to the population—in Fig. 6—and the

initial marking of place start—in Fig. 7).

123

2252 S. Bernardi et al.

The«gaStep» timed actions are translated to timed tran-

sitions of the GSPN model; the execTime tagged value is

used to set the transition rate, i.e. the inverse of the value. The

«gaAcqStep» («gaRelStep») transitions of the activity

diagram represent the acquisition (release) of the resources,

where the resources to be acquired (released) are specified

by the usedResources tag. Such transitions of the activ-

ity diagram are then translated to immediate transitions of

the GSPN, that include in their input (output) set the places

representing the resources. The priority of the immediate

transitions of the GSPN is set to the priority tagged value

annotated to the mapped transitions of the activity diagram.

By default, the priority is one and the increasing order crite-

rion is assumed for priority assignment.

Mapping of variables The «gaAnalysisContext»

stereotype is used to declare the variables used in the dia-

gram; the input variables result in either place marking or

transition rate parameters in the GSPN model: e.g. in Fig. 6,

the variable N is mapped to a place marking parameter. The

output variables are translated to GSPN output parameters:

e.g. the variable thru is mapped to the throughput parameter

associated with the GSPN transition end.

6.2 Reliability modelling

The reliability analysis can be conducted by annotating the

system with the DAM profile [12] and by applying a set of

model transformations that are able to transform the anno-

tated UML model into an analysable formal model. In detail,

here we refer to the transformation already introduced in [9]

that generates an RFT from an UML annotated model. We

will apply this transformation to the running example. Obvi-

ously, it is possible to apply a different transformation in

order to generate a formal model in a different target formal-

ism. As for performance analysis, also the reliability analysis

requires two types of modelling views of the system:

– structural, which can be represented by UML class, com-

ponent or deployment diagrams, and

– behavioural, which are typically represented by a single

or a set of state machine diagrams.

The structural view defines the system resources as for

performance analysis, whereas the behavioural one describes

the failing and the repairing policies related to the system

components.

In the running example, we have used a component dia-

gram (Fig. 8) to represent the component-based structure of

the faulty robot (i.e. the RobotSegment1) and a state machine

diagram (Fig. 9) to represent the failing and the repairing

states of its control unit. In particular, the states in the state

machine diagram (drawn as rounded rectangles) represent

the steps between a completely up and running state to its

maintenance after a failure.

6.2.1 Reliability view

The features related to reliability aspects of the modelled

system can be annotated on the UML model by applying

the DAM profile. In fact, DAM annotations are needed on

the system structural view and also in detailing the repair-

ing policy for the control unit component of the faulty robot.

The faulty robot has been modelled through the component

diagram depicted in Fig. 8, while the repairing policy is

represented through an annotated state machine, shown in

Fig. 9. The DAM profile has been applied, in order to spec-

ify through stereotypes and tags the reliability parameters and

measures in the UML model, as described in the following.

Once the resources that can fail have been identified in the

system (i.e. the robots of the first segment in this case), we

need to model their internal structure and basic components

as well as parameters related to reliability aspects. According

to the DAM definition, the stereotype «daComponent» is

used to annotate each entity of the faulty components that

can be affected by a thread and interacts with other enti-

ties (hardware and/or software) and with the physical world.

A component can be made up of other interacting compo-

nents. We applied this stereotype both on the considered

faulty component (i.e. RobotSegment1) and on its subcom-

ponents (i.e. arm, control unit, microcontroller, power and

IO card). Among the different tags related to the stereotype

«daComponent», we underline the usage of theresMult

tag to indicate the number of available instances of a com-

ponent or subcomponent, and the fault and repair tags

to specify, respectively, the intrinsic mean time to failure

(MTTF) and mean time to repair (MTTR) of the component.

Figure 8 shows the annotation of the reliability parame-

ters, reported in Table 1, on the component diagram of the

RobotSegment1. Observe that the MTTR associated with the

control units is a variable, i.e. cuMT T R.

Redundancy is the typical mean to add fault

tolerance capabilities in a system, the stereotype

«daRedundantStructure» is used to annotate the set

of components that should not be a single point of failure,

and the related tag ftLevel is used to specify the mini-

mum number of components needed to guarantee the service.

In the running example, the subpackage ControlGroup has

been tagged as a «daRedundantStructure», in which

at least one ControlUnit is necessary to guarantee the service.

The metrics of interest for the reliability analysis must

be also specified in the reliability view with variables. In

the example, the metric to be estimated with the reliability

formal model is the MTTF of the RobotSegment1 and it is

specified by assigning the variable X to failure.MTTF

123

Towards a model-driven engineering approach for the assessment… 2253

Fig. 8 Component diagram of the faulty robot (internal structure)

Fig. 9 State machine diagram of the control unit

tag, associated with the faulty robot component, in the UML

component diagram.

The repairing policies associated with (sub)components

can be modelled by state machine diagrams; see in Fig. 9

the repairing policy of a single control unit. Each policy

accounts for: (a) the possible states of the subcomponent—

e.g. up, down and repair—and (b) the transitions leading

to such states. In Fig. 9, the transition to the down state

is triggered by the failure causing the activation of the

maintenance activities. This transition has been stereo-

typed by «daStep» with the tagged value kind equal

to failure. The subsequent transition startRepair, which

leads the subcomponent in the repair state, is stereo-

typed by «daActivationStep», while the last one is

a «daReplacementStep» that models the replacement

of the power, microcontroller and IO card components to

terminate the maintenance.

At last, as in the performance modelling, the diagram

is stereotyped by «gaAnalysisContext» in order to

declare the variables used in the diagram. Observe that the

variable X is also used; however, it has not been declared in

the diagram (cf., Fig. 8). Indeed X is a global variable, which

is also used in the integration view, and therefore, it will be

declared at a higher-level modelling view. We will come back

to this issue in the next section.

6.2.2 Transformation to a reliability model

The reliability view enables to generate a repairable fault tree

(RFT) model. In order to accomplish this objective, there is

a full reuse of the model transformation described in [9].

According to this approach, from the reliability view of the

running example—i.e. the component diagram of the Robot-

Segment1 (Fig. 8) and the state machine diagram modelling

123

2254 S. Bernardi et al.

ControlGroup

RobotSegment1

ControlUnit1 ControlUnit2

Arm

Power2

Microcontroller2

CU Repair

Box 1

CU Repair

Box 2

IOcard2Power1

Microcontroller1 IOcard1

Fig. 10 Reliability RFT model

the repairing policy of the control unit (Fig. 9)—the RFT

depicted in Fig. 10 has been derived.

Herein, we describe how the transformation approach

works with respect to the considered case study; for further

information, refer to [9]. Basic concepts of the RFT formal-

ism are provided instead in “Appendix B.”

Mapping of the robot structure The elements of the

component diagram considered in the transformation are

those stereotyped by «daComponent» (e.g. RobotSeg-

ment1, ControlUnit in Fig. 8) and by «daRedundant

Structure» (i.e. ControlGroup). Each«daComponent»

is translated to a node of the tree that can be either a

basic event—i.e. a leaf—or a middle event—i.e. an inter-

mediate node or the root. In particular, it is mapped (1)

to as many middle events as the value of resMult,

if the fault tagged value is null, or (2) to as many

basic events as specified by the resMult value, if the

fault tagged value is not null. Hence, arm, IO card,

microcontroller and power generate basic events, whereas

control unit and RobotSegment1 generate middle events.

Packages stereotyped by «daRedundantStructure»

generate other middle events (Control Group, in the exam-

ple). Gates are added to the RFT: an OR gate if the

«daComponent» does not belong to a «daRedundant

Structure» (RobotSegment1 and ControlUnit), an AND

gate if the«daComponent»belongs to a «daRedundant

Structure»with ftLevel=1 (ControlGroup). Arcs are then

added to complete the RFT structure according to the hierar-

chical structure modelled in the UML component diagram.

Fig. 11 Maintainability GSPN model

Mapping of the repair mechanism. Both the annotated state

machine and component-based structure are used to generate

the RFT elements related to the repair facilities, i.e. repair

boxes (drawn as up-going triangles). First, a repair box is

created and connected with a trigger arc to the middle event

representing the«daComponent» associated with the state

machine (i.e. ControlUnit). Then, a repair arc is drawn to the

repair box from all the basic events that are “ancestors” of

the middle events triggering the repair box (i.e. in this case,

power, microcontroller and IO card).

Finally, the GSPN model representing the repair mecha-

nism is generated from the state machine: Fig. 11 depicts the

GSPN submodel representing the repair process of the Con-

trolUnit. All these elements are added to the RFT for each

ControlUnit since the generation process is instantiated for

each replica of a «daComponent».

7 The approach for performability analysis

In the context of our methodology, Sect. 7.1 defines the

Integration View (cf., Fig. 4). Section 7.2 describes

the model transformation from the Integration View

to the integration model. Section 7.3 describes the

Performability Solution Process of the

methodology. The proposed case study is used as running

example.

According to the discussion arisen in Sect. 4, this example

just scraped the surface of the problem since it is limited to

a specific category. First, we explored the shared language

solution for the M-integration model, since the performabil-

ity model is expressed in UML annotated both the MARTE

and DAM profiles. Second, we preferred the no intermedi-

ate language solution for the model transformation, since the

integration view is translated into a separate GSPN model by

a model transformation which handles in input information

coming from the two UML profiles. Finally, there is no need

of complex solution process that is simply constituted by a

sequential invocation of reliability analysis first and then per-

formability (e.g. hierarchically structured solution process).

7.1 Integration view

The integration view for performability modelling (cf.,

Fig. 4) represents a concrete instantiation of the MIM (multi-

DSM integration model) of the multi-formalism Knowledge

123

Towards a model-driven engineering approach for the assessment… 2255

Fig. 12 Faulty behaviour of the FMS workflow

Base structure, shown in Fig. 2. The integration view is aimed

at connecting the performance view and the reliability view,

which are specified with two different domain-specific lan-

guages, i.e. the UML-MARTE and the UML-DAM profiles,

respectively. Since performability is a unified performance

reliability measure [33], it seems natural to choose as inte-

gration language (cf., the M-language concept in Fig. 2)

the union of the two previous languages, which separately

support the modelling and analysis of performance and reli-

ability.

The modelling of the integration view for performability

entails two facets: (1) the specification of the faulty behaviour

at the system level and (2) the declaration of the global vari-

ables. Both facets are considered in the following.

SystemFaultyBehaviour The two modelling views, described

in Sects. 6.1 and 6.2, represent the system at different abstrac-

tion levels:

– The performance view (system-level) models the system

process under normal (i.e. no faulty) condition together

with the used resources, whereas

– The reliability view (resource-level) focuses on the inter-

nal structure of the faulty resources, and the failure and

repair processes of their subcomponents.

To enable performability analysis we need to incorporate the

faulty behaviour, due to the failure of the faulty resources, at

the system-level specification. This is achieved by building

an UML behavioural model, concretely an activity diagram,

that specifies the system fault assumption in terms of:

1. The failure occurrence and the characterisation of the

resource failure rates.

2. The maximum number of resources that may fail concur-

rently.

3. The resources that may fail, then provoking a fault at

system level according to the fault–error–failure chain

in [2].

Concerning the first item, it is addressed by modelling an

action that represents the resource failure occurrence. The

action is stereotyped by «daStep» (from the DAM profile)

and the resource failure rate is specified by the fault.

occurrenceRate tag.

The second item is addressed only with DAM, by stereo-

typing the diagram with «daFaultGenerator» and

assigning a value to the numberOfFault tag.

Finally, once the failure has occurred, the resource is not

longer available for the normal process. Therefore, a step

needs to be explicitly modelled that represents the acquisi-

tion of the failed resource by a high priority process (i.e.

the fault process). To this aim, this step is stereotyped by

«gaAcqStep» and the failed resource is indicated by the

usedResources tag. Moreover, the priority of the fault

process is assigned to the priority tag.

Figure 12 shows the faulty behaviour specification of the

FMS workflow, due to the failure of the robots used in the

first production segment—cf., theusedResources tagged

value annotated to the transition from the action to the final

node. Two stereotypes are assigned to the activity diagram:

«daFaultGenerator» and«gaAnalysisContext»

to specify the maximum number of resource failures as input

variable and to declare the variable (in$nf), respectively.

The compromising action represents the resource failure

occurrence; observe that an expression is assigned to the

fault.occurrenceRate tag, where a variable X is used

in the expression. The latter will be declared as a global vari-

able as described in the following.

Global Variables Declaration In the modelling of the inte-

gration view, rules need to be defined to either share or

interchange NFP values between the performance and reli-

ability modelling views, which are specified with MARTE

and DAM profiles, respectively.

Most of the MARTE and DAM extensions represent NFPs

that are expressed using the value specification language

(VSL) of MARTE [40]. In particular, VSL enables to declare

variables and specify complex expressions—including liter-

123

2256 S. Bernardi et al.

Fig. 13 Global variable declaration

als, variables and mathematical operations—using a well-

defined syntax. We exploit the VSL to define four types of

integrator operators (see Table 2) that rely on: (1) the decla-

ration of global variables which are used in both the views

and (2) the usage of the variables in the two views.

The declaration of a global variable is carried out

by stereotyping the package including the two views by

«gaAnalysisContext» and by assigning the variable

name to the contextParams tag. Depending on the type

of integrator operator, the variable can be declared either as

input (in) or input/output (inout).

In the former case—cf., Copy Parameter (CP) and Copy

Elaborated Parameter (CEP) operators in Table 2—the two

views share the common input variable, whose value will be

set during the analysis process.

In the latter case—cf., Copy Result (CR) and Copy Elab-

orated Result (CER) operators—the two views interchange

values throughout the variable which plays two roles: it is an

output variable for the view A that is an NFP to be calcu-

lated in the analysis of A (observe that the source property is

explicitly set to calc, to indicate that X is an output variable)

and it is an input variable for the view B (in this case, no

value needs to be set to the source property).

The difference between the CP and CEP operators (and,

respectively, between CR and CER) is the usage of the vari-

ables in the views: the CP (CR) operator assumes that both

the views A and B use the variable value (value property)

while the CEP (CER) operator assumes that the view B uses

the variable within an expression (expr property).

Figure 13 shows declaration of the global variableXwithin

the performability analysis context of the running example.

In particular, the stereotyped package consists of the three

modelling views:

– performance view, including the models of Figs. 5 and 6;

– reliability view, including the models of Figs. 8 and 9;

and

– integration view, including the model of Fig. 12.

In the FMS example, the CER operator (cf., Table 2) is

applied, where X is used as output variable in the reliabil-

ity view (cf., Fig. 8) and as an input variable in the faulty

behaviour model (cf., Fig. 12).

7.2 The performability formal model

Similarly to the performance and reliability modelling

approaches, detailed in Sect. 6, also in the case of the inte-

gration view, a model transformation has to be carried out to

obtain an integration formal model (cf., Fig. 4). Moreover, to

get the final formal model that can be used for performabil-

ity analysis, the three formal models—i.e. the performance,

reliability and integration ones—need to be connected by

means of a concrete F-integration language (cf., Fig. 2). In

the following, we discuss these two issues.

Transformation to an integration model We can exploit the

transformation approach [25], which has been already used

in the performance modelling, to get a GSPN model. Indeed,

since the integration view is represented by an UML activity

diagram, that includes annotations of the MARTE profile, the

following mapping rules—already discussed in Sect. 6.1.2—

can be applied without changes:

– The mapping of AD transitions that model resources

acquisition (i.e. the «gaAcqStep» stereotyped transi-

tions annotated with the usedResources and

priority tagged values) to immediate GSPN tran-

sitions characterised by input places modelling the

resources; and

– The mapping of variables (i.e. the contextParams

tagged value associated with the «gaAnalysis

Context» stereotyped diagrams) to GSPN input/output

parameters.

However, the original approach [25] needs to be extended

here to consider the DAM profile annotations in the diagram.

Concretely, two new mapping rules are added to translate:

1. ThenumberOfFaults tagged value of the«daFault

Generator» stereotyped diagram, and

2. The fault.occurrenceRate tagged value of the

«daStep» stereotyped actions.

Concerning the first rule, the maximum number of faults

is mapped to the initial marking of the GSPN place that

represents the initial node of the AD, whereas the second

rule translates a «daStep» action to a timed transi-

tion, which is characterised by a firing rate equal to the

fault.occurrenceRate tagged value.

Figure 14 shows the GSPN model generated by the trans-

formation of the activity diagram in Fig. 12. Observe that

123

Towards a model-driven engineering approach for the assessment… 2257

Table 2 Integration operators
Declaration Usage

Package View A View B

CP contextParams=(in$X) NFP1 = (value=X) NFP2 = (value=X)

CEP contextParams=(in$X) NFP1 = (value=X) NFP2 = (expr=f(X))

CR contextParams=(inout$X) NFP1 = (value=X,source=calc) NFP2 = (value=X)

CER contextParams=(inout$X) NFP1 = (value=X,source=calc) NFP2 = (expr=f(X))

FMS faulty behavior

2

RobotSegment1

nofault

done

compromising

t2
π=3

nf

1/X

Fig. 14 Integration model

two input parameters have been defined in the model: n f , an

initial marking parameter associated with the place nofault,

and X , used to define the firing rate of the timed transition

compromising.

Model connection The last modelling issue that has to be

solved is the connection of the three formal models—i.e. the

performance, reliability and integration models—where all

of them are parameterised. In particular, the performance and

integration models are GSPN models, whereas the reliability

model is an RFT model.

Herein, we use an F-integration language (cf., Fig. 2) that,

on the one hand, consists of the place composition operator of

GSPNs [20] to connect the performance and the integration

models and, on the other hand, enables the definition of global

parameters to connect the composed GSPN model and the

reliability RFT model.

First, let us consider the composition of the two GSPN

models. Therefore, we define a place labelling function ψ :

P −→ L p ∪ {τ } for the GSPN models that assigns to a

place p ∈ P representing a system resource, the name of

the resource, and to the rest of places the τ -value. Then, the

performance model Fp = (LN p,Pp) and the integration

model Fi = (LN i ,Pi) can be composed using the place

composition operator (see “Appendix A”):

LN pi = LN p | |
L P

LN i ,

where L P is the set of common labels (i.e. resource names),

LN p = (Np, ψ) and LN i = (Ni , ψ) are the two labelled

GSPN models, and Pp and Pi are the sets of (input and

output) parameters of the two GSPNs.

The composed model Fpi = (LN pi ,Ppi) is charac-

terised by a set of parameters Ppi that is the union of the

sets Pp and Pi .

In the FMS example, the set L P includes one label (i.e.

RobotSegment1) that identifies the pair of places, in the two

GSPN models, representing the robots of the first segment.

Figure 15 shows a high-level view (left side) of the composi-

tion of the two GSPN models. The composed GSPN model

includes three input parameters—N , n f and X—and an out-

put parameter—thru.

Secondly, the connection of the resulting GSPN model

Fpi = (LN pi ,Ppi) and the reliability RFT model Fr =

(RFT r ,Pr) is carried out by the definition of the global

parameters. The global parameters are those used in different

models of a multi-formalism model, then:

p ∈ Ppi ∪ Pr :

{

p is global if p ∈ Ppi ∩ Pr

p is local otherwise

Observe that such parameters are mapped from the global

variables declared in the performability view (at DSML

level). Indeed the latter is a package, stereotyped by

GaAnalysisContext, that includes all the views (i.e.

performance, integration and reliability views); therefore, the

variables declared in the context of the performability view

can be used in all the included models.

In the running example, there is only one global parameter,

i.e. X, that is an output parameter of the reliability model

Fr = (RFT r ,Pr) and an input parameter of the composed

GSPN model Fpi = (LN pi ,Ppi).

7.3 Performability solution process

In this subsection, we address the last phase of the approach

(sketched in Fig. 4), by providing a guideline to conduct

performability analysis [33] with the multi-formalism model

described in the previous subsection.

In particular, the goal of the analysis is the evaluation of

the effect of the different repairing policies of the faulty parts

of the resources on the overall performance of the system.

123

2258 S. Bernardi et al.

2

RobotSegment1Workflow process

FMS faulty behavior

Faulty Robot Segment1

Params:

- input: N, nf (local), X (global)

- output: thru (local)

Params:

- input:cuMTTR (local)

- output: X (global)

nofault

done

compromising

t2
π=3

nf

1/X
X

LNp

LNi

LNpi

RFTr

Composed GSPN model

Fig. 15 Performability formal model

The multi-formalism model MF = (Fpi ,Fr) is char-

acterised by several parameters. In particular, the global

parameters are used to exchange values between the RFT

model Fr = (RFT r ,Pr) and the GSPN model Fpi =

(LN pi ,Ppi) and, by construction, the exchange of values

is unidirectional, i.e. from the RFT model to the GSPN

model. Therefore, the solution approach needs to be sequen-

tial: firstly, the RFT model is used to estimate the global

parameters, which are then fed to the GSPN model to com-

pute the performability metrics of interest, i.e. the output

parameters of the GSPN model. Besides, an issue related

to the analysis is the setting of the local input parameters

that are unknown,7 to value(s) which enable to get a mean-

ingful feedback from the results. Parameters’ setting is not

a trivial task, especially when several parameters have to be

considered at the same time.

Therefore, we propose the following solution process that

consists of two sequential steps:

Step 1 The performance model Fp = (LN p,Pp) and the

reliability model Fr = (RFT r ,Pr) are analysed

independently from each other.

(a) Let Pp = P I
p ∪ PO

p , the goal of the performance

analysis is to instantiate the set of input parameters

P I
p and to evaluate the set of measures of interest

PO
p . The estimated measures will be considered as

reference values for the performability analysis.

(b) Let Pr = P I
r ∪PG , the goal of the reliability analysis

is to instantiate the set of input parameters P I
r and to

evaluate the set of measures of interest PG (global

parameters). The estimated measures will be used to

instantiate the input parameters of the GSPN model

Fpi = (LN pi ,Ppi).

7 Unknown input parameters are those ones which have not been set to
a (range of) value(s) in the modelling views, at DSML level.

Step 2 The GSPN model Fpi = (LN pi ,Ppi), where Ppi =

Pp ∪ Pi , is used to evaluate the set of performance

measures of interest PO
p under fault assumptions. A

subset of input parameters (i.e. P I
p ∪PG) are instanti-

ated according to the (range of) values determined in

the previous step. On the other hand, the rest of input

parameters have to be instantiated in this second step.

Application of the Solution Process to the FMS Example In

the first step (i.e. Step 1.a), we analyse the performance model

of Fig. 7 to evaluate the FMS throughput (i.e. number of

final items produced per hour). Both steady-state and tran-

sient analysis have been carried out by using the reachability

graph solvers of the GreatSPN tool [3], with an approxima-

tion error of at most 1.0 × 10−5. The aim of the steady-state

analysis is to set the workload parameter (N) to a fixed value

such as the system resources are utilised at least 70% of

the time. Then, the FMS throughput is calculated for differ-

ent workload assumptions, considering a Kanban card-like

mechanism, until system saturation. Figure 16 plots the curve

of the throughput and shows that the maximum reached by

the system is 2 products/h. In particular, when N = 5, the

machines are busy most of the time (i.e. their utilisation is

higher than 70%) and the FMS throughput is ≈ 1.75 prod-

ucts/h. In Fig. 18, the curve labelled no faults represents the

FMS throughput vs/time that has been computed using the

performance model with N = 5: the asymptote of the curve

(y ≈ 1.75) corresponds to the throughput computed in steady

state.

Reliability analysis can be carried out in parallel (i.e. Step

1b) using the reliability model of Fig. 10. Three main steps

are considered: modularisation, decomposition and substitu-

tion. The modularisation step consists of detecting the RFT

state space solution modules (SSMs), i.e. the subtrees in

the RFT that must be solved by translating the RFT into

a state space formalisms (e.g. the GSPN formalism) and the

Combinatorial Solution Modules (CSMs) that can be solved

more efficiently by applying combinatorial FT techniques;

123

Towards a model-driven engineering approach for the assessment… 2259

 0

 0.5

 1

 1.5

 2

 2 4 6 8 10 12 14 16 18 20

th
ro

u
g
h
tp

u
t
(p

ro
d
u
c
t/
h
r)

workload (N)

Fig. 16 FMS throughput under different workload assumptions

Fig. 17 Reliability derived FT
model

Control

Group

RobotSegment1

Arm

the decomposition phase consists of separating and solving

each module with the proper technique; in the substitution

step, we replace each solved module with a basic event whose

probability of failure is equal to the probability of the module

to fail. More details about the analysis process of an RFT are

in [17].

The subtree of Fig. 10, enclosed in the dashed box, is an

SSM and thus should be translated into to a GSPN and then

solved. The translation may be supported by model transfor-

mations [30] based on advanced transformation techniques as

module superimposition [53]. The GSPN resulting from this

transformation is not represented for the sake of space. After

its analysis (conducted by available solvers as GreatSPN [3]),

an FT is generated by collapsing the solved SSM into a basic

node (Fig. 17) and solved with available tools [50].

According to the three considered values of the MTTR

for the Control Unit (1, 32 h and 42 days), we respectively

obtained the following three MTTFs for the RobotSegment1:

{9.7 × 104, 5.88 × 104, 8.26 × 103} (h).

In the second step of the solution process (i.e. Step 2),

the composed GSPN model (Fig. 15, left side) is used to

evaluate the FMS throughput under faulty assumptions. The

results of the previous performance and reliability analyses

are exploited to set the input parameters of the GSPN model.

In particular, the workload parameter is set to the fixed value

(N = 5) and the fault occurrence rate of the RobotSegment1

is set to the inverse of the MTTF values computed with the

reliability model (Step 1.b). There is still an input parameter

that needs to be set in this step: the maximum number of

faults (nf) that is set to 2, since there are two faulty robots that

may fail independently and then leading to FMS throughput

degradation.

We carried out transient analysis to compare the system

behaviour with the no faults case. As in Step 1.a, we have

used the reachability graph solver of the GreatSPN tool [3]

with an approximation error of at most 1.0×10−5. In Fig. 18,

the curves labelled MTTF represent the FMS throughput vs

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

th
ro

u
g
h
tp

u
t
(1

/h
r)

time (hr)

MTTF= 9.70E+4 hr
MTTF= 5.88E+4 hr
MTTF= 8.26E+3 hr

no faults

Fig. 18 FMS throughput versus time under different MTTF assumptions

123

2260 S. Bernardi et al.

time under different fault occurrence rate assumptions (i.e.

1/MTTF).

The performance degradation can be clearly inferred from

the trend of the three curves that, unlike the no faults curve,

all tend to zero at steady state. However, depending on the

MTTF, the curves tend to zero with a different slope. The

curves labelled MTTF = 9.7×104 h and MTTF = 5.88×104

h, reach a maximum value (≈ 1.73 and ≈ 1.70 products/h,

respectively) at 10,000 h (i.e. more than one year) which is

close to the FMS throughput of the no faults case, while the

curve labelled MTTF = 8.26 × 103 h is always decreasing

and, in particular, the FMS throughput at 10,000 h is ≈ 0.89

products/h.

The analysis results provide an insight into the decision-

makers in the selection of an adequate repairing policy of

the robot ControlUnit. In particular, given that the FMS has

to be (almost) fully operational for at least 10,000 h, then

the option of having a MTTR of 42 days for the robot Con-

trol Unit (which corresponds to the curve labelled MTTF =

8.26×103 h) should be discarded (i.e. the FMS throughput is

reduced to 50% at 10,000 h). On the other hand, the increase

in the FMS throughput gained by choosing the option MTTR

= 1 h (the curve labelled MTTF = 9.7 × 104 h) instead of

MTTR = 32 h (the curve labelled MTTF = 5.88 × 104 h) is

less than 2%. Therefore, the choice between the two options

is a trade-off between the system performance and the cost

of the repairing policies.

8 Conclusions and future work

The analysis of non-functional properties (NFPs) of com-

plex real-world systems requires the availability of proper

methodologies and tools supporting both multi-formalism

modelling and the automated constructions of models. In the

last two decades, many research approaches have been pro-

posed for generating formal models exploiting model-driven

principles and techniques, but less effort has been devoted to

the automated construction of multi-formalism models.

In this paper, we have defined a framework to support

the automated generation of multi-formalism models and its

instantiation to the construction of performability models.

The framework is based on the model-driven paradigm. Per-

formability aided us in providing a first concrete application

of the concepts described in the paper as a full detailed pre-

sentation of the framework is not feasible in the scope of a

single research paper. We have chosen performability since

it has a derived nature (as the conceptual combination of

performance and reliability) and it involves different formal

models (e.g. GSPNs and RFTs).

Even if this concrete application is just an example used

to better explain the aims and the objectives of the proposed

framework, it has confirmed some of its features (e.g. the

reuse of existing modelling and analysis approaches [9,25]

and the suitability of VSL to realise data integration between

UML annotated models as well as some open issues (e.g.

the need for further modelling guidelines and investigation

about different model composition paradigms).

Future research effort will be spent to build the over-

all framework in a bottom-up manner, starting from diverse

domains, varying the languages involved and implementing

further transformation chains.

Acknowledgements This research was partially supported by the
European Commission under the H2020 Research and Innovation
Action [DICE, Grant Agreement No. 644869], the Spanish Ministry
of Economy and Competitiveness [ref. CyCriSec-TIN2014-58457-R],
the project UZCUD2017-TEC-09, and the Aragonese Government [ref.
T94, DIStributed COmputation (DISCO)]

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

A Generalised Stochastic Petri Nets

Generalised Stochastic Petri Nets (GSPNs) are a well-known

modelling paradigm introduced in 1984. GSPNs extend Petri

Nets with a temporal specification allowing the descrip-

tion of both the temporal and logical evolution of a system

within the same model. Formally, a GSPN is a tuple

N (P, T , I , O, H , M0, Φ,�) where:

– P is the set of places,

– T = TI ∪ TE is the set of transitions, divided into imme-

diate (TI) and timed exponential (TE) transitions,

– I , O, H : P ×T → N are, respectively, the input, output

and inhibitor arc multiplicity functions,

– M0 : P → N assigns the initial number of tokens in each

place,

– Φ : T → N assigns a priority to each transitions: timed

transitions have zero priority, while immediate transitions

have priority greater than zero,

– � : T → R assigns to each immediate transition a

weight, and to each timed transition a firing rate. The

firing rate represents the rate parameter of the negative

exponential distribution.

Graphically, a GSPN model is a directed bipartite graph in

which places are drawn as circles and transitions are drawn

as bars (immediate transitions) or boxes (timed ones). The

arcs are the oriented edges of the graph. An inhibitor arc is a

circle-headed arc from a place to a transition, which prevents

the transition to be enabled if the place contains a number

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Towards a model-driven engineering approach for the assessment… 2261

of tokens equal or greater than the multiplicity of the arc.

Tokens are markers within places and are used to specify the

state of a GSPN. They are drawn as black dots.

The dynamic behaviour of the GSPN is defined by the

enabling and firing rules. A transition is enabled in a

marking M iff both the following conditions occur: (1) its

input places contain at least as many tokens as the corre-

sponding arc multiplicities and its inhibitor places contain

less tokens than the corresponding arc multiplicities; (2)

its priority is greater or equal to the one of the transitions

t ′ also satisfying condition (1) in M . Consequently, only

transitions of the same priority level can be enabled in a

marking. A transition t , enabled in marking M , may fire then

leading to a new marking M ′, according to the equation:

M ′(p) = M(p) + O(p, t) − I (p, t), p ∈ P. The reader

may refer to [32] for an introduction to GSPN modelling.

A.1 GSPN composition

Two GSPN models can be composed over places (or transi-

tions), provided that a labelling function is defined over the

set of places (or transitions) [20]. In general, more than one

label can be associated with a place (transition). However, the

composition operator used in this paper is a simplified ver-

sion of the one defined in [20], since only place composition

and at most one label per place are considered. Therefore,

we consider a labelled GSPN LN = (N , ψ), where N is a

GSPN and ψ : P → L P ∪{τ } is the place labelling function

that assigns a label (or τ) to each place.

Given two labelled GSPN LN 1 = (N1, ψ1) and LN 2 =

(N2, ψ2), the labelled GSPN LN = (N, ψ):

LN = LN 1 | |
L P

LN 2

resulting from the composition over the sets of place labels

L P is defined as follows. Let EP = L P ∩ ψ1(P1) ∩ ψ2(P2)

be the subset of L P comprising place labels that are common

to the two labelled GSPNs, P l
1 be the set of places of LN 1

that are labelled l and P
EP

1 be the set of all places in LN 1

that are labelled with a label in EP . Same definitions apply

to LN 2. Then: P = P1\P
EP

1 ∪ P2\P
EP

2 ∪
⋃

l∈EP
{P l

1 × P l
2},

T = T1 ∪ T2. The functions F ∈ {I (), O(), H()} are equal

to:

F(p, t) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

F1(p, t) if p ∈ P1\P
EP

1 , t ∈ T1

F2(p, t) if p ∈ P2\P
EP

2 , t ∈ T2

F1(p1, t) if p ≡ (p1, p2) ∈
⋃

l∈EP
{P l

1 × P l
2}, t ∈ T1

F2(p2, t) if p ≡ (p1, p2) ∈
⋃

l∈EP
{P l

1 × P l
2}, t ∈ T2

Functions F ∈ {Φ(),�()} are equal to:

F(t) =

{

F1(t) if t ∈ T1

F2(t) if t ∈ T2

The initial marking function is equal to:

M0(p) =

⎧

⎪

⎨

⎪

⎩

M0
1 (p) if p ∈ P1\P

EP
1

M0
2 (p) if p ∈ P2\P

EP
2

M0
1 (p1) + M0

2 (p2) if p ≡ (p1, p2) ∈
⋃

l∈EP
{P l

1 × P l
2}

Finally, the place labelling function is equal to:

ψ(x) =

⎧

⎪

⎨

⎪

⎩

ψ1(x) if x ∈ P1\P
EP

1

ψ2(x) if yx ∈ P2\P
EP

2

ψ1(p1) ∪ ψ2(p2) if x ≡ (p1, p2) ∈
⋃

l∈EP
{P l

1 × P l
2}

B Repairable fault trees

Repairable fault trees (RFTs) have been introduced to allow

the evaluation of the effects of complex repair policies on

the availability of a system [17]. RFTs integrate Generalised

Stochastic Petri Nets (GSPNs) and fault trees (FTs): repair

actions are represented by nodes, called repair boxes (RBs),

which encapsulate a GSPN model. RBs are connected to a

FT which describes the faults that may happen in the system

and their contribution to the occurrence of a failure. An RB

b is characterised by a repair policy, a vector of parameters

related to the repair policy and a vector of repair rates. The

inputs of the node may only be basic events of the FT and its

output is an unique event node, called the Trigger Event of b.

Hence, an RB is connected to the FT by arcs linking the RB

to the event node of the FT which triggers the repair action

and to a subset of basic events (i.e. of tree leaves) which

represent the repairable components of the systems affected

by the repair action. The introduction of RBs requires that

each RFT subtree whose event node triggers a repair action is

translated into an equivalent GSPN. This technique is based

on the hypothesis that there is no mutual dependence between

triggering events, in addition a subtree whose root event node

is connected to an RB cannot contain other RBs.

References

1. Abouzahra, A., Bézivin, J., Del Fabro, M.D., Jouault, F.: A practical
approach to bridging domain specific languages with UML profiles.
In: Proceedings of the Best Practices for Model Driven Software

Development (co-located with OOPSLA 2005), San Diego, Cali-

fornia, USA, October 16, 2005 (2005)
2. Avizienis, A., Laprie, J.-C., Randell, B., Landwehr, C.E.: Basic

concepts and taxonomy of dependable and secure computing. IEEE
Trans. Dependable Secur. Comput. 1(1), 11–33 (2004)

3. Baarir, S., Beccuti, M., Cerotti, D., De Pierro, M., Donatelli, S.,
Franceschinis, G.: The GreatSPN tool: recent enhancements. SIG-
METRICS Perform. Eval. Rev. 36(4), 4–9 (2009)

4. Balsamo, S., Di Marco, A., Inverardi, P., Simeoni, M.: Model-based
performance prediction in software development: a survey. IEEE
Trans. Softw. Eng. 30(5), 295–310 (2004)

123

2262 S. Bernardi et al.

5. Barbierato, E., Gribaudo, M., Iacono, M.: Modeling hybrid systems
in SIMTHESys. Electron. Notes Theor. Comput. Sci. 327, 5–25
(2016)

6. Battista, E., Casola, V., Marrone, S., Mazzocca, N., Nardone, R.,
Vittorini, V.: An integrated lifetime and network quality model of
large WSNs. In: 2013 IEEE International workshop on measure-
ments networking (MN), pp. 132–137 (2013)

7. Becker, S., Koziolek, H., Reussner, R.: The Palladio component
model for model-driven performance prediction. J. Syst. Softw.
82(1), 3–22 (2009)

8. Berardinelli, L., Bernardi, S., Cortellessa, V., Merseguer, J.: UML
profiles for non-functional properties at work: analyzing reliability,
availability and performance. In: Boskovic, M., Gasevic, D., Pahl,
C., Schätz, B. (eds.) Proceedings of the 2nd International Workshop
on Non-functional System Properties in Domain Specific Modeling
Languages (NFPinDSML2009) Affiliated with MoDELS2009

9. Bernardi, S., Flammini, F., Marrone, S., Merseguer, J., Papa, C.,
Vittorini, V.: Model-driven availability evaluation of railway con-
trol systems. SAFECOMP 2011. volume 6894 of LNCS, pp. 15–28.
Springer, Berlin, Heidelberg (2011)

10. Bernardi, S., Merseguer, J., Petriu, D.C.: Dependability modeling
and analysis of software systems specified with UML. ACM Com-
put. Surv. 45(1), 2 (2012)

11. Bernardi, S., Merseguer, J., Petriu, D.C.: Model-Driven Depend-
ability Assessment of Software Systems. Springer, Berlin (2013)

12. Bernardi, S., Merseguer, J., Petriu, D.C.: A dependability profile
within MARTE. Softw. Syst. Model. 10(3), 313–336 (2011)

13. Boulanger, F., Jacquet, C., Hardebolle, C., Rouis, E.: Modeling
heterogeneous points of view with modhel’x. In: Ghosh, S. (ed.)
Models in Software Engineering: Workshops and Symposia at
MoDELS 2009, Denver, CO, USA, October 2009, Reports and
Revised Selected Papers, volume 6002 of Lecture Notes in Com-
puter Science, pp. 310–324. Springer, Berlin (2010)

14. Bracchi, B., Cukic, B., Cortellessa, V.: Performability modeling
of mobile software systems. In: 15th International Symposium on
Software Reliability Engineering (ISSRE 2004), Saint-Malo, Bre-
tagne, France, pp. 77–88. IEEE Computer Society (2004)

15. Brooks, C., Lee, E.A.: Ptolemy II—Heterogeneous Concurrent
Modeling and Design in Java. Poster presented at the 2010 Berkeley
EECS Annual Research Symposium (BEARS) February (2010)

16. Ciancone, A., Drago, M.L., Filieri, A., Grassi, V., Koziolek, H.,
Mirandola, R.: The KlaperSuite framework for model-driven reli-
ability analysis of component-based systems. Softw. Syst. Model.
13(4), 1269–1290 (2014)

17. Codetta Raiteri, D., Iacono, M., Franceschinis, G., Vittorini, V.:
Repairable fault tree for the automatic evaluation of repair policies.
In: Proceedings of the 2004 international conference on depend-

able systems and networks, pp. 659–668 (2004)
18. de Lara, J., Vangheluwe, H.: Atom3: a tool for multi-formalism

and meta-modelling. In: Fundamental Approaches to Software
Engineering, 5th International Conference, FASE 2002, Held as
Part of the Joint European Conferences on Theory and Practice
of Software, ETAPS 2002, Grenoble, France, April 8–12, 2002,
Proceedings, pp. 174–188 (2002)

19. Deavours, D.D., Clark, G., Courtney, T., Daly, D., Derisavi, S.,
Doyle, J.M., Sanders, W.H., Webster, P.G.: The Möbius framework
and its implementation. IEEE Trans. Softw. Eng. 28(10), 956–969
(2002)

20. Donatelli, S., Franceschinis, G.: The PSR methodology: integrating
hardware and software models. In: Billington, J., Reisig, W. (eds.)
Application and Theory of Petri Nets, Volume 1091 of LNCS, pp.
133–152. Springer, Berlin (1996)

21. Eker, J., Janneck, J.W., Lee, E.A., Liu, J., Liu, X., Ludvig, J.,
Sachs, S., Xiong, Y., Neuendorffer, S.: Taming heterogeneity—the
Ptolemy approach. Proc. IEEE 91(1), 127–144 (2003)

22. Emerson, M., Sztipanovits, J.: Techniques for metamodel com-
position. In: The 6th OOPSLA Workshop on Domain-Specific
Modeling. OOPSLA 2006, pp. 123–139. ACM, ACM Press (2006)

23. Fitzgerald, J., Larsen, P.G., Pierce, K., Verhoef, M., Wolff, S.:
Collaborative modelling and co-simulation in the development of
dependable embedded systems. Lecture Notes in Computer Sci-
ence (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), 6396 LNCS:12–26. cited By
6 (2010)

24. Flammini, F., Marrone, S., Iacono, M., Mazzocca, N., Vittorini,
V.: A multiformalism modular approach to ERTMS/ETCS failure
modeling. Int. J. Reliab. Qual. Saf. Eng. 21(1), 1450001 (2014)

25. Gómez-Martínez, E., González-Cabero, R., Merseguer, J.: Perfor-
mance assessment of an architecture with adaptative interfaces for
people with special needs. Empir. Softw. Eng. 19(6), 1967–2018
(2014)

26. Hardebolle, C., Boulanger, F.: Exploring multi-paradigm modeling
techniques. Simul. Trans. Soc. Model. Simul. Int.l 85(11/12), 688–
708 (2009)

27. Khan, R.H., Machida, F., Heegaard, P.E., Trivedi, K.S.: A per-
formability modeling framework considering service components
deployment. Int. J. Adv. Netw. Serv. 5(3–4), 346–366 (2012)

28. Koziolek, A., Avritzer, A., Suresh, S., Sadoc Menasche, D., Trivedi,
K., Happe, L.: Design of distribution automation networks using
survivability modeling and power flow equations. In: 2013 IEEE
24th International Symposium on Software Reliability Engineering
(ISSRE), pp. 41–50 (2013)

29. Ledeczi, A., Maroti, M., Bakay, A., Karsai, G., Garrett, J., Thoma-
son, C., Nordstrom, G., Sprinkle, J., Volgyesi, P.: The generic
modeling environment. In: Workshop on Intelligent Signal Pro-
cessing (2001)

30. Marrone, S., Papa, C., Vittorini, V.: Multiformalism and transfor-
mation inheritance for dependability analysis of critical systems.
In: Proceedings of 8th Integrated Formal Methods, IFM’10, pp.
215–228. Springer, Berlin, Heidelberg (2010)

31. Marrone, S., Rodríguez, R.J., Nardone, R., Flammini, F., Vittorini,
V.: On synergies of cyber and physical security modelling in vul-
nerability assessment of railway systems. Comput. Electr. Eng. 47,
275–285 (2015)

32. Marsan, M.A., Balbo, G., Conte, G., Donatelli, S., Franceschi-
nis, G.: Modelling with Generalized Stochastic Petri Nets, 1st edn.
Wiley, New York (1994)

33. Meyer, J.F.: Performability: a retrospective and some pointers to
the future. Perform. Eval. 14(3–4), 139–156 (1992)

34. Montecchi, L., Lollini, P., Bondavalli, A..: An intermediate depend-
ability model for state-based dependability analysis. Technical
Report rcl101115, University of Florence, Dip. Sistemi Informat-
ica, RCL group (2011)

35. Moscato, F., Vittorini, V., Amato, F., Mazzeo, A., Mazzocca, N.:
Solution workflows for model-based analysis of complex systems.
IEEE Trans. Autom. Sci. Eng. 9(1), 83–95 (2012)

36. Mosterman, P.J., Vangheluwe, H.: Computer automated multi-
paradigm modeling: an introduction. Simulation 80(9), 433–450
(2004)

37. Nicol, D.M., Sanders, W.H., Trivedi, K.S.: Model-based evalu-
ation: from dependability to security. IEEE Trans. Dependable
Secure Comput. 1(1), 48–65 (2004)

38. OMG: UML Profile for Schedulability, Performance, and Time.
Version 1.1, formal/05-01-02 (2005)

39. OMG: UML Profile for Modeling Quality of Service and Fault
Tolerance Characteristics and Mechanisms. Version 1.1, formal/08-
04-05 (2008)

40. OMG: UML Profile for MARTE: Modeling and Analysis of Real-
time Embedded Systems. Version 1.1, formal/11-06-02 (2011)

41. OMG: Unified Modeling Language: Infrastructure and Superstruc-
ture. Version 2.4, formal/11-08-05 (2011)

123

Towards a model-driven engineering approach for the assessment… 2263

42. OMG: System Modeling Language. Version 1.3, OMG document
formal/2012-06-01 (2012)

43. SAE International: Architecture Analysis and Design Language.
SAE International, Warrendale (2009)

44. Sangiovanni-Vincentelli, A.: Quo vadis SLD: reasoning about
trends and challenges of system-level design. Proc. IEEE 95(3),
467–506 (2007)

45. Sarjoughian, H.S.: Model composability. In: Proceedings of the
Winter Simulation Conference WSC 2006, Monterey, California,
USA, December 3–6, 2006, pp. 149–158 (2006)

46. Sprinkle, J., Rumpe, B., Vangheluwe, H., Karsai, G.: Meta-
modelling: State of the Art and Research Challenges. CoRR,
abs/1409.2359 (2014)

47. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF:
Eclipse Modeling Framework 2.0, 2nd edn. Addison-Wesley Pro-
fessional, Reading (2009)

48. The Eclipse Foundation. Papyrus https://eclipse.org/papyrus/
(2016)

49. Tolvanen, J.-P., Kelly, S.: MetaEdit+: defining and using integrated
domain-specific modeling languages. In: Proceedings of the 24th
ACM SIGPLAN Conference Companion on Object Oriented Pro-
gramming Systems Languages and Applications, OOPSLA ’09,
pp. 819–820. ACM, New York, NY, USA (2009)

50. Trivedi, K.S., Sahner, R.: SHARPE at the age of twenty two. SIG-
METRICS Perform. Eval. Rev. 36(4), 52–57 (2009)

51. Trowitzsch, J., Jerzynek, D., Zimmermann, A.: A toolkit for per-
formability evaluation based on stochastic UML state machines.
In: Glynn, P.W. (ed.) Proceedings of the 2nd International Con-
ference on Performance Evaluation Methodolgies and Tools,
VALUETOOLS 2007, Nantes, France, 2007, ACM International
Conference Proceeding, p. 30. ACM (2007)

52. Vittorini, V., Iacono, M., Mazzocca, N., Franceschinis, G.: The
OsMoSys approach to multi-formalism modeling of systems.
Softw. Syst. Model. 3(1), 68–81 (2004)

53. Wagelaar, D., Van Der Straeten, R., Deridder, D.: Module super-
imposition: a composition technique for rule-based model trans-
formation languages. Softw. Syst. Model. 9(3), 285–309 (2010)

54. Woodside, C.M., Petriu, D.C., Petriu, D.B., Shen, H., Israr, T.,
Merseguer, J.: Performance by unified model analysis (PUMA).
In: Proceedings of the Fifth International Workshop on Software
and Performance, WOSP 2005, Palma, Illes Balears, Spain, July
12–14, 2005, pp. 1–12. ACM (2005)

55. Woodside, C.M., Petriu, D.C., Merseguer, J., Petriu, D.B., Alhaj,
M.: Transformation challenges: from software models to perfor-
mance models. Softw. Syst. Model. 13(4), 1529–1552 (2014)

56. Zhang, T., Jouault, F., Bézivin, J., Li, X.: An MDE-based method
for bridging different design notations. ISSE 4(3), 203–213 (2008)

Simona Bernardi is an Assis-
tant Professor in the Department
of Computer Science and Systems
Engineering at the University of
Zaragoza, Spain. She received a
M.S. degree in mathematics and
a Ph.D. degree in computer sci-
ence, in 1997 and 2003, respec-
tively, both from the University of
Torino, Italy. Her research inter-
ests are in the area of software
engineering, in particular model
driven engineering, verification
and validation of performance,
dependability and survivability

software requirements, and formal methods for the modelling and
analysis of software systems. She has served as a referee for interna-
tional journals and as a program committee member for several inter-
national conferences and workshops. She is a member of the IEEE-
SMC Homeland Security technical committee.

Stefano Marrone is an assis-
tant professor in Computer Engi-
neering at Università della Cam-
pania “Luigi Vanvitelli”, Italy. His
interests include the definition of
model driven processes for the
design and the analysis of trans-
portation control systems, com-
plex communication networks and
critical infrastructures. He is invol-
ved in research projects with both
academic and industrial partners.

José Merseguer received the
B.S. and M.S. degrees in com-
puter science and software engi-
neering from the Technical Uni-
versity of Valencia, Spain, and the
Ph.D. degree in computer science
from the University of Zaragoza,
Spain. He is with the Department
of Computer Science and Sys-
tems Engineering at the Univer-
sity of Zaragoza, Spain, where
he teaches software engineering
courses at graduate and under-
graduate levels. He was the direc-
tor of the Computer Science Mas-

ter at the University of Zaragoza. His main research interests include
performance and dependability analysis of software systems. He has
developed postdoctoral research with Prof. M. Woodside at Carleton
University, Ottawa, ON, Canada, and with Prof. R. Lutz at Iowa State
University, Ames, IA, USA. He has been a Visiting Researcher with
the University of Turin, with the University of Cagliari, and with the
Politecnico di Milano, Italy. He is also a member of the Aragon Insti-
tute of Engineering Research. He has been serving as a referee for
international journals and as a Program Committee member for sev-
eral international conferences and workshops. He is co-author of the
book “Model-driven dependability assessment of software-systems”,
Springer, and has advised three Ph.D. doctoral thesis.

Roberto Nardone is a post-
doctoral fellow at University of
Naples Federico II. His research
interests are in the area of quan-
titative evaluation of non-functio-
nal properties, with a particular
focus on dependability and per-
formability assessment and threat
propagation analysis, by means
of model-based and model-driven
techniques. He is currently invol-
ved in research projects with both
academic and industrial partners.

123

https://eclipse.org/papyrus/

2264 S. Bernardi et al.

Valeria Vittorini is Associate
Professor at University of Naples
Federico II since 2005. She recei-
ved the Laurea degree (cum laude)
in Mathematics from University
of Napoli Federico II in 1991, and
a Ph.D. in Computer Engineering
from the same University in 1995.
She teaches computer program-
ming, formal modeling, workflow
and process automation. Her cur-
rent research interests include
dependability and performance
evaluation of computer systems,
validation and verification of criti-

cal systems, critical infrastructures protection and model-driven
approaches applied to the automatic generation of formal models.

123

	Towards a model-driven engineering approach for the assessment of non-functional properties using multi-formalism
	Abstract
	1 Introduction
	2 Background and related work
	2.1 The multi-paradigm modelling domain
	2.2 Automatic generation of performability models

	3 Overview of the approach in the MDE context
	3.1 The model-driven multi-formalism knowledge base

	4 On the integration model
	5 A methodology for performability assessment
	6 Performance and reliability modelling guidelines
	6.1 Performance modelling
	6.1.1 Performance view
	6.1.2 Transformation to a performance model

	6.2 Reliability modelling
	6.2.1 Reliability view
	6.2.2 Transformation to a reliability model

	7 The approach for performability analysis
	7.1 Integration view
	7.2 The performability formal model
	7.3 Performability solution process

	8 Conclusions and future work
	Acknowledgements
	A Generalised Stochastic Petri Nets
	A.1 GSPN composition

	B Repairable fault trees
	References

