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AB S TRACT

We study a mean field model of the solar dynamo, in which the non-linearity is the action of

the azimuthal component of the Lorentz force of the dynamo-generated magnetic field on

the angular velocity. The underlying zero-order angular velocity is consistent with recent

determinations of the solar rotation law, and the form of the alpha effect is chosen so as to

give a plausible butterfly diagram. For small Prandtl numbers we find regular, intermittent

and apparently chaotic behaviour, depending on the size of the alpha coefficient. For certain

parameters, the intermittency displays some of the characteristics believed to be associated

with the Maunder minimum. We thus believe that we are capturing some features of the

solar dynamo.

Key words: magnetic fields ± MHD ± Sun: activity ± Sun: magnetic fields.

1 INTRODUCTION

In spite of intensive study, one of the basic problems of

astrophysical magnetohydrodynamics remains unsolved in detail:

namely, we do not have a completely satisfactory model for the

behaviour of the large-scale solar magnetic field. The consensus

now is that a hydromagnetic dynamo operates, driven by the

differential rotation and some effect of the cyclonic turbulence,

and cyclic behaviour has been readily produced by dynamo

models since the work of Parker (1955) and Steenbeck, Krause &

RaÈdler (1966).

When looked at it in more detail, the solar surface magnetic

field displays only a quasi-periodic behaviour, the `22-yr cycle',

probably with a longer period modulation (e.g. the `Gleissberg

cycle').This longer modulation appears in both the length and the

amplitude of the `22-yr cycle'. In addition there are intervals

where the overall level of magnetic activity is considerably

reduced, the `grand minima'. Such a reduction in solar magnetic

activity leads to a higher production rate of cosmogenic isotopes

such as 10Be and 14C, owing to a reduction in the shielding effect

of the solar wind. Examination of various fossil records indicates

that such intervals of reduced activity have occurred repeatedly

over the last 10 000 years (Struiver & Braziunas 1989). The only

such episode to have occurred since telescopic observation of the

Sun began is the Maunder minimum during the late 17th and early

18th centuries. This was marked by a great reduction in the

number of sunspots. However, evidence from the 10Be record

indicates that the basic magnetic cycle continued through this

period (Beer, Tobias & Weiss 1998). There is thus some

uncertainty as to what a grand minimum episode involves, and

this is of considerable theoretical importance, in that several

papers have recently been published that claim to model grand

minima by a variety of mechanisms that are physically and

mathematically very distinct: modulation by deterministic chaos

(e.g. Knobloch, Tobias & Weiss 1998), stochastic modulation (e.g.

Schmitt, SchuÈssler & Ferriz-Mas 1996), or a novel form of

intermittency variously termed `icicle' or `in±out' intermittency

(e.g. Brooke et al. 1998; Ashwin, Covas & Tavakol 1999). We

return to this point in Sections 2 and 9.

The sunspots, and so by inference the subsurface magnetic

field, exhibit the well-known `butterfly diagram' ± i.e. the main

region of sunspot occurrence moves from mid-latitudes to near the

equator during each half-cycle. There is also a weaker polar

branch, in which the field migration is poleward. The global

magnetic field is normally of approximately odd symmetry with

respect to the equator (odd parity or dipole-like), but there is also

an even-parity component present (e.g. Verma 1993; Pulkkinen

et al. 1999 and references therein), and a quadrupole-like compo-

nent may have been dominant during the Maunder minimum

(Ribes & Nesme-Ribes 1993; Sokoloff & Nesme-Ribes 1994).

The other observational input to the problem that has recently

become available is the determination of the internal solar rotation

law (e.g. Kosovichev et al. 1997; also Christensen-Dalsgaard &

Schou 1988; Tomczyk, Schou & Thompson 1995). In contrast to

the rotation laws assumed in a number of earlier dynamo models,

there is only a weak radial dependence of the angular velocity

through the bulk of the solar convection zone, combined with a

narrow tachocline near the base, where the angular velocity makes

a transition to that of the approximately uniformly rotating

interior. Another calibration of the model is given by the

requirement that the mean cycle period be approximately 22 yr.

Many earlier models have tended to ignore this requirement,

possessing periods that can be shorter by as much as an order of

magnitude. A more detailed discussion of the location of and
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mechanisms involved in a solar dynamo model is given in RuÈdiger

& Brandenburg (1995), and will not be repeated here.

Previous studies have addressed various aspects of the problem.

There are too many references to give a comprehensive list here,

but recent relevant work includes RuÈdiger & Brandenburg (1995),

Charbonneau & MacGregor (1997), Tobias (1997, hereafter T97),

KuÈker, Arlt & RuÈdiger (1999, hereafter KAR) and Pipin (1999).

The model of T97 was further discussed in Knobloch et al. (1998).

RuÈdiger & Brandenburg used alpha-quenching and buoyancy non-

linearities, with anisotropic diffusivity and alpha tensors, in

spherical geometry with a realistic solar rotation law. The model

of T97 was more idealized, using Cartesian geometry, with a

velocity shear depending only on the quasi-radial coordinate. The

non-linearity was the effect of the Lorentz force on the velocity

shear. Both of these models had comparatively thick overshoot

regions, with radial extent comparable to that of the overlying

convection zone (that of T97 could be interpreted as straddling the

bottom of the convection zone). Charbonneau & MacGregor

(1997) also used a quasi-solar rotation law, in spherical geometry,

with a diffusivity in the relatively narrow overshoot region that

was much smaller than that in the convection zone. Their models

were linear. KAR and Pipin (1999) used a parametrization of the

turbulent Reynolds stresses (`L-effect') to generate the underlying

rotational shear. They included non-linearities caused both by

L-quenching and by the Lorentz force acting on the rotational

shear, in spherical geometry. In KAR, the basic rotation law was

radially dependent, but Pipin (1999) included a more realistic

form. Also, Roald & Thomas (1997) studied the effects of

algebraic alpha- and omega-quenching in a quasi-one-dimensional

model, and Tobias (1996) discussed the effects of a reduction of

the magnetic diffusivity in the presence of strong magnetic fields

near the bottom of the convection zone.

It remains the case that no published global model possesses

simultaneously a realistic butterfly diagram and an approximately

solar rotation law, together with multi-periodicity, the persistent

presence of a small quadrupolar field component, and irregular

intervals of reduced overall field strength when the quadrupolar

field component becomes relatively more important, although all

of these features can be found singly or in restricted combinations

in the literature.

In this paper we examine a relatively unsophisticated model for

the solar dynamo. We want to move away from the more idealized

type of model, and with that in mind we use spherical geometry,

and include a more realistic representation of the solar rotation

law. [Moss (1999) has studied other consequences of such a

rotation law.] In our model, the field is limited at finite amplitude

solely by the effect of the azimuthal component of the dynamo-

generated Lorentz force on the underlying differential rotation. As

we consider the angular velocity to be known approximately, we

choose a form of the alpha coefficient of mean field theory that

ensures a plausible butterfly diagram. Our model is also calibrated

by the requirement that the cycle period be of the correct order of

magnitude.

2 QUEST IONS OF PARITY

A particular aspect of the solar dynamo problem that has recently

excited considerable interest is the relation between fluctuations

of energy and parity in dynamo models. This is motivated by the

evidence that the distribution of sunspots during the Maunder

minimum was highly asymmetric with respect to the equator

(Ribes & Nesme-Ribes 1993). Unfortunately we have at present

no means of assessing the symmetry of the solar field before 1600,

thus it is impossible to tell if this coincidence of abnormally low

energy and asymmetry is typical of solar grand minima. The same

considerations apply a fortiori to the grand minima inferred to

occur in one-third of solar-type stars (Balunias & Jastrow 1990). It

is worth remarking that if this estimate of the occurrence of grand

minima is at all near the mark, then grand minima must be a

fundamental property of non-linear stellar dynamos, and must

occur over a considerable range of dynamo parameters.

As described in Section 1, several recent dynamo models have

produced, for certain ranges of parameters, phenomena that

possess characteristics attributed to a Maunder minimum. There

have also been attempts to give a dynamical classification of such

minima. Knobloch & Landsberg (1996) identified type 1 modu-

lation, characterized by large changes in parity with modest

changes in energy, and type 2 modulation with deep energy

minima but only small changes in parity. Knobloch & Landsberg's

model consisted of a simple system of coupled ordinary

differential equations, but both types of modulation were observed

in the partial differential equation (PDE) models of T97 and

Tobias (1998), who also showed that grand minima could occur in

PDE models with imposed dipolar symmetry (Tobias 1996). These

models also show that type 1 and type 2 minima can coincide.

This produces grand minima with a reduction in the magnetic

energy and a change in parity, thus capturing important aspects of

the sunspot record at the Maunder minimum.

A different mechanism for producing grand minima was

proposed by Brooke et al. (1998), in which the grand minima

were intermittent episodes caused by the gradual growth and

collapse of a quadrupolar component of a predominantly dipolar

solution. During grand minima, the quadrupolar component

interacts with the dipolar component, resulting in an overall dip

in magnetic energy. Brooke (1997) and Covas et al. (2000) have

shown that this behaviour is an instance of `in±out' intermittency,

a generalization of on±off intermittency (Platt, Spiegel & Tresser

1993a,b). The term `in±out' refers to the two phases described

above, the out-phase where parity is moving very slowly away

from dipolar parity, and the in-phase where there is a dip in

magnetic energy and a rapid return to a nearly pure dipolar state.

The non-linearity in the models showing `in±out' behaviour

was an instantaneous alpha-quenching mechanism, unlike the

models of Tobias and collaborators where the non-linearity was

due to a dynamical modulation of the differential rotation via the

macroscopic Lorentz force (the Malkus±Proctor effect). Inter-

mittent behaviour can also be demonstrated in alpha-quenching

models where the alpha-quenching is governed by a dynamical

equation analagous to the extra equation governing the Malkus±

Proctor effect. However, since the Malkus±Proctor effect involves

the solution of an extra equation governing the evolution of the

perturbation to the differential rotation, it introduces a time-scale

determined essentially by the Prandtl number, which determines

the intervals between the grand minima. On the other hand, for

in±out intermittency the interval between grand minima is

essentially determined by the length of the out-phase, i.e. how

quickly the solutions move away from the pure dipolar state.

In this paper we consider a model with a Malkus±Proctor

quenching mechanism, and so we might expect results similar to

those of the models of Tobias and collaborators. However, the

essence of in±out intermittency is that we can identify an out-

phase where the quadrupolar and dipolar components are

synchronized (like two locked pendula) and the weaker compo-

nent is slowly growing (from a dynamical point of view the
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phenomenon would be the same if the roles of the quadrupolar and

dipolar components were reversed). Thus we may find both types

of dynamics in our models, and since they can both plausibly

describe a Maunder minimum this would be of considerable

theoretical interest (note that we do not here consider using both

alpha-quenching and Malkus±Proctor non-linearities together, but

see KAR for models with two non-linearities acting simul-

taneously). Careful observation of sunspot records has recently

indicated that the relative strengths of the dipolar and quadrupolar

field do appear to oscillate together on a time-scale of

approximately 90 yr, at least over the period since 1853 when

Carrington began systematic observation of sunspot latitudes and

longitudes (Pulkkinen et al. 1999 and references therein). In

Section we examine the behaviour of our model in the light of the

above considerations.

3 THE DYNAMO CODE

We assume conventionally that the gross behaviour of the large-

scale magnetic field can be described by the standard mean field

equation

B

t
� 7 � �u � B� aB2 h7 � B�: �1�

Here u � vf̂ 2
1
2
7h; where v � Vr sin u; with respect to

spherical polar coordinates r,u ,f , and the term proportional to

7h represents the effects of turbulent diamagnetism. The mean

field coefficients a and h are taken to be scalars.

We set v � v0 � v 0; where v0 � V0r sin u; and V0 is a

prescribed underlying rotation law. v 0 satisfies

v 0

t
�

�7 � B� � B

m0rr sin u
´ f̂ � nD2v 0; �2�

where D2 is the operator

2

r2
�

2

r



r
�

1

r2 sin u



u
sin u



u

� �

2
1

sin u

� �

:

Prescribing V0(r, u ) is equivalent, in principle, to postulating a

turbulent Reynolds stress field that maintains the angular velocity

V0 ± cf. KAR.

The assumption of axisymmetry allows the field B to be split

into toroidal and poloidal parts, B � BT � BP � Bf̂ � 7 � Af̂ ;
and equation (1) thus yields two scalar equations, for A and B. We

non-dimensionalize in terms of a length R and time R2=h0; where
R is the solar radius and h0 the maximum value of h , and put

V � V* ~V; a � a0 ~a ; h � h0 ~h ; B � B0
~B and v 0 � V*R ~v 0: This

gives the following system of equations:

A

t
� wrBu 2 wuBr � Ra ~aB� ~hD2A; �3�

B

t
� Rvr sin uB ´ 7V2

1

r



r
�rwrB�2

1

r



u
�wuB�

� Ra 2 ~aD2a�
 ~a

r
Bu 2

1

r

 ~a

u
Br

� �

�
1

r2 sin u

 ~h

u
�B sin u� �

1

r

 ~h

r



r
�rB� � ~hD2B; �4�

v 0

t
� L

7 ´ �BBr sin u�

~rr sin u
� PrD

2v 0: �5�

Here w � 2
1
2
7h; the tildes have been dropped on A, B, v 0 and r,

and all quantities are understood to be dimensionless. The dynamo

parameters are Ra � a0R=h0; Rv � V*R2=h0; Pr � n0=h0 and

~h � h=h0: L � B2
0=m0r0h0V*; choosing a value for L deter-

mines B0, since BÄ scales as B21
0 ; and the physical field BÄB0 is thus

independent of the choice of L. This freedom of scaling is typical

of systems with a single non-linearity. We arbitrarily put L � 104:
V* is the solar surface equatorial angular velocity. We assume that

the density is constant, and so ~r � r=r0 � 1:
These equations are solved by a second-order Runge±Kutta

method on an NI � NJ grid over the range r0 # r # 1; 0 # u # p

with uniform spacing in both r and u . Our standard values were

NI � 61; NJ � 101; but test runs were carried out at higher spatial
resolution.

This code, although significantly slower than its predecessor,

which used a modified Dufort±Frankel integration scheme (e.g.

Brandenburg et al. 1989; Moss, Tuominen & Brandenburg 1990b),

has the advantage that it can handle much steeper gradients in a

and h . Tests showed satisfactory agreement with the earlier code.

Our computational domain includes the convection zone,

assumed to extend over 0:7 # r # 1; and an overshoot region/

tachocline in r0 # r # 0:7: A realistic model would probably

have r0 * 0:67; but we set r0 � 0:64; for reasons of computa-

tional convenience.

At the surface the boundary condition was that B fitted

smoothly on to a vacuum exterior field. Thus B � 0; and the

boundary values of A are determined globally by a matrix multi-

plication. At u � 0;p; symmetry conditions imply A � B � 0: At
r � r0; the base of the computational region, the detailed physics

is uncertain. We decided to conserve the angular momentum in the

computational region. Given that the angular momentum flux

owing to the magnetic stresses out of a region with boundary S is
�

S
�BBr sin u� ´ dS; we set B � 0 on r � r0; and, correspondingly,

stress-free conditions were used for v 0. The condition A=r �
A=d crudely models A falling to zero at distance d below r � r0
(cf. Moss, Mestel & Tayler 1990a; Tworkowski et al. 1998). We

chose d � 0:03; but the general nature of the results is insensitive
to this choice. Taking d . 0 is computationally helpful as it

reduces somewhat the field gradients near r � r0; although it is

not essential.

We monitor the time evolution of the total magnetic energy E, a

measure of the perturbation kinetic energy EK �
�

1
2
v 02 dV (rather

than the true kinetic energy, so as not to dilute the signal in the

large constant background kinetic energy associated with V0), and

the global parity of the magnetic field, defined as

P �
ES

2 EA

ES � EA
; �6�

where S and A refer respectively to the parts of the magnetic

field that have symmetry or antisymmetry with respect to the

equatorial plane (see also Brandenburg et al. 1989; Moss 1999).

Thus P � 21 corresponds to dipole-like symmetry, and P � �1

to quadrupole-like.

4 THE ROTATION LAW

For the major part of this investigation, we took V0 to be given in

0:7 # r # 1 by an interpolation to the SOHO data of Kosovichev

et al. (1997), supplied by M. Korpi and P. Heikkinen (private

communication). At r � r0 we assumed that V0 had become

constant, and equal to the surface value at u � u0 � 528: This is
generally consistent with other recent determinations of the solar

rotation law (e.g. Christensen-Dalsgaard & Schou 1988; Tomczyk
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et al. 1995). In r0 # r # 0:7; we interpolated between the values

at r � r0 and r � 0:7: Contours of constantV0 are shown in Fig. 1.

We also investigated briefly an alternative, strictly radius-

dependent, form of V0, in order to relate our results to those of

other authors ± see Section 7.

5 THE CHOICE OF a AND h

Basic dynamo theory predicts that when aV=r . 0 field

migration is poleward, and when aV=r , 0 it is equatorward

(e.g. Stix 1989). The rotation law of Fig. 1 has V0=r . 0 near

the equator, and V0=r , 0 at high latitudes. Thus the correct

sense of field migration can only be obtained if a , 0 where

jV=rj is large, i.e. near the bottom of the convection zone. This

decision is made on pragmatic grounds ± the main features of the

rotation law appear to be reasonably secure, and so if the ideas of

mean field dynamo theory have any validity, the sign of alpha is

determined in this region.

This is essentially the conclusion of RuÈdiger & Brandenburg

(1995), who used a tensorial form of alpha, with a negative

vertical component. There are certainly both theoretical and

numerical grounds for believing that this is not an unreasonable

assumption (e.g. Brandenburg et al. 1990; RuÈdiger & Kitchatinov

1993; Brandenburg 1994 and references therein).

We write ~a � ar�r�f �u�; where f(u ) is an odd function with

respect to the equator u � p=2: A common choice in the past has

been f �u� � cos u: Experiments showed us that this results in a

butterfly diagram that is dominated by a strong polar branch, with

a relatively weak equatorial feature. This is explicable, as a has its

maximum near the poles. A more satisfactory choice is f �u� �

sin2 u cos u (cf. RuÈdiger & Brandenburg 1995), and we adopt this

for all the computations described here.

For a r(r), the choice

ar � 1; ra1 # r # ra2; �7�

with cubic interpolation to zero at r � r0 and r � 1; satisfies the
condition that a be weak in the region of maximum radial

rotational shear, where the field is expected to be strong (this is

consistent with an implicit acknowledgment that some sort of

inhibition of the alpha effect occurs when |B| is large). Moreover,

plausible butterfly diagrams are generated, and the numerical

behaviour is satisfactory. We have adopted the convention that

ar . 0; and so the dynamo number Ra , 0:
Experiments with a broadly similar form of a r(r) in the lower

part of the computational region, but that changed sign towards the

surface r � 1; yielded roughly similar butterfly diagrams, but the

general numerical behaviour of these models is less satisfactory. As

the aim of this work was to explore the general nature of a

superficially plausible dynamo model with dynamical feedback on

the differential rotation, we did not pursue the matter further.

Our preliminary computations showed that, for Rv � 6 � 104;
at marginal excitation the cycle period was about 22 yr, whereas

for smaller values of Rv it was shorter. Rv � 6 � 104 corresponds

to h0 < 2:5 � 1011 cm2 s21; given the known values of V* and R.

Then Ra � a0R=h < 0:3a0: The value of a0 is quite uncertain,

but these estimates imply that |Ra | values of 10±100 are readily

achievable with only modest values of a0.

We recognize that the turbulent diffusion coefficient h is likely

to be reduced markedly in the overshoot region, and we would

have liked to model this. Although the code can formally handle

steep h -gradients, in this region they result in steep radial

gradients of magnetic field, and this requires higher numerical

resolution than we could readily employ. Thus we restricted the

variation in h to a rather nominal decrease, to ~h � 0:5 in r , 0:7;
increasing linearly to ~h � 1 at r � 0:8: With such a modest

variation, we did not include the diamagnetic term 2 1
2
7 ~h in most

of our computations ± we did check that its influence was small.

Furthermore, experiments with hÄ reduced to 0.1 in r , 0:70
showed that the cycle period was little affected by the reduction of

hÄ in a comparatively narrow region. The relation jaj / dh=dr
was not modelled (cf. RuÈdiger & Brandenburg 1995): we adopted

a more pragmatic approach, in common with many previous

authors.

Explicit h -quenching was not included. Such an effect arguably

requires a tensor representation of the diffusivity (e.g. Kitchatinov,

Pipin & RuÈdiger 1994), which is beyond the ambitions of this

paper.

6 MAIN RESULTS

The most readily excited solutions in linear theory are strictly odd-

parity limit cycles, with marginal value Ra;c < 23:20: The even-

parity solutions are only slightly harder to excite, with Ra;c <

23:25: We will concentrate on the results with Prandtl number

Pr � 0:01; as this is plausibly more realistic than larger values,

but we also discuss some results for other values of Pr. Our

computational procedure was to begin the computations with a

field of arbitrarily chosen radial structure and of global parity

P ± ^1: This field was evolved until transient behaviour

appeared to have disappeared. As the dynamical time-scale

much exceeds the magnetic diffusion time when Pr ! 1; the

transient may be long-lived: see Fig. 2. Indeed, long-lived

transients are also found in alpha-quenched dynamos (e.g. Tavakol

et al. 1995), although typically for rather more supercritical

parameters than found here. We monitored the magnetic energy E,

pseudo-kinetic energy EK and parity P, and examined butterfly

diagrams of Bf just below the surface r � 1; and in the overshoot

region.

6.1 Prandtl number Pr � 0:01

For even the slightly supercritical value of Ra � 23:22; we found
the stable solution to be doubly periodic, with parity P � 21:
When Ra � 23:25; the solution also possesses a long-period

modulation: see Fig. 3. For 23:3 * Ra * 24; we found mixed-

parity solutions, with intervals in which the field strength had an

approximately regular variation, separated by episodes of rapid

fluctuations in field strength, and with parity that did not relax to a

settled behaviour even after integrating for dimensionless times of

order 100. Fig. 4 shows the behaviour with time of such a solution

for Ra � 23:5: For24 * Ra * 212; the stable solutions were of

Figure 1. Isorotation contours for the rotation law generated from the

SOHO data. Contour levels are equally spaced and normalized to a

maximum value of unity.

524 D. Moss and J. Brooke

q 2000 RAS, MNRAS 315, 521±533

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/3
1
5
/3

/5
2
1
/9

7
1
9
8
5
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



strictly odd parity, and doubly periodic. However, for some

parameters (e.g. Ra � 25� transient behaviour persisted for

approximately 100 time units, with the parity wandering slowly

through intermediate values before settling to P � 21: For

212 * Ra * 240 (the limit of our investigation), solutions

were irregular in both parity and energy, although for the smaller

values of |Ra | in this range there appeared to be an underlying

periodicity still present (see Fig. 5).

For values of |Ra | of less than about 20, the magnetic fields are

concentrated in the overshoot region (e.g. Fig. 6), and even for

larger values the strongest fields are found in the overshoot region

and lower parts of the convection zone. Typical maximum and

mean strengths (taken over the overshoot region) are about 105

and �2±3� � 104 G respectively. As the mechanism of formation of

sunspots is still uncertain, we show in Fig. 7 butterfly diagrams at

the top and bottom of the computational region: they display both

polar and equatorial branches.

When Ra � 240; the latitudinal migration of field patterns had

disappeared. This appears to be a consequence of using an a2v

(rather than an av) code. With such a large value of |Ra |, the a2

effects have an increased importance. At smaller values of |Ra |,

Figure 3. The evolution of magnetic field parity and energy with time for

Pr � 0:01; Rv � 6 � 104 and Ra � 23:25:

Figure 2. (a) The evolution of magnetic field parity (P) and magnetic

energy (E) with time for Pr � 0:01; Rv � 6 � 104; Ra � 210:0: Here and

in the following figures, the upper curve gives the value of 3� P; and the

lower that of logE. (b) Typical angular velocity contours.

Figure 4. (a) The evolution of pseudo-kinetic energy (EK) (upper panel)

and magnetic field parity and energy (lower panel) with time for Pr �

0:01; Rv � 6 � 104 and Ra � 23:5: (b) Typica angular velocity contours.
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the angular velocity varies only slightly from the underlying V0

field. As |Ra | increases, unsurprisingly these deviations become

larger, but the isorotation contours do not differ strongly from

those of V0, and probably would be observationally indistinguish-

able. Certainly for jRaj & 20; the mean form of V over a cycle

remains close to V0, and there is no strong variation of V with

time in any given model. It appears that the time-averaged V(r,u )

adjusts to the current model parameters, and that, when |Ra | is not

too large, subsequent variations about this mean value are small.

We show in Fig. 8 the deviation of the change with time of the

angular velocity from the assumed zero-order rotation law of Fig. 1

(normalized to the maximum angular velocity). This is plotted at a

point at the top of the `overshoot region' (fractional radius

r < 0:7), in the middle of the dynamo region, and at the surface of

the model, at u < 728; for intervals from the calculations

illustrated in Figs 4, 5 and 10 (later). Only for the calculation

with Ra � 220 are the variations greater than a few per cent.

6.2 Other values of Pr

We experimented to a limited extent with other values of Pr in the

range 1 $ Pr $ 0:001: A general trend was that more `interesting'

Figure 5. (a) The evolution of pseudo-kinetic energy EK, magnetic field

parity and energy with time for Pr � 0:01; Rv � 6 � 104 and Ra � 220:0:

(b) Typical angular velocity contours.

Figure 6. Contours of (a) toroidal field and (b) angular velocity for the

model with Pr � 0:01; Ra � 24 and Rv � 6 � 104:

Figure 7. Butterfly diagram of toroidal field for the model with Pr � 0:01;

Ra � 24 and Rv � 6 � 104 : (a) near the top of the convection zone and

(b) in the overshoot region. Negative values are indicated by broken

contours.
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dynamical behaviour was found for smaller values of Pr. We show

in Figs 9 and 10 the time series for Ra � 23:5 when Pr � 0:1 and

0.001, to be compared with Fig. 4. Because of the very long

dynamical time-scales with Pr � 0:001; this was the only case

examined with this Prandtl number. When Pr � 0:1; we found

regular odd-parity solutions in the interval 24 & Ra & 220 : that

is, the onset of irregular behaviour occurred at larger values of |Ra |

than when Pr � 0:01:

7 OTHER CALCULATIONS

We also made a relatively cursory study of a dynamo model in

which V0 was a function of r only. We set V0�r0; u� � VS�1; u0�
(subscript S referring to the SOHO data value and u0 � 528�; and
allowed V0 to increase linearly in r0 # r # 0:71; and to be

constant in r . 0:71; thus modelling a tachocline in the overshoot

region. Subject to the constraint that the total angular momentum

be the same as that as that of the standard zero-order rotation

curve described in Section 4, V0 is then determined as a function

of r. This procedure is equivalent to the imposition of Reynolds

stresses via a L-effect (i.e. a mean-field parametrization of the

turbulent Reynolds stresses) that depends solely on radius.

Our aim here was twofold. First, we wanted to see if there were

generic differences between the main body of our results and those

with a radially dependent V0, such as used by a number of other

authors. Secondly, we were curious to see whether the Lorentz

force would perturb such an V0(r) to become anything approach-

ing the observed solar rotation law.

We took again Rv � 6 � 104 (now this gave a cycle period at

marginal excitation of approximately 17 yr), and examined only

solutions of strictly dipolar parity (i.e. P � 21�: The marginal

value of Ra was now approximately 211. As we increased |Ra |

from near the marginal value to about four or five times larger, the

non-linear solution was doubly periodic at Ra � 220 and 230,

Figure 8. The variation of the normalized perturbations to the angular velocity at the top of the `overshoot layer' (solid), near the middle of the dynamo

region (long-dashed) and at the surface of the model (short-dashed), all at u < 728: (a) Ra � 23:5; Pr � 0:01; (b) Ra � 220; Pr � 0:01; (c) Ra � 23:5;
Pr � 0:001:
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and irregular at Ra # 240: The most striking feature of the field

geometry was that both poloidal and toroidal fields were strongly

confined to the region r0 # r & 0:7; and formed four or five belts

in each hemisphere: see Fig. 11(a). This was reflected in the

butterfly diagrams constructed for the fields both near the top and

near the bottom of the computational domain ± several activity

bands were always present (Fig. 12). Moreover, there was no polar

branch. When Ra � 240 or 245, the largest values of |Ra | that

were used, the latitudinal field migration had ceased near the

surface, and had markedly weakened in the overshoot region.

The angular velocity contours are increasingly deformed from

the underlying spherical symmetry as |Ra | increases, but even at

the largest value considered the variation occurs almost com-

pletely in the overshoot region r0 # r & 0:70; and there is only a

small surface latitudinal differential rotation: see Fig. 11(b).

The result that a rotation law of the form considered in this

section generates a number of latitudinal field belts in each

hemisphere is consistent with the work of Moss et al. (1990b),

who considered a buoyancy non-linearity in a thin shell model,

and of Heikkinen (1997) who used alpha-quenching in a similar

model. The model of T97 also implies such a rotation law globally

but, as the aspect ratio of the computational region (in Cartesian

geometry) corresponds to that of an overshoot region/tachocline of

radial extent approximately 0.30R, i.e. the depth of the convection

zone, it is unclear whether or not the global field structures are in

agreement with those found here. Similarly, KAR do not display

the field geometry of their solutions.

Our conclusion from this brief investigation is that global

dynamo models with a radial V-gradient confined to a narrow

tachocline naturally produce magnetic fields with short latitudinal

wavelength, the horizontal length-scale of the field plausibly

being determined by that of the angular velocity. Neither the

butterfly diagrams nor the rotation laws of such models agree with

those observed.

8 ENERGY AND PARITY CHANGES IN THE

MODEL

Here we examine the variations in magnetic energy and parity in

our results in the light of the discussion of grand minima in

Figure 9. The evolution of pseudo-kinetic energy, magnetic field parity

and energy with time for Pr � 0:1; Rv � 6 � 104 and Ra � 23:5:

Figure 10. (a) The evolution of EK, magnetic field parity and energy with

time for Pr � 0:001; Rv � 6 � 104 and Ra � 23:5: (b) Typical angular

velocity contours.
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Section 2. Specifically, we are interested to see if there is any

association between spells of reduced magnetic activity and the

parity of the solutions. We also consider whether the intervals

between grand minima are related to the time-scale changes in the

velocity perturbations or to a time-scale related to parity changes.

The time-scale of the velocity perturbations can be expected to be

related to the Prandtl number (Tobias 1996).

In Fig. 3 we see that the grand minima are correlated with the

parity changes, the approach to the minima occurring during the

transition from predominantly quadrupolar to predominantly

dipolar parity, followed by a rise to `grand maxima' as the parity

change reverses. The actual grand minima and maxima do not

coincide with the maxima and minima of parity, thus there is

synchronization with a phase-lag. This is clearly the type of

behaviour referred to as type 1 modulation by Knobloch &

Landsberg 1996. There is no chaos and we have a doubly periodic

solution in both parity and energy. There is no intermittency. In

Fig. 4 we have exactly the same model parameters except that |Ra |

has increased from 3.25 to 3.50. There are three extended episodes

where the parity is very close to dipolar, and these coincide with

an energy oscillation the amplitude of which remains quite steady.

In between these episodes the parity fluctuates between dipolar

and quadrupolar, and there are large changes in the amplitude of

the energy oscillations. This appears to fit the description of in±

out intermittency. To check the predictions of synchronization of

quadrupolar and dipolar components in the out-episodes, we

decompose the magnetic field into quadrupolar (symmetric) and

dipolar (antisymmetric) components as shown in Fig. 13. It can be

seen clearly that the changes in both components are synchronized

with the magnitude of the quadrupolar field being the mirror

image of the dipolar, i.e. as one falls the other rises. This is highly

interesting behaviour and fits the predictions of in±out inter-

mittency [see Brooke et al. (1998) for a more extended discussion,

where the term `icicle intermittency' is used for the in±out

behaviour]. Furthermore, the interval between grand minima is

quite irregular, and there does not appear to be a well-defined

time-scale that can be related to the Malkus±Proctor effect.

For the irregular variations in energy and parity present in the

time series of Fig. 5, a decomposition of the field into quadrupolar

and dipolar components shows that this synchronization has been

lost (Fig. 14). Thus such synchronization is not inevitable, and the

considerations of the paragraph above show that it appears to have

important consequences for the dynamical behaviour of the

magnetic energy and parity.

The solutions previously considered had Prandtl number Pr �

0:01: If this is reduced to Pr � 0:001 we can see clearly that in

this case the changes in magnetic energy are now related directly

to changes in the velocity field, which occur on a time-scale

determined by the azimuthal equation of motion (as in Fig. 10).

The parity is now predominantly dipolar except when the velocity

pertubations and magnetic energy peak. Decomposing the field as

before (Fig. 15), we see clear evidence that changes in the

magnitude of the quadrupolar and dipolar components are also

synchronized, but are now correlated rather than anticorrelated,

although the detailed form of the energy peaks is different for the

two components. This behaviour is very suggestive of that of the

type 2 modulation described by Knobloch & Landsberg.

Thus we can identify all of the dynamics described in Section 2

as occurring within this one model. If our model is at all

representative of solar-type stars, it indicates that they are capable

of a rich variety of dynamical behaviour. We also can see that the

values of the model parameters, i.e. Ra , Rv and Pr, can greatly

influence the behaviour of the models. (We do not even attempt to

study changes with `hidden' parameters, such as the spatial

dependence of a and h .) Since these parameters are not well

known, we need to be very careful about over-generalization from

a particular model in a particular parameter range. We return to

these considerations in Section 9, and intend to address them in

more detail in a future publication.

9 D ISCUSS ION AND CONCLUSIONS

We have attempted to construct a solar dynamo model that

incorporates our current knowledge of what is arguably the more

important observationally determined information, namely the

solar rotation law. In common with several other investigators (e.g.

T97; KAR; Pipin 1999), we have used the reaction of the Lorentz

force on the rotation as the non-linearity that limits the field at

finite amplitude. We differ from many authors in using a realistic,

solar-type underlying rotation law, which has a strong latitudinal

dependence. In our spherical (rather than Cartesian) geometry, the

unperturbed radial shear is largely concentrated in a relatively

narrow tachocline. We use stress-free conditions, which conserve

angular momentum.

Figure 11. (a) Toroidal field contours (broken contours indicate negative

values) and (b) isorotation contours with the radially dependent V0 of

Section 7. Ra � 220; Rv � 6 � 104 and Pr � 0:01: Contours are

uniformly spaced.

Figure 12. Butterfly diagram of the subsurface toroidal field for the model

with Pr � 0:01; Ra � 220 and Rv � 6 � 104 with the radially dependent

V0 of Section 7.
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The different assumptions and formulation of the problem by

various authors make detailed comparison of results difficult. We

mention here just one or two of these factors. T97 does not use

stress-free boundary conditions. In the models of both KAR and

T97 the unperturbed rotational shear is spread through a

comparatively large radial extent. In KAR, the zero-order

rotational velocity is independent of latitude, and in T97 the

velocity field is quite unsolar in form. The spatial distribution of

the alpha coefficient varies between models, and different

boundary conditions are applied to the magnetic field. KAR use

Figure 14. Variations of energy in the antisymmetric (top panel) and symmetric (bottom panel) parts of the magnetic field for Pr � 0:01; Ra � 220 and

Rv � 6 � 104:

Figure 13. Variations of energy in the antisymmetric (top panel) and symmetric (bottom panel) parts of the magnetic field for Pr � 0:01; Ra � 23:5 and

Rv � 6 � 104: In this and the two following figures, the curves are thickened by short-period oscillations in energy, which are not resolved on the scale of

these figures.
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a `Lambda-effect' parametrization of the turbulent Reynolds

stresses, and also introduce a second non-linearity, `Lambda-

quenching'.

In common with both T97 and KAR, we do readily find

irregular and even intermittent behaviour. Our most convincing

examples of intermittent behaviour occur at relatively modest

dynamo numbers, with Prandtl numbers Pr # 0:01: When Pr �

0:01 the global magnetic energy falls by 1±2 orders of

magnitudes, with associated sudden excursions of the parity

from P < 21 to positive values: e.g. Fig. 4. When Pr � 0:001; the
intermittency is much more dramatic, with variations of magnetic

energy of 3±4 orders of magnitude. Now, however, the dynamo

spends most of the time in a low-energy state with P < 21; with
occasional brief excursions to high energy, associated with abrupt

increases in parity to near P � �1 (Fig. 10). This is explicable by

the Lorentz force causing distortions to the angular velocity field,

until it reaches a state in which dynamo action is not supported.

The magnetic field then decays until the angular velocity diffuses

back to near its original state, when approximately exponential

growth of the magnetic field occurs, until the Lorentz force is

again dynamically significant. As Pr ! 1; this diffusion takes

many magnetic diffusion times. It is plausible that the movement

of the system into a state where dynamo action cannot occur is

more readily accomplished if the dynamo number is not too

supercritical. In this case (with Pr � 0:001�; the behaviour of the

energy is almost a mirror image of that of the Sun, in that

excursions of parity from P < 21 are associated with an

enhanced magnetic energy: see Fig. 10. However, the opposite

tendency is visible when Pr � 0:01 : see Fig. 4.

Thus we differ significantly from T97 and KAR in that we do

not believe that we have found long-term behaviour that can

convincingly be identified with that of the Sun. However, we

reiterate the concerns that we discussed in Sections 1 and 2, that

there is considerable uncertainty as to what the essential features

of the long-term solar behaviour really are. We recall three crucial

questions: does the basic Schwabe cycle continue through a grand

minimum, what is the magnitude of the reduction in magnetic

activity, and what is the symmetry of the field? There is also the

question as to whether there is any linkage between the changes in

amplitude, symmetry and cycle length observed on the time-scale

of the Gleissberg cycle and the similar but more drastic changes

observed in the Maunder minimum. For these reasons, together

with questions of the generic nature of the grand minima, we

consider that a range of dynamo models with differing rotation

laws, boundary conditions and quenching mechanisms need to be

investigated thoroughly across a wide range of parameter values.

Such investigations can help in the construction of genuinely

realistic solar and stellar dynamo models as observations yield

more information and computational techniques are able to

achieve increasing levels of complexity and resolution. All current

models employ drastic approximations in order to be computa-

tionally manageable. It is important to compare the effects of these

different approximations and to try to understand how they affect

the solutions. For instance, our results are substantially different

from those of T97, even though we are using the same non-linear

quenching mechanism (Malkus±Proctor effect), so questions of

curvature, form of rotation law, boundary conditions and aspect

ratio of the computational domain are clearly important. KAR find

parameter regions and combinations of non-linear effects that

produce intermittent behaviour that they associate with grand

minima, but it is not clear either how closely these resemble the

solar grand minima, or whether these are the only combinations of

non-linearities that can achieve such effects.

We find intermittency at low supercriticality (at relatively small

Prandtl number), whereas in the T97 model it occurs at 3±4 times

supercritical. Some of the results of KAR quite resemble ours, in

that the magnetic energy has intermittent peaks, rather than dips.

We note that our angular momentum conserving boundary

Figure 15. Variations of energy in the antisymmetric (top panel) and symmetric (bottom panel) parts of the magnetic field for Pr � 0:001; Ra � 23:5 and

Rv � 6 � 104:
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condition possibly exerts a constraint on energy fluctuations that is

absent in the T97 model, and also that, when we set V0 � V0�r�

(Section 7), the intermittency at low supercriticality was absent.

We note in passing that a double periodicity seems a frequent

feature of our models. Close inspection of the figures of KAR

suggests that this feature occurs there also, although it is not

remarked upon. This could have a connection with long-term

periodicities, such as the Gleissberg cycle, reported to be present

in the solar record.

Our results do lend support to the conclusion of T97 that, in

order to obtain relatively large changes in global field behaviour

characteristic of Maunder-type minima, the non-linearity associ-

ated with the effect of the azimuthal component of Lorentz force

on the rotation law appears to be perhaps the most promising. The

introduction of a second time-scale, the comparatively long

dynamical scale present when Pr ! 1; seems a natural ingredient

of such models. (We note in passing that the assumption Pr ! 1

has yet to be justified by a detailed physical model of turbulent

transport processes in solar conditions.) In detail, however, the

situation remains unsatisfactory. The simplified model of T97

reproduces some gross features of the dynamical behaviour of the

solar dynamo, but with an unrealistic rotation law. It is unclear

what would happen to these results if the radial shear were

confined to a narrow tachocline. Similar comments can be made

about the computations discussed by KAR. Our experiments with

a purely radial V0, confined to a relatively narrow layer

(Section 7), have unsatisfactory features, and our computations

suggest that the detailed form of the rotation law cannot be

ignored.

We also note that changes away from V0(r) in the latter

model, caused by the Lorentz force, may be relatively larger than

the corresponding changes to VS(r, u ) found in the main body of

our results. If it is true that equilibration of the model at finite

field amplitude can be more readily achieved with the underlying

solar-type rotation law, it may be that solutions are more

sensitive to changes away from the zero-order rotation law in

this case. Arguably, this could be associated with the tendency to

obtain intermittent behaviour at low supercriticality. If this

conjecture is substantiated, it is a further argument for studying

models with rotation laws that accurately represent that of the

`real' Sun.

Whether simplified models can really reproduce the generic

dynamical behaviour of the solar field is unclear. We can note here

that if it is true that about 30 per cent of solar-type dwarfs exhibit

intermittency, then it is not adequate to find a narrow parameter

range for which models possess intermittent behaviour. Rather, it

must be a quite general property. Of course, for stars other than the

Sun we have no information of the behaviour of the parity during a

Maunder-type minimum. However, any solar dynamo model that

reproduces a plausible long-term behaviour of even the energy

alone only within a narrow parameter range is likely to be

unsatisfactory from this viewpoint.

We also should recall some of the more obvious deficiencies of

our model. In common with all the previous studies cited, we have

ignored the controversy about whether the rapid growth of small-

scale magnetic fields can limit the growth of the mean field at a

magnitude too small to be of astrophysical interest (e.g. Vainshtein

& Cattaneo 1992; Cattaneo & Hughes 1996); the matter remains

unresolved: see e.g. Brandenburg (1994). However, an alpha effect

that is concentrated outside the region of maximum rotational

shear and field strength, as used here, does avoid some of any such

difficulty (see also Charbonneau & MacGregor 1996). We have

ignored the effects of any motions in meridian planes, again in

common with almost all previous workers (but see Brandenburg,

Moss & Tuominen 1992; Choudhuri, SchuÈssler & Dikpati 1995).

We note that a latitudinal velocity of less than 2m s21 would

advect field at the speed of the equatorward motion of the mean

surface activity regions. Thus it is not a priori clear that such

effects can be ignored, at least as far as detailed reproduction of

the butterfly diagram is concerned. However, their estimation is a

delicate matter (e.g. Moss & Vilhu 1983, section 5; Brandenburg

et al. 1992), and there is no accepted model. We have not included

anisotropies in the coefficients a and h , and have assumed a

uniform density when calculating the dynamical feedback on to

the rotation field. The latter simplification plausibly may reduce

the response of the upper envelope to changes in the magnetic

field.

Further uncertainties are associated with the detailed boundary

conditions imposed, which are both here and in other models often

quite arbitrary, even if physically consistent. We have assumed

that the azimuthal Lorentz force provides the sole non-linearity.

Although it is plausible that it is important, it cannot be ruled out

that other non-linearities (e.g. alpha-quenching, buoyancy, Lambda-

quenching) also play a role. For example, it is plausible that alpha-

quenching is the effective non-linearity in the upper parts of the

convection zone, where the field is relatively weak and the

Lorentz force relatively small, whereas lower down the alpha

effect is strongly reduced, and modulation of the angular velocity

by the Lorentz force dominates. There is also the question of just

what properties of the overall solar magnetic field are being

monitored by proxies such as sunspot data ± it should be

remembered that there is as yet no wholly satisfactory model for

sunspots. Thus we might consider that the absence of sunspots at

the Maunder minimum indicates that the maximum of the field

strength never attained a level greater than that associated with the

current field at solar minimum. However, the 10Be fluctuations

show a vigorous signal with only a modest difference in amplitude

from current values (Beer et al. 1998). Thus the absence of

sunspots at the Maunder minimum might be more to do with

changes in field configuration and radial and latitudinal distribu-

tion than with the field amplitude per se.

In conclusion, the model discussed in this paper possesses an

arguably realistic rotation law and plausible butterfly diagram. For

small Prandtl numbers, dynamical behaviour with some of the

characteristics of the solar record is produced. Even our idealized

model has a relatively complicated behaviour as parameters are

varied, and we feel that it is premature for any model to claim to

have resolved the problem of the solar intermittency without a

reasonably detailed investigation of the relevant parameters. The

dynamical behaviour of the system is in general quite rich, and we

intend to return to the subject in a later paper. We feel that the

claims of other authors to have resolved the problem of explaining

the Maunder-type minima in the solar record are somewhat

premature. Dynamo models of the sort discussed here and

elsewhere do suggest that some basic principles are being

addressed, but a number of unsatisfactory features are still

present.
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