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Abstract. Wastewater Treatment Plants (WWTPs) control and prediction under a wide range of
operating conditions is an important goal in order to avoid breaking of environmental balance,
keep the system in stable operating conditions and suitable decision-making. In this respect, the
availability of models characterizing WWTP behaviour as a dynamic system is a necessary first step.
However, due to the high complexity of the WWTP processes and the heterogeneity, incompleteness
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statistically satisfactory sense and also that they perform better than other well-established neural
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1 INTRODUCTION

Nowadays, proper management of wastewaters in modern industrialized societies is
not only an option, but a necessity. The main objective is to maintain natural water
systems at as high a quality level as possible, and to ensure equilibrium between
supply and demand through a rational use and management of water resources.
Moreover, the wastewater treatment would help to reach the attainment of rivers as
biological corridors, which means to ensure a good quality of life for animals and veg-
etals living in the water. Wastewater coming from different municipal uses contains a
wide variety of contaminants. Among them, the most commonly found in municipal
wastewater are total suspended solids ('TSS), organic matter  measured as biochem-
ical oxygen demand (BOD) and chemical oxygen demand (COD)  pathogens, and
nutrients. The basis of wastewater treatment processes lies in oxidizing biodegrad-
able organics from raw water into stabilized, low-energy compounds, maintaining a
mixture of microorganisms and supplying oxygen by aerators (WEF, 1996).

The autonomous Government of Catalonia, according to the FEuropean direc-
tive of the Council 91/271/CEE, is developing its Pla de Sanejament (Govern-
ment, 1996), which foresees wastewater treatment for populations greater than 2,000
inhabitants-equivalents before year 2005. To achieve these purposes, more than 200
Wastewater Treatment Plants (WWTP) have already been built in Catalonia, treat-
ing an average daily wastewater flow of about 2,000,000 m?.

Although it is very important to ensure the quality of the treated wastewater
prior to discharge, the correct control and operation of the process carried out in the
WWTP is not a well established task. Some of the factors which affect the real-time
control of the process are:

— the biological nature of the process, involving the presence of a true trophic web,

— the great complexity and variability of the influent composition,

— the lack of on-line sensors and signals,

— the delay of the analytical results from the laboratory (WEF, 1992): minutes,
hours or even days according to the different TSS (30 minutes), COD (2 hours)
or BOD (5 days) determinations, and

— the dynamic state of the process.

Different, classical control methods (among which we can find feed-forward, feed-
back, adaptative, predictive, etc.), have been used to improve and optimize WWTP
operation (Dochain, 1991; Moreno, 1992; Isaacs, 1992; Heinzle, 1993; Nejjari, 1997;
Queinnec, 1998).

It seems then interesting to predict the behaviour of the plant under a wide range
of operating conditions. The objective is to improve the control of the process, avoid-
ing poor treated discharges that break the environmental balance. This is why our
goal is focused on the development of a prediction model, through the applicability



of fuzzy modeling, which could contribute to a better management of the process.
This method is concerned with extracting useful patterns or relationships between
different variables by means of analysing the historical WWTP database provided
by years of operation. This analysis will allow to build a fuzzy model that would
help to understand dynamics of the system and could support in making decisions
in WWTP management. The developed model characterizes the efluent quality as
a function of the influent characteristics and control actions, by means of developing
a model for each variable. The aim of this work (much of which is presented in (Be-
lanche, 1998h) has been to find, as a first step, models able to characterize the time
variation of outgoing WWTP variables using soft computing techniques; in partic-
ular, rough sets and time-delay neural networks of two kinds: fuzzy heterogeneous
and classical.

The paper is organized as follows. Section 2 describes the problem at hand,
the particular WWTP under study. Section 3 briefly introduces the reader to soft
computing methods, while Section 4 reviews the concept of fuzzy heterogeneous
neurons and their use in configuring hybrid neural networks, which will be then
used to find input-output models of the plant. Rough set theory, used in the second
part of the experiments, is outlined in section 5. The experiment setup itself and the
obtained results are collectively presented in Section 6. Finally, Section 7 presents
the conclusions.

2 A WWTP CASE STUDY

The database utilized to build the characterization model corresponds to a WWTP
of a touristic resort situated in Costa Brava (Catalonia). This plant provides pri-
mary and secondary treatment using the activated sludge process to remove organic
load and suspension solids contained in the raw water of about 30,000 inhabitants-
equivalents in winter and about 150,000 in summer. An schematic of this WWTP
is illustrated in figure 1.

The available historical data comprises a large amount of information corre-
sponding to an exhaustive characterization of the plant. This information is also
being used in other approaches to improve WWTP operation (Comas, 1998). It in-
cludes analytical results of water and sludge quality, together with on-line signals
coming from sensors (wastewater, recycle, purge sludge and aeration flow rates, pH,
temperature and dissolved oxygen concentration at the biological reactor).

The first work was focused on selecting an homogeneous amount of days, to
cover a representative period of time. Then, it was necessary to select the most
relevant variables of the process, corresponding to the analysis of water quality
and flow-rates at different points of the plant. These variables are presented below,
distinguishing between the on-line and the off-line values, and specifying the sample
point (AB or influent, OP1 or primary settler effluent, and AT or effluent). Global
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Fig. 1. Schematic of this WWTP that provides primary and secondary treatment.
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process variables are related to the three control actions that the plant’s manager
can modify when removal efficiency decreases, in order to reconduct the process to

normal performance: purge (Q-P), recycle (Q-R) and biological aeration (Q-A) flow
rates.

|Samp]e Point | On-line Data | Analytical Data

AB (influent) Q-AB (influent flow) COD, BOD, TSS
OP1 (primary treatment effluent)|Q-OP1 (primary effluent flow)|CON, BON, TSS
AT (final treated effluent) COD, BOD, TSS

Q-R (biological recycle flow)
Global process Q-P (biological waste flow) -

Q-A (biological aeration flow)

Table 1. Basic variables for characterizing the behaviour of the studied WWTP.

The final database studied in this paper covers a period of 609 consecutive days,
considering each day as a new sample. Note that the period studied has an important
amount of missing data due to the frequency of analysis, so the data utilized to build
the model includes only those days with an actual value in the effluent (see table 1).
Finally, to simplify the description of the influent characteristics, the set of internal

variables (Q-OP1, COD-OP1, BOD-OP1 and TSS-OP1) has been excluded from

the preliminary analysis.



The second work has comprised a statistical analysis of the studied database
variables. Basic statistical descriptors are shown in table 2. In it, the extremely high
incidence of missing values for most variables is the relevant feature. Specially in the
case of target variables from the point of view of developing prediction models (COD-
AT, BOD-AT and TSS-AT) and variables characterizing the physical-chemical state
of incoming waters (COD-AB, BOD-AB and TSS-AB), the proportion of missing
values is very severe (between 60-80%, approximately), i.e., there are much more
missing data than actual information. Clearly, this situation makes considerably
hard the search for models to characterize WWTP behaviour and must always be
taken into account in evaluating the quality of the learned model.

Variable Unit, Number of |N11mber of[Mean |StDev|Min [Max
non—]\/ﬁssing“\/ﬁssing

Q-AB m’ /d 591 18 10707 13634 (0.0 (23681
COD-AB mg/] 229 380 795.8 [198.0 |150.0|1644.0
BOD-AB mg/] 129 480 390.70(95.70 |70.00|620.00
TSS-AB mg/] 229 380 315.85(91.35 [69.00|647.00
Q-R m’ /d 608 1 5597.7|2287.1|0.0 |12086.0
Q-P Kg TSS/d 598 11 771.6 |756.6 (0.0 |6523.0
Q-A Kg Og/d 548 61 4138.6[1878.4|0.0 |8643.0
COD-AT mg/] 229 380 55.80 [18.52 [20.00{134.00
BOD-AT mg/] 129 480 8.959 (4.876 |2.300(32.000
TSS-AT mg/] 233 376 9.562 |5.750 |2.000|42.000

Table 2. Basic statistical descriptors for selected WWTP variables.

The linear intercorrelation structure among variables is shown in figure 2 as
an average clustering of the (absolute) correlation matrix of variables. With the
exception of incoming water discharge (Q-AB), the actuation (Q-), output (-AT)
and input (-AB) variables are clustered into three not too homogeneous groups.
The fact that the highest intercorrelations are observed in output variables (0.736-
0.764) indicates that once a reasonable model is found for one of them, similar ones
should be also found for the rest.

The complexity of the WW'TP behavior problem is reflected in the frequency
distribution of their values. For example, Kolmogorov-Smirnov tests applied to the
incoming TSS-AB and outgoing TSS-AT variables confirms what direct inspection
suggests, in the sense that, whilst the first variable distributes normally, the second
does not. Actually, it has a right-skewed distribution, reflecting strong non-linear
distortions introduced by the WWTP dynamics (see figure 3).



Similarity

14659 — ]
4310 —
T1.85 — :
100.00
- v @ A 2 - oo o - »
f o o Q/Y 2 ’;\_{“c i~ a Q/Y
o ‘<>O s A P 450

Fig. 2. Average clustering of the absolute correlation for the studied WWTP variables.
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Fig. 3. Kolmogorov-Smirnov test for Total Suspended Solids (TSS). T.eft: incoming. Right: outgoing.

3 A SOFT COMPUTING APPROACH

Under the name of soft computing several theories, approaches and techniques are
gathered together with a common purpose: to find solutions (usually in the form of
models) to a wide variety of problems (such as pattern recognition, systems control,
prediction, optimization and others) which share some characteristics: the nature
of the problem is usually non-linear, and data is disturbed by noise, imprecision



or uncertainty, and is often missing. Moreover, the sources of these data can be
very heterogeneous, ranging from discrete to continuous variables, which can also
be scalar, vectorial, etc, and include a spatial or temporal component. The most
common theories and methods employed make use of fuzzy logic (Klir, 1988), genetic
algorithms (Goldberg, 1989), artificial neural networks (Hertz, 1991), probabilistic
reasoning (Pearl, 1987) and rough set theory (Pawlak, 1982; Pawlak, 1991).

Fuzzy Logic brings a formalism with its own syntax and semantics capable to
express qualitative knowledge about the problem under study. Its excellence relies
specially in the strength of its interpolative reasoning mechanism. Genetic Algo-
rithms are general adaptive search methods based on the main ideas of Darwinian
evolution. They maintain a population of individuals each of which represents a
possible solution to a given problem that evolves from generation to generation
through two main processes: a) selection of the fittest and b) application of ge-
netic operators to recombine and somehow alter surviving individuals in the hope
of finding better ones. These two mechanisms together form a powerful domain-
independent search method. Neural Networks are structures capable of universal
computation where knowledge and function are distributed among nodes or units
each performing some simple (usually non-linear) computation. They can be given a
training set, based on examples of some unknown input-output relation or system for
which one is interested in finding a functional expression. Probabilistic Reasoning of-
fers a means to evaluate the output of systems affected by randomness or other types
of probabilistic uncertainty. In essence, it provides ways of updating the expected
results in light of new acquired knowledge. Finally, in Rough Set theory structural
set relationships in qualitative or imprecise data are explored from the point of view
of their ability to approximate concepts expressed as subsets of a universe of data
objects in terms of subsets of variables describing these objects. One of the main
problems addressed by this technique is the discovery, representation and analy-
sis of data regularities, aimed at discovering cause-effect relationships, identifying
dependencies among group of variables and evaluating their relative importance.

Despite their obvious (and beneficial) differences, the common denominator of
these approaches is that they leave behind non-flexible concepts such as binary logic,
analytic models, rigid classifications and deterministic search. Ideally, the perfect
system to be modeled or controlled can be described in a precise and complete way.
In such cases, it is possible to use formal reasoning systems to associate boolean
truth values to descriptions of the state or behaviour of this ideal physical system.
However, when tackling a real-world problem, it turns out that they are mostly
partly (and, sometimes, ill) defined, difficult to model if one wishes to understand
the nature of the process and the solutions are immerse in huge search spaces. Now,
precise models are impractical to use, costly, or simply non-existent. This makes soft
computing approaches a flexible means to deal with such problems.



4 HETEROGENEOUS NEURAL NETWORKS

A fuzzy heterogeneous neuron is defined as a mapping 5 : H Rouw € R, satisfying
h(D) = 0 (0 is the empty set). Here R denotes the reals and H" is a cartesian product
of an arbitrary number of source sets. Source sets may be families of extended reals
R = R U {X}, extended fuzzy sets F; = F; U {X}, and extended finite sets of
the form (’57; = O, U{X}, ./\;17; = M, U{X}, where each of the O; has a full order
relation, while the M; have not. In all cases, the special symbol X denotes the
unknown element (missing information) and it behaves as an incomparable element
w.r.t. any ordering relation. According to this definition, neuron inputs are possibly
empty arbitrary tuples, composed by n elements among which there might be reals,
fuzzy sets, ordinals, nominals and missing data. Heterogeneous neurons are classified
according to the nature of its image set (which does not have to be necessaryly
restricted to a subset of the reals). In the present study, since the image set is given
by R, the model is of the real kind, which is easily coupled with other, classical
neuron models (i.e. accepting only real inputs), thus leading to hybrid networks in
a straightforward way. These networks have been used successfully in classification
problems reported elsewhere (Valdés, 1997; Valdés, 1998; Belanche, 1998¢), but their
potential of application in other fields was not yet assessed experimentally. The
purpose of this paper is to explore the performance of fuzzy heterogeneous networks
(in hybrid architectures) for the identification of valid input-output models of a
wastewater treatment plant.

Rowt C R

M

Fig. 4. l.eft: The fuzzy heterogeneous neuron model. Right: An example of a hybrid neural network com-
posed by a hidden layer of heterogeneous neurons (H) and an output layer of classical neurons (C).

The use of the resulting heterogeneous neuron (shown in Fig. 4 (left)) to con-
figure network architectures is thus straightforward, and a layered structure having



a hidden layer composed of heterogeneous units and an output layer consisting of
classical neurons is an immediate hybrid feed-forward choice (Fig. 4 (right)).

A particular class of heterogeneous networks (HNNs) is constructed by consid-
ering h as the composition of two mappings h = fo s, such that s: H 5 R CR
and [ : R' — R, C R. The mapping h can be considered as a n-ary function,
parameterized by a n-ary tuple w ¢ Hr representing neuron’s weights, that is,
hz,w) = f(s(x,w)). In particular, the function s represents a similarity and f
a squashing non-linear function with its image in [0, 1]. Accordingly, the neuron is
sensitive to the degree of similarity between its inputs  composed in general by a
mixture of continuous and discrete quantities possibly with missing data  and its
weights. More precisely, s isunderstood as a similarity index, or proximity relation
(transitivity considerations are put aside). That is, a binary, reflexive and symmetric
function s(z,y) with image on [0, 1] such that s(x,2) =1 (strong reflexivity).

The concrete instance of the model under study in the present paper uses as
aggregation function a Gower-like similarity index in which the computation for
heterogeneous entities is constructed as a weighted combination of partial similarities
over subsets of variables. This coefficient has its values in the real interval [0, 1] and
for any two objects 7, 7 given by tuples of cardinality n, is given by the expression

.
o 21k O
D55 — n

> i1 Oik

where:

— gi;r 18 a similarity score for objects 7, 5 according to their value for variable k.
These scores are in the interval [0,1] and are computed according to different
schemes for numeric and qualitative variables.

— The factor d;;1 is a binary function expressing whether objects 7, 7 are comparable
or not according to their values w.r.t. variable k. It is 1 if and only if both objects
have values different from X" for variable k, and () otherwise.

Gower’s original definitions for real-valued and discrete variables are kept (see
(Gower, 1971) for details), but other similarity functions are possible. For variables
representing fuzzy sets, similarity relations from the point of view of fuzzy theory
have been defined elsewhere (Dubois, 1997) and different choices are possible. In our
case, if F; is an arbitrary family of fuzzy sets from the source set, and A, B are two
fuzzy sets such that A, B € F,, the following similarity relation is used

where



For the activation function, a modified version of the classical logistic is used, which
is an automorphism of the real interval [0, 1].

Hop) = L o o) ife <05
Jlx, m + (I(P) + 1 otherwise
where a(p) is an anxiliary function given by a(p) = m and p is a real-

valued parameter controlling the curvature, set in the experiments to 0.1. The gen-
eral training procedure for the HNN is based on genetic algorithms, since the het-
erogeneity of the variables involved and the non-differentiability of the similarity
function prevent the use of gradient-based techniques.

5 ROUGH SETS

From the methodological point of view, lowering the precision with which a given
system is observed usually makes easier the characterization of that system’s interde-
pendencies and makes data regularities more visible. This is the case, for example, of
processes described by continuous variables which undergo a discretization process
by converting these variables into categorical ones, introducing qualitative ranges.
Obviously, this implies a loss of precision in the representation of objects, and a
reduction in the ability to discern or differentiate among distinct objects. However,
with a suitable compromise, this loss is compensated with the increase in the ability
to reveal interesting data regularities.

Let U/ be a finite set of objects called the universe. Any subset X C U is called
a concept or category in U/ and the main interest is when concepts form a partition
(classification) of the universe. In general, one deals with families of partitions over
U which are called a knowledge base over U. A knowledge base is a relational system
K = (U, R) where U # () is the universe (finite) and R is a family of equivalence
relations over /. This is indeed the case, for example, in a collection of observed
objects described by a set of categorical variables, where each defines an equivalence
relation on /. Given P C R and P # (), the intersection of all these equivalence
relations is also an equivalence relation denoted by IND(P) and called an indis-
cernibility relation over P. Tt expresses the knowledge associated with the family of
equivalence relations P, also called P-basic knowledge about U in K. If X C U, X
is said to be R-definible if X is the union of some R-basic knowledge; otherwise X
is called R-undefinible. The R-definible sets are those subsets of U which can be
exactly defined in terms of the knowledge base K" whereas the R-undefinible sets are
called rough sets. This leads to the idea of approximation of a set by other sets.

With each subset X C U and an equivalence relation R € IND(K') two subsets
can be associated, called the lower and upper approximation, respectively, as follows:

10



R,={UY:YeU/R:Y CX}
Ry={JY:YeU/R:YNX +#(}

where U/ R is the equivalence class (partition) induced by R. The lower approx-
imation (also called the positive region POSR(X)) is the set of elements which can
be certainly classified as elements of X whereas the upper approximation is the set
of elements which can be possibly classified as elements of X.

An important issue in the analysis of dependencies among variables is the identi-
fication of information-preserving reduction of redundant variables. In particular, to
find a minimal subset of interacting variables having the same discriminatory power
as the original ones, which would lead to the elimination of irrelevant or noisy vari-
ables without any loss of essential information. A set of variables P is independent
w.r.t. the set of variables @ if for every proper subset R of P, POSp(Q) # POSR(Q);
otherwise P is said to be dependent w.r.t (). Moreover, the set of variables R is a
minimal subset or reduct of P, if R is an independent subset of P w.r.t. ), such that

POSR(Q) = POSp(Q)

A variable a € P is superfluous if POSp(Q) = POSp_(,1(Q); otherwise a is
said to be indispensable in P. The set of all indispensable relations is the core. An
important property of the core is that it is equal to the intersection of all reducts.

6 EXPERIMENT SETUP

If some fixed-length segment of the most recent input values is considered enough
to perform the task successfully, then a temporal sequence can be turned into a set
of spatial patterns on the input layer of a multi-layer feedforward net trained with
an appropriate algorithm such as backpropagation. These architectures are called
Time-delay neural networks (TDNNs), since several values from an external signal
are presented simultaneously at the network input using a moving window (shift
register or tapped delay line) (Hertz, 1991). A main advantage of TDNNs in front of
recurrent neural networks is their lower cost of training, which is very important in
the case of long training sequences. TDNNs have been applied extensively in recent
years to different tasks, in particular to prediction and system modeling (Lapedes,

1987).

In the present study, two different TDNN approaches that differ in the training
method have been tested: a hybrid procedure composed by repeated cycles of sim-
ulated annealing coupled with conjugate gradient algorithm (TDNN-AC) (Ackley,
1987) and the HNN model presented. In the former case the hidden layer uses the

11



hyperbolic tangent as neuron output function whereas the output layer was com-
posed by a linear neuron. It should be noted that the HNN model as used here
(TDNN-HG) is viewed as a TDNN that incorporates heterogeneous neurons and is
trained by means of genetic algorithms. The TDNN-HG and the TDNN-AC archi-
tectures were fixed to include 1 output unit, 8 hidden units, and 13 input units,
corresponding to the model y(t + 1) = F < x(t),2(t — 1), 2(t — 2),y(t — 1) >, where
x(1) denotes the current value of the input variable and y(¢) denotes the value of
the output. Selected inputs were Q-AB, Q-A, Q-P and Q-R, that is, the incoming
flow rate and the three actuation variables.

In the testing process, the normalized mean square error (in percentage) be-
tween the predicted output value, g(#), and the controller output, y(#), is used
to determine the quality of each of the inferred models. This error is given by

N2
MSFE = w - 100% where 53, denotes the variance of y(t). For each stud-

ied output Va,ri;/ﬂo]e7 the TDNN-HG was trained using a standard genetic algorithm
with the following characteristics: binary-coded values, probability of crossover: 0.6,
probability of mutation: 0.01, number of individuals: 150, linear rank scaling with
factor: 1.5, selection mechanism: stochastic universal, replace procedure: worst. The
algorithm stopped when no improvement was found for the last 1,000 generations
(typical values were about 7,000). The TDNN-AC was trained in only one run and
the process was stopped when a reasonable error was attained. In both cases, the
training set chosen was the first half of available data (about 300 days).

6.1 Results of the experiment

The WWTP characterization produced via neural networks trained with a hybrid
simulated annealing-conjugate gradient procedure was worse than the correspond-
ing obtained by using a fuzzy heterogeneous neural network model, as illustrated
by normalized squared errors shown in table 3 for BOD-AT and COD-AT output
variables. In both cases the same neuron architecture was used but the errors ob-
tained are appreciably lower for the heterogeneous model w.r.t the classical neural
one, although it uses a very sophisticated and robust training procedure.

Classical Neural Model|Fuzzy Heterogeneous Model
TDNN-AC TDNN-HG
BON-AT 45.55% 20.74%
CON-AT 30.76% 11.64%

Table 3. Normalized MSE errors of the two neural network models used for characterizing some WW'TP
outgoing variables.

12
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Fig. 5. Relation between estimated vs. real BOD-AT (left) and estimated vs. real COD-AT (right).

35 T T
30
25
20
15
10

0 50 100 150 200 250 300
Time (days)

Fig. 6. Time behaviour of BON-AT during the first 300 days (solid line) with observed points. Upper and
lower dashed lines indicate the 95% confidence estimation interval (according to the TDNN-HG model).

The relation between the BOD-AT output variable as estimated by the hetero-
geneous neural network and the corresponding ohserved values is shown in fig 5
(left). There is a significant linear correlation between them and model adequacy
is revealed by the fact that almost all points are enclosed by the 95% confidence
band. The corresponding time behavior is illustrated in fig 6, where the observed
BOD-AT values are displayed together with the 95% confidence band given by the

neural network model (upper and lower dashed curves). In spite of the fact that
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COD-AT

78.7% of the data, corresponding to the 300 day period chosen for the characteriza-
tion were missing, almost all observed values are within the confidence band with
only very slight exceptions. A similar behavior is exhibited by the COD-AT vari-
able (figs. 5 (right) and 7). The fact that the HNN model outperforms the classical
one has heen observed in other application contexts (Valdés, 1997; Belanche, 1998¢;
Belanche, 1998a) and therefore deserves further attention as it seems to indicate a
more general property of these recently introduced hybrid models.
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Fig. 7. Time behaviour of COD-AT during the first 300 days (solid line) with observed points. Upper and
lower dashed lines indicate the 95% confidence estimation interval (according to the TDNN-HG model).

6.2 Predicting WWTP behaviour

The previous experiment showed how a model characterizing WW'TP behaviour can
be found. The next step to be taken is to develop a model able to predict future
WWTP output in situations never seen before (that is, not used in the formation
of the model) again in light of available past values of its variables. This is a very
difficult issue, again complicated by the presence of missing data in a set of charac-
terizing variables that is already very heterogeneous in nature and plays non-linear
interaction roles in the overall process. A further complication that arises is the dif-
ferent time scales of the variables. While some of them are available almost at will,
others may take days (as, for example, the BOD-AT, that takes 5 days). For this
reason, the COD-AT variable has been the one chosen as a prediction target. This
variable is available in about 2 hours and, thus, previous values w.r.t. the present
day are always known. To this end, a still more careful selection and a clever treat-
ment of the data to be used as training is a means to pave the way. Specifically,
three treatments have been performed:
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— First, the correlation structure reflected in figure 2 shows that variables (Q-AB,
Q-A), (COD-AB, BOD-AB) and (COD-AT, TSS-AT, BOD-AT) are reasonably
similar. This suggests the use of Q-AB, Q-R, Q-P, COD-AB and TSS-AB as input
variables when considering the construction of prediction models. The choice of
COD-AB is favored by the fact that it is a much simpler and faster analytical
procedure than BOD-AB from the chemical point of view.

— Second, we observed that part of the errors of the models inferred in the previous
experiments were due to the high peaks present in both studied variables (BOD-
AT and COD-AT). For this reason, COD-AT was logio transformed.

— Third, the delays used in such models were proposed intuitively, but without any
regard to actual underlying significance. This is where rough set theory comes
to play.

No doubt that one of the most important tasks when finding useful dependen-
cies from the point of view of constructing prediction models for WWTP hehavior
is the discovery of those time delays in the input variables and in the predicted
variable itself which carries essential functional relationship. In the present study
an experiment was made by forming a data matrix containing the information con-
cerning the behavior for each day of the last 10 days for variables Q-AB, Q-R, Q-P,
COD-AB, TSS-AB and the target variable COD-AT itself. This makes a total of 60
new variables potentially related with the value of the COD-AT for each day, with
a dependency coefficient found to be 0.9699 (a value of 1 means that the selected
variables convey all the information present in the whole data available).

The continuous process represented by these data was transformed into a dis-
crete one by analysing the empirical probability distribution of all variables involved
and defining suitable categories introducing corresponding cut-point values. In par-

ticular, the following were set: Q-AB (8500, 13000, 16500), COD-AB (650, 950),
TSS-AB (250, 400), Q-R (5000, 7000), Q-P(1000) and log1o(COD-AT) (1.65, 1.85).

The core and reducts were obtained for the discrete process obtained via cate-
gorization of the original data and it was found that, from the original 60 potential
predictor variables, only 13 were really indispensable, whereas adding another 7
makes them an optimal reduct. That is to say, from the point of view of relative
size of the positive region defined by these 20 variables and w.r.t. the positive region
defined by the whole set. The core itself was composed of the following variables:
Q-AB (delay 1), TSS-AB (delay 7), Q-R (delays 1, 2, 3, 4,5, 7, 9, 10) and logi
(COD-AT) (delays 5, 7). The optimal reduct is completed by variables Q-AB (delays
5, 10), COD-AB (delays 2, 4), Q-P (delay 5) and log1o(COD-AT) (delays 2, 3). Tt
is interesting to observe that almost all information coming from the recirculation
flow was considered essential (a variable controlled by the WWTP human operator).
The information given by the optimal reduct was used to set up a prediction model
based on a fuzzy heterogeneous neural network (but using the original continuous
variables) with log1o(COD-AT) with time delay 0 as target.
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Fig. 8. Actual time behaviour of COD-AT during the last 56 days (solid line) with observed points against
prediction according to the TDNN-HG model. The normalized MSFE for prediction is 60.0%.

A very simple HNN architecture consisting of just 2 neurons was utilized (20
inputs, 1 output), with the same training set used for the previous experiments
(50% of the total available). The last 25% (56 days) as data to be predicted. Also,
very small GA settings were used (26 individuals, 500 generations) to avoid excessive

data overfitting.

The behavior of the predicted COD-AT values w.r.t. the real observed ones is
shown in Fig. 8. In spite of the fact that the fit is not as accurate as before, the
relation between the two is highly significant, both the linear correlation coefficient
and the linear regression points of view, as tested with the corresponding t-test for
the correlation coefficient and the F-test for the analysis of variance (for 95% confi-
dence in both cases). Actual numbers for the t-test are: R = 0.504 with 54 degrees
of freedom (1 = 4.288). The result for the F-test is 18.39 for one degree of freedom in
the numerator and 54 in the denominator (Fig. 9). All this shows that the model, al-
though far from perfect, does capture prediction information and is able to prognose
outputs within a 95% confidence band. This is also particularly important having
into account the WW'TP complexity and the big quantity of missing information
spread in the available data set.

7 CONCLUSIONS

For the WWTP under study, three main aspects have been found that deeply char-
acterize the processes that are taking place. First, with the exception of incoming
water discharge, actuation, outgoing and incoming variables are clearly distinguished
from one another, reflecting an internal structure that must be taken into account
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Fig. 9. Relation between predicted vs. real COND-AT (solid line). Upper and lower dashed lines indicate
the 95% confidence estimation interval (according to the TDNN-HG model).

during the search for accurate models of the process. Second, the process dynamics
introduces strong non-linear distortion between incoming and outgoing variables.
Third, these outgoing variables are significantly related and, therefore, could be
described by similar models. Soft computing techniques in particular, fuzzy het-
erogeneous neural networks have shown to be capable to describe and predict the
behaviour of some of these processes in a statistically significant sense, despite the
imprecision associated to raw real-world information and the high degree of incom-
pleteness and fragmentation, due to the number of missing values and their time
distribution in many small chunks. This, together with the fact that the TDNN-HG
model outperformed the classical TDNN-AC, suggests that it fits better the especial
requirements posed by the WWTP problematic. Further experiments tackling the
difficult prediction task are a significant part of the future work.
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