IEEE Access

Mukidisdplirare © Hapid Keview § Upen tccess loural

Received December 10, 2020, accepted December 28, 2020, date of publication January 14, 2021,
date of current version January 22, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3051605

Towards a Modular and Distributed End-User
Development Framework for
Human-Robot Interaction

ENRIQUE CORONADO "', DOMINIQUE DEUFF2, PAMELA CARRENO-MEDRANO?3,
LEIMIN TIAN“3, DANA KULIC“3, (Member, IEEE), SHANTI SUMARTOJO*,
FULVIO MASTROGIOVANNI“3, AND GENTIANE VENTURE“, (Senior Member, IEEE)

! Department of Mechanical System Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-0012, Japan
2Orange Lab, 22300 Lannion, France

3Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia

4Facully of Art, Design and Architecture, Monash University, Caulfield East, VIC 3145, Australia

SDepartment of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, 16145 Genoa, Italy

Corresponding author: Enrique Coronado (enriquecoronadozu @ gmail.com)

This work was supported by the Institute for Global Innovation Research, Tokyo University of Agriculture and Technology.

ABSTRACT In an effort towards the democratization of Robotics, this article presents a novel End-User
Development framework called Robot Interfaces From Zero Experience (RIZE). The framework provides
a set of useful software tools for the creation of robot-oriented software architectures and programming
interfaces, as well as the modeling and execution of robot behaviors, with a specific emphasis on social
behaviors. Programming interfaces built on top of RIZE enable professionals with different backgrounds
and interests to design, adapt, and scale-up robotics applications. As an example of a programming interface,
we present Open RIZE, which exploits an End-User Programming paradigm combining blocks, tables, and
forms-filling interfaces. Unlike previous approaches, robot behavioral code generated by Open RIZE is
intrinsically modular, re-usable, scalable, neutral to the employed programming language, and platform-
agnostic. In the article, we present the main design guidelines and features of Open RIZE. Additionally,
we perform an initial usability evaluation of the Open RIZE interface in an online workshop. Preliminary
results using the System Usability Scale with 10 novice end-users indicate that Open RIZE is easy-to-use
and learn.

INDEX TERMS Robotics, human-robot interaction, end-user development, robot programming, social

robots, service robots.

I. INTRODUCTION
Human-Robot Interaction (HRI) is a field populated to a great
extent by researchers and professionals expert in Informa-
tion Technology (IT) [1]. In the literature, it is common to
read about HRI studies that are carried out by such tech-
nically skilled people, who are often referred to as high-
tech scribes [2], in various controlled scenarios [3]. However,
a recent call for the creation of more robust and usable
robot-based applications suggests that it is time to transfer
Robotics research from the laboratories and industries to
natural, every-day environments [3].

“In the wild” HRI experiments [4] often require team-
ing with social scientists or interaction designers, and in

The associate editor coordinating the review of this manuscript and

approving it for publication was Giuseppe Desolda

VOLUME 9, 2021

general with end-users to model realistic and meaningful
scenarios [5], [6]. Two approaches advocating the inclu-
sion of non-roboticists or novice end-users in the design
of robot-based applications are the user-centered [7] and
the participatory design [8] perspectives. As described in
[9], [10], these methods tend to adopt a ‘“‘design before
using” approach. Two issues affect their applicability, namely
(1) the possible misunderstandings between expert roboticists
and non-technically skilled researchers when interpreting the
HRI contexts or application requirements, and (ii) the diver-
sity of those end-users whose background may be in social
sciences [10].

End-User Development (EUD) is an emergent human-
centered approach and a suitable companion to user-centered
and participatory design [10]. It is considered a socio-
technical activity [10], where problem owners, i.e., end-users,

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 12675

https://orcid.org/0000-0001-5444-377X
https://orcid.org/0000-0001-8559-5610
https://orcid.org/0000-0002-4169-2141
https://orcid.org/0000-0001-5913-1898
https://orcid.org/0000-0001-7767-4765
https://orcid.org/0000-0001-9894-2116

IEEE Access

E. Coronado et al.: Towards a Modular and Distributed End-User Development Framework for Human-Robot Interaction

become independent from high-tech scribes [2]. End-User
Programming (EUP) is a sub-area of EUD which only focuses
on the program coding phase. EUD also includes those meth-
ods supporting the entire software development life-cycle,
i.e., installation, configuration, re-design, debugging, scaling,
and execution [11].

This article presents (i) the Robot Interfaces from Zero
Experience (RIZE) framework, and (ii)) an EUD/EUP tool
called Open RIZE. On the one hand, the RIZE framework
proposes a general software architecture and a set of software
tools for the creation of EUD/EUP programming environ-
ments for Robotics systems. On the other hand, Open RIZE
is an experimental programming environment built on top
of the RIZE tools for enabling social researchers to create
real-world HRI applications with social and service robots.
Open RIZE can be installed as a typical Windows and OSX
application using Wizards. Detailed instructions on how to
install, use, and modify Open RIZE (including Linux-bases
systems) are available in [12].

The article is organized as follows. Section II presents
related work and summarizes our contributions. Section III
presents an overview of the RIZE framework. Section IV
describes the main features of Open RIZE, whereas Section V
describes the cognitive software architecture implemented
in Open RIZE. Section VI briefly describes a set of appli-
cations developed using different versions of Open RIZE
and presents results from an initial usability assessment.
Conclusions and future work follow.

Il. RELATED WORK AND CONTRIBUTIONS

According to [13], there are three types of EUD/EUP tools
for Robotics, namely educational, industrial, and professional
tools, the main differences between these categories being
their objectives, type of tasks and scenarios [13]. Relevant
examples of educational tools are LearnBlock [14] and Open-
Roberta [15]. These two interfaces are compatible with dif-
ferent types of teaching approaches and toy robots, and have
been designed with two objectives in mind: the first is the
development of critical thinking skills in kids through solving
“toy problems”, i.e., illustrative exercises or puzzles [16],
[17], whereas the second is enabling an effective yet gentle
transition to a general-purpose programming language such
as Python or C++. Students can meet these goals after
several software development courses, typically provided by
educational institutions.

The main objectives of EUD/EUP industrial tools are
reducing training efforts and increasing the flexibility of
robot-based systems. EUD/EUP tools in this category enable
factory workers to intuitively re-program robots without
using nor learning a general-purpose programming lan-
guage [1]. EUP approaches often used for this task are
Visual Programming [18], [19] and Programming by Demon-
stration (PbD) [20], [21]. In many industrial cases, robots
are deployed in scenarios whereby a direct interaction with
a robot is not required [22], [23]. However, a number of

12676

emergent industrial scenarios focus on enabling the collab-
oration between humans and robots [24], [25].

The focus of professional EUD/EUP tools is bridging the
gap between robots and their adoption in novel, real-world
settings beyond educational and industrial scenarios. Tools
used for this aim must be able to provide means to leverage
the social and emotional capabilities that robots can exhibit
and work “in the wild”’, as well as enable the development
of explainable, useful, usable, and enjoyable HRI applica-
tions [13]. The majority of professional EUD/EUP tools end-
users, such as therapists, interaction designers, sellers, and
psychologists, lack the time and interest to learn advanced
IT topics [10]. Professional EUD/EUP tools should provide
suitable programming abstraction levels enabling an intuitive
modeling of HRI use cases, including the use of robot social
skills [26]. Due to its modular and distributed architecture,
the RIZE framework can be adapted for enabling the develop-
ment of educational, industrial, and professional EUP/EUD
environments. However, the interface developed to demon-
strate the capabilities of this framework, denoted as Open
RIZE, is mostly aimed to be an easy-to-use tool that enables
different types of adult end-users the rapid prototyping of
real-world HRI applications. Therefore, the rest of the article
will center in EUD/EUP tools for proffesional use.

HRI processes (and the interaction with virtual agents),
including those involving social capabilities, are typically
designed by expert developers using general-purpose script-
ing languages such as Python. This approach is error-prone
and generates accessibility, usability, and maintainability
issues [27]. A recent trend towards improving the accessi-
bility of scripting approaches is to enable the adoption of
more user-friendly and engaging programming environments
through the use of block-based programming languages such
as Snap! [28], Scratch [29] and Google Blockly [30]. Figure 1
shows an example of a typical block-based programming
environment in Google Blockly. Users can drag-and-drop a
set of visual elements from a toolbox (left) to a workspace
(middle). Then, the programming environment generates
code in a selected general-purpose programming language
for its subsequent execution. An advantage of this graph-
ical approach compared to text-based programming envi-
ronments is the reduction of syntax errors. These features

Logic
Loops
Bath
Text
Lists
Color

Lanzuage: JavaScrpt v

war flag, Court;

Variables
Functions

) 2 L

Toolbox Workspace

FIGURE 1. Example of a block-based programming environment in
Google Blockly [30].

VOLUME 9, 2021

E. Coronado et al.: Towards a Modular and Distributed End-User Development Framework for Human-Robot Interaction

IEEE Access

makes tools such as Scratch and Google Blockly popular
solutions for creating educational EUP environments able to
get children acquainted with different programming-related
topics. However, some researchers have also proposed the
use of block-based visual languages to enable professionals
(rather than kids) to develop programs for social or service
robots [31]-[33]. The programming approaches used in these
professional-oriented block-based tools do not significantly
differ from those used for educational purposes. Therefore,
end-users require the use and the understanding of statements
often used in programming languages, such as control loops,
events, functions, and mathematical operators. They also
need to build every aspect that will define the robot appli-
cation, from data acquisition from sensors and its posterior
processing to mechanisms that guide the decision-making
and definition of low-level outputs of actuators (e.g., velocity
and position of motors). As explained in [26], this low-level
and general approach, which is presented in most EUP tools
for robotics, produces a set of usability and maintenance
issues. To this aim, programming tools for social and service
robots must avoid the use of many low-level programming
primitives. Instead, they must provide a set of reusable and
easy to understand building blocks (denoted primitives) rep-
resenting social skills which end-user can easily understand,
combine and re-use [34]. These social skills are typically
related to text-to-speech, animations, gestures, and the use
of gaze. Moreover, approaches enabling the management of
the defined robot behaviors, described in [26] as control
primitives, must be transparent to users. Some of the most
relevant approaches to control and model robot behaviors in
EUP for robotics are described below.

In order to allow the rapid and high-quality development
of scenarios where robots can socially interact with humans,
professionals and designers prefer the use of Authoring Arti-
ficial Intelligence (AAI) methods over classical scripting
and the use of programming primitives [35]. Popular AAI
approaches used in consumer-oriented and industrial sce-
narios can be identified as rule-based systems, Finite State
Machines (FSM), or Behaviors Trees (BTs).

Rule-based systems are the first AAI approach used to
replace general-purpose, code-based behavioral development
for the creation of interactive and social robots, as well as
virtual agents [35]. While rule-based systems are still popular
in certain fields, such as the Internet of Things (IoT) [36],
[37], in Robotics, they have been replaced to a great extent
FSMs and BTs [35], [38].

FSMs are structured methods for modeling the control
flow of intelligent systems, including robots, which add the
notions of states and transitions to rules-based systems. FSMs
can be represented as directed graphs where each node of
the graph represents a state. Transitions between states occur
when state-specific conditions are met. A transition to a new
state may trigger the execution of a sequence of robot behav-
iors. FSMs are relatively easy to learn and use, even for novice
users [39], and enable the creation of robust collections of
behaviors. Therefore, FSMs are often used to back-end EUP

VOLUME 9, 2021

tools using data-flow visual languages [13]. However, prac-
tice suggests that the code based on FSMs and other data-flow
methods tends to be messy. The resulting visual programs
are difficult to analyze, re-use, maintain and scale [13], [38].
The most relevant EUD platforms for social robots using
classical scripting notations (in block-based interfaces), rules,
and data-flow visual languages, have been described in [13].

BTs are a more recent alternative to rule-based systems
and FSMs. BTs enable the design and development of mod-
ular, complex, robust, and reactive behaviors [27]. BTs are
quite popular tools for modeling the behavior of non-player
characters in video games. However, only in the past few
years have BTs been introduced in Robotics [38]. Imple-
mentation examples of BTs in Robotics for academic and
industrial scenarios have been reported in [18], [38], [40].
They can be represented as directed trees, and are executed
using a ‘““depth-first” traversal procedure. Nodes in a BT can
be of two types: (i) composite nodes or operators, which
control the execution flow in the tree, and (ii) leaf nodes,
which define the tasks composing the behaviors as well as
the conditions triggering their execution. The BT execution
algorithm assigns a status to each active node, which can
be success if the task is completed without errors, or failure
otherwise, or running during task execution. Composite
nodes use these three possible statuses to perform behavior
composition. For a deeper explanation of BTs the reader is
referred to [38], [41]. Compared with FSM, BTs are known
to be more modular: portions of code, denoted as “sub-BTs”’,
can be easily re-used to create more complex tasks.

The main objective of RIZE is to provide a set of con-
ceptual and operative tools that facilitate the integration of
robot behavioral modules, specifically robot social skills,
organized in a full-fledged software architecture. Rather than
only focus on some specific programming or behavior mod-
eling approach, RIZE was designed to enable the explo-
ration of novel, structured, modular, reactive and advanced
behavioral modeling methods and visual languages. This
perspective represents the main difference with respect to
previous EUP/EUD tools for robotics [1]. In the next sec-
tions, we present an example of a programming interface
built on top of RIZE framework denoted as Open RIZE
which uses a combination of FSMs and BTs for enabling
decision-making. This interface integrates a programming
environment extending the functionalities of Google Blockly
to enable the intuitive creation of robot behaviors by novice
end-users as well as the rapid prototyping and integration of
robot-based applications.

Most approaches in the literature employing a block-based
Visual Programming Language (VPL), such as Google
Blockly, allow for the direct translation of block definitions to
code in a text-based programming language. We explored this
approach in an early prototype of RIZE [42]. The program-
ming environment proposed in [42] translates the structure
developed in Google Blockly to text-based code in Python.
The resulting Python code consists of a set of robot-agnostic
functions, i.e., those able to connect and be used with

12677

IEEE Access

E. Coronado et al.: Towards a Modular and Distributed End-User Development Framework for Human-Robot Interaction

different robots and to abstract low-level details and hardware
instances [14]. These functions are executed by a Python
server which is in charge of connecting perceptual, cogni-
tive, knowledge representation, control, and social behavioral
modules. The structure enables an easy re-use of modules
developed in other programming languages.

Similar approaches targeted at robot-agnosticism have
been proposed in professional [31], [43] and educational
tools [14], [44]. However, block-based programming environ-
ments often limit the visualization of all graphical elements
composing a program into a single view. Therefore, to find an
specific behavior in complex programs that are composed of
many block can be a cumbersome task. This issue, together
with the lack of usability and maintainability inherited from
scripting-based methods, hinders the management, scaling,
reuse, update, and testing of robot behaviors. While these
aspects can be trivial when designing interaction processes
in simple scenarios and using educational tools, they become
relevant for developing real-world and complex HRI appli-
cations requiring the use of many visual elements, as it has
been discussed in previous work [45], [46]. In order to address
these issues, Open RIZE encourages users to design interac-
tion processes for social robots using a set of independent
and reusable robot behaviors modeled as BTs. Therefore,
modularity is not only a feature of the the software architec-
ture, but it is also inherent to the organization of the gener-
ated robot behaviors. The approach put forth in Open RIZE
takes advantage of the modular nature of BTs to organize
and isolate robot behaviors (or sub-BTs) in a set of tables
which users can easily update, delete, or reuse. Furthermore,
Open RIZE users can decide whether to execute a specific
robot action, a module, or a full sequence of robot behaviors.
This degree of modularity is seldom available in block-based
programming environments for Robotics, and constitutes the
first main novelty/contribution of the approach presented and
discussed in this article.

Almost all the state of the art VPL approaches make use
of a server module coordinating all the other modules in
the robot architecture, including those managing sensors and
actuators, by using the Request-Process-Reply design pattern,
also denoted as Remote Procedure Calls [47]. RIZE enables
non-blocking and asynchronous communication between all
the modules in the software architecture using the Publish/
Subscribe design pattern [48], which enforces reusabil-
ity, extensibility, maintainability, and robustness. Such an
event-based approach in a VPL framework represents the sec-
ond main novelty compared to previous work.

An important limiting factor characterizing the majority
of programming tools for non-roboticists is their lack of
accessibility for both developers and end-users [1]. On the
one hand, many available solutions are made public as com-
mercial software, and are not always available, or are difficult
to integrate in real-world applications as components off-the-
shelf (COTS) [1]. Moreover, these commercial EUD/EUP
tools are generally targeted to specific robotics platforms.
On the other hand, several open source projects assume the

12678

use of modules developed for a limited set of programming
languages, or targeted at specific operating systems. Open
RIZE is free for research purposes and enables the integration
of modules developed in a wide variety of programming lan-
guages. It can also be executed on the most popular desktop
and mobile operating systems. On a practical side, many
EUD tools for Robotics require the use of the command
line for installing main and third-party libraries, which is
error-prone and subject to the help of experts. This issue
affected also previous versions of RIZE [42], [45], which
required the use of the Python Package Index (PyPI) using
the command line [49]. In its current version, RIZE interfaces
can be installed, uninstalled, and executed in either Windows
or OSX using installation wizards. While most approaches in
the literature are focused on programming tasks only, RIZE
deals with all the aspects involved in the software develop-
ment lifecycle by providing tools for an easy installation,
configuration, re-design, debugging, scaling, and execution
of applications for social robots. This approach represents the
third main contribution of this article.

Involve potential users in the development of applications
and tools is a keystone feature in software development.
The RIZE framework and the Open RIZE interface has been
designed and developed based on the feedback obtained from
real end-users over several iterations involving the creation
of HRI applications executed ‘““in the wild”. This variety of
HRI contexts and real-world implementation we present in
this article is rarely reported by developers of EUP/EUD tools
for robotics.

Ill. THE RIZE FRAMEWORK
This section describes RIZE’s architecture and presents an
overview of the underlying concepts and available modules.

A. SYSTEM'S ARCHITECTURE

RIZE is an EUD framework for social robots built on top
of a number of web-based technologies and able to exploit
Component-based Software Engineering (CBSE) approaches
[50]. Figure 2 shows the RIZE system’s architecture. The
architecture is multi-layered, and follows a conceptual hard-
ware to end-users stacked pipeline.

In the lowest layer, i.e., the Hardware Layer, sensors,
actuators, and whole robot platforms reside. These interact
with low-level software modules (also referred to as nodes),
which reside in the OS Layer and are in charge of exchanging
various forms of data, and in general controlling hardware
devices. These modules are executed by different operating
systems. Currently, RIZE tools mostly focuses on Microsoft
Windows and OSX. RIZE was also tested with success in
different versions of Ubuntu. The data connection between
these low-level nodes can be local, i.e., nodes run on the
same workstation, remote, i.e., nodes are in different work-
stations connected via a certain networking structure, or their
combination.

An essential linchpin used to help develop distributed
applications is the middleware, which provides a set of

VOLUME 9, 2021

E. Coronado et al.: Towards a Modular and Distributed End-User Development Framework for Human-Robot Interaction

IEEE Access

End-user

Layer HTML & CSS

Application Application A

Layer

Transport
Layer

Robots, Actuators and Sensors

Javascript & Vue.js

RIZE

Node.js & Electron

Application B Application C

Robotics Middleware

rosbridge

FIGURE 2. The general software architecture of a RIZE application. Low-level modules are developed on top of
different robotics middleware. These modules are transparent to the end-user and are managed by graphical user

interfaces using web-based technologies.

services and tools to enable communication between nodes.
In the Transport Layer, RIZE supports software modules
using the Robot Operating System (ROS) framework [51],
and the rosbridge suite [52]. This support allows for an easy
re-use of many open source and academic-oriented modules
common in Social Robotics research. However, RIZE embeds
also a middleware designed to support non-ROS software
components, robots, and other computing devices. We refer
to this communication framework as Node Primitives (NEP)
[1]. NEP has been designed to allow developers who are not
proficient in ROS/ROS2 development, or whose main focus
is not Robotics-oriented, to easily integrate their modules.

Modules, which are part of the Application Layer, can be
developed using different, modern programming languages
and environments, such as C#, Python (2 and 3), Java, Mat-
lab, and JavaScript (via Node.js). RIZE includes NEP in its
installer package.

At the top layer of the architecture lies the RIZE program-
ming environment, also referred to as the End-user Layer.
A RIZE interface uses HTML/CSS for defining visual ele-
ments and JavaScript for the development and integration of
web-based libraries, such as Google Blockly. It uses Vue.js
for building user interfaces [53]. This JavaScript frame-
work uses the Model-View-ViewModel (MVVM) methodol-
ogy [54], which is a software architectural and structural
pattern aimed at enforcing the separation and development
of Graphical User Interfaces (GUIs). RIZE interfaces use
Electron, i.e., a JavaScript framework for creating native
applications with web technologies, and node.js, which is
an event-driven and asynchronous JavaScript run-time envi-
ronment used to create server-side applications. In this way,
RIZE supports the creation of cross-platform desktop appli-
cations, which can be installed from user-friendly desktop

VOLUME 9, 2021

installers. This approach avoids the use of command line
instructions and the compilation of source code for software
installation and execution. It also hides low-level tasks or
interfaces, such as terminals, thereby enabling the develop-
ment of production-ready programming environments appli-
cations for social robots. Moreover, web-based tools enforce
an easy development of usable, modern, attractive, and
beautiful interactive tools.

B. MODULES IN RIZE

A RIZE interface, such as Open RIZE, is composed of a
visual programming environment, a set of knowledge-making
and action-making modules, a blackboard, a decision-making
engine, and a master module. We briefly explain the ratio-
nale behind these module types in the next few paragraphs,
whereas more details are given in the Sections that follow.

A visual programming environment (VPE) is a graphical
user interface that end-users can exploit to structure their pro-
grams. A VPE integrates at least one visual language, which
can be based on rules, blocks, forms, or data-flows [13]. Open
RIZE is an example of VPE based on the RIZE framework
whereby users can define desired robot (social) behaviors.
We discuss in greater details this VPE in Section IV. The
main outputs of VPEs in RIZE are platform-agnostic and
transport-independent representations of robot behaviors. For
this, we use the JavaScript Object Notation (JSON) rather
than a domain-specific or general-purpose programming
language.

The knowledge-making and action-making modules rep-
resent input and output adapters that enable robots to sense
and act in the environment, respectively. These modules can
encode typical data collection, feature extraction and fusion,
as well as control algorithms used in typical robot-based

12679

IEEE Access

E. Coronado et al.: Towards a Modular and Distributed End-User Development Framework for Human-Robot Interaction

architectures. They can also be programmed using different
programming languages, and executed in different operating
systems.

A blackboard is a behavioral design pattern used to sup-
port the storage and the dispatch of information to various
modules, which allows them to interact [55]. As it is common
in distributed architectures, communication among modules
in RIZE is carried out via the exchange of messages, which
are classified in topics. These messages are represented in
RIZE as data structures in the blackboard module. Within
RIZE, a blackboard module temporally saves and processes
the output data of knowledge- and action-making modules.
This information is also shared with other modules for var-
ious uses, including social behaviours and decision-making
modules. Advanced blackboard approaches are designed
to be independent from or easily adaptable to different
decision-making strategies.

The RIZE decision-making module, or engine, is in charge
of interpreting the behavior structure defined in the VPE,
and managing the execution of robot behaviors accordingly.
The module exploits the information made available by the
blackboard module to guide robots to act according to the
prescribed behaviors in the VPE, as well as the current envi-
ronmental and contingent status. The module also publishes
platform-independent action specifications for the control of
robot’s actuators. Then, a set of action-making module read
to these messages and executes the robot behaviors. The
decision-making engine can be designed using a pure AAI
method, such as the one presented in [42], [45], or employing
hybrid approaches, such as those discussed in Section V-C.

The NEP-based master module provides a discovery ser-
vice for modules in a RIZE architecture instance, and thereby
it manages the communication among software components
using the NEP communication framework. The discovery
service allows a given module to find, among available mod-
ules, those with a compatible required or provided inter-
face in terms of topics. In this respect, a module can be
considered as an independent computational process repre-
senting a basic element or building block of a robot-based
application. Whilst different communication-related design
patterns exist and have been discussed in the literature, RIZE
adopts a simple publish-subscribe strategy for inter-RIZE
module communication, with the aim of enforcing asyn-
chronous data exchange and improving the overall robust-
ness and fault-tolerance of the resulting software architecture.
In order for a module to communicate with other modules in
the architecture, a developer must specify its required (i.e.,
the topics it is subscribed to) and provided (i.e., the topics it
is publishes information upon) interfaces. Every topic struc-
ture must be registered beforehand with the master node,
which then manages the endpoint information for each topic.
When a topic registration request is detected by the master
module, an endpoint direction is assigned to a specific topic.
This endpoint information is saved and sent to the modules
that subscribed to that topic. Similarly, when RIZE mod-
ules must communicate with non-native RIZE modules, such

12680

as ROS-based modules, the discovery service is invoked to
communicate with a ROS master node (in ROS 1.0) and the
rosbridge server.

IV. OPEN RIZE PROGRAMMING INTERFACE

In this Section, we propose the Open RIZE interface as an
initial prototype to prove the capabilities that the RIZE archi-
tecture and the associated tools can offer in adopting the EUD
paradigm in real-world applications with social robots. The
design aspects we considered are presented in the paragraphs
below.

A. USER-CENTERED GUIDELINES

When working on Human-Computer Interaction (HCI)
usability is an important aspect to enable a user to reach
their goal using a system. Usability focuses on the creation of
interactive products that are easy to learn, easy to remember,
effective, efficient, and safe [56], [57]. To develop interfaces
that provide high usability during interaction, researchers in
HCI have proposed some design guidelines such as those
listed in [58]. However, these guidelines always involve
trade-offs, and their correct implementation depends on user
activities, and the context of use [59]. Therefore, designers
must juggle the constraints of the user, the context of use
and the system in order to find a balance between task
effectiveness and efficiency. In order to take into account
the usability in Open RIZE and to achieve simplicity of
use, we have attached importance to the following usability
rules: consistency, management of feedback and recovery,
and minimal design (Table 1). An interface that is consistent
is an interface in which the way of using it is the same
in the whole application. It means that the interface seems
homogeneous in terms of visual elements (e.g., fonts, back-
grounds, and colour), vocabulary, data format and positions
of the different elements of data in the screen [58]. Taking
consistency into account enable users to remember easily the
procedures used in the application and then to use it more
intuitively. To preserve consistency, designers can follow
well-established design patterns or layouts. Examples are
Google’s material design [60] and Apple’s Flat design [61].
By providing the appropriate feedback mechanisms or mes-
sages through the interface users can be informed of what
is going on in the system. Therefore, for each action that
the user performs through the interface, a clear and visible
reaction should appear to enable the users to understand the
system and maintain an interaction with it. An example of
feedback implementation included in Open RIZE is to show
visual elements that explain the state of the robot (e.g., when
itis connected or disconnected to the network) as well as error
messages and possible solutions. Programming a robot is in
many cases an iterative trial-error process. Therefore, mech-
anisms enabling users to recover from both execution errors
(e.g., create a new program that acts differently as expected)
and unintended errors (e.g, deleting a behavioural block)
must be implemented. Finally, a minimalist design seeks the
reduction of unnecessary contents in term of information

VOLUME 9, 2021

E. Coronado et al.: Towards a Modular and Distributed End-User Development Framework for Human-Robot Interaction

IEEE Access

TABLE 1. Usability guidelines adopted for the design of the rize interface.

Guideline Description

Consistency Use accepted standards or conventions to avoid confusions

Feedback Clearly show the current state of the system and avoid mode errors (e.g., if the program is in execution or not)
Recovery Errors must be easily recognized and recovered

Minimal design Reduce information overload

(2) Project (3) Advanced
name’ features’
example & * = B

Q T(4] Navigation

Robot Interfaces from
Zero Experience

+ 1 B m 14
(1) Project =
buttons
(i)
>]
(6) Program t
execution

FIGURE 3. RIZE interface.

data, by only keeping those strictly necessary for the users
to reach his tasks. It means that any ‘“‘decorative” elements or
not essential contents should be avoid or be made less visible.
Examples of design strategies used in Open RIZE to keep its
interface minimal are the use of generous whitespaces and
limited colour schemes as well as the use of flat patterns and
textures. The next section describes some of the most relevant
mechanisms, visual elements, and tools implemented in Open
RIZE for enabling the adoption of these usability rules.

B. DESIGN AND FEATURES OF THE OPEN RIZE INTERFACE
To design the graphical elements in the Open RIZE interface
we use Vuetify.js, a material design framework [62]. As
described in [60], material design is a group of ‘““guidelines,
components, and tools that support the best practices of user
interface design”. These guidelines were originally proposed
by Google, and are used in many software products, examples
being Gmail, Google Docs, Google Translator, Google Maps,
and the Android and Google Search interfaces. These are,
as a matter of fact, tools widely used by the generic user
in everyday life. Therefore, the adoption of material design
not only allows for the creation of user interfaces adhering to
current aesthetic tendencies, but that are also more familiar

VOLUME 9, 2021

(5) Connect

robot
TAT#
(7) Status 1* (8) Stop
message behaviors

and consistent. Figure 3 shows the home tab of the current
version of Open RIZE. The interface is divided into 4 spaces
with a toolbar on the top, a menu bar under the toolbar,
the workspace, and a footer.

In order to reduce the user’s cognitive load and preserve
consistency, EUD tools typically use standard icons as well
as tool-tips indicating the functionalities of each button. In
the main interface, a set of buttons located in the top tool-
bar (in Figure 3 highlighted with the number 1) provides
basic functionalities such as creating new projects, loading
a project, saving the current project, setting a robot’s IP
address, creating a new version of the project, and loading
a previous version of the project. The name of the project
is located at the center of the top toolbar (indicated with
number 2). On the right hand side of the top menu (number 3),
a set of buttons is used to activate advanced features, namely
activating the robot’s speech recognition capabilities, defin-
ing new animations, sending speech commands for Wizard
of OZ experiments, and opening the system’s terminal for
specific purposes. The menu bar consists of a set of tabs,
collectively displayed in the Figure 3 with the number 4.
This menu can be used to switch among different Open
RIZE’s workspaces. Each workspace consists of a home page

12681

IEEE Access

E. Coronado et al.: Towards a Modular and Distributed End-User Development Framework for Human-Robot Interaction

FIGURE 4. An alert message displayed when the robot is not connected.

Behavior ID

Robot Behavior

R | @
1

TR

@ B Th
@ B .
Edit
behavior ¢ ®

I

Edit comment

behavior

EZEIER L Crecte new

[x]

= Behavior's
comment
5]
Delete
behavior

mh

FIGURE 5. Organization of robot social behaviors in different modules.

(shown in Figure 3) and a set of tables where users can add,
delete, or update robot behaviors. The connection with robots
is established by pressing the button represented with the
number 5 in the Figure 3. This button is inside a graphical
element known as ‘“‘alert’”’, where the connection status of
the robot is displayed. This element can display different
colors and instructions depending on the connection status.
An example is shown in Figure 4, whereby a warning message
is displayed when Open RIZE is not able to connect to the
robot. A footer menu is used to start and stop an Open RIZE
program, as indicated by the number 6, as well as to show the
robot status (number 7). Finally, the button represented using
the number 8 is used to stop interactive events or behaviors,
such as speech recognition and face tracking.

One of the most relevant usability issues in data-flow and
block-based programming environments is the need to deal
with very large programs requiring the use of many graphical
elements [13]. Specifically, the more a program is large and
complex, the less readable it becomes and the more difficult it
is to find a particular piece of code. In order to overcome this
problem, robot social behaviors in Open RIZE are modeled
as independent sub-programs and are organized in lists. Each
robot behavior (or item) in a list is associated with a unique
identifier, and can be provided with a comment, which can
be used by end-users to include explanations about each
behavior’s functionalities. An example is shown in Figure 5.

12682

Robot behaviors are classified as reactions and goals, which
are explained in depth in Section V. Furthermore, Open
RIZE provides graphical elements encapsulating a sequence
of robot actions in modules. Open RIZE includes a predefined
set of lists of sub-programs, whereby the user can add, delete
or update relevant behavioral modules. Each sub-program is
modeled as an independent BTs. Therefore, a Open RIZE
project consist of a set of modular behaviors or sub-BTs
organized by categories in lists. When selecting an item from
one of these lists, a new interface appears. An example is
shown in Figure 6.

Programming interfaces in Open RIZE provide error pre-
vention and recovery mechanisms, such as confirmation
options before performing risky actions, undo and redo but-
tons. Moreover, Open RIZE features a basic versioning con-
trol approach enabling users to recover a desired version of
the selected sub-programs. The menu at the bottom of the
interface in Figure 6 is used to execute the current module as
well as to inspect the code generated by the current program.
This code for social behaviors is represented as BTs.

C. COMBINING BLOCKS AND FORMS

Open RIZE is a novel approach to program complex
robot social behaviors, expanding the capabilities of such
blocks-based programming tools as Google Blockly with
form-filling interfaces. In our use cases, blocks are used to

VOLUME 9, 2021

E. Coronado et al.: Towards a Modular and Distributed End-User Development Framework for Human-Robot Interaction

IEEE Access

Undo and redo changes
~

Close and /

Save behavior

irggers | TR Bresentation]
When detected

I Action b
Do

[action &) in paratiet 1| Ammation 3

Toolbox — =—fe——p

Workspace ———

“time"5) i 4

Execute/Stop
this behavior ‘ .

See
Behavior Tree

FIGURE 6. Example of a programming environment where end-users can define independent robot social behaviors.

e relo ['contextual"false,"pitch'50, velocity"50) JILAN

(a) A block-based programming element.

hello ‘
O contextual
e pitch
_— velocity
SET

(b) A form interface used for parameters tuning.

FIGURE 7. Example of a block representing a robot action an its form
interface.

organize and structure robot behaviors as a combination of
social skills, modules to manage perceptual inputs and to
perform robot actions, whereas the associated form-filling
interfaces are used to tune their parameters.

Figure 7 shows an example of a block element representing
a given social skill, and its related form-filling interface,
whereby robot text-to-speech capabilities can be modified.
In this case, the user can alter either the velocity or the pitch
(or both) of the robot’s voice, the text to utter, and select

VOLUME 9, 2021

whether this action requires the concurrent execution of any
contextual animation. Available form elements include slid-
ers for numerical inputs, text boxes for string-based inputs,
check boxes for Boolean inputs and drop-down lists for the
selection of elements in a given library, e.g., a list of emo-
tional expressions, sounds or animations that the robot may
make available.

D. MODIFYING ROBOT SOCIAL BEHAVIORS IN OPEN RIZE
Any visual element in Open RIZE can be modified using a
Python tool called Open RIZE Blockly Generator. As shown
in Figure 8, developers can add new robot social behaviors
to the Open RIZE programming environment by defining
their main attributes in a JSON file. These specifications
are read by a Python tool that generates the JavaScript and
HTML code defining the design of block elements and their
parameters in the form-filling interfaces of each behavior. All
the guidelines for adding new robot social behaviors to Open
RIZE are described in the documentation web page of the
Open RIZE Blockly Generator tool [63].

As an example, let us suppose speech capabilities must
be added, as shown in Figure 7. If a speech-related behav-
ior is available (maybe it corresponds to a set of specifi-
cally developed ROS nodes), the associated parameters can
be defined using a formalism similar to that reported in
Listing 1. In JSON notation, a developer can define an
intuitive title of for the behavioral primitive, which will
be therefore visualized as a block element (line 2). In this
case, the speech-related behavior is denoted as an imperative
action, i.e., say. Then, it is necessary to specify the behavior’s
type, i.e., whether the primitive is related to robot’s perception
(an input) or action (output) capabilities (line 3). A descrip-
tion of the block’s functionalities can be included in the form

12683

IEEE Access

E. Coronado et al.: Towards a Modular and Distributed End-User Development Framework for Human-Robot Interaction

1 1
1 Inputs r

- 1
Primitive Attributes

Type, description, main
input, parameters, ...

Developer

Auto-generation of social
programming primitives

----.-
>
o
Ve
e
.-
4"
.
- '.‘-
e
5
-
o
"'
&«

End-user

""" 1
:Output5|
Programming * === =1
environment

Code generator, Block
design specification,
Toolbox, ...

FIGURE 8. Schematic overview of the processes involved in the generation of new functional requirements for in Open

RIZE environment.

—

"primitive": "say",
"type": "output",
"description": "The robot says something",
"input": "string",
"options": {
"contextual": "bool",
"pitch": "percentage",
"velocity": "percentage",

0N OAWN =

©

10 }
1}

Listing. 1. Example of a social behaviour definition in Open RIZE.

of a text string (line 4). This description is shown when an
end-user selects the block. The input key is used to specify
the main parameter associated with the block, in this case
a text string indicating the sentences that will be uttered by
the robot. A set of optional inputs can be specified using the
options key. Each JSON description of the social behaviors is
parsed by a Python script. This script generates the respective
HTML and JavaScript code that defines the visual elements of
the block-based programming environment and form-filling
dialogues (used for change the parameters of each behavior
block) in Open RIZE.

V. THE OPEN RIZE's COGNITIVE ARCHITECTURE

Figure 9 shows the scheme of an interaction-oriented cog-
nitive architecture implemented in Open RIZE and adopted
in a series of real-world applications and software develop-
ment workshops with non technically-skilled end-users. The
architecture is composed of a set of knowledge-making mod-
ules (i.e., sensory and perception behaviors), a blackboard
system, a hybrid decision-making engine, and a set of robot
action-making modules. Communication among modules is
mainly managed by the NEP master node. Specific applica-
tions using nodes developed in ROS require the integration
with a ROS master node and the rosbridge server.

A. KNOWLEDGE-MAKING MODULES

Information that a robot can collect from the environment is
intrinsically multi-modal and heterogeneous in nature. There-
fore, it can be obtained via different sensory modalities. Open

12684

RIZE assumes the use of microphones, cameras, touch and
range sensors.

From a purely software architecture perspective, each sen-
sor is managed via a specific Sensor-Device design pat-
tern, i.e., low-level sensor device drivers are encapsulated
in software modules that can exchange messages via a
publish-subscribe mechanism. Overall, these modules are
part of the Open RIZE’s Sensory system. Apart from relevant
filtering algorithms and data preparation when necessary,
such a system provides low-level, raw information to the
Perceptual system, where data is structured and analyzed
using a series of social behaviors.

The Perceptual system consists of a number of
knowledge-making modules, which include social behaviors
aimed at making conceptualized data available to the black-
board for further analysis and use by the decision-making
engine. Typical robot behaviors reside in this system, includ-
ing state of the art algorithms for speech recognition, emotion
recognition, face/object recognition, and the interpretation of
touch and contact phenomena, as well as the interpretation
of human proxemics behaviors. The internal organization of
the Perceptual system is not limited to a number of sensory
data streams, insofar as data must be combined in complex
structure to be aggregated. Overall, the modules in the Per-
ceptual system generate output data that can be interpreted
as social behavioral primitives [26]. These data are encoded
using JSON serialization and dispatched to the blackboard,
which stores them for later processing.

B. THE BLACKBOARD MODULE

In Open RIZE, knowledge-making modules, the black-
board, and the decision-making engine are separated modules
that communicate with each other using a message-driven
scheme. All the modules in the Perceptual system write
high-level data on the blackboard. The format of these data
must be defined in advance using appropriate data struc-
tures, which are implicit in the modules’ provided interfaces.
A suitable technique to structure data to be transmitted via

VOLUME 9, 2021

E. Coronado et al.: Towards a Modular and Distributed End-User Development Framework for Human-Robot Interaction

IEEE Access

Sensory system low-level

Perceptual system

i representation
sertaton i

Speech recognition

) (Emotion recognition)

(Cameras) < (

Touch events) (—

Face recognition)

(Proxemics) (___ Object recognition)
high-level
f representation data
1 Open RIZE
i _
Environment Blackboard User Interface
register
1 robot events Environment
state <
Action Execution —p Decision Making be;\oat:r?;rs Code generator
(AE) B ——— Engine
——
control user
commands commands

FIGURE 9. Open RIZE's software architecture.

Rl to_touch | S S
Execute when detected: i touched [REEE) £

Robot actions:

E:ll:tion [say R SNy cotions EREERTREEY £ | with robot(s) ¢ .

Priority
FIGURE 10. Example of a simple reaction behavior.

publish-subscribe is the use of key-value pairs. While a key
is a label associated with a specific datum, a value can be
any suitable data type, including integer, float, double, string,
list, or dictionary, among others. In order to ground these
structures within well-formed messages, we decided to use
JSON, which is an open-standard, programming-language-
agnostic and transport-independent format used to transmit
and save data objects represented with key-value pairs.

In a broad sense, a blackboard can be used to store infor-
mation with varying levels of abstraction. By itself the black-
board is agnostic with respect to the stored information.
However, a general recommendation to design AAI model-
ing tools for non-technically skilled end-users is to adopt a
high-level data representation, which is as close as possible
to the domain knowledge end-users possess to support its
reasoned use [26].

C. THE DECISION-MAKING ENGINE

In RIZE, decision making (i.e., behavior selection and
sequencing) is managed by BTs. Although BTs outperform
FSMs in terms of a better trade-off between modularity and
reactivity, they are also characterized by a number of draw-
backs. One of them is their computational cost. A classical
decision-making engine only based in BTs evaluates BTs
specifications from the root node until a node with a status
of success, failure or running is reached. This approach was
used in an experimental version of RIZE [45]. However, each

VOLUME 9, 2021

new iteration requires to fully re-evaluate the tree, checking
all preconditions and states of the executed actions. This
approach enables reactivity in BT but also produces a large
number of unnecessary checking conditions (call from the
blackboard) which can produce prohibitive computational
cost for large BTs. An option to solve this problem has been
denoted as BT with memory nodes [38]. In this approach,
rather than examining the entire tree structure, execution is
resumed from some check-points avoiding those nodes that
had previously returned success or failure. However, these
compromise the reactivity features of the system, because the
robot can react only after a success or failure status is returned
for the full tree.

We deal with the problem of excessive checking of con-
ditions associated with the classical execution of BT by
proposing a novel decision-making engine composed of two
levels. At the higher level, a mechanism based on FSMs
and priority selection manages the overall execution of robot
behaviors with strict and simple control of the high-level
robot decision-making. At the low-level, the system executes
the user-defined modules. These modules or sub-BT are clas-
sified in two main types: reactions and goals.

Reactions. These modules are small sub-BT which can be
activated after the detection of a particular social stimulus. An
example modeled using Open RIZE is shown in Figure 10.
In this example, the action of text to speech is defined to
be executed every time the robot is touched on the head

12685

IEEE Access

E. Coronado et al.: Towards a Modular and Distributed End-User Development Framework for Human-Robot Interaction

Cancal goal if detactad:

If gosl cancaled do:

FIGURE 11. Example of a simple goal behaviour.

High-level layer

RF and not GA

running

running

GF or GC

RF = Reaction Finished GF = Goal Finished
GA = Goal Active
GC = Goal Canceled

RA = Reaction Active

reaction

RF and GA

Low-level layer

sub-BT of a authoring plan

FIGURE 12. Simplified diagram representing the proposed hybrid FMS and BT decision-making approach.

(the trigger condition). The proposed approach not only facil-
itates the creation of Trigger-Action Programming like [64]
(if-then) behaviors but also enables to define the priority of
these behaviors. This priority value can be defined by the user
as low, normal and high.

Goals or authoring plans are defined as sequences of
actions, or other complex behaviors. A goal is activated or
canceled if some sets of conditions are met. Unlike reactions,
goals can continue execution after their preemption by some
reaction with higher priority. In the proposed approach only
one goal or one reaction can be managed at the same time.
A simple example of a goal behavior is shown in Figure 11.
In this example, the goal is activated when the speech recog-
nition system detects the phrase “what is a robot?”. Then,
the robot executes the main behavior (a set of 4 actions
composed of say social primitives) until all the actions are
completed or until the condition to cancel this behavior is
met. In this example, when the behavior is canceled the robot

12686

will say “Ok, I will stop’. Moreover, if this behavior is pre-
empted from completion to attend a high priority reaction (for
example, head touched), at the end of the reaction, the flow
of the program can return back to the goal and continue with
its execution. Furthermore, before executing the list of goal’s
actions that were not yet completed, the robot can execute
some action to notify humans that it will continue with the
original goal. An example is shown in Figure 11. The return
behavior is modeled as a say action with the text “As I was
saying”’.

The approach used to execute reactions and goals is similar
to the BT with memory method [38]. However, the proposed
approach uses the FSM defined in the high-level layer of
the decision-making engine shown in Figure 12 to enable
reactivity. For this, a register of the conditions that activate
or cancel the defined reactions or goals, and their priorities is
first done. A program in Open RIZE maintains its execution
in the idle state until a set of social primitives that activates

VOLUME 9, 2021

E. Coronado et al.: Towards a Modular and Distributed End-User Development Framework for Human-Robot Interaction

IEEE Access

I Human detected (camesa) (253 £

ed (| Emotion (50 £
WO | am crad 1o 2ee you! et { fip - false, reverse salss, time’ -5;

ed (|, Emotion EFED £
LW T BT There is any problemT Bl [io'ifalse, reverse ' Halse, "time":5) B4

IF detacted (| Emotion ENTIE) £

LR T E Y Can | help vou? BN s false, reverss falss, "time"!

b
Oiptions:
Friarity: (G

FIGURE 13. A simple example of how selector can be used to change the
robot’s behavior based on the current state of the interaction
environment.

some goal or reaction is detected in the blackboard. From
Figure 12, if a reaction is activated (RA is true), the state
of the FSM changes to reaction running. Then, the sub-BT
which corresponds to the active reaction is executed until its
tree returns success or failure. The execution of this reaction
can be preempted if another reaction with higher priority is
triggered.

When a goal is active (GA is true), the FSM state changes
to the goal running state. If a goal is preempted by a reaction
before finishing the execution of all its actions (RA is true
when GA is true), this goal will resume its execution from
the last performed action once the reaction that caused the
preemption has been completed (RF is true and GA is true).
If the current goal completes its execution (GF is true) or the
goal is canceled (GC is true) the interaction state changes
back to idle. Goals can also resume their execution or can-
celled at any time, this is done by an an FSM located inside
the goal running state.

Other types of behaviors that can be part of reactions or
goals are sequences and selectors. Sequences encapsulate a
list of actions, selectors, or other sequences and thus enable
the easy re-use of parts of the code in different modules in
the programs. A sequence can be executed in two different
ways: (i) executing all the elements in the sequence in order;
or (ii) selecting only one element randomly for its execution.
These behaviors can be created in the modules list as indepen-
dent behaviors. Selectors enable the robot to behave based on
the current state of the environment. Figure 13 shows a simple
example of how a robot can react in different ways depending
on the detected human emotion.

D. ACTION-MAKING

The primary function of this module is to manage the exe-
cution of the robot commands sent by the decision-making
engine. It is important to highlight that to enable a
BT-based architecture to react to changes, periodical feed-
back of the state of the actions must be done between the
decision-making engine and the action-making [38]. For this,
the action-making publishes the current state of the robot’s

VOLUME 9, 2021

actions back to the decision-making engine. This information
is used for the decision-making engine to manage the robot
behaviors. The implemented action-making modules in Open
RIZE are written in Python and can also be connected to
low-level control modules (e.g. Moveit [65] for motion plan-
ning and execution) in other programming languages using
NEP or ROS frameworks. To help with the integration and
re-use of robot functionalities written in Python, we provide
the rize package. This Python package can be installed using
pip and implements a simple mechanism based on FSMs that
manages the execution of the functions executing the robot
behaviors. The outputs of modules using the rize Python
package are messages with the current status (success, run-
ning or failure) of the action being executed.

VI. VALIDATION WITH END-USERS AND IN THE WILD
SCENARIOS

The creation of user interfaces generally is a user-centered
iterative process that required the inclusion of end-users in
the analysis, design, evaluation, and implementation phases
[66]. However, in the robotics community, the inclusion of
end-users in the development of HRI scenarios as well as
their implementation in real scenarios is still rare [3], [67].
Instead, the majority of existing HRI studies for robotics are
performed in laboratories or other semi-structured scenarios.
Moreover, the evaluation of EUP/EUD interfaces and HRI
scenarios is often performed with convenient samples (i.e.,
laboratory colleagues or engineering students), instead of
users representative of the target audience addressed [67].

The target users of Open RIZE are non technical persons
who need to create scenarios of Human-Robot interaction.
Through collaborative project with various people in this
situation, we refined incrementally Open RIZE. End-users
were invited to directly program and execute the desired
robot behaviors using several versions of the Open RIZE
interface. Applications developed by end-users include robots
on stage (performed in 2017 and presented in [42]), robots in
domestic settings (performed in 2018 and presented in [68]),
Children-Robot Interaction (CHI) (performed in 2019 and
presented in [46]), and co-design workshops (performed
in 2020 and which preliminary results are presented in [69],
[70]). For each collaboration, the main outcomes were: (i) the
integration of novel methods and technologies to satisfy the
requirements of end-users, (ii) design of a block-based pro-
gramming environment adapted to the context of the end-user
applications, and (iii) evaluation and implementation of appli-
cations developed by end-users in real and public settings.
We briefly describe main objectives of these collaborative
projects below. Main outcomes, requirements, and technolo-
gies implemented in each of these projects are summarized in
table 2.

The initial version of RIZE used a programming interface
where robot behaviors are modeled as simple IF-THEN-
ELSE rules which launched a set of sequential behaviors.
As described in [45], this interface was developed on top
of a Python-based web server and basic functionalities of

12687

IEEE Access

E. Coronado et al.: Towards a Modular and Distributed End-User Development Framework for Human-Robot Interaction

TABLE 2. Main detected issues and implemented technologies for each iteration with real end users.

Application area Main user needs

Main detected issues Implemented technologies

Theatres and museums [42] An easy-to-use programming environment

Rule-based system limits the complexity of
the robot behaviors that end users can design

NEP, Flask, Google Blockly, Rule-
based systems

Domestic environments [68] Creation of reactive and goal-oriented behaviors

Behavior Trees (BTs), Blackboard
systems

The use of Python to back-end RIZE pro-
gramming interfaces produce error-prone in-
stallation steps

Children-Robot Interaction [46] Creation of semi-autonomous behaviors

Block-based programming environments

present re-usability issues

Node.js, Vue.js

Co-design workshops [70] Use of a robot simulator, integration with ROS-

based robots, version control

Bugs in some functionalities Vuetify, electron, form-filling inter-

faces, ROS, rosbridge

Google Blockly. We use this initial version to enable come-
dians and social researchers to design and develop simple
interactive scenarios with social robots [42]. In this way,
professionals were able to explore new paradigms supporting
their profession. An example of application shown in [71]
is the design of a set of short comical sketches between
human actors and a NAO social robot. For the creation of
interactive scenarios in domestic environments [68] and CHI
[46], it was required to increase the reactivity, re-usability,
and complexity of those behaviors designed by end-users.
In these two cases, social robots required to dynamically
react to multi-modal inputs and perform different types of
activities, such as games, exercise routines, dance, display
current weather conditions, among others. To enable the easy
creation of more reactive, complex, and dynamic behav-
iors, we substituted the rule-based systems as the main pro-
gramming approach by Behavior Trees. We also substituted
the proposed Python-based web-server developed in [45]
by a Node.js to back-end RIZE interfaces (as described in
section III). In comparison with server-side web frameworks
in Python, Node.js is faster, scalable, event-based, and asyn-
chronous. Moreover, applications developed with Node.js can
be easily installed in most modern desktop-oriented operating
systems without the need to install additional third-party
libraries. These new versions of Open RIZE enable social
researchers to design long-term HRI scenarios in 5 Japanese
and 5 French home environments [68] and several short-term
activities in kindergartens with humanoid robots [1]. In these
applications using NAO and Pepper robots, we implemented
the NAO software development kit version 2.4.3 in Python
for the development of the basic software modules.

In 2020, a collaboration was set up with researchers in
Human-Robot Interaction from Monash University with the
aim of better understanding how the general end-users under-
stand robots overall and the possible roles robots could take
in public spaces. This collaboration aimed to use Open Rize
in several workshop sessions where participants had to create
behaviours to put a robot into action. These workshops were
organized and managed by researchers at Monash University,
Australia, as part of the RiPS project [70]. Unlike previ-
ous applications using Open RIZE and due to the limita-
tions of the COVID-19 lockdown, all these workshops were
conducted via a video conferencing platform (Zoom). For
these workshops, staff members of the Monash University

12688

with no prior experience with robots or programming were
recruited [70]. These staff members belong to faculties of
architecture, arts, and criminology. The same 11 participants
realised the first two workshops, and 11 other participants
integrated the third workshop.

The first two workshops were a two-hour session divided
into three steps. The first step aimed at collecting data through
questionnaires on users’ general impression of robots and
their opinion on robots in public spaces. The second step
consisted of having participants discuss in groups of four
about behaviours of a robot for public spaces. This step
was a participatory step enabling participants to co-design
behaviours of a robot. A brief demonstration of Open RIZE
was done at the beginning of the step be fore the discussion
starts. When exchanging together, participants indicated to a
researcher in the lab which actions to realise on the interface
of Open RIZE to create behaviours they wanted the robot to
perform. In the first workshop, participants could see results
of their actions through a simulator of the Pepper humanoid
robot. In the second workshop, a real Pepper robot in the lab
executed the programmed behaviors that participants could
see remotely. The goal of this step was to deepen their
understanding of robots and to elicit concrete discussions on
robotics technology. In the last step, participants discussed
together regarding suitable scenarios and robots’ behaviours
for public spaces. A more detailed explanation of the experi-
mental protocol and results of the first and second workshops
are reported in [69], [70], [72].

Following the previous workshops, a third workshop was
set up with similar goals. The protocol of this workshop
consisted of four steps. The first three steps were the same
as the three steps of previous protocols. Figure 14 shows an
example of a simple program developed by participants in
the third workshop. In the fourth step realised after the ses-
sion, participants were asked to fill in form online question-
naires regarding robot self-efficacy perception, perceptions of
robots, workshop design, workshop tools and expectations of
future robots’ use. One of this questionnaire was the System
Usability Scale (SUS), giving an idea of the level of usability
of Open RIZE. SUS consists of 10 Likert items with five
response options varying from strongly agree (5) to strongly
disagree (1). This questionnaire is an industrial standard
that researchers and practitioners should strongly consider
using [73]. SUS allows a reliable and valid evaluation of

VOLUME 9, 2021

E. Coronado et al.: Towards a Modular and Distributed End-User Development Framework for Human-Robot Interaction

IEEE Access

Human ditectod [cames) IEE £

Select behaviors

P et thom) R] [Contoiaal nise, pitoh” 50 ywioory: &0) B A]

FIGURE 14. Example of a program developed by participants of the third
workshop.

a wide variety of products and services such as hardware,
software, websites, and applications. Moreover, it can be used
in a small group of people and still offer reliable results with
twelve persons [74]. To calculate SUS score is required to
follow the next steps: (1) subtract 1 from the score obtained
in odd questions, (2) for each even question subtract their
value from 5, (3) add the values obtained from step 1 and
2 to the total score, (4) multiply the total score by 2.5 [73],
[75]. SUS scores are between 0 and 100. Interfaces above
68 are considered to have above average and acceptable
usability [75]. It is important to highlight that SUS scores
are not percentages [75]. However, they can be interpreted
as percentile values. For example, a SUS value above 80.3 is
considered to be an excellent score that less than 10 % of
interfaces have. Considering Open RIZE, the final SUS score
is 72.73, which represents an acceptable usability score [73],
[76]. Table 3 shows the mean and standard deviation (o)
for each SUS question. From the 11 participants in the third
workshop, only 10 answered the SUS questionnaire. Aspects
specially well-valued by the workshop participants were the
easy-to-use and easy to learn aspects of Open RIZE (Ques-
tions 2,3,9, and 10). Participants also felt that some func-
tionalities could be improved (question 5). The SUS score
is a first evaluation of usability of Open RIZE, and possible
biases have to be taken into consideration, in particularly,
participants did no directly used Open RIZE and they used
it in a group, implying that perception of usability could be
different from an individual and direct use. Even if this result
has some biases, we consider that this scale gives an initial
usability evaluation that should be further developed through
user testing.

In addition to the overall perception of the usability of
Open RIZE through the SUS, this third workshop enabled
to get some feedback regarding the functions of Open RIZE
during the open discussions at the end of the session, and

VOLUME 9, 2021

TABLE 3. SUS questions and results.

N Question mean o

1 I think that I would like to use this system | 3.7 1.10
frequently

2 I found the system unnecessarily complex 1.5 0.50

3 I thought the system was easy to use 44 0.66

4 I think that I would need the support of a | 2.6 1.01
technical person to be able to use this system

5 I found the various functions in this system were | 3.6 0.91
well integrated

6 I thought there was too much inconsistency in | 2.0 0.63
this system

7 I would imagine that most people would learn | 3.9 0.83
to use this system very quickly

8 1 found the system very cumbersome to use 2.0 0.77
I felt very confident using the system 3.7 1.00

10 I needed to learn a lot of things before I could | 2.1 0.83
get going with this system

through the final questionnaires. Some of the most relevant
functions suggested by participants are to allow communi-
cation with other electronic devices (e.g., smartphones and
smartwatches) and more options enabling remote control of
robots. The addition of the two first functions is a trivial task
thanks to the modular nature of the proposed software archi-
tecture. This integration can be performed by using mobile
applications built on top of NEP or the rosbridge suite, which
can also enable the streaming of data between desktop PC
and Android or iOS devices. Participants suggested also other
desired functions especially to be able to manage the Pepper’s
tablet. This will guide the next iterations in the development
of novel programming interfaces based on the RIZE software
architecture and tools. A future session of this set of co-design
workshops will include the use of the Fetch service robot.

VIl. CONCLUSION AND FUTURE WORK

This article presented the software architecture and main soft-
ware tools of the RIZE framework. As shown in this article,
RIZE was designed to be a modular, distributed and acces-
sible framework for building robot programming interfaces.
The approaches and tools used in the development of RIZE
enabled the implementation of different HRI applications
in open, public and social settings. Moreover, the software
architecture and modular design of RIZE allowed for an
easy adaptation to the dynamic needs of users. This level of
flexibility is rarely presented in EUD/EUP solutions for social
and service robotics, which are often context, robot, program-
ming language, or operating system dependent. Furthermore,
the use of distributed and component-based approaches such
as NEP and ROS enable the easy extension to other HRI
areas by the re-use of open-source and academic software.
Therefore, future work will focus on exploring novel con-
texts, such as educational and industrial scenarios. RIZE
can also be complemented with a set of pre-built modules
for knowledge acquisition using state-of-art deep learning
methods, advanced emotional expression, and learning from
demonstration. We also plan to explore novel and hybrid
approaches between different types of visual languages and
decision-making approaches for enabling the easy prototyp-
ing of more complex and dynamic robot behaviors. Rather

12689

IEEE Access

E. Coronado et al.: Towards a Modular and Distributed End-User Development Framework for Human-Robot Interaction

than propose a static or monolithic programming environ-
ment, such as most previous works, RIZE is designed as a
modular and adaptable EUD research framework for robotics,
which can be easily interfaced with code from other HRI
projects and new robotics platforms.

Open RIZE is an example of a programming environment
built on top of the RIZE software architecture and tools.
This interface was designed to enable the easy and rapid
development of common HRI behaviors. The technological
suitability of Open RIZE was proved in several applications
with different types of real end-users. The initial usability
evaluation using SUS indicated that Open RIZE seems to
be easy to use and learn. However, unlike other applications
performed using a RIZE-based interface and due to the limita-
tions of the COVID-19 lockdown, participants of performed
co-design workshops were not able to directly interact with
the interface and robots. This limitation can bias the obtained
results of the SUS questionnaire. Therefore, more usability
studies will be needed. A possible short-term solution to deal
with the current issues due to COVID-19, which hinders
the performance of HRI and HCI experimental evaluations,
is enabling the remote programming and control of robots,
which can be performed using communication tools such as
rosbridge. Due that RIZE was designed to be independent of
the VLP implemented (i.e., programming interfaces in RIZE
can be based on blocks, forms, data-flows, or a mixture of
different types), comparisons between different types of VPL
approaches will be performed. For evaluating these different
types of VPL, it will be required to consider objective (e.g.,
the time users required to complete a specific task or the
complexity of the programmed behaviors) and subjective
metrics (e.g., usability). This brings us to consider realizing
user-centered research and testing that guide the development
of novel programming interfaces, similar to Open RIZE,
that not only can be adapted to different robotics platforms
and HRI projects but also be able to deeply meet user’s
expectations.

REFERENCES

[1] E.Coronado and G. Venture, “Towards loT-aided human—robot interaction
using NEP and ROS: A platform-independent, accessible and distributed
approach,” Sensors, vol. 20, no. 5, p. 1500, Mar. 2020.

[2] G. Fischer, “End user development and meta-design: Foundations for
cultures of participation,” in End-User Computing, Development, and
Software Engineering: New Challenges. Hershey, PA, USA: 1GI Global,
2012, pp. 202-226.

[3] M. Jung and P. Hinds, “Robots in the wild: A time for more robust theories
of human-robot interaction,” ACM Trans. Hum.-Robot Interact., vol. 7,
no. 1, pp. 1-5, May 2018.

[4] S. Sabanovic, M. P. Michalowski, and R. Simmons, ‘“Robots in the wild:
Observing human-robot social interaction outside the lab,” in Proc. 9th
IEEE Int. Workshop Adv. Motion Control, Mar. 2006, pp. 596-601.

[5] D. Glas, S. Satake, T. Kanda, and N. Hagita, “An interaction design
framework for social robots,” in Robotics: Science and Systems, vol. 7.
2012, p. 89.

[6] T. Kanda and H. Ishiguro, Human-Robot Interaction in Social Robotics.
Boca Raton, FL, USA: CRC Press, 2016.

[7]1 E. E. Ritter, G. D. Baxter, and E. F. Churchill, “User-centered systems
design: A brief history,” in Foundations for Designing User-Centered
Systems. London, U.K.: Springer, 2014, pp. 33-54.

12690

[8]

[91

(10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

(20]

(21]

[22]

(23]

(24]

[25]

(26]

(27]

(28]

[29]

(30]

(31]

(32]

N. B. Hansen, C. Dindler, K. Halskov, O. S. Iversen, C. Bossen,
D. A. Basballe, and B. Schouten, ‘“How participatory design works: Mech-
anisms and effects,” in Proc. 31st Austral. Conf. Hum.-Comput.-Interact.,
Dec. 2019, pp. 30-41.

G. Fischer, “End-user development: From creating technologies to trans-
forming cultures,” in Proc. Int. Symp. End User Develop. Berlin, Germany:
Springer, 2013, pp. 217-222.

F. Paterno and V. Wulf, New Perspectives in End-User Development.
Cham, Switzerland: Springer, 2017.

B. R. Barricelli, F. Cassano, D. Fogli, and A. Piccinno, “End-user devel-
opment, end-user programming and end-user software engineering: A sys-
tematic mapping study,” J. Syst. Softw., vol. 149, pp. 101-137, Mar. 2019.
Enrique Coronado. Open Rize. Accessed: Jun. 1,2020. [Online]. Available:
https://github.com/enriquecoronadozu/Open-RIZE-beta

E. Coronado, F. Mastrogiovanni, B. Indurkhya, and G. Venture, ““Visual
programming environments for end-user development of intelligent and
social robots, a systematic review,” J. Comput. Lang., vol. 58, Jun. 2020,
Art. no. 100970.

P. Bachiller-Burgos, 1. Barbecho, L. V. Calderita, P. Bustos, and
L.J. Manso, “LearnBlock: A robot-agnostic educational programming
tool,” IEEE Access, vol. 8, pp. 30012-30026, 2020.

B. Jost, M. Ketterl, R. Budde, and T. Leimbach, “Graphical programming
environments for educational robots: Open Roberta—Yet another one?” in
Proc. IEEE Int. Symp. Multimedia, Dec. 2014, pp. 381-386.

N. Park, “Application and analysis of steam using education programming
language in elementary school,” Int. Inf. Inst. Inf., vol. 16, no. 10, p. 7311,
2013,

M. A. Conde, C. Fernindez, J. Alves, M.-J. Ramos, S. Celis-Tena,
J. Gongalves, J. Lima, D. Reimann, I. Jormanainen, and F. J. G. Pefalvo,
“RoboSTEAM—A challenge based learning approach for integrating
STEAM and develop computational thinking,” in Proc. 7th Int. Conf.
Technol. Ecosyst. Enhancing Multiculturality, Oct. 2019, pp. 24-30.

C. Paxton, A. Hundt, F. Jonathan, K. Guerin, and G. D. Hager, “CoSTAR:
Instructing collaborative robots with behavior trees and vision,” in Proc.
IEEE Int. Conf. Robot. Automat. (ICRA), May 2017, pp. 564-571.

F. Steinmetz, A. Wollschldger, and R. Weitschat, “Razer—A HRI for
visual task-level programming and intuitive skill parameterization,” JEEE
Robot. Autom. Lett., vol. 3, no. 3, pp. 1362-1369, Jul. 2018.

A. Carfi, J. Villalobos, E. Coronado, B. Bruno, and F. Mastrogiovanni,
“Can human-inspired learning behaviour facilitate human-robot interac-
tion?” Int. J. Social Robot., vol. 12, no. 1, pp. 173-186, Jan. 2020.

V. Villani, F. Pini, F. Leali, C. Secchi, and C. Fantuzzi, “Survey on human-
robot interaction for robot programming in industrial applications,” IFAC-
PapersOnlLine, vol. 51, no. 11, pp. 6671, 2018.

H. Canbolat, Robots Operating in Hazardous Environments. Norderstedt,
Germany: Books on Demand, 2017.

F. Dimeas, F. Fotiadis, D. Papageorgiou, A. Sidiropoulos, and Z. Doulgeri,
“Towards progressive automation of repetitive tasks through phys-
ical human-robot interaction,” in Human Friendly Robotics. Cham,
Switzerland: Springer, 2019, pp. 151-163.

K. Darvish, F. Wanderlingh, B. Bruno, E. Simetti, F. Mastrogiovanni, and
G. Casalino, “Flexible human—robot cooperation models for assisted shop-
floor tasks,” Mechatronics, vol. 51, pp. 97-114, May 2018.

K. Darvish, E. Simetti, F. Mastrogiovanni, and G. Casalino, “A hier-
archical architecture for human-robot cooperation processes,” 2020,
arXiv:2009.02807. [Online]. Available: http://arxiv.org/abs/2009.02807

J. Diprose, B. MacDonald, J. Hosking, and B. Plimmer, “Designing an
API at an appropriate abstraction level for programming social robot
applications,” J. Vis. Lang. Comput., vol. 39, pp. 22-40, Apr. 2017.

K. Dill, “Structural architecture—Common tricks of the trade,” in Game
Al Pro: Collected Wisdom of Game Al Professionals. Boca Raton, FL,
USA: CRC Press, 2013, p. 61.

D. Garcia, L. Segars, and J. Paley, “Snap!(build your own blocks): Tutorial
presentation,” J. Comput. Sci. Colleges, vol. 27, no. 4, pp. 120-121, 2012.
M. Resnick, J. Maloney, A. Monroy-Herndndez, N. Rusk, E. Eastmond,
K. Brennan, A. Millner, E. Rosenbaum, J. Silver, B. Silvermann, and
Y. Kafai, “Scratch: Programming for all,” Commun. ACM, vol. 52, no. 11,
pp. 60-67, 2009.

Google. Blockly. Accessed: Jun.
https://developers.google.com/blockly
J. Huang, T. Lau, and M. Cakmak, “Design and evaluation of a rapid
programming system for service robots,” in Proc. 11th ACM/IEEE Int.
Conf. Hum.-Robot Interact. (HRI), Mar. 2016, pp. 295-302.

1. Zubrycki, M. Kolesinski, and G. Granosik, “Graphical programming
interface for enabling non-technical professionals to program robots and
Internet-of-Things devices,” in Proc. Int. Work-Conf. Artif. Neural Netw.
Cham, Switzerland: Springer, 2017, pp. 620-631.

6, 2020. [Online]. Available:

VOLUME 9, 2021

E. Coronado et al.: Towards a Modular and Distributed End-User Development Framework for Human-Robot Interaction

IEEE Access

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

D. Weintrop, A. Afzal, J. Salac, P. Francis, B. Li, D. C. Shepherd, and
D. Franklin, “Evaluating CoBlox: A comparative study of robotics pro-
gramming environments for adult novices,” in Proc. CHI Conf. Hum.
Factors Comput. Syst., Apr. 2018, p. 366.

J. P. Diprose, B. Plimmer, B. A. MacDonald, and J. G. Hosking,
“A human-centric API for programming socially interactive robots,”
in Proc. IEEE Symp. Vis. Lang. Human-Centric Comput. (VL/HCC),
Jul. 2014, pp. 121-128.

G. N. Yannakakis and J. Togelius, Artificial Intelligence and Games, vol. 2.
New York, NY, USA: Springer, 2018.

B. Ur, E. Mcmanus, M. P. Y. Ho, and M. L. Littman, “Practical trigger-
action programming in the smart home,” in Proc. SIGCHI Conf. Hum.
Factors Comput. Syst., Apr. 2014, pp. 803-812.

L. De Russis and F. Corno, “HomeRules: A tangible end-user program-
ming interface for smart homes,” in Proc. 33rd Annu. ACM Conf. Extended
Abstr. Hum. Factors Comput. Syst., Apr. 2015, pp. 2109-2114.

M. Colledanchise and P. Ogren, “Behavior trees in robotics and
AL: An introduction,” 2018, arXiv:1709.00084. [Online]. Available:
https://arxiv.org/abs/1709.00084

M. Dawe, S. Garolinski, L. Dicken, T. Humphreys, and D. Mark, ‘“Behav-
ior selection algorithms: An overview,” in Game Al Pro: Collected Wisdom
of Game Al Professionals. Boca Raton, FL, USA: CRC Press, 2014,
pp. 47-60.

Rethink Robotics. Intera Software Platform for Industrial
Automation. Accessed: Jun. 1, 2020. [Online]. Available: http://www.
rethinkrobotics.com/intera

A. J. Champandard and P. Dunstan, “The behavior tree starter kit,” in
Game Al Pro: Collected Wisdom of Game Al Professionals. Boca Raton,
FL, USA: CRC Press, 2012, pp. 72-92.

E. Coronado, F. Mastrogiovanni, and G. Venture, “‘Design of a human-
centered robot framework for end-user programming and applica-
tions,” in ROMANSY 22-Robot Design, Dynamics and Control. Cham,
Switzerland: Springer, 2019, pp. 450-457.

1. Zubrycki and G. Granosik, “Designing an interactive device for sensory
therapy,” in Proc. 11th ACM/IEEE Int. Conf. Hum.-Robot Interact. (HRI),
Mar. 2016, pp. 545-546.

M. Seraj, S. Autexier, and J. Janssen, “BEESM, a block-based educational
programming tool for end users,” in Proc. 10th Nordic Conf. Hum.-
Comput. Interact., Sep. 2018, pp. 886-891.

E. Coronado, F. Mastrogiovanni, and G. Venture, ‘‘Development of intel-
ligent behaviors for social robots via user-friendly and modular program-
ming tools,” in Proc. IEEE Workshop Adv. Robot. Social Impacts (ARSO),
Sep. 2018, pp. 62-68.

E. Coronado, X. Indurkhya, and G. Venture, ‘“‘Robots meet children, devel-
opment of semi-autonomous control systems for children-robot interaction
in the wild,” in Proc. IEEE 4th Int. Conf. Adv. Robot. Mechatronics
(ICARM), Jul. 2019, pp. 360-365.

A. S. Tanenbaum and M. Van Steen, Distributed Systems: Principles and
Paradigms. Upper Saddle River, NJ, USA: Prentice-Hall, 2007.

D. Kortenkamp, R. Simmons, and D. Brugali, ‘“Robotic systems archi-
tectures and programming,” in Springer Handbook of Robotics. Cham,
Switzerland: Springer, 2016, pp. 283-306.

PyPI. The Python Package Index (PYPI): A Repository of Software for
the Python Programming Language. Accessed: Jun. 1, 2020. [Online].
Available: https://pypi.org

D. Brugali and P. Scandurra, “Component-based robotic engineering
(part I) [tutorial],” IEEE Robot. Autom. Mag., vol. 16, no. 4, pp. 84-96,
Dec. 2009.

M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler,
and A. Y. Ng, “Ros: An open-source robot operating system,” in Proc.
ICRA Workshop Open Source Softw., 2009, vol. 3, no. 3.2, p. 5.

C. Crick, G. Jay, S. Osentoski, B. Pitzer, and O. C. Jenkins, ‘“Ros-
bridge: ROS for non-ROS wusers,” in Robotics Research. Cham,
Switzerland: Springer, 2017, pp. 493-504.

Vue.js. The Progressive Javascript Framework. Accessed: Jun. 1, 2020.
[Online]. Available: https://vuejs.org

C. Anderson, “The model-view-viewmodel (MVVM) design pattern,” in
Pro Business Applications With Silverlight 5. Berkeley, CA, USA: Apress,
2012, pp. 461-499.

Microsoft TechNet. (2018). Blackboard Design Pattern. [Online]. Avail-
able: https://social.technet.microsoft.com/wiki/contents/articles/13215.
blackboard-design-pattern.aspx

N. Bevan, “International standards for HCI and usability,” Int. J. Hum.-
Comput. Stud., vol. 55, no. 4, pp. 533-552, Oct. 2001.

VOLUME 9, 2021

[57]

(58]

[59]
[60]
[61]
[62]

[63]

[64]

[65]

[66]

[67]

(68]

[69]

[70]

(711

(72]

(73]

[74]

(751

[76]

T. Issa and P. Isaias, “Usability and human computer interaction (HCI),”
in Sustainable Design. London, U.K.: Springer, 2015, pp. 19-36.

J. Johnson, Designing With the Mind in Mind: Simple Guide to Under-
standing User Interface Design Guidelines. Amsterdam, The Netherlands:
Elsevier, 2013.

D. A. Norman, “Design principles for human-computer interfaces,” in
Proc. SIGCHI Conf. Hum. Factors Comput. Syst. (CHI), 1983, pp. 1-10.
Google. (2020). Material Design Guidelines. Accessed: Jun. 1, 2020.
[Online]. Available: https://material.io/design

Apple. (2020). Apple Design. Accessed: Jun. 1, 2020. [Online]. Available:
https://developer.apple.com/design/

Vuetify. VUE Material Design Component Framework. Accessed:
Jun. 1, 2020. [Online]. Available: https://vuetifyjs.com

Enrique Coronado. Open Rize Blockly Generator. Accessed: Jun. 1, 2020.
[Online]. Available: https://github.com/enriquecoronadozu/Open-RIZE-
Blockly-Generator

N. Leonardi, M. Manca, F. Paterno, and C. Santoro, “Trigger-action pro-
gramming for personalising humanoid robot behaviour,” in Proc. CHI
Conf. Hum. Factors Comput. Syst., May 2019, p. 445.

S. Chitta, I. Sucan, and S. Cousins, “Movelt! [ROS topics],” IEEE Robot.
Autom. Mag., vol. 19, no. 1, pp. 18-19, Mar. 2012.

C. Abras, D. Maloney-Krichmar, and J. Preece, “User-centered design,”
Bainbridge, W. Encyclopedia Hum.-Comput. Interact., Thousand Oaks,
Sage Publications, vol. 37, no. 4, pp. 445-456, 2004.

C. Bartneck, T. Belpaeme, F. Eyssel, T. Kanda, M. Keijsers, and
S. §abanovic’, Human-Robot Interaction: An Introduction. Cambridge,
U.K.: Cambridge Univ. Press, 2020.

D. Deutf, I. Ocnarescu, L. E. Coronado, L. Rincon-Ardila, I. Milleville, and
G. Venture, “Designerly way of thinking in a robotics research project,”
J. Robot. Soc. Jpn., vol. 38, no. 8, pp. 692-702, 2020.

L. Tian, P. Carreno-Medrano, A. Allen, S. Sumartojo, M. Mintrom,
E. Coronado, G. Venture, E. Croft, and D. Kulié, “Redesigning human-
robot interaction in response to robot failures: A participatory design
methodology,” in Proc. CHI-Case Stud., 2020.

L. Tian, P. Carreno-Medrano, S. Sumartojo, M. Mintrom, E. Coronado,
G. Venture, and D. Kuli¢, “User expectations of robots in public spaces:
A co-design methodology,” in Proc. ICSR, 2020, pp. 259-270.

GVlab. (2017). Nao Bird and MC. Accessed: Jun. 1, 2020. [Online].
Available: https://youtu.be/3H3aziEVMC4

P. Carreno-Medrano, L. Tian, A. Allen, S. Sumartojo, M. Mintrom,
E. Coronado, G. Venture, E. Croft, and D. Kulic, “Aligning Robot’s
behaviours and Users’ perceptions through participatory prototyp-
ing,” 2021, arXiv:2101.03660. [Online]. Available: http://arxiv.org/
abs/2101.03660

J. R. Lewis, “The system usability scale: Past, present, and future,” Int. J.
Hum.-Comput. Interact., vol. 34, no. 7, pp. 577-590, Jul. 2018.

T. S. Tullis and J. N. Stetson, “A comparison of questionnaires for
assessing website usability,” in Proc. Usability Professionals Assoc. (UPA)
Conf., 2004, pp. 1-14.

Usability.gov. (2017). Visual Design Basics. Accessed: Jun. 1, 2017.
[Online]. Available: https://www.usability.gov/what-and-why/visual-
design

A. Bangor, P. Kortum, and J. Miller, “Determining what individual SUS
scores mean: Adding an adjective rating scale,” J. Usability Stud., vol. 4,
no. 3, pp. 114-123, 2009.

ENRIQUE CORONADO received the B.S.
degree in mechatronics engineering from the
Autonomous University of San Luis Potosi, Mex-
ico, in 2012, the M..S. degree in advanced robotics
from the Ecole Centrale of Nantes, France, and
also from the University of Genoa, Italy, in 2017,
and the Ph.D. degree in mechanical engineering
systems from the Tokyo University of Agriculture
and Technology, Japan, in 2020. He is currently
an Assistant Professor with the Department of

J

Mechanical Systems Engineering, Tokyo University of Agriculture and
Technology. His research interests include software architectures for robotics
systems, human-robot interaction, end-user development, affecting comput-
ing, and artificial intelligence.

12691

IEEE Access

E. Coronado et al.: Towards a Modular and Distributed End-User Development Framework for Human-Robot Interaction

DOMINIQUE DEUFF received the Engineering
degree in digital imaging from the University of
Rennes 1, France, in 1997, the master’s degree
in ergonomics and applied her new skills to var-
ious projects from Orange, in 2008, and the Ph.D.
degree in computer science from the University of
Rennes 1, in 2003. She is currently pursuing the
Ph.D. degree in ergonomics and design regarding
social robotics at home with the University of

! Nantes. For 2 years, she was with the National
Institute of Informatics, Japan as a Postdoctoral Researcher. She came back
to France, in 2006, she joined Orange Labs as a Developer.

PAMELA CARRENO-MEDRANO received the
combined B.Eng. degree in computer engineer-
ing from the Ecole Nationale d’Ingénieurs de
Brest, France, the M.Sc. degree in computer sci-
ence from Universidad EAFIT, Colombia, in 2012,
and the Ph.D. degree from the University of
Bretagne-Sud, France, in 2016. From 2017 to
2019, she was a Postdoctoral Research Fellow
with the University of Waterloo, Canada. She is

% currently a Postdoctoral Research Fellow with the
Human-Robot Interaction Group, Faculty of Engineering, Monash Uni-
versity. Her research interests include understanding and analyzing human
behavior for human-robot interaction purposes. In particular, she is inter-
ested in investigating how the underlying information humans convey
through their movements and action choices can be used to inform and
guide a robot’s actions and social-interactive behavior. Her research interests
include robot interactive learning, human-robot interaction, and affective
computing.

LEIMIN TIAN received the B.Eng. degree from
the Beijing University of Posts and Telecom-
munications, in 2012, and the M.Sc. degree
and the Ph.D. degree in informatics from the
Institute of Language, Cognition and Computa-
tion, School of Informatics, The University of
Edinburgh, in 2013 and 2018, respectively. She
is currently a Postdoctoral Research Fellow with
the Human—Robot Interaction Group, School of
Engineering, and also with the Human-Centered
Al Group, Faculty of IT, Monash University. Her research interests include
affective computing and human-robot interaction, in particular, combining
human knowledge on emotions and the power of computational models to
realize affective human-robot interaction. She has been serving as a Junior
Committee Member for the Association for the Advancement of Affective
Computing (AAAC), since 2018.

DANA KULIC (Member, IEEE) received the
combined B.A.Sc. and M.Eng. degrees in
electro-mechanical engineering, and the Ph.D.
degree in mechanical engineering from the Uni-
versity of British Columbia, Canada, in 1998 and
2005, respectively. From 2006 to 2009, she was a
JSPS Postdoctoral Fellow and a Project Assistant
Professor with the Nakamura-Yamane Labora-
tory, The University of Tokyo, Japan. In 2009,
she established the Adaptive System Laboratory,
University of Waterloo, Canada, conducting research in human-robot inter-
action, human motion analysis for rehabilitation, and humanoid robotics.
Since 2019, she has been a Professor and the Director of Monash robotics
with Monash University, Australia. She conducts research in robotics and
human-robot interaction, and develops autonomous systems that can operate
in concert with humans, using natural and intuitive interaction strategies
while learning from user feedback to improve and individualize operation
over long-term use. Her research interests include robot learning, humanoid
robots, human-robot interaction, and mechatronics. In 2020, she received
the ARC Future Fellowship.

12692

SHANTI SUMARTOJO is currently an Associate
Professor of design research with Monash Art,
Design and Architecture, and also a member of the
Emerging Technologies Research Lab, Monash
University. She collaborates with national and
international colleagues in academia and the pub-
lic sector, including industry-partnered projects,
most recently in Australia with Exemplar Health,
the City of Melbourne, and Lendlease. Her recent
books include Atmospheres and the Experiential
World: Theory and Methods (with Sarah Pink). Her research explores how
people experience their spatial surroundings, including both material and
immaterial aspects, with a particular focus on the built environment, design
and technology, using ethnographic methodologies.

FULVIO MASTROGIOVANNI received the
M.Eng. and Ph.D. degrees in robotics from the
University of Genoa, in 2003 and 2008, respec-
tively. He has been a Visiting Professor with the
Asian Institute of Technology, Thailand; Shang-
hai Jiao Tong University, China; Karlsruhe Insti-
tute of Technology, Germany; Keio University,
Japan; the Japan Advanced Institute of Science and
Technology, Japan; and the Pontificia Universidad
Catolica del Peru. He is currently an Associate
Professor with the University of Genoa, Italy. He has published more
than 170 articles in international journals and peer-reviewed international
conferences, and one edited book. He served as a principal investigator or
co-principal investigator in many funded projects at the national, European,
and international levels. He is currently a member of the Admission and
Review board of the start-up incubator Digital Tree. He is the Founder and
Chief Research Officer of Teseo srl, a startup company working on human
behavior monitoring, of IO Surgical Research stl, a startup company working
on the adoption on wearable and holographic techniques in surgery applica-
tions, and of PHL srl, a startup company focusing on smart cities. He received
three Best Paper Awards in international conferences. He served as a chair
or co-chair for many international conferences and events, including IEEE
RO-MAN 2013, 2015, 2016, 2017, 2018, and 2020, DARS 2014, URAI
2014, IEEE/RSJ IROS 2016, and ERF 2017. Until 2019, he has served as
a Senior Editor for Intelligent Service Robotics (Springer). He is an Editor
of Robotics and Autonomous Systems (Elsevier). From 2017 to 2019, he has
been part of the Board of Directors of the Italian Association for Artificial
Intelligence. His research interests include artificial intelligence techniques
for robotics, cognitive systems, human—robot interaction, and collaboration.

GENTIANE VENTURE (Senior Member, IEEE)
received the Engineering degree in robotics and
automation from the Ecole Centrale of Nantes,
France, in 2000, the M.Sc. degree in robotics from
the University of Nantes, France, and the Ph.D.
degree from the University of Nantes, in France,
in 2003. In 2004, she joined the French Nuclear
Agency, Paris, France, to work on the control of
a tele-operated micro-manipulator. Later in 2004,
she joined Prof. Yoshihiko Nakamura’s Lab, The
University of Tokyo, Japan, with the support of the JSPS. In 2006, still
under Prof. Nakamura, she joined the IRT Project as a Project Assistant
Professor. In March 2009, she becomes an Associate Professor and starts
a new lab at the Tokyo University of Agriculture and Technology, Japan.
Since July 2016, she has been a Distinguished Professor with the Tokyo
University of Agriculture and Technology. Her current research interests
include non-verbal communication, human behavior understanding from
motion, human body modeling, dynamics identification, control of robot for
human-robot interaction, and human affect recognition.

VOLUME 9, 2021

