
Vol.:(0123456789)

SN Applied Sciences (2020) 2:1235 | https://doi.org/10.1007/s42452-020-2959-x

Research Article

Towards a more complete object‑orientation in graph‑based design
languages

Samuel Vogel1 · Peter Arnold2

Received: 12 December 2019 / Accepted: 27 May 2020 / Published online: 16 June 2020
© The Author(s) 2020 OPEN

Abstract

In this paper an extension of the design method graph-based design languages is proposed. This is realized by adding
object-oriented class methods and interface mechanisms to the design method. Additionally, graphical mechanisms
for modeling and calling the methods are proposed. This allows object-oriented design patterns to be transferred to
the product design, where they improve the handling of complexity in the product engineering. As result, the pro-
posed extension enables modularization and reuse of engineering knowledge, the integration of engineering domains
is enhanced and multi-stakeholder collaboration with security access control (information security) becomes feasible.

Keywords Systems engineering · Engineering automation · Design grammar · Design language · Object-orientation

1 Introduction

The ongoing digital transformation in industry applies to
all product life cycle’s stages. The design decisions and
dimensioning carried out in the early conceptual design
stages determine a huge part of the product’s life cycle
costs (LCC) [1]. The automation of the conceptual design
phase promises therefore huge gains in terms of LCC.
Graph-based design languages encode design processes
in production systems made up of rule sequences which
automatically create an abstract central product model
(central data model) from given requirements. Graph-
based design languages use the uni�ed-modeling-lan-
guage (UML) to de�ne the product entities (classes) sup-
porting object-oriented inheritance. Graph rules, either
graphically de�ned or code-based, instantiate the classes
and iteratively assemble the central model. This interdis-
ciplinary systems engineering approach tries to capture
all aspects of a product (design) and helps to handle the
complexity in the development of modern products [2].

The goal of this work is to further improve the design
method of graph-based design languages. It shall be
shown that graph-based design languages only partially
follow object-oriented modeling principles, but in some
places (class methods and interfaces) the paradigm of
object-orientation is not yet fully implemented. As part of
the work, the graph-based design languages are now to be
further developed methodically so that a more complete
implementation of the principles of object-orientation is
achieved. The work is intended to push the limits of the
design method of graph-based design languages further
towards a more compact and simpler formulation to gain
an even better handling of the complexity immanent in
(the design of) modern products and systems. Handling
this is becoming even more important in the design of
networked cyber-physical systems in the upcoming age
of the Internet of Things.

The work is organized as follows: After the introduc-
ing section the current state of knowledge and previous
work in the area of design grammars and graph-based
design languages is presented. Then the problem setting

 * Samuel Vogel, samuelpeter.vogel@rwu.de | 1Technology and Management, RWU Ravensburg-Weingarten University of Applied
Sciences, Doggenriedstraße, 88250 Weingarten, Germany. 2IILS mbH, Albstrasse 6, 72818 Trochtel�ngen, Germany.

http://crossmark.crossref.org/dialog/?doi=10.1007/s42452-020-2959-x&domain=pdf
http://orcid.org/0000-0001-8622-976X

Vol:.(1234567890)

Research Article SN Applied Sciences (2020) 2:1235 | https://doi.org/10.1007/s42452-020-2959-x

is formulated, why graph-based design languages do
not yet provide a complete realization of object-oriented
principles. In the following method section approaches
are proposed to solve this issue. Then a case study pre-
senting a graph-based design language that creates an
exhaust aftertreatment system is carried out. In the follow-
ing results section the issues raised in the problem setting
are addressed. Finally, the paper ends with discussion and
conclusion.

2 State of knowledge and previous work

This section presents the state of knowledge relevant to
the work carried out. The main aspects of automation of
design processes as well as principles of object-orienta-
tion, especially known from software engineering, are
introduced. The presentation of the relevant engineering
design methods in the following subsection is based on
the author’s introduction in the reference [3].

2.1 Engineering design methods

In the past, various approaches to automate design tasks
have been proposed. Figure 1 gives a �rst overview of the
approaches pursued. Typical properties and characteristics
are also assigned. However, it should be noted that the
presentation is simpli�ed and that the boundaries of the

approaches and their typical characteristics are blurred
and may overlap.

2.1.1 Multidisciplinary design optimization (MDO)

MDO is probably the most widely used approach to design
automation in industrial practice at present. The article [4]
shows applications of MDO methods in aerospace engi-
neering. According to the industrial experiences of the
author the main approach to implement MDO is by using
a parameterized geometry in a CAD (computer-aided
design) environment together with an (integrated) simula-
tion work�ow. The work�ows are very often implemented
using an imperative, script-based approach as shown in
Fig. 1 bottom left. There exist a lot of di�erent MDO archi-
tectures �tted to the speci�c design problem [5]. In con-
trast to the model-driven approaches described below,
there is generally no explicit conceptual model in MDO
besides the implicit CAD and simulation models used.

2.1.2 Knowledge‑based engineering (KBE)

The much more knowledge-intensive KBE approaches
promise a higher degree of automation and autonomy.
According to [6] these are knowledge-based systems
which are closely interwoven with a CAD core. On the
one hand there are approaches in which the knowledge
is modeled in corresponding (declarative) programming

Fig. 1 The level of abstraction
versus knowledge-intensity for
di�erent methods of engi-
neering automation (ovals).
The boxes assign the key
properties of the approaches.
Analogously, the di�erent lev-
els of abstraction in software
engineering are shown below.
Taken from [3]

Vol.:(0123456789)

SN Applied Sciences (2020) 2:1235 | https://doi.org/10.1007/s42452-020-2959-x Research Article

languages like Lisp [7] and which then address a con-
nected CAD application. On the other hand, there are
CAD applications that provide KBE functionality in the
form of programming options and interfaces [8]. The KBE
approach is further characterized by features like runtime
caching, dependency tracking as well as a demand-driven
evaluation [7]. This allows purely practical designs to be
generated and recon�gured online without the need for
a complete new generation. However, the complexity of
implementing KBE applications still stands in the way of
practical application in an industrial context [9].

2.1.3 Model‑based systems engineering (MBSE)

The main idea behind systems engineering is to decom-
pose a complex product, as well as its requirements, into
smaller systems that are made up of (sub)systems them-
selves [10]. Clear interfaces are de�ned between linked
systems, that can be interchanged afterwards according
to the interfaces’ de�nitions. The decomposition leads to
smaller system entities that can be handled more easily
and enables therefore the handling of complex products
and systems (divide-and-conquer).

MBSE now represents a form of implementing the
systems engineering approach, which is less knowledge
intensive and less automated compared to KBE. The MBSE
is de�ned in [11] as: “The formalized application of mod-
eling to support system requirements, design, analysis,
veri�cation and validation activities beginning the con-
ceptual design phase and continuing throughout devel-
opment and later life cycle phases”. The model-based
aspect means that a product is no more represented by
classical documents but through object-oriented, abstract
and hierarchical models using languages as the Systems
Modeling Language (SysML). Usually there is still a lot of
manual work involved: Either in a manually created central
model of a product from which domain-speci�c models
(e.g. simulations or geometries) are then automatically
generated, or in the context of distributed domain-spe-
ci�c models which have to be mutually updated manually
when changes occur [12, 13].

2.1.4 Design grammars

There exists a variety of di�erent design grammars [14].
These approaches have a common language-like struc-
ture. A formal vocabulary is de�ned, which represents
(parts of) the later product. Using this vocabulary, rules are
de�ned how a valid model of the product is built from the
individual ‘words’ (= parts of the product)—according to
the grammar of a language. In a production system, these
rules are called up when the precondition of the respec-
tive rule is ful�lled. From the combinatorics of the gradual

application of the applicable rules, whole trees (generative
tree) of product designs result, which are then searched
for target-oriented designs [15]. A reduction of the search
spaces can be realized using �rst-order logic and Boolean
satis�ability [16]. To gain further insight in to design gram-
mars a representation of the (unique) designs in transition
graphs is proposed. The transition graphs allow a system-
atic rule analysis which supports the human designers to
gain a deeper understanding of the grammar they devel-
oped [17]. Other recent works propose to divide rules into
groups of more and less abstraction to accelerate design
synthesis [18]. More complex rules are proposed in [19] by
grouping two or more rules into so called composite shape
rules (�ows) to get an algorithmic rule pattern.

2.1.5 Graph‑based design language

The so-called graph-based design languages, that are used
and further developed in this work, are another kind of a
design grammar. The approach shares the properties of
having a vocabulary (as classes) and rules. But the produc-
tion system that calls the rules is di�erent: Graph-based
design languages have an explicitly procedurally mod-
eled rule sequence [20]. These sequences contains state
dependent branches and are organized into hierarchical
sub-sequences (sub-activities). Using this approach, no
combinatory set of designs is created on execution, but
one �nal design is created for a set of given starting con-
ditions and requirements. Graph-based design languages
are a generic approach that uses the object-oriented Uni-
�ed-Modeling-Language (UML) and that is not limited to
a speci�c (engineering) domain [21].

A speci�c product instance is iteratively expanded from
a given set of requirements. This is practically done by the
execution of the production system in a so-called design

compiler [22] that creates a design graph as digital blue-
print of the product. Figure 2 shows the information archi-
tecture of graph-based design languages schematically.
The left part contains the implementation of the design
process in the design compiler. Product building blocks
are de�ned in terms of classes. The production system is
made up of an adaptive rule sequence that instantiates
the classes. The sequence can be branched, based on judg-
ments rendered in decision nodes. Graph Rules, de�ned
either graphically or textually as program code, are able
to conduct manipulations of the design graph. The design
graph acts as central data model (single source of truth).
On the right side the validation part of the design process
(process chains) is shown where domain-speci�c engineer-
ing models (CAD, structural mechanics, �uid mechanics,
etc.) are derived from the central model by executing
model-to-model (M2M) transformations. These transfor-
mations are implemented in plug-ins that are provided by

Vol:.(1234567890)

Research Article SN Applied Sciences (2020) 2:1235 | https://doi.org/10.1007/s42452-020-2959-x

the design compiler. The design graph is analyzed in the
M2M-transformations within the plug-in calls, the domain-
speci�c information is �ltered and the domain- and appli-
cation-speci�c models are generated and executed [3].
The results of the automatically executed and post pro-
cessed validation calculations and simulations can be fed
back into the production system to change requirements
or start conditions. In this way outer optimization loops
to explore design space can be realized.1 Graph-based
design languages have been used throughout di�erent
applications like automotive, aerospace and manufactur-
ing [23–29]. An exemplary design language is presented
in the following Sect. 3 and its existing disadvantages are
discussed there.

2.2 Principles of object‑orientation

Object-orientation is a method from software develop-
ment to map and handle complex systems. A system is
de�ned as a set of cooperating objects that perform a
task within or in the form of an software application (com-
pare with the systems engineering approach explained
above). The following list shows the key features of
object-orientation:

• Abstraction Representing only the essential features of
an entity. Extraction of the essential features and inter-
faces of a system.

• Encapsulation Wrapping entities, that are de�ned by
data and methods to conduct speci�c behavior, into
units. Hiding system internals and implementations
behind externally accessible and well de�ned inter-
faces.

• Polymorphism Sub-typing of entities through hierarchi-
cal inheritance. Behavior is abstractly de�ned by inter-
faces that are implemented and reused in sub-types.

Reusable design patterns are widely spread in software
engineering. These patterns heavily rely on the object-
oriented features listed above and follow the central idea
of: “Programming to an Interface, not an Implementation”
[30]. The interface mechanism is the central feature of �ex-
ible object-oriented software design which allows to eas-
ily couple, exchange and reuse “black-box” entities whose
interaction is speci�ed through interfaces and which is
independent of the inner structure and the speci�c imple-
mentation of the entities. This �ts perfectly to the systems
engineering’s central idea to recursively couple encapsu-
lated and hierarchically de�ned sub-systems to compose
increasingly complex systems and products.

3 Problem setting

3.1 Challenges in product engineering

Modern systems engineering faces the challenge of
designing highly complex cyber-physical systems that
typically cover many physical and even logical domains
(control, ...) simultaneously. This makes it necessary, in the
design process, to bring together contributions from the
di�erent domains and departments on the one hand, but
on the other hand the associated requirements for the pro-
tection of intellectual property and data security must also
be taken into account. This is even more important when
third-party suppliers are also involved in this process. Thus,
a modern tool to support and automate the design pro-
cess must provide both information security and encapsu-
lation of potentially sensitive data, as well as functions for
interdisciplinary and inter-company collaboration.

Furthermore, most modern products have an immense
implicit complexity: This is due to the progressive

Fig. 2 Information architec-
ture of a graph-based design
language

1 In contrast to conventional design grammars each design is
started anew.

Vol.:(0123456789)

SN Applied Sciences (2020) 2:1235 | https://doi.org/10.1007/s42452-020-2959-x Research Article

development of the technologies themselves, the increas-
ing implementation of product functions by software
functions as well as ever more far-reaching regulatory
requirements. Last but not least, the customer demands
ever better products with ever more extensive functions.
Imagine the development of the automobile over the
last 50 years from a pure means of transport to a highly
comfortable and already partly autonomous transporta-
tion system with integrated information and entertain-
ment systems, which meets much stricter environmental
requirements at the same time. This complexity has to be
handled in the design process within product engineering.
The systems engineering approach of dividing the product
into a system-of-systems can support this handling. This
can be realized by a decomposition and modularization of
the product model description. To avoid double work and
to realize an e�cient design process, a reuse of already
developed solutions shall be supported.

3.2 Current status of graph‑based design languages

The graph-based design languages, as presented above,
are modeled in an object-oriented modeling language
(UML), but follow more or less a procedural programming
paradigm [31]. This is exemplarily shown in the schematic
design language2 illustrated in Fig. 3.

A simple car model, consisting of a chassis with a
de�ned number of wheels, is expanded and re�ned by
introducing wheel suspensions. The objects that are put
together by the rules are de�ned in the UML class dia-

gram on the top. A graphically defined graph rule (if/
then scheme, left-hand-side [LHS]/right-hand-side [RHS]
scheme) to add wheel suspensions between the wheels
and the chassis is shown below. The production system
on the lower part shows the rule sequence for iteratively
building up the car model. The JavaRule hosts a program
code rule which iteratively adds the wheels in a loop. It is
called numberOfWheels times as set in the Chassis object.
The design graph (central data model) on the bottom of
Fig. 3 is generated by the execution of the production sys-
tem. It hosts the instances of the current product design
with its speci�c design parameters. The rule sequence in
the production system manipulates the design graph in
a procedural manner as imperative commands work on a
common program state (current design graph state) in a
prede�ned sequence. The production systems in graph-
based design languages have an additional entity called
Decision Node that allows a branching of the rule sequence
and the implementation of conditional switch or loop

statements in the design language (Fig. 4). Hierarchical sub

activities can be modeled in the production system. They
can embed sub production systems (Fig. 4). A sub activity
can be seen as being equivalent to a sub routine that takes
the central data model as sole argument.

In the world of the object-oriented software engineer-
ing this approach would be considered as “bad design”.
Translated to object-oriented software engineering, the
design language’s rule sequence can be interpreted as a
sequence of static methods—without any explicit method
parameters—that builds up the central data model. The
lack of both, explicit interface de�nitions and methods
that are coupled to data objects (classes), harms reusabil-
ity and modularization. For bigger and complex design
languages it gets di�cult to maintain consistency and to
debug the model as the whole design graph is exposed
to every rule and sub activity. So the lack of a tight encap-
sulation in conjunction with the missing mechanism of
abstractly defined interfaces can be seen as a central
challenge of the current graph-based design language
approach. This disadvantage also applies to numerous
other expert systems, as rule-based or logical systems, that
miss hierarchical modeling concepts [32].

The following list summarizes brie�y the shortcomings
of the current design languages. These are addressed
using the methods presented in the following Sect. 4. In
the results Sect. 6, the individual points are then discussed
again and the e�ectiveness of the proposed methods is
discussed.

• Modularization Systems-of-systems aspect di�cult to
realize without explicit interface de�nitions as the sub
systems are di�cult to delimit mutually. The behavior
of sub entities is detached from themselves as opera-
tions are not coupled to the data entity they apply to.

• Reusability Components can not be properly encap-
sulated into entities with explicit and self-explanatory
interface de�nitions for later reuse.

• Domain integration The integration of domain-speci�c
models via M2M transformations is not sufficient.
Some domains can be easier integrated when granu-
lar class methods (with de�ned explicit parameter lists
bounded to a class) are provided in the production sys-
tem and the domain-speci�c models themselves are
created iteratively.

• Collaboration Designing complex designs needs
involvements from multiple domains and therefore
involvement of multiple experts. Proper interfaces to
clarify the requirements and responsibilities are a pre-
requisite for successful collaboration.

• Information security Modules with de�ned interfaces
can be encrypted and hidden to allow collaboration 2 The truncated term Design Languages always refers to Graph-

Based Design Languages.

Vol:.(1234567890)

Research Article SN Applied Sciences (2020) 2:1235 | https://doi.org/10.1007/s42452-020-2959-x

between companies whilst respecting intellectual
property.

A fully object-oriented graph-based design language
should therefore realize the object-oriented paradigms

presented above. An abstract interface mechanism
would address the issues of modularization, reusabil-
ity and maintainability. Such an interface mechanism
would require class methods on the other hand to bind

Fig. 3 Schematic design
language of a simpli�ed car
design

Vol.:(0123456789)

SN Applied Sciences (2020) 2:1235 | https://doi.org/10.1007/s42452-020-2959-x Research Article

together data and functions as claimed in object-ori-
ented software engineering.

4 Methods

In this work modifications to the graph-based design
languages are suggested to increase the level of object-
orientation to tackle the diagnosed disadvantages above.
The proposed solutions have been mainly implemented
in the current release V3 of the Design Compiler 43. The
following proposed graphical calling mechanisms of the
class methods and constructors remain in a conceptual
state as its implementation in the design compiler requires
additional e�orts.

The foundation of the following solution approaches is
a duality of graphical and textual (code-based) modeling
options provided by the design compiler. The target in
each step is to have either a textual-based (source-code) or
a graphical de�nition of the rules and newly added object-
oriented features. This graphical de�nition is interpreted
internally in the design compiler that modi�es the design
graph correspondingly. Then it is up to the creator of the
design language which representation is preferred.

For each UML class a Java class source �le is internally in
the design compiler created which hosts the class param-
eters as well as the setter and getter methods. This enables
the user to model the design process either graphically
or code-based, depending on the personal preferences
or on the speci�c problem. The graphical and code-based
approaches are reduced to just two di�erent views on the
same modeling task.

4.1 Rules

Graphically defined manipulation rules of the design
graph, as shown in Fig. 5 top, can be equivalently imple-
mented as Java code, Fig. 5 bottom. Both sorts of rules
can be called in the production system as shown in Fig. 3

where the textually de�ned, code-based rule is marked by
the term javaRule and a graphically de�ned rule is shown
in its iconi�ed LHS/RHS representation. This feature was
already supported in earlier versions and is just mentioned
for a better understanding.

4.2 Class methods

As shown in Fig. 6, class methods are added to the classes
below each class’ properties �elds to enable encapsulation.
The introduction of classes’ methods realizes the object-
oriented foundation principle of a tight coupling between
data and methods. Constructors of the classes, identi�ed
by the class name, are added in the same way. These
constructors are executed in the creation of the classes’
instances. The methods are executed on selected instances
of the class in the production system. Both, constructors
and class methods can be called from source code or
within the graphically represented rules as proposed in
Sect. 4.4. According to the graphical and textual duality
the constructors and methods can be implemented either
as source code or again in the graphical representation as
suggested in Sect. 4.5.

4.3 Modeling abstract interfaces

An object-oriented interface mechanism is implemented
by the introduced class methods. The abstract behavior
of components is defined through interface elements
as abstractly defined methods (empty methods with
defined signatures). These interfaces are implemented
by classes that realize the interfaces’ abstract behavior.

Fig. 4 Decision node for branching the rule sequence (left) based
on model constraints and sub activity (right) to model hierarchi-
cally embedded rule sequences

Fig. 5 Rule insertWheelSuspension: Equivalence of graphically
de�ned rule (top) and code rule (bottom). Both implementation
techniques execute equivalent graph manipulations on the design
graph

Vol:.(1234567890)

Research Article SN Applied Sciences (2020) 2:1235 | https://doi.org/10.1007/s42452-020-2959-x

The interface mechanism shall provide abstraction and
polymorphism. The behavior of components is modeled
in an abstract way and sub-typing of entities through
hierarchical inheritance and/or implementation rela-
tions in the class diagram is supported. Figure 7 shows
an interface mechanism for calculating mass balances
of mechanical parts. These parts inherit the behavior/
property of carrying a mass from an interface. Each of
these parts has to implement the getMass() method that
returns the value of its mass. This method, required by
the interface, is called by an instance of the MassBalance
class that calculates the total mass of the linked classes
by calling and summing-up the values returned by the
attached parts’ getMass() methods.

4.4 Calling methods and constructors in the activity
diagram

According to the initially mentioned spirit, the design
compiler shall provide graphical and code-based represen-
tations of the design language’s components in parallel.
Calling constructors and methods within Java code is self-
explanatory, whereas a graphical way of calling construc-
tors and methods needs to be de�ned to maintain the dual
representations. Figure 8 shows a mechanism to call a con-
structor (bottom) and a method (top) within graphically
de�ned rules. The instance whose method shall be called,
as well as the speci�c method, are de�ned on a graphi-
cally de�ned rule’s LHS. Parameters in the method can be

Fig. 6 Extended class diagram
with object-oriented class
methods and class construc-
tors (compare with ‘classi-
cal’ class diagram in Fig. 3
that lacks the methods and
constructors). The data types
of the methods’ parameters
are not shown for the sake of
simplicity. This applies to all
�gures

Fig. 7 The classes that realize
an interface have to imple-
ment the methods de�ned in
the interface

Fig. 8 Top: Calling method
addWheelSuspension that
returns an instance method-
Return which is integrated in
the model on the RHS. Bottom:
An instance of type Wheel is
created and linked to the exist-
ing Chassis instance on the
RHS by calling the constructor

Vol.:(0123456789)

SN Applied Sciences (2020) 2:1235 | https://doi.org/10.1007/s42452-020-2959-x Research Article

explicitly provided by typing in the value as shown in the
top or referenced from other LHS instances’ parameters as
explained for the constructor call below. Possible return
objects of the called method are created on the RHS of the
graphically de�ned rule. Using this approach, the methods
calls are used in the same spirit as conventional graphically
de�ned rules. The context3 of a method call is de�ned on
the LHS. The design graph change resulting from the call is
de�ned on the RHS within the mapped LHS context.

Constructor calls are de�ned solely on the RHS, as a
constructor creates an instance whose target context is
searched on the LHS and the connection to the mapped
context is de�ned on the RHS. Parameters are de�ned as
in the method call, either explicitly or via instances’ param-
eters from within the rule context as shown in the Wheel
constructor’s parameter list, where the parameter value
of the LHS chassis0 instance is accessed via the expression
chassis0.width.

4.5 Modeling methods

In the dual spirit the graphical de�nition of methods needs
to be enabled. Filling the methods hull textually with Java
code is again self-explanatory, as shown in Fig. 9 bottom.
Filling the methods hull graphically is explained in the
following and shown in Fig. 9 top: A sub activity is set as
method hull and used to de�ne the methods behavior.

The methods input parameters (instances or vari-
ables) are available within the sub activity’s namespace.
Passed-over instances (via the method’s parameters)
shall be graphically inserted on the LHSs of the graphical

rules either per-default or on-demand via the context-
assist function of the rule editor. The instances’ �elds in
the rules’ context can be accessed by the instances’ and
fields’ names in the same way, using a corresponding
instanceName.�eldName expression, as the constructor
parameter in the previous subsection has been set. Pure
value parameters (eg. number or strings) in the methods
parameter list could be accessed via a self.valueParameter-

Name expression.
To model the method’s return values the last element

of the sub-activity is proposed to be a �xed return rule
with LHS only that is used for de�ning the method’s return
which can be possibly in a further return context. This
return context is de�ned by the context that has been
mapped to the RHS of the graphical method call presented
in the previous Sect. 4.4 in Fig. 8 top right. In this way dif-
ferent graphical method calls with their speci�c return
context require an individual return rule. Following the
presented approach graphically de�ned methods need to
be called graphically and the code-based methods need to
be called textually in a JavaRule where the return context
of the executed method can be explicitly coded (eg. to
which instances of the design graph a returned method
shall be attached.

The accessibility of instances and variables in the
method implementing sub activity complies with Java’s
namespace de�nition, which shall account for encapsula-

tion and information hiding. This local namespace is further
explained in Fig. 9 right.

The code-based representation of the rules directly
changes the internal representation of the design graph
in the design compiler when the rules are executed. In
contrast, the graphically modeled rules are interpreted by
the design compiler during execution and converted into
corresponding manipulations of the design graph.

Fig. 9 Duality of method
modeling: Either graphical
implementation of method
addWheelSuspension (method
call in Fig. 8) as sub activity
(top). The method’s return
instance or value is speci�ed in
a LHS search context which is
the sub activity’s �nal element.
Or the method is implemented
as code rule within a speci�ed
method body (bottom)

3 A context shall be the graph pattern de�ned on the LHS of a
graphically de�ned rule as this pattern is searched for in the design
graph when executing the rule. This pattern de�nes the locations(s)
in the design graph where the rule’s manipulations are applied.

Vol:.(1234567890)

Research Article SN Applied Sciences (2020) 2:1235 | https://doi.org/10.1007/s42452-020-2959-x

4.6 Encapsulating design languages

The classes in the class diagram can be assigned to pack-
ages with di�erent access modi�ers. Only the classes and
interfaces in the public packages are shown and accessible
from outer design languages. This allows the creation of
complex design tasks in hierarchically encapsulated sub
design languages. The internal implementation details
are hidden from the outer design language that calls and
uses the public methods, classes and interfaces provided
by the sub languages. Implementing this mechanism in
the design languages shall realize both encapsulation and
information hiding.

Figure 10 shows the proposed accessibility concept on
the level of (re-)using and integrating multiple class dia-
grams from multiple design languages. The class diagram
of the central design language is schematically shown in
the middle. The class diagrams of the externally loaded
design languages are shown in the orange dashed boxes.

The classes in the loaded Drive Library Language are
assigned to two packages (Fig. 10): The left one with the
green background is a public one, the right package with
the red background is the private one. This means that in
the class diagram of the central design language only the
classes in the public package of the loaded drive library
can be seen and used. The private classes are only used

internally within the drive library when calling methods
of the public classes.

Using the external Engineering Pattern Language in
Fig. 10 bottom is di�erent. The interface PartWithMass
from the public package is implemented by classes in the
central design language. Then the MassBalance class of the
pattern language can be loaded and called to calculate the
mass balance in the central language.

5 Case study: designing SCR system

In this case study a simpli�ed design language taken from
[3] shall be introduced as example for the ’classical’ design
language approach without using class methods or inter-
faces. Then the proposed approach using class methods
and interfaces is transferred to this example. And the
approaches are �nally compared with each other.

5.1 Classical approach without class methods
and interfaces

The example in Fig. 11 shows a graph-based design lan-
guage of a SCR exhaust aftertreatment system. The design
language represents the essential components of a SCR
system: an exhaust gas piping system with addition of

Fig. 10 Encapsulation and
modularization: Extending
a design language(’s class
diagram) through externally
loaded design languages
(dotted frame) that are
encapsulated modules.
Only public packages of the
external design languages are
accessible by the main design
language in the center

Vol.:(0123456789)

SN Applied Sciences (2020) 2:1235 | https://doi.org/10.1007/s42452-020-2959-x Research Article

Fig. 11 Case study: Simpli�ed graph-based design language to create the CAD and CFD model of a SCR exhaust aftertreatment system. The
schematically shown approach follows the ’classic’ design languages style without class methods and interfaces

Vol:.(1234567890)

Research Article SN Applied Sciences (2020) 2:1235 | https://doi.org/10.1007/s42452-020-2959-x

reducing agent by means of an injector (dosing section),
up to the catalyst on which the chemical reaction of the
conversion of harmful nitrogen oxides into harmless gases
takes place as well as the �ow section after the catalyst.

The class diagram in Fig. 11 shows the classes of this
main components. The CAD and CFD classes are loaded
externally as indicated on the right in the dashed box. The
production system below the class diagram shows the top-
level design sequence: In the �rst rule Axiom the instances
of the engine, the exhaust system and the environment
are created. In the second rule the SCR system compo-
nents’ instances are added. The sub activities createCAD
and addCFDsim host further hierarchical rule sequences to
create the CAD elements as well as to add the CFD related
instances. The sub activity to attach the CAD instances to
the system component instances is exemplarily shown in
Fig. 12. In this sub-activities there are rules for each SCR
system component type to instantiate and link the corre-
sponding CAD respectively CFD instances. The result can
be seen in Fig. 11 in the bottom where the speci�c CAD
and CFD instances have been created and linked to the
system component instances. For each additional system
component class, corresponding rules to attach the cor-
responding CAD and CFD instances have to be modeled,
which is very time-consuming. If changes to the system
components classes occur, one has to change these rules
accordingly in the sub activities. Since the class de�nitions
(class diagram) and the corresponding rules (production
system) are now located at di�erent places in the design
language, it can very quickly lead to errors due to the miss-
ing encapsulation. The following subsection shows that
these rules in the production system become unnecessary
if the proposed class method and interface mechanisms
are used.

These sub activities are followed by a call to the domain
speci�c plugin. The �rst two graphical de�ned rules are
shown in the mid of Fig. 11. At the bottom of the �gure
the resulting design graph is shown where the instances
are collapsed into colored dots. The CAD related instances
are shown in green. The yellow ones are representing the
instances of the main components. And the remaining
points represent the instances of the CFD simulation.

Figure 13 shows the corresponding CAD model in the
background as well as a snapshot of the CFD simulation
at the bottom right. The design language covers the

domains of geometry creation (CAD) and computational
�uid dynamics (CFD) simulation. In the foreground again
the design graph is shown. The instances are now shown
in detail and also contain the parameter �elds and values
as initialized and set in the production system.

5.2 Proposed approach with class methods
and interfaces

In this subsection the previous ’classical’ design language
is exemplarily adapted to the proposed method using
interface and class method mechanisms. Figure 14 shows
the modi�ed class diagram at the top as well as the modi-
�ed production system in the mid. In comparison to the
previous approach, the domain-speci�c contributions of
the individual system components of the emission control
system (gray classes) can now be implemented directly in
the latter. This is realized by implementing domain-speci�c
interfaces (InternalFlow and CADgeo). These interfaces now
require that the implementing classes must return CAD
representing instances of CAD_Represent and CFD repre-
senting instances of CFD_Represent. The implementation
of the creation of this representations is thus forced to be
directly integrated in the component classes which real-
izes a strong encapsulation.

A schematic inheritance scheme of the CFD repre-
sentation is shown in magenta at top left in Fig. 14. The
speci�c CFD representations stand for typical boundary
types of CFD simulations and they can be provided by a
correspondingly physics plug-in as proposed in [3]. In this
way they are reused in a generically manner. The only work
that remains is the instantiation and parameterization of
these reused representation classes in the implementation
of the above mentioned interfaces within the component
classes.

As a result, the design graph is simpli�ed: The design
graph no longer contains the explicit CAD and CFD related
instances which are ’polluting’ the design graph as they
are on the same representation level as the system com-
ponent instances. These are now hidden within the com-
ponent classes in the corresponding implementation of
the getCADdata() and getCFDrepresentation() methods
requested by the interfaces. In this way, an abstract system
component gets di�erent domain-speci�c ”faces”.

Fig. 12 The sub activity createCAD that attaches to each system component instance (yellow) the corresponding CAD instances for hosting
the CAD parameters (green) and the CAD representation (grey)

Vol.:(0123456789)

SN Applied Sciences (2020) 2:1235 | https://doi.org/10.1007/s42452-020-2959-x Research Article

A similar simplification is achieved in the production
system. Now it is no longer necessary to model a sepa-
rate rule for each CAD or CFD data type as well as for
each system component class to instantiate and attach
the corresponding CAD or CFD instances - as required in
the previous design language and shown in Fig. 12. The
two Java rules shown at the bottom of Fig. 14, that read
the CAD and CFD data to pass it over to the CAD and CFD
engine of the specific plug-ins, become simple. In the
first step one initializes the domain-specific engine. Then
the instances that implement the specific interfaces are
easily filtered and added to a list. Next, this list is passed
over to the engines. Finally, the engines are executed
and trigger the creation of the CAD model or the crea-
tion and execution of the CFD simulation.

5.3 Comparison of classical and proposed approach

The application of polymorphism by requiring the imple-
mentation of the CAD and CFD interfaces in the common
abstract superclass of the system components results in
an improved encapsulation as well as reduced e�orts in
the production system modeling. The common behavior
is de�ned in the ExhaustAftertreatmentComponent super-
class which is then speci�cally implemented in the sub
classes. The further processing of these classes’ instances
can take place, as in the Java rules in Fig. 14 shown, again
on the superclass types which means that lengthy case
separations for each system component type, as required
in the ’classical’ design language implementations, are
omitted.

Fig. 13 Design graph in
instance diagram form of the
‘classic’ design language of the
SCR exhaust aftertreatment
system. The CFD boundary
conditions are added to the
CAD topology of an exhaust
system. The system contains
the catalyst (white) and an
upstream hollow cone injec-
tor to inject the reduction
agent. The system component
instances are not shown for
space reasons. Reproduced
from and more details in [3]

Vol:.(1234567890)

Research Article SN Applied Sciences (2020) 2:1235 | https://doi.org/10.1007/s42452-020-2959-x

Using the proposed mechanisms enforces that the
methods and the data are implemented within the class

in the same location. Thus the paradigm of object-orien-
tation is ful�lled and the corresponding advantages in the

Fig. 14 Case study: Simpli�ed
graph-based design lan-
guage to create the CAD and
CFD model of a SCR exhaust
aftertreatment system. The
schematically shown approach
follows the newly proposed’
design languages style using
class methods and interfaces

Vol.:(0123456789)

SN Applied Sciences (2020) 2:1235 | https://doi.org/10.1007/s42452-020-2959-x Research Article

treatment of complex system are realized and transferred
to product engineering.

6 Results

This section presents generalized �ndings in applying the
suggested methods from Sect. 4 in product engineering.
Emphasis is put on addressing the wide-ranging issues for-
mulated in Sect. 3 with small schematic examples, without
going as deep into the details as in the case study.

6.1 Information security and collaboration

The presented methods allow an encapsulation and
modularization of sub modules in sub design languages
as shown in Sect. 4.6. Together with the access modi�ers
from Sects. 4.5 and 4.6, this enables the encryption of (pri-
vate) parts of sub design language modules with a distinct
separation between the public (interface) elements, that
are accessible by third parties, and the critical encrypted
parts within the private packages. Suppliers can share their
design languages without explicitly sharing their know-
how and intellectual property.

Figure 15 shows again a central design language in the
mid that shall implement a design process of a carmaker.
This exemplary design language shall made up a simpli�ed
car model consisting of a chassis, wheels and a third party
wheel suspension. In this scenario the suppliers A and B

provide design languages that contain the design process
of the suppliers’ wheel suspensions. They hide their engi-
neering know-how within the white/black shaded parts
of this design languages in the private packages. The con-
tent of this packages can now be potentially encrypted as
symbolized by the lock in the �gure. For the central design
language of the car only the suppliers’ classes in the public
packages (green background) are visible.

An integrated virtual blueprint of a product develop-
ment process, consisting of both OEM manufactured and
third party components, can be realized this way. Figure 19
shows a scheme where the central product structure of
the car is defined by the carmaker in a central design
language within the green dashed boxes. The parts of
the car, that are potentially provided and engineered by
third-party suppliers, are modeled as abstract classes (italic
class names). These abstract classes de�ne the interfaces
to the suppliers in form of their property �elds (eg. for the
chassis the number of doors and the material etc.). The
property �elds shall contain the parameters for both direc-
tions: from the carmaker to the supplier (requirements and
speci�cations) as well as from the supplier to the carmaker
(realized and guaranteed technical speci�cations for the
part at hand). The method stubs of the abstract classes
de�ne the expected behavior and functionality. In the
example just the methods that call the creation of the
third party parts which �nally �lls the suppliers property
�elds. This behavior has now to be implemented by the
suppliers. Together with the information security aspect of

Fig. 15 Collaboration and divi-
sion of labor by an embedding
and composition of external
design languages. The public
interfaces to the external
design languages are de�ned
by interfaces or abstract
classes. The activities, rules and
classes in the private packages
can be encrypted to ensure
information security and
know-how protection

Vol:.(1234567890)

Research Article SN Applied Sciences (2020) 2:1235 | https://doi.org/10.1007/s42452-020-2959-x

Fig. 15 a hierarchical composition of the car’s development
process can be realized including third party knowledge
whose intellectual property can be respected by encryp-
tion. In this example the interface mechanism is realized
through abstract classes, that are made up of method
stubs, just like in interfaces, together with property �elds
to host a de�ned data set.

6.2 Domain integration

The method call mechanism of Sect. 4.4 supports the
integration of different (physical) domains in the multi-
disciplinary product design. The CAD model creation is a
central task in product design. In general, it is difficult to
create a CAD geometry in one step, as it was necessary
in the traditional implementation of design languages.
One step means, modeling and running a rule sequence
that defines the expansion of the CAD geometry in the

central model which is then translated to a CAD geom-
etry within one CAD plug-in call in the process chain.

An iterative creation of the CAD model is much more
suitable to create complex CAD models, as subsequent
geometry manipulations depend on the result of preced-
ing geometry manipulations. For example are sketches
extruded to bodies, whose faces are used as sketch
planes for subsequent sketches and extrusions. But this
requires that a CAD generation is executed iteratively in
several steps. This iterative modeling is generically real-
ized with the presented class methods: They can be used
to modularize and subtype behavior, like higher level
CAD methods. For example, an extrusion method that
takes an extrusion vector as a parameter can return the
extruded end face as a return parameter. This returned
surface can now be used for further operations depend-
ing on the properties of the same.

Fig. 16 Using the methods
and interface mechanism to
explicitly model an iterative
CAD model creation (follow-
ing operations use return
values of preceding method
calls as parameters). Top: class
diagram; Mid: activity diagram
with schematic graphical
method and constructor calls
(see Fig. 8); Bottom: created
CAD-Model of the spring
damper with logic sequence

Vol.:(0123456789)

SN Applied Sciences (2020) 2:1235 | https://doi.org/10.1007/s42452-020-2959-x Research Article

Figure 16 shows the described stepwise generation
of the CAD model of a spring-damper as a simplified
example. In the mid of the �gure a graphical sequence of
subsequent CAD operations is shown. In the �rst rule the
Law1d revolution law instance shown in the class diagram
top right in Fig. 16 is instantiated. In the subsequent rule
constructHelixCreator the previously created instance is
looked up on the LHS and fed to the constructor of the
HelixCreator class in the RHS. The subsequent three rules
are getter calls on the previously created HelixCreator
instance. In this getter calls the CAD model of the helix is
created and the returned artifacts are stored in the newly
attached instances on the RHS. The constructDamper
rule now looks up this returned instance(s) that provide
the (getter-)data of the HelixCreator on the LHs and feds
this data again into the Damper constructor. Additional
data can be added in the same way by the following set*
rules that look up input data and the Damper instance on
the LHS and pass the input data to the Damper instance
by calling the setter methods on the LHS with the input
data �lled into the methods’ parameters list. Finally the
createDamperCAD rule is called: In the LHS the getCAD()
method of the looked up Damper instance is called and
the resulting CAD instance is attached on the RHS. Corre-
spondingly, the creation and simulation of more complex
geometries has been already demonstrated by the author
[3, 33] and shall be not part of this method-oriented work.

6.3 Reusability

Design patterns are a well known strategy to create reus-
able software applications and modules [30] in the area of
object-oriented software engineering. One can observe
that all proposed patterns use interfaces realizing the
paradigm to “...program to an interface not an implemen-
tation...”. Interfaces allow the de�nition of abstract and
mandatory behaviors of components and modules that
in turn can be reused in many di�erent contexts.

Figure 17 now shows two exemplary applications of
software engineering design patterns in the class diagram
of a design language. The top pattern is the application of
the software engineering builder pattern in a design pro-
cess application. This pattern is used to implement trans-
lation processes from a source description, in the shown
example the centralDataModel of the design language
(=design graph), into di�erent target representations, in
the example the input decks of di�erent simulation appli-
cations. Reading the source description is implemented
once in the SimulationModelTranslator class which extracts
and transfers the simulation data into an intermediate data
container instance simulationData. The speci�c builder
classes Concrete* now implement the SimulationApplica-

tion interface that de�nes the data transfer of the simula-

tionData instance from the translator. The speci�c build-
ers contains the code to create the speci�c models out

Fig. 17 Two design patterns
from object-oriented software
engineering. Top: Builder pat-
tern to translate the domain-
relevant information in the
central data model to di�erent
simulation applications (imple-
mentation of process chains
in Fig. 2). Bottom: Composite
pattern to model systems-
of-systems relationships in
systems engineering

Vol:.(1234567890)

Research Article SN Applied Sciences (2020) 2:1235 | https://doi.org/10.1007/s42452-020-2959-x

of the simulationData instance. In this way the read out
of the data in the �rst step can be reused for the creation
of di�erent target models. This can be eg. used for imple-
menting a plug-in that reads out domain speci�c data (eg.
geometry data) from the central data model and translates
this into di�erent input �le formats for di�erent target CAD
applications.

The bottom of Fig. 17 shows the composite pattern
transferred to a system engineering product decompo-
sition. An abstract System class has two realizations that
inherit from system: Component and Subsystem. A Sub-

system instance can hosts further subsystems as well as
Component instances. The components can host no further
instances as they are the lowest level entity in the resulting
hierarchical system-of-systems tree. Now the System class
children implement the Operation interface which then
can be called hierarchically by once calling the top-level
callOperation method according to the schematic source
code shown in the �gure on the left. With this mechanism
operations can be called on all systems in an easy way.
For example to update the system states or to execute a
geometry creation operation on all system instances hang-
ing under a given system instance.

Additionally, the mass balance engineering pattern pre-
sented in Fig. 10 exemplarily illustrates a potential applica-
tion of the interface mechanism to enable reusable product

design patterns. In this way reusability patterns from soft-
ware engineering can be directly applied and the principle
itself transferred to engineering processes.

6.4 Modularization

The introduction of interfaces and methods in the classes
leads to an additional structuring and standardization on

an even higher abstraction level. Well known top-level
software design concepts as toolkit structure or frame-

work structure can now be realized in virtual engineering
[30].

In a toolkit setup existing modules are reused as (soft-
ware) libraries to achieve speci�c tasks. Transferring this
approach to design languages is exemplarily shown in
Fig. 18. In this example a simpli�ed car shall be created
again. The toolkit scenario now assumes that existing
design languages for subtasks are readily available (green
dashed boxes). These represent the toolkits. The task of
creating a central design language hosting the design pro-
cess of the car now consists of using these toolkits and
calling up the process steps, provided by the toolkits, in
the correct sequence. Shown here are a powertrain toolkit
in the form of a corresponding design language and a CAD
toolkit that is called up from the central design language
(orange dashed frame) triggering the class methods and
interfaces.

In contrast Fig. 19 shows a framework-based strategy
of modularization as already explained in Sect. 6.1. In the
framework architecture, the global structure and decom-
position is prede�ned by abstract interfaces that have to
be realized by the speci�c implementations. Transferred
to product engineering, the design process is prede�ned
(compare systems engineering [34]) in a framework which
facilitates and structures the design process and enables
the exchange and the reusability of existing components.
The example shows the prede�ned structure of the car
in the class diagram hosted in the green dashed box.
Now the decomposed abstract product modules (Chas-

sis, Wheel and DriveTrain) need to be implemented in the
orange dashed section. In this way the framework is just
the opposite approach as the toolkit structure where the

Fig. 18 Modeling the product
structure and design process
in a central design language.
External toolkits for special
purposes are embedded on
an elementary level (single
classes and methods) to re-use
existing engineering solutions
(toolkits=engineering libraries)

Vol.:(0123456789)

SN Applied Sciences (2020) 2:1235 | https://doi.org/10.1007/s42452-020-2959-x Research Article

implementations of the modules have been assumed to
be given.

7 Discussion

The lack of object-orientation in the classical design lan-
guage approach has been addressed and class methods as
well as interfaces have been added to overcome this issue.
A prototypical implementation within the Design Com-
piler 43 was created and graphical method modeling and
calling mechanisms have been proposed, that fully sup-
port the dual textual (code-based) and graphical modeling
approach. It was shown that a more complete implemen-
tation of object-oriented modeling approaches results in
improvements in the following design-relevant areas:

• Modularization
• Reusability
• Domain integration
• Collaboration
• Information security

These points represent important requirements in mod-
ern product design to handle complex design processes.
The support of these requirements represents a signi�-
cant improvement of the graph-based design languages
and facilitates the application of the method by reducing
the upfront modeling e�ort and modeling complexity.
Divide-and-conquer based simpli�cations are enabled
by the introduced extensions and systems engineering
approaches can be realized more generically.

Compared to the UML-profile based approach pre-
sented in [35] the proposed extension provides a much
more natural integration and modeling of domains

(Sect. 5) that does not require cumbersome language
extensions to the UML metamodel. Hierarchical rule
structures, as recently presented for shape grammars in
[18], can be now easily realized in graph-based design
languages by the enabled and improved modularization.
Recently proposed graph-based design languages [36]
show crowded and complicated design graphs. These can
be simpli�ed by shifting portions of the design process
into the class (method) implementation itself as enabled
by the present work.

On the other hand, moving artifacts of the design pro-
cess into the classes leads to a more black-box-like rep-
resentation. Although this is precisely what information
hiding in the object-orientation aims at, it leads to the
fact that processes, previously explicitly modeled in the
production system, are now hidden in the class methods.

The code-based class methods and interfaces have
been already introduced in the current design compiler
release. The graphical method modeling and calling pro-
posed in this paper is not yet fully implemented as this
takes more e�ort. Further work needs to be done on how
the encryption of externally used and loaded design
languages can be practically implemented in the safest
manner.

8 Conclusion

The introduction of class methods and interface mech-
anisms in graph-based design languages fills the lack
of object orientation in the previously used method-
ology. The proposed extensions enables the adoption
of object-oriented design methods, as design patterns
and toolkit/framework architectures, to product engi-
neering. Proven concepts as abstraction, encapsulation

Fig. 19 A existing framework
de�nes the product’s struc-
ture and the product’s design
process through abstract
interfaces and abstract classes
(italic labels). The concrete
design language implements
the prede�ned methods and
classes of the framework

Vol:.(1234567890)

Research Article SN Applied Sciences (2020) 2:1235 | https://doi.org/10.1007/s42452-020-2959-x

and polymorphism are transferred to the virtual prod-
uct design with design languages. The graph-based
design languages are brought to the next level in terms
of supporting and handling complex product design
processes.

For the future, cleanly modularized design processes,
formally defined by their interface specifications, may
enable the implementation of self-organized design pro-
cesses. Such a self-organized process could run without
an explicitly de�ned execution sequence in the central
activity diagram. It seems possible to derive an execu-
tion sequence from prede�ned modules in a self-organ-
ized way, based solely on the interface signatures of the
modules, that aims to ful�ll given product requirements.
Replacing the procedural production system by a self-
organized process, the graph-based design languages
would formally move more in the direction of classic
design grammars, but with much more powerful rule
equivalents in the form of modularized complex design
sequences.

Acknowledgements Open Access funding provided by Projekt DEAL.
This article is based on the arXiv preprint: S. Vogel, P. Arnold: Towards
a More Complete Object-Orientation in Design Grammars, arXiv
:1712.07204 [cs.SE], last revision: 2020. The work was partially sup-
ported by the project “digital product life-cycle (ZaFH) funded by the
European Regional Development Fund and the Ministry of Science,
Research and the Arts of Baden-Württemberg, Germany (www.rwb-
efre.baden-wuerttemberg.de).

Compliance with ethical standards

Conflict of interest Corresponding author Samuel Vogel declares no
con�ict of interest. Co-author Peter Arnold is employed at IILS mbH
which is the vendor of the Design Compiler 43 software used in the
presented work.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creat iveco mmons
.org/licen ses/by/4.0/.

References

 1. Pahl G, Beitz W, Feldhusen J, Grote KH (2007) Engineering
design: a systematic approach. Springer, London

 2. Walden D, Roedler G (2015) Systems engineering handbook:
a guide for system life cycle processes and activities, 4th edn.
INCOSE/Wiley, Hoboken

 3. Vogel S (2019) An application-independent continuum mechan-
ics interface for virtual engineering. Eng Comput 35:551–565

 4. Goetzendorf-Grabowski T (2017) Multi-disciplinary optimization
in aeronautical engineering. Proc Inst Mech Eng Part G J Aerosp
Eng 231:095441001770699

 5. Martins JRRA, Lambe AB (2013) Multidisciplinary design optimi-
zation: a survey of architectures. AIAA J 51:2049–2075. https ://
doi.org/10.2514/1.J0518 95

 6. Cooper S, Fan I, Li G (2001) Achieving competitive advantage
through knowledge based engineering: a best practice guide.
Cran�eld University, Bedford

 7. Sobieski J, Morris A, van Tooren M (2015) Multidisciplinary
design optimization supported by knowledge based engineer-
ing. Wiley, Hoboken

 8. La Rocca G (2012) Knowledge based engineering: between AI
and CAD. Review of a language based technology to support
engineering design. Adv Eng Inform 26:159–179

 9. Verhagen WJ, Bermell-Garcia P, van Dijk RE, Curran R (2012) A
critical review of knowledge-based engineering: an identifica-
tion of research challenges. Adv Eng Inform 26:5–15

 10. Komoto H, Tomiyama T (2011) A theory of decomposition in
system architecting. In: Proceedings of ICED, international
conference on engineering design

 11. Adcock R (2017) The guide to the systems engineering body
of knowledge (SEBoK). The Trustees of the Stevens Institute
of Technology, BKCASE Editorial Board, Hoboken. www.sebok
wiki.org. Accessed 10 April 2018

 12. Estefan J (2008) A survey of model-based systems engi-
neering (MBSE) methodologies. Technical Report. INCOSE-
TD-2007-003-02, International Council on Systems
Engineering

 13. Wang T, Truptil S, Benaben F (2017) An automatic model-to-
model mapping and transformation methodology to serve
model-based systems engineering. Inf Syst e-Bus 15(2):323–
376. https ://doi.org/10.1007/s1025 7-016-0321-z

 14. Antonsson E, Cagan J (2001) Formal engineering design syn-
thesis. Cambridge University Press, Cambridge

 15. Brown KN (1997) Grammatical design. IEEE Expert Intell Syst
Appl 12:27–33

 16. Muenzer C (2015) Constraint-based methods for automated
computational design synthesis of solution spaces. Ph.D. the-
sis, ETH Zuerich

 17. Königseder C, Stanković T, Shea K (2016) Improving design
grammar development and application through network-
based analysis of transition graphs. Des Sci 2:e5. https ://doi.
org/10.1017/dsj.2016.5

 18. Puentes L, McComb C, Cagan J (2018) A two-tiered grammati-
cal approach for agent-based computational design. In: 44th
Design automation conference, Proceedings of the ASME
design engineering technical conference. American Society
of Mechanical Engineers (ASME). https ://doi.org/10.1115/
DETC2 018-85648 . ASME 2018 international design engineer-
ing technical conferences and computers and information in
engineering conference, IDETC/CIE 2018; Conference date:
26-08-2018 through 29-08-2018

 19. Stouffs R, Hou D (2019) Composite shape rules. In: Gero JS
(ed) Design computing and cognition ’18. Springer, Cham, pp
439–457

 20. Kröplin B, Rudolph S (2005) Entwurfsgrammatiken - Ein Para-
digmenwechsel? Der Prüfingenieur 26:34–43

 21. Hertkorn P, Reichwein A (2007) On a model driven approach
to engineering design. In: Proceeding of ICED, the 16th inter-
national conference on engineering design

http://arxiv.org/abs/1712.07204
http://arxiv.org/abs/1712.07204
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.2514/1.J051895
https://doi.org/10.2514/1.J051895
http://www.sebokwiki.org
http://www.sebokwiki.org
https://doi.org/10.1007/s10257-016-0321-z
https://doi.org/10.1017/dsj.2016.5
https://doi.org/10.1017/dsj.2016.5
https://doi.org/10.1115/DETC2018-85648
https://doi.org/10.1115/DETC2018-85648

Vol.:(0123456789)

SN Applied Sciences (2020) 2:1235 | https://doi.org/10.1007/s42452-020-2959-x Research Article

 22. The design compiler 43v2 (2005). www.iils.de. Accessed 15
Dec 2017

 23. Arnold P, Rudolph S (2012) Bridging the gap between product
design and product manufacturing by means of graph-based
design languages. In: TMCE

 24. Haq M, Rudolph S (2004) Ews-car: A design language for
conceptual car design. In: VDI-Berichte 1846, Confernece on
numerical analysis and simulation in vehicle engineering,
Würzburg, Germany, pp 213–237

 25. Irani M, Rudolph S (2005) Space station design rules. SAE
Aerosp Eng Mag 25:43–46

 26. Schaefer J, Rudolph S (2005) Satellite design by design gram-
mars. Aerosp Sci Technol 9:81–91

 27. Vogel S, Danckert B, Rudolph S (2012) Knowledge-based
design of scr systems using graph-based design languages.
MTZ Motortechnische-Zeitschrift 73:702–708

 28. Gross J, Rudolph S (2012) Dependency analysis in complex sys-
tem design using the �resat example. In: INCOSE international
symposium, Rom

 29. Tonhaeuser C, Rudolph S (2017) Individual co�ee maker design
using graph-based design languages. In: Gero J (ed) Design
computing and cognition’ 16. Springer, Cham

 30. Gamma E, Helm R, Johnson R, Vlissides J (1994) Design patterns:
elements of reusable object-oriented software. Pearson Educa-
tion, Delhi

 31. White G, Sivitanides M (2005) Cognitive di�erences between
procedural programming and object oriented programming.
Inf Technol Manag 6(4):333–350

 32. Jackson P (1998) Introduction to expert systems, 3rd edn. Addi-
son-Wesley Longman Publishing Co., Inc., Boston

 33. Vogel S, Rudolph S (2016) Automated piping with standardized
bends in complex systems design. In: Proceedings of the sev-
enth international conference on complex systems design and
management

 34. Walden D, Roedler G (2015) INCOSE systems engineering hand-
book: a guide for system life cycle processes and activities, 4th
edn. Wiley, Hoboken

 35. Reichwein A (2012) Application-speci�c UML pro�les for multi-
disciplinary product data integration. Ph.D. thesis

 36. Ramsaier M, Breckle T, Till M, Rudolph S, Schumacher A (2019)
Automated evaluation of manufacturability and cost of steel
tube constructions with graph-based design languages

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional a�liations.

http://www.iils.de

	Towards a more complete object-orientation in graph-based design languages
	Abstract
	1 Introduction
	2 State of knowledge and previous work
	2.1 Engineering design methods
	2.1.1 Multidisciplinary design optimization (MDO)
	2.1.2 Knowledge-based engineering (KBE)
	2.1.3 Model-based systems engineering (MBSE)
	2.1.4 Design grammars
	2.1.5 Graph-based design language

	2.2 Principles of object-orientation

	3 Problem setting
	3.1 Challenges in product engineering
	3.2 Current status of graph-based design languages

	4 Methods
	4.1 Rules
	4.2 Class methods
	4.3 Modeling abstract interfaces
	4.4 Calling methods and constructors in the activity diagram
	4.5 Modeling methods
	4.6 Encapsulating design languages

	5 Case study: designing SCR system
	5.1 Classical approach without class methods and interfaces
	5.2 Proposed approach with class methods and interfaces
	5.3 Comparison of classical and proposed approach

	6 Results
	6.1 Information security and collaboration
	6.2 Domain integration
	6.3 Reusability
	6.4 Modularization

	7 Discussion
	8 Conclusion
	Acknowledgements
	References

