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Abstract

In this paper an extension of the design method graph-based design languages is proposed. This is realized by adding 
object-oriented class methods and interface mechanisms to the design method. Additionally, graphical mechanisms 
for modeling and calling the methods are proposed. This allows object-oriented design patterns to be transferred to 
the product design, where they improve the handling of complexity in the product engineering. As result, the pro-
posed extension enables modularization and reuse of engineering knowledge, the integration of engineering domains 
is enhanced and multi-stakeholder collaboration with security access control (information security) becomes feasible.

Keywords Systems engineering · Engineering automation · Design grammar · Design language · Object-orientation

1 Introduction

The ongoing digital transformation in industry applies to 
all product life cycle’s stages. The design decisions and 
dimensioning carried out in the early conceptual design 
stages determine a huge part of the product’s life cycle 
costs (LCC) [1]. The automation of the conceptual design 
phase promises therefore huge gains in terms of LCC. 
Graph-based design languages encode design processes 
in production systems made up of rule sequences which 
automatically create an abstract central product model 
(central data model) from given requirements. Graph-
based design languages use the uni�ed-modeling-lan-
guage (UML) to de�ne the product entities (classes) sup-
porting object-oriented inheritance. Graph rules, either 
graphically de�ned or code-based, instantiate the classes 
and iteratively assemble the central model. This interdis-
ciplinary systems engineering approach tries to capture 
all aspects of a product (design) and helps to handle the 
complexity in the development of modern products [2].

The goal of this work is to further improve the design 
method of graph-based design languages. It shall be 
shown that graph-based design languages only partially 
follow object-oriented modeling principles, but in some 
places (class methods and interfaces) the paradigm of 
object-orientation is not yet fully implemented. As part of 
the work, the graph-based design languages are now to be 
further developed methodically so that a more complete 
implementation of the principles of object-orientation is 
achieved. The work is intended to push the limits of the 
design method of graph-based design languages further 
towards a more compact and simpler formulation to gain 
an even better handling of the complexity immanent in 
(the design of ) modern products and systems. Handling 
this is becoming even more important in the design of 
networked cyber-physical systems in the upcoming age 
of the Internet of Things.

The work is organized as follows: After the introduc-
ing section the current state of knowledge and previous 
work in the area of design grammars and graph-based 
design languages is presented. Then the problem setting 
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is formulated, why graph-based design languages do 
not yet provide a complete realization of object-oriented 
principles. In the following method section approaches 
are proposed to solve this issue. Then a case study pre-
senting a graph-based design language that creates an 
exhaust aftertreatment system is carried out. In the follow-
ing results section the issues raised in the problem setting 
are addressed. Finally, the paper ends with discussion and 
conclusion.

2  State of knowledge and previous work

This section presents the state of knowledge relevant to 
the work carried out. The main aspects of automation of 
design processes as well as principles of object-orienta-
tion, especially known from software engineering, are 
introduced. The presentation of the relevant engineering 
design methods in the following subsection is based on 
the author’s introduction in the reference [3].

2.1  Engineering design methods

In the past, various approaches to automate design tasks 
have been proposed. Figure 1 gives a �rst overview of the 
approaches pursued. Typical properties and characteristics 
are also assigned. However, it should be noted that the 
presentation is simpli�ed and that the boundaries of the 

approaches and their typical characteristics are blurred 
and may overlap.

2.1.1  Multidisciplinary design optimization (MDO)

MDO is probably the most widely used approach to design 
automation in industrial practice at present. The article [4] 
shows applications of MDO methods in aerospace engi-
neering. According to the industrial experiences of the 
author the main approach to implement MDO is by using 
a parameterized geometry in a CAD (computer-aided 
design) environment together with an (integrated) simula-
tion work�ow. The work�ows are very often implemented 
using an imperative, script-based approach as shown in 
Fig. 1 bottom left. There exist a lot of di�erent MDO archi-
tectures �tted to the speci�c design problem [5]. In con-
trast to the model-driven approaches described below, 
there is generally no explicit conceptual model in MDO 
besides the implicit CAD and simulation models used.

2.1.2  Knowledge‑based engineering (KBE)

The much more knowledge-intensive KBE approaches 
promise a higher degree of automation and autonomy. 
According to [6] these are knowledge-based systems 
which are closely interwoven with a CAD core. On the 
one hand there are approaches in which the knowledge 
is modeled in corresponding (declarative) programming 

Fig. 1  The level of abstraction 
versus knowledge-intensity for 
di�erent methods of engi-
neering automation (ovals). 
The boxes assign the key 
properties of the approaches. 
Analogously, the di�erent lev-
els of abstraction in software 
engineering are shown below. 
Taken from [3]
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languages like Lisp [7] and which then address a con-
nected CAD application. On the other hand, there are 
CAD applications that provide KBE functionality in the 
form of programming options and interfaces [8]. The KBE 
approach is further characterized by features like runtime 
caching, dependency tracking as well as a demand-driven 
evaluation [7]. This allows purely practical designs to be 
generated and recon�gured online without the need for 
a complete new generation. However, the complexity of 
implementing KBE applications still stands in the way of 
practical application in an industrial context [9].

2.1.3  Model‑based systems engineering (MBSE)

The main idea behind systems engineering is to decom-
pose a complex product, as well as its requirements, into 
smaller systems that are made up of (sub)systems them-
selves [10]. Clear interfaces are de�ned between linked 
systems, that can be interchanged afterwards according 
to the interfaces’ de�nitions. The decomposition leads to 
smaller system entities that can be handled more easily 
and enables therefore the handling of complex products 
and systems (divide-and-conquer).

MBSE now represents a form of implementing the 
systems engineering approach, which is less knowledge 
intensive and less automated compared to KBE. The MBSE 
is de�ned in [11] as: “The formalized application of mod-
eling to support system requirements, design, analysis, 
veri�cation and validation activities beginning the con-
ceptual design phase and continuing throughout devel-
opment and later life cycle phases”. The model-based 
aspect means that a product is no more represented by 
classical documents but through object-oriented, abstract 
and hierarchical models using languages as the Systems 
Modeling Language (SysML). Usually there is still a lot of 
manual work involved: Either in a manually created central 
model of a product from which domain-speci�c models 
(e.g. simulations or geometries) are then automatically 
generated, or in the context of distributed domain-spe-
ci�c models which have to be mutually updated manually 
when changes occur [12, 13].

2.1.4  Design grammars

There exists a variety of di�erent design grammars [14]. 
These approaches have a common language-like struc-
ture. A formal vocabulary is de�ned, which represents 
(parts of ) the later product. Using this vocabulary, rules are 
de�ned how a valid model of the product is built from the 
individual ‘words’ (= parts of the product)—according to 
the grammar of a language. In a production system, these 
rules are called up when the precondition of the respec-
tive rule is ful�lled. From the combinatorics of the gradual 

application of the applicable rules, whole trees (generative 
tree) of product designs result, which are then searched 
for target-oriented designs [15]. A reduction of the search 
spaces can be realized using �rst-order logic and Boolean 
satis�ability [16]. To gain further insight in to design gram-
mars a representation of the (unique) designs in transition 
graphs is proposed. The transition graphs allow a system-
atic rule analysis which supports the human designers to 
gain a deeper understanding of the grammar they devel-
oped [17]. Other recent works propose to divide rules into 
groups of more and less abstraction to accelerate design 
synthesis [18]. More complex rules are proposed in [19] by 
grouping two or more rules into so called composite shape 
rules (�ows) to get an algorithmic rule pattern.

2.1.5  Graph‑based design language

The so-called graph-based design languages, that are used 
and further developed in this work, are another kind of a 
design grammar. The approach shares the properties of 
having a vocabulary (as classes) and rules. But the produc-
tion system that calls the rules is di�erent: Graph-based 
design languages have an explicitly procedurally mod-
eled rule sequence [20]. These sequences contains state 
dependent branches and are organized into hierarchical 
sub-sequences (sub-activities). Using this approach, no 
combinatory set of designs is created on execution, but 
one �nal design is created for a set of given starting con-
ditions and requirements. Graph-based design languages 
are a generic approach that uses the object-oriented Uni-
�ed-Modeling-Language (UML) and that is not limited to 
a speci�c (engineering) domain [21].

A speci�c product instance is iteratively expanded from 
a given set of requirements. This is practically done by the 
execution of the production system in a so-called design 

compiler [22] that creates a design graph as digital blue-
print of the product. Figure 2 shows the information archi-
tecture of graph-based design languages schematically. 
The left part contains the implementation of the design 
process in the design compiler. Product building blocks 
are de�ned in terms of classes. The production system is 
made up of an adaptive rule sequence that instantiates 
the classes. The sequence can be branched, based on judg-
ments rendered in decision nodes. Graph Rules, de�ned 
either graphically or textually as program code, are able 
to conduct manipulations of the design graph. The design 
graph acts as central data model (single source of truth). 
On the right side the validation part of the design process 
(process chains) is shown where domain-speci�c engineer-
ing models (CAD, structural mechanics, �uid mechanics, 
etc.) are derived from the central model by executing 
model-to-model (M2M) transformations. These transfor-
mations are implemented in plug-ins that are provided by 
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the design compiler. The design graph is analyzed in the 
M2M-transformations within the plug-in calls, the domain-
speci�c information is �ltered and the domain- and appli-
cation-speci�c models are generated and executed [3]. 
The results of the automatically executed and post pro-
cessed validation calculations and simulations can be fed 
back into the production system to change requirements 
or start conditions. In this way outer optimization loops 
to explore design space can be realized.1 Graph-based 
design languages have been used throughout di�erent 
applications like automotive, aerospace and manufactur-
ing [23–29]. An exemplary design language is presented 
in the following Sect. 3 and its existing disadvantages are 
discussed there.

2.2  Principles of object‑orientation

Object-orientation is a method from software develop-
ment to map and handle complex systems. A system is 
de�ned as a set of cooperating objects that perform a 
task within or in the form of an software application (com-
pare with the systems engineering approach explained 
above). The following list shows the key features of 
object-orientation:

• Abstraction Representing only the essential features of 
an entity. Extraction of the essential features and inter-
faces of a system.

• Encapsulation Wrapping entities, that are de�ned by 
data and methods to conduct speci�c behavior, into 
units. Hiding system internals and implementations 
behind externally accessible and well de�ned inter-
faces.

• Polymorphism Sub-typing of entities through hierarchi-
cal inheritance. Behavior is abstractly de�ned by inter-
faces that are implemented and reused in sub-types.

Reusable design patterns are widely spread in software 
engineering. These patterns heavily rely on the object-
oriented features listed above and follow the central idea 
of: “Programming to an Interface, not an Implementation” 
[30]. The interface mechanism is the central feature of �ex-
ible object-oriented software design which allows to eas-
ily couple, exchange and reuse “black-box” entities whose 
interaction is speci�ed through interfaces and which is 
independent of the inner structure and the speci�c imple-
mentation of the entities. This �ts perfectly to the systems 
engineering’s central idea to recursively couple encapsu-
lated and hierarchically de�ned sub-systems to compose 
increasingly complex systems and products.

3  Problem setting

3.1  Challenges in product engineering

Modern systems engineering faces the challenge of 
designing highly complex cyber-physical systems that 
typically cover many physical and even logical domains 
(control, ...) simultaneously. This makes it necessary, in the 
design process, to bring together contributions from the 
di�erent domains and departments on the one hand, but 
on the other hand the associated requirements for the pro-
tection of intellectual property and data security must also 
be taken into account. This is even more important when 
third-party suppliers are also involved in this process. Thus, 
a modern tool to support and automate the design pro-
cess must provide both information security and encapsu-
lation of potentially sensitive data, as well as functions for 
interdisciplinary and inter-company collaboration.

Furthermore, most modern products have an immense 
implicit complexity: This is due to the progressive 

Fig. 2  Information architec-
ture of a graph-based design 
language

1 In contrast to conventional design grammars each design is 
started anew.
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development of the technologies themselves, the increas-
ing implementation of product functions by software 
functions as well as ever more far-reaching regulatory 
requirements. Last but not least, the customer demands 
ever better products with ever more extensive functions. 
Imagine the development of the automobile over the 
last 50 years from a pure means of transport to a highly 
comfortable and already partly autonomous transporta-
tion system with integrated information and entertain-
ment systems, which meets much stricter environmental 
requirements at the same time. This complexity has to be 
handled in the design process within product engineering. 
The systems engineering approach of dividing the product 
into a system-of-systems can support this handling. This 
can be realized by a decomposition and modularization of 
the product model description. To avoid double work and 
to realize an e�cient design process, a reuse of already 
developed solutions shall be supported.

3.2  Current status of graph‑based design languages

The graph-based design languages, as presented above, 
are modeled in an object-oriented modeling language 
(UML), but follow more or less a procedural programming 
paradigm [31]. This is exemplarily shown in the schematic 
design language2 illustrated in Fig. 3.

A simple car model, consisting of a chassis with a 
de�ned number of wheels, is expanded and re�ned by 
introducing wheel suspensions. The objects that are put 
together by the rules are de�ned in the UML class dia-

gram on the top. A graphically defined graph rule (if/
then scheme, left-hand-side [LHS]/right-hand-side [RHS] 
scheme) to add wheel suspensions between the wheels 
and the chassis is shown below. The production system 
on the lower part shows the rule sequence for iteratively 
building up the car model. The JavaRule hosts a program 
code rule which iteratively adds the wheels in a loop. It is 
called numberOfWheels times as set in the Chassis object. 
The design graph (central data model) on the bottom of 
Fig. 3 is generated by the execution of the production sys-
tem. It hosts the instances of the current product design 
with its speci�c design parameters. The rule sequence in 
the production system manipulates the design graph in 
a procedural manner as imperative commands work on a 
common program state (current design graph state) in a 
prede�ned sequence. The production systems in graph-
based design languages have an additional entity called 
Decision Node that allows a branching of the rule sequence 
and the implementation of conditional switch or loop 

statements in the design language (Fig. 4). Hierarchical sub 

activities can be modeled in the production system. They 
can embed sub production systems (Fig. 4). A sub activity 
can be seen as being equivalent to a sub routine that takes 
the central data model as sole argument.

In the world of the object-oriented software engineer-
ing this approach would be considered as “bad design”. 
Translated to object-oriented software engineering, the 
design language’s rule sequence can be interpreted as a 
sequence of static methods—without any explicit method 
parameters—that builds up the central data model. The 
lack of both, explicit interface de�nitions and methods 
that are coupled to data objects (classes), harms reusabil-
ity and modularization. For bigger and complex design 
languages it gets di�cult to maintain consistency and to 
debug the model as the whole design graph is exposed 
to every rule and sub activity. So the lack of a tight encap-
sulation in conjunction with the missing mechanism of 
abstractly defined interfaces can be seen as a central 
challenge of the current graph-based design language 
approach. This disadvantage also applies to numerous 
other expert systems, as rule-based or logical systems, that 
miss hierarchical modeling concepts [32].

The following list summarizes brie�y the shortcomings 
of the current design languages. These are addressed 
using the methods presented in the following Sect. 4. In 
the results Sect. 6, the individual points are then discussed 
again and the e�ectiveness of the proposed methods is 
discussed.

• Modularization Systems-of-systems aspect di�cult to 
realize without explicit interface de�nitions as the sub 
systems are di�cult to delimit mutually. The behavior 
of sub entities is detached from themselves as opera-
tions are not coupled to the data entity they apply to.

• Reusability Components can not be properly encap-
sulated into entities with explicit and self-explanatory 
interface de�nitions for later reuse.

• Domain integration The integration of domain-speci�c 
models via M2M transformations is not sufficient. 
Some domains can be easier integrated when granu-
lar class methods (with de�ned explicit parameter lists 
bounded to a class) are provided in the production sys-
tem and the domain-speci�c models themselves are 
created iteratively.

• Collaboration Designing complex designs needs 
involvements from multiple domains and therefore 
involvement of multiple experts. Proper interfaces to 
clarify the requirements and responsibilities are a pre-
requisite for successful collaboration.

• Information security Modules with de�ned interfaces 
can be encrypted and hidden to allow collaboration 2 The truncated term Design Languages always refers to Graph-

Based Design Languages.
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between companies whilst respecting intellectual 
property.

A fully object-oriented graph-based design language 
should therefore realize the object-oriented paradigms 

presented above. An abstract interface mechanism 
would address the issues of modularization, reusabil-
ity and maintainability. Such an interface mechanism 
would require class methods on the other hand to bind 

Fig. 3  Schematic design 
language of a simpli�ed car 
design
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together data and functions as claimed in object-ori-
ented software engineering.

4  Methods

In this work modifications to the graph-based design 
languages are suggested to increase the level of object-
orientation to tackle the diagnosed disadvantages above. 
The proposed solutions have been mainly implemented 
in the current release V3 of the Design Compiler 43. The 
following proposed graphical calling mechanisms of the 
class methods and constructors remain in a conceptual 
state as its implementation in the design compiler requires 
additional e�orts.

The foundation of the following solution approaches is 
a duality of graphical and textual (code-based) modeling 
options provided by the design compiler. The target in 
each step is to have either a textual-based (source-code) or 
a graphical de�nition of the rules and newly added object-
oriented features. This graphical de�nition is interpreted 
internally in the design compiler that modi�es the design 
graph correspondingly. Then it is up to the creator of the 
design language which representation is preferred.

For each UML class a Java class source �le is internally in 
the design compiler created which hosts the class param-
eters as well as the setter and getter methods. This enables 
the user to model the design process either graphically 
or code-based, depending on the personal preferences 
or on the speci�c problem. The graphical and code-based 
approaches are reduced to just two di�erent views on the 
same modeling task.

4.1  Rules

Graphically defined manipulation rules of the design 
graph, as shown in Fig. 5 top, can be equivalently imple-
mented as Java code, Fig. 5 bottom. Both sorts of rules 
can be called in the production system as shown in Fig. 3 

where the textually de�ned, code-based rule is marked by 
the term javaRule and a graphically de�ned rule is shown 
in its iconi�ed LHS/RHS representation. This feature was 
already supported in earlier versions and is just mentioned 
for a better understanding.

4.2  Class methods

As shown in Fig. 6, class methods are added to the classes 
below each class’ properties �elds to enable encapsulation. 
The introduction of classes’ methods realizes the object-
oriented foundation principle of a tight coupling between 
data and methods. Constructors of the classes, identi�ed 
by the class name, are added in the same way. These 
constructors are executed in the creation of the classes’ 
instances. The methods are executed on selected instances 
of the class in the production system. Both, constructors 
and class methods can be called from source code or 
within the graphically represented rules as proposed in 
Sect. 4.4. According to the graphical and textual duality 
the constructors and methods can be implemented either 
as source code or again in the graphical representation as 
suggested in Sect. 4.5.

4.3  Modeling abstract interfaces

An object-oriented interface mechanism is implemented 
by the introduced class methods. The abstract behavior 
of components is defined through interface elements 
as abstractly defined methods (empty methods with 
defined signatures). These interfaces are implemented 
by classes that realize the interfaces’ abstract behavior. 

Fig. 4  Decision node for branching the rule sequence (left) based 
on model constraints and sub activity (right) to model hierarchi-
cally embedded rule sequences

Fig. 5  Rule insertWheelSuspension: Equivalence of graphically 
de�ned rule (top) and code rule (bottom). Both implementation 
techniques execute equivalent graph manipulations on the design 
graph
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The interface mechanism shall provide abstraction and 
polymorphism. The behavior of components is modeled 
in an abstract way and sub-typing of entities through 
hierarchical inheritance and/or implementation rela-
tions in the class diagram is supported. Figure 7 shows 
an interface mechanism for calculating mass balances 
of mechanical parts. These parts inherit the behavior/
property of carrying a mass from an interface. Each of 
these parts has to implement the getMass() method that 
returns the value of its mass. This method, required by 
the interface, is called by an instance of the MassBalance 
class that calculates the total mass of the linked classes 
by calling and summing-up the values returned by the 
attached parts’ getMass() methods.

4.4  Calling methods and constructors in the activity 
diagram

According to the initially mentioned spirit, the design 
compiler shall provide graphical and code-based represen-
tations of the design language’s components in parallel. 
Calling constructors and methods within Java code is self-
explanatory, whereas a graphical way of calling construc-
tors and methods needs to be de�ned to maintain the dual 
representations. Figure 8 shows a mechanism to call a con-
structor (bottom) and a method (top) within graphically 
de�ned rules. The instance whose method shall be called, 
as well as the speci�c method, are de�ned on a graphi-
cally de�ned rule’s LHS. Parameters in the method can be 

Fig. 6  Extended class diagram 
with object-oriented class 
methods and class construc-
tors (compare with ‘classi-
cal’ class diagram in Fig. 3 
that lacks the methods and 
constructors). The data types 
of the methods’ parameters 
are not shown for the sake of 
simplicity. This applies to all 
�gures

Fig. 7  The classes that realize 
an interface have to imple-
ment the methods de�ned in 
the interface

Fig. 8  Top: Calling method 
addWheelSuspension that 
returns an instance method-
Return which is integrated in 
the model on the RHS. Bottom: 
An instance of type Wheel is 
created and linked to the exist-
ing Chassis instance on the 
RHS by calling the constructor
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explicitly provided by typing in the value as shown in the 
top or referenced from other LHS instances’ parameters as 
explained for the constructor call below. Possible return 
objects of the called method are created on the RHS of the 
graphically de�ned rule. Using this approach, the methods 
calls are used in the same spirit as conventional graphically 
de�ned rules. The context3 of a method call is de�ned on 
the LHS. The design graph change resulting from the call is 
de�ned on the RHS within the mapped LHS context.

Constructor calls are de�ned solely on the RHS, as a 
constructor creates an instance whose target context is 
searched on the LHS and the connection to the mapped 
context is de�ned on the RHS. Parameters are de�ned as 
in the method call, either explicitly or via instances’ param-
eters from within the rule context as shown in the Wheel 
constructor’s parameter list, where the parameter value 
of the LHS chassis0 instance is accessed via the expression 
chassis0.width.

4.5  Modeling methods

In the dual spirit the graphical de�nition of methods needs 
to be enabled. Filling the methods hull textually with Java 
code is again self-explanatory, as shown in Fig. 9 bottom. 
Filling the methods hull graphically is explained in the 
following and shown in Fig. 9 top: A sub activity is set as 
method hull and used to de�ne the methods behavior.

The methods input parameters (instances or vari-
ables) are available within the sub activity’s namespace. 
Passed-over instances (via the method’s parameters) 
shall be graphically inserted on the LHSs of the graphical 

rules either per-default or on-demand via the context-
assist function of the rule editor. The instances’ �elds in 
the rules’ context can be accessed by the instances’ and 
fields’ names in the same way, using a corresponding 
instanceName.�eldName expression, as the constructor 
parameter in the previous subsection has been set. Pure 
value parameters (eg. number or strings) in the methods 
parameter list could be accessed via a self.valueParameter-

Name expression.
To model the method’s return values the last element 

of the sub-activity is proposed to be a �xed return rule 
with LHS only that is used for de�ning the method’s return 
which can be possibly in a further return context. This 
return context is de�ned by the context that has been 
mapped to the RHS of the graphical method call presented 
in the previous Sect. 4.4 in Fig. 8 top right. In this way dif-
ferent graphical method calls with their speci�c return 
context require an individual return rule. Following the 
presented approach graphically de�ned methods need to 
be called graphically and the code-based methods need to 
be called textually in a JavaRule where the return context 
of the executed method can be explicitly coded (eg. to 
which instances of the design graph a returned method 
shall be attached.

The accessibility of instances and variables in the 
method implementing sub activity complies with Java’s 
namespace de�nition, which shall account for encapsula-

tion and information hiding. This local namespace is further 
explained in Fig. 9 right.

The code-based representation of the rules directly 
changes the internal representation of the design graph 
in the design compiler when the rules are executed. In 
contrast, the graphically modeled rules are interpreted by 
the design compiler during execution and converted into 
corresponding manipulations of the design graph.

Fig. 9  Duality of method 
modeling: Either graphical 
implementation of method 
addWheelSuspension (method 
call in Fig. 8) as sub activity 
(top). The method’s return 
instance or value is speci�ed in 
a LHS search context which is 
the sub activity’s �nal element. 
Or the method is implemented 
as code rule within a speci�ed 
method body (bottom)

3 A context shall be the graph pattern de�ned on the LHS of a 
graphically de�ned rule as this pattern is searched for in the design 
graph when executing the rule. This pattern de�nes the locations(s) 
in the design graph where the rule’s manipulations are applied.
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4.6  Encapsulating design languages

The classes in the class diagram can be assigned to pack-
ages with di�erent access modi�ers. Only the classes and 
interfaces in the public packages are shown and accessible 
from outer design languages. This allows the creation of 
complex design tasks in hierarchically encapsulated sub 
design languages. The internal implementation details 
are hidden from the outer design language that calls and 
uses the public methods, classes and interfaces provided 
by the sub languages. Implementing this mechanism in 
the design languages shall realize both encapsulation and 
information hiding.

Figure 10 shows the proposed accessibility concept on 
the level of (re-)using and integrating multiple class dia-
grams from multiple design languages. The class diagram 
of the central design language is schematically shown in 
the middle. The class diagrams of the externally loaded 
design languages are shown in the orange dashed boxes.

The classes in the loaded Drive Library Language are 
assigned to two packages (Fig. 10): The left one with the 
green background is a public one, the right package with 
the red background is the private one. This means that in 
the class diagram of the central design language only the 
classes in the public package of the loaded drive library 
can be seen and used. The private classes are only used 

internally within the drive library when calling methods 
of the public classes.

Using the external Engineering Pattern Language in 
Fig. 10 bottom is di�erent. The interface PartWithMass 
from the public package is implemented by classes in the 
central design language. Then the MassBalance class of the 
pattern language can be loaded and called to calculate the 
mass balance in the central language.

5  Case study: designing SCR system

In this case study a simpli�ed design language taken from 
[3] shall be introduced as example for the ’classical’ design 
language approach without using class methods or inter-
faces. Then the proposed approach using class methods 
and interfaces is transferred to this example. And the 
approaches are �nally compared with each other.

5.1  Classical approach without class methods 
and interfaces

The example in Fig. 11 shows a graph-based design lan-
guage of a SCR exhaust aftertreatment system. The design 
language represents the essential components of a SCR 
system: an exhaust gas piping system with addition of 

Fig. 10  Encapsulation and 
modularization: Extending 
a design language(’s class 
diagram) through externally 
loaded design languages 
(dotted frame) that are 
encapsulated modules. 
Only public packages of the 
external design languages are 
accessible by the main design 
language in the center
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Fig. 11  Case study: Simpli�ed graph-based design language to create the CAD and CFD model of a SCR exhaust aftertreatment system. The 
schematically shown approach follows the ’classic’ design languages style without class methods and interfaces
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reducing agent by means of an injector (dosing section), 
up to the catalyst on which the chemical reaction of the 
conversion of harmful nitrogen oxides into harmless gases 
takes place as well as the �ow section after the catalyst.

The class diagram in Fig. 11 shows the classes of this 
main components. The CAD and CFD classes are loaded 
externally as indicated on the right in the dashed box. The 
production system below the class diagram shows the top-
level design sequence: In the �rst rule Axiom the instances 
of the engine, the exhaust system and the environment 
are created. In the second rule the SCR system compo-
nents’ instances are added. The sub activities createCAD 
and addCFDsim host further hierarchical rule sequences to 
create the CAD elements as well as to add the CFD related 
instances. The sub activity to attach the CAD instances to 
the system component instances is exemplarily shown in 
Fig. 12. In this sub-activities there are rules for each SCR 
system component type to instantiate and link the corre-
sponding CAD respectively CFD instances. The result can 
be seen in Fig. 11 in the bottom where the speci�c CAD 
and CFD instances have been created and linked to the 
system component instances. For each additional system 
component class, corresponding rules to attach the cor-
responding CAD and CFD instances have to be modeled, 
which is very time-consuming. If changes to the system 
components classes occur, one has to change these rules 
accordingly in the sub activities. Since the class de�nitions 
(class diagram) and the corresponding rules (production 
system) are now located at di�erent places in the design 
language, it can very quickly lead to errors due to the miss-
ing encapsulation. The following subsection shows that 
these rules in the production system become unnecessary 
if the proposed class method and interface mechanisms 
are used.

These sub activities are followed by a call to the domain 
speci�c plugin. The �rst two graphical de�ned rules are 
shown in the mid of Fig. 11. At the bottom of the �gure 
the resulting design graph is shown where the instances 
are collapsed into colored dots. The CAD related instances 
are shown in green. The yellow ones are representing the 
instances of the main components. And the remaining 
points represent the instances of the CFD simulation.

Figure 13 shows the corresponding CAD model in the 
background as well as a snapshot of the CFD simulation 
at the bottom right. The design language covers the 

domains of geometry creation (CAD) and computational 
�uid dynamics (CFD) simulation. In the foreground again 
the design graph is shown. The instances are now shown 
in detail and also contain the parameter �elds and values 
as initialized and set in the production system.

5.2  Proposed approach with class methods 
and interfaces

In this subsection the previous ’classical’ design language 
is exemplarily adapted to the proposed method using 
interface and class method mechanisms. Figure 14 shows 
the modi�ed class diagram at the top as well as the modi-
�ed production system in the mid. In comparison to the 
previous approach, the domain-speci�c contributions of 
the individual system components of the emission control 
system (gray classes) can now be implemented directly in 
the latter. This is realized by implementing domain-speci�c 
interfaces (InternalFlow and CADgeo). These interfaces now 
require that the implementing classes must return CAD 
representing instances of CAD_Represent and CFD repre-
senting instances of CFD_Represent. The implementation 
of the creation of this representations is thus forced to be 
directly integrated in the component classes which real-
izes a strong encapsulation.

A schematic inheritance scheme of the CFD repre-
sentation is shown in magenta at top left in Fig. 14. The 
speci�c CFD representations stand for typical boundary 
types of CFD simulations and they can be provided by a 
correspondingly physics plug-in as proposed in [3]. In this 
way they are reused in a generically manner. The only work 
that remains is the instantiation and parameterization of 
these reused representation classes in the implementation 
of the above mentioned interfaces within the component 
classes.

As a result, the design graph is simpli�ed: The design 
graph no longer contains the explicit CAD and CFD related 
instances which are ’polluting’ the design graph as they 
are on the same representation level as the system com-
ponent instances. These are now hidden within the com-
ponent classes in the corresponding implementation of 
the getCADdata() and getCFDrepresentation() methods 
requested by the interfaces. In this way, an abstract system 
component gets di�erent domain-speci�c ”faces”.

Fig. 12  The sub activity createCAD that attaches to each system component instance (yellow) the corresponding CAD instances for hosting 
the CAD parameters (green) and the CAD representation (grey)
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A similar simplification is achieved in the production 
system. Now it is no longer necessary to model a sepa-
rate rule for each CAD or CFD data type as well as for 
each system component class to instantiate and attach 
the corresponding CAD or CFD instances - as required in 
the previous design language and shown in Fig. 12. The 
two Java rules shown at the bottom of Fig. 14, that read 
the CAD and CFD data to pass it over to the CAD and CFD 
engine of the specific plug-ins, become simple. In the 
first step one initializes the domain-specific engine. Then 
the instances that implement the specific interfaces are 
easily filtered and added to a list. Next, this list is passed 
over to the engines. Finally, the engines are executed 
and trigger the creation of the CAD model or the crea-
tion and execution of the CFD simulation.

5.3  Comparison of classical and proposed approach

The application of polymorphism by requiring the imple-
mentation of the CAD and CFD interfaces in the common 
abstract superclass of the system components results in 
an improved encapsulation as well as reduced e�orts in 
the production system modeling. The common behavior 
is de�ned in the ExhaustAftertreatmentComponent super-
class which is then speci�cally implemented in the sub 
classes. The further processing of these classes’ instances 
can take place, as in the Java rules in Fig. 14 shown, again 
on the superclass types which means that lengthy case 
separations for each system component type, as required 
in the ’classical’ design language implementations, are 
omitted.

Fig. 13  Design graph in 
instance diagram form of the 
‘classic’ design language of the 
SCR exhaust aftertreatment 
system. The CFD boundary 
conditions are added to the 
CAD topology of an exhaust 
system. The system contains 
the catalyst (white) and an 
upstream hollow cone injec-
tor to inject the reduction 
agent. The system component 
instances are not shown for 
space reasons. Reproduced 
from and more details in [3]
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Using the proposed mechanisms enforces that the 
methods and the data are implemented within the class 

in the same location. Thus the paradigm of object-orien-
tation is ful�lled and the corresponding advantages in the 

Fig. 14  Case study: Simpli�ed 
graph-based design lan-
guage to create the CAD and 
CFD model of a SCR exhaust 
aftertreatment system. The 
schematically shown approach 
follows the newly proposed’ 
design languages style using 
class methods and interfaces
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treatment of complex system are realized and transferred 
to product engineering.

6  Results

This section presents generalized �ndings in applying the 
suggested methods from Sect. 4 in product engineering. 
Emphasis is put on addressing the wide-ranging issues for-
mulated in Sect. 3 with small schematic examples, without 
going as deep into the details as in the case study.

6.1  Information security and collaboration

The presented methods allow an encapsulation and 
modularization of sub modules in sub design languages 
as shown in Sect. 4.6. Together with the access modi�ers 
from Sects. 4.5 and 4.6, this enables the encryption of (pri-
vate) parts of sub design language modules with a distinct 
separation between the public (interface) elements, that 
are accessible by third parties, and the critical encrypted 
parts within the private packages. Suppliers can share their 
design languages without explicitly sharing their know-
how and intellectual property.

Figure 15 shows again a central design language in the 
mid that shall implement a design process of a carmaker. 
This exemplary design language shall made up a simpli�ed 
car model consisting of a chassis, wheels and a third party 
wheel suspension. In this scenario the suppliers A and B 

provide design languages that contain the design process 
of the suppliers’ wheel suspensions. They hide their engi-
neering know-how within the white/black shaded parts 
of this design languages in the private packages. The con-
tent of this packages can now be potentially encrypted as 
symbolized by the lock in the �gure. For the central design 
language of the car only the suppliers’ classes in the public 
packages (green background) are visible.

An integrated virtual blueprint of a product develop-
ment process, consisting of both OEM manufactured and 
third party components, can be realized this way. Figure 19 
shows a scheme where the central product structure of 
the car is defined by the carmaker in a central design 
language within the green dashed boxes. The parts of 
the car, that are potentially provided and engineered by 
third-party suppliers, are modeled as abstract classes (italic 
class names). These abstract classes de�ne the interfaces 
to the suppliers in form of their property �elds (eg. for the 
chassis the number of doors and the material etc.). The 
property �elds shall contain the parameters for both direc-
tions: from the carmaker to the supplier (requirements and 
speci�cations) as well as from the supplier to the carmaker 
(realized and guaranteed technical speci�cations for the 
part at hand). The method stubs of the abstract classes 
de�ne the expected behavior and functionality. In the 
example just the methods that call the creation of the 
third party parts which �nally �lls the suppliers property 
�elds. This behavior has now to be implemented by the 
suppliers. Together with the information security aspect of 

Fig. 15  Collaboration and divi-
sion of labor by an embedding 
and composition of external 
design languages. The public 
interfaces to the external 
design languages are de�ned 
by interfaces or abstract 
classes. The activities, rules and 
classes in the private packages 
can be encrypted to ensure 
information security and 
know-how protection
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Fig. 15 a hierarchical composition of the car’s development 
process can be realized including third party knowledge 
whose intellectual property can be respected by encryp-
tion. In this example the interface mechanism is realized 
through abstract classes, that are made up of method 
stubs, just like in interfaces, together with property �elds 
to host a de�ned data set.

6.2  Domain integration

The method call mechanism of Sect. 4.4 supports the 
integration of different (physical) domains in the multi-
disciplinary product design. The CAD model creation is a 
central task in product design. In general, it is difficult to 
create a CAD geometry in one step, as it was necessary 
in the traditional implementation of design languages. 
One step means, modeling and running a rule sequence 
that defines the expansion of the CAD geometry in the 

central model which is then translated to a CAD geom-
etry within one CAD plug-in call in the process chain.

An iterative creation of the CAD model is much more 
suitable to create complex CAD models, as subsequent 
geometry manipulations depend on the result of preced-
ing geometry manipulations. For example are sketches 
extruded to bodies, whose faces are used as sketch 
planes for subsequent sketches and extrusions. But this 
requires that a CAD generation is executed iteratively in 
several steps. This iterative modeling is generically real-
ized with the presented class methods: They can be used 
to modularize and subtype behavior, like higher level 
CAD methods. For example, an extrusion method that 
takes an extrusion vector as a parameter can return the 
extruded end face as a return parameter. This returned 
surface can now be used for further operations depend-
ing on the properties of the same.

Fig. 16  Using the methods 
and interface mechanism to 
explicitly model an iterative 
CAD model creation (follow-
ing operations use return 
values of preceding method 
calls as parameters). Top: class 
diagram; Mid: activity diagram 
with schematic graphical 
method and constructor calls 
(see Fig. 8); Bottom: created 
CAD-Model of the spring 
damper with logic sequence
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Figure 16 shows the described stepwise generation 
of the CAD model of a spring-damper as a simplified 
example. In the mid of the �gure a graphical sequence of 
subsequent CAD operations is shown. In the �rst rule the 
Law1d revolution law instance shown in the class diagram 
top right in Fig. 16 is instantiated. In the subsequent rule 
constructHelixCreator the previously created instance is 
looked up on the LHS and fed to the constructor of the 
HelixCreator class in the RHS. The subsequent three rules 
are getter calls on the previously created HelixCreator 
instance. In this getter calls the CAD model of the helix is 
created and the returned artifacts are stored in the newly 
attached instances on the RHS. The constructDamper 
rule now looks up this returned instance(s) that provide 
the (getter-)data of the HelixCreator on the LHs and feds 
this data again into the Damper constructor. Additional 
data can be added in the same way by the following set* 
rules that look up input data and the Damper instance on 
the LHS and pass the input data to the Damper instance 
by calling the setter methods on the LHS with the input 
data �lled into the methods’ parameters list. Finally the 
createDamperCAD rule is called: In the LHS the getCAD() 
method of the looked up Damper instance is called and 
the resulting CAD instance is attached on the RHS. Corre-
spondingly, the creation and simulation of more complex 
geometries has been already demonstrated by the author 
[3, 33] and shall be not part of this method-oriented work.

6.3  Reusability

Design patterns are a well known strategy to create reus-
able software applications and modules [30] in the area of 
object-oriented software engineering. One can observe 
that all proposed patterns use interfaces realizing the 
paradigm to “...program to an interface not an implemen-
tation...”. Interfaces allow the de�nition of abstract and 
mandatory behaviors of components and modules that 
in turn can be reused in many di�erent contexts.

Figure 17 now shows two exemplary applications of 
software engineering design patterns in the class diagram 
of a design language. The top pattern is the application of 
the software engineering builder pattern in a design pro-
cess application. This pattern is used to implement trans-
lation processes from a source description, in the shown 
example the centralDataModel of the design language 
(=design graph), into di�erent target representations, in 
the example the input decks of di�erent simulation appli-
cations. Reading the source description is implemented 
once in the SimulationModelTranslator class which extracts 
and transfers the simulation data into an intermediate data 
container instance simulationData. The speci�c builder 
classes Concrete* now implement the SimulationApplica-

tion interface that de�nes the data transfer of the simula-

tionData instance from the translator. The speci�c build-
ers contains the code to create the speci�c models out 

Fig. 17  Two design patterns 
from object-oriented software 
engineering. Top: Builder pat-
tern to translate the domain-
relevant information in the 
central data model to di�erent 
simulation applications (imple-
mentation of process chains 
in Fig. 2). Bottom: Composite 
pattern to model systems-
of-systems relationships in 
systems engineering
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of the simulationData instance. In this way the read out 
of the data in the �rst step can be reused for the creation 
of di�erent target models. This can be eg. used for imple-
menting a plug-in that reads out domain speci�c data (eg. 
geometry data) from the central data model and translates 
this into di�erent input �le formats for di�erent target CAD 
applications.

The bottom of Fig. 17 shows the composite pattern 
transferred to a system engineering product decompo-
sition. An abstract System class has two realizations that 
inherit from system: Component and Subsystem. A Sub-

system instance can hosts further subsystems as well as 
Component instances. The components can host no further 
instances as they are the lowest level entity in the resulting 
hierarchical system-of-systems tree. Now the System class 
children implement the Operation interface which then 
can be called hierarchically by once calling the top-level 
callOperation method according to the schematic source 
code shown in the �gure on the left. With this mechanism 
operations can be called on all systems in an easy way. 
For example to update the system states or to execute a 
geometry creation operation on all system instances hang-
ing under a given system instance.

Additionally, the mass balance engineering pattern pre-
sented in Fig. 10 exemplarily illustrates a potential applica-
tion of the interface mechanism to enable reusable product 

design patterns. In this way reusability patterns from soft-
ware engineering can be directly applied and the principle 
itself transferred to engineering processes.

6.4  Modularization

The introduction of interfaces and methods in the classes 
leads to an additional structuring and standardization on 

an even higher abstraction level. Well known top-level 
software design concepts as toolkit structure or frame-

work structure can now be realized in virtual engineering 
[30].

In a toolkit setup existing modules are reused as (soft-
ware) libraries to achieve speci�c tasks. Transferring this 
approach to design languages is exemplarily shown in 
Fig. 18. In this example a simpli�ed car shall be created 
again. The toolkit scenario now assumes that existing 
design languages for subtasks are readily available (green 
dashed boxes). These represent the toolkits. The task of 
creating a central design language hosting the design pro-
cess of the car now consists of using these toolkits and 
calling up the process steps, provided by the toolkits, in 
the correct sequence. Shown here are a powertrain toolkit 
in the form of a corresponding design language and a CAD 
toolkit that is called up from the central design language 
(orange dashed frame) triggering the class methods and 
interfaces.

In contrast Fig. 19 shows a framework-based strategy 
of modularization as already explained in Sect. 6.1. In the 
framework architecture, the global structure and decom-
position is prede�ned by abstract interfaces that have to 
be realized by the speci�c implementations. Transferred 
to product engineering, the design process is prede�ned 
(compare systems engineering [34]) in a framework which 
facilitates and structures the design process and enables 
the exchange and the reusability of existing components. 
The example shows the prede�ned structure of the car 
in the class diagram hosted in the green dashed box. 
Now the decomposed abstract product modules (Chas-

sis, Wheel and DriveTrain) need to be implemented in the 
orange dashed section. In this way the framework is just 
the opposite approach as the toolkit structure where the 

Fig. 18  Modeling the product 
structure and design process 
in a central design language. 
External toolkits for special 
purposes are embedded on 
an elementary level (single 
classes and methods) to re-use 
existing engineering solutions 
(toolkits=engineering libraries)
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implementations of the modules have been assumed to 
be given.

7  Discussion

The lack of object-orientation in the classical design lan-
guage approach has been addressed and class methods as 
well as interfaces have been added to overcome this issue. 
A prototypical implementation within the Design Com-
piler 43 was created and graphical method modeling and 
calling mechanisms have been proposed, that fully sup-
port the dual textual (code-based) and graphical modeling 
approach. It was shown that a more complete implemen-
tation of object-oriented modeling approaches results in 
improvements in the following design-relevant areas:

• Modularization
• Reusability
• Domain integration
• Collaboration
• Information security

These points represent important requirements in mod-
ern product design to handle complex design processes. 
The support of these requirements represents a signi�-
cant improvement of the graph-based design languages 
and facilitates the application of the method by reducing 
the upfront modeling e�ort and modeling complexity. 
Divide-and-conquer based simpli�cations are enabled 
by the introduced extensions and systems engineering 
approaches can be realized more generically.

Compared to the UML-profile based approach pre-
sented in [35] the proposed extension provides a much 
more natural integration and modeling of domains 

(Sect. 5) that does not require cumbersome language 
extensions to the UML metamodel. Hierarchical rule 
structures, as recently presented for shape grammars in 
[18], can be now easily realized in graph-based design 
languages by the enabled and improved modularization. 
Recently proposed graph-based design languages [36] 
show crowded and complicated design graphs. These can 
be simpli�ed by shifting portions of the design process 
into the class (method) implementation itself as enabled 
by the present work.

On the other hand, moving artifacts of the design pro-
cess into the classes leads to a more black-box-like rep-
resentation. Although this is precisely what information 
hiding in the object-orientation aims at, it leads to the 
fact that processes, previously explicitly modeled in the 
production system, are now hidden in the class methods.

The code-based class methods and interfaces have 
been already introduced in the current design compiler 
release. The graphical method modeling and calling pro-
posed in this paper is not yet fully implemented as this 
takes more e�ort. Further work needs to be done on how 
the encryption of externally used and loaded design 
languages can be practically implemented in the safest 
manner.

8  Conclusion

The introduction of class methods and interface mech-
anisms in graph-based design languages fills the lack 
of object orientation in the previously used method-
ology. The proposed extensions enables the adoption 
of object-oriented design methods, as design patterns 
and toolkit/framework architectures, to product engi-
neering. Proven concepts as abstraction, encapsulation 

Fig. 19  A existing framework 
de�nes the product’s struc-
ture and the product’s design 
process through abstract 
interfaces and abstract classes 
(italic labels). The concrete 
design language implements 
the prede�ned methods and 
classes of the framework
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and polymorphism are transferred to the virtual prod-
uct design with design languages. The graph-based 
design languages are brought to the next level in terms 
of supporting and handling complex product design 
processes.

For the future, cleanly modularized design processes, 
formally defined by their interface specifications, may 
enable the implementation of self-organized design pro-
cesses. Such a self-organized process could run without 
an explicitly de�ned execution sequence in the central 
activity diagram. It seems possible to derive an execu-
tion sequence from prede�ned modules in a self-organ-
ized way, based solely on the interface signatures of the 
modules, that aims to ful�ll given product requirements. 
Replacing the procedural production system by a self-
organized process, the graph-based design languages 
would formally move more in the direction of classic 
design grammars, but with much more powerful rule 
equivalents in the form of modularized complex design 
sequences.
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