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Abstract— Recently there has been increasing research on the
development of autonomous flying vehicles. Whereas most dfe
proposed approaches are suitable for outdoor operation, dg
a few techniques have been designed for indoor environments
In this paper we present a general system consisting of senso
and algorithms which enables a small sized flying vehicle to
operate indoors. This is done by adapting techniques which
have been successfully applied on ground robots. We releake
our system as open-source with the intention to provide the
community with a new framework for building applications
for indoor flying robots. We present a set of experiments to
validate our system on an open source quadrotor.

I. INTRODUCTION 1 ! : 8/ X} /
In recent years, the research community has shown &—_.: \F 3 i ’J A

increasing interest in autonomous aerial vehicles. Logt-co o,

%

and small-size flying platforms are becoming broadly avalil : Laser Scan Tp o <—— Robot
able and some of these platforms are able to lift relativel O - T Rl ™% P

-

high payloads and provide an increasingly broad set ¢ B I 0 R 2ol Xog
basic functionalities. This enables even unexperiencedspi ﬁ# \ Noiaa Ml '
to control these vehicles and allows them to be equippe
with autonomous navigation abilities. Whereas most of th&g. 1. A quadrotor robot equipped with our navigation sysiuring a
proposed approaches for autonomous flying [18], [8] fOCL(ﬁiISSKm (top) and position of the vehicle estimated on-tineing the flight
on systems for outdoor operation, vehicles that can au-
tonomously operate in indoor environments are envisioned glynamics of a flying robot is substantially more complex than
be useful for a variety of applications including surveite that of ground-based vehicles which makes them harder to
and search and rescue. In such settings and comparedcantrol.
ground vehicles, the main advantage of flying devices ig thei
increased mobility.

As for ground vehicles, the main task for an autonomo

th our navigation system (bottom).

In this paper, we describe a navigation system for indoor
flying vehicles which are able to lift a payload of at least

flving robot consists in reachina a desired location in a 00 grams and can supply an additional power of 7.5 watts.
ying ised ' n ';hg th red. i fl ! I ur system is a result of an integrated hardware/software
unsupervised manner, |.€. without human interierence. (ﬂ]esign which meets several of the challenging constraints
the literature, this task is known amvigation. To address . ; . : : .

o X imposed by small size flying vehicles while preserving a
the general task of navigation one requires to tackle

. . : rge degree of flexibility. We evaluated our system on an
set Of. problems ranging from state estimation to trajectory, o, o rce micro guadrotor, namely the Mikrokopter [3].
planning. Several effective systems for indoor and outdo igure 1 shows the Mikrokopter equipped with our naviga-
navigation of ground vehicles are nowadays available [1

- lon system during a mission. Special care has been taken
[2]. However, we are not aware of a similar system for fIylng[ . .
robots o allow potential users to adapt the system to alternative

o L latforms. An open source implementation is available at
Whereas the general principles of the navigation algqumv openquadr ot or . or g

rithms, which have been successfully applied on groun
robots, could in principle be transferred to flying vehigcles The remainder of this paper is organized as follows. In
this transfer is not straightforward for several reasomstF Section Il we give an overview of the related literature.
due to their limited payload and size an indoor flying roboSubsequently, we discuss the requirements of a navigation
cannot carry the variety of sensors which can be easigystem for an indoor flying vehicle (Section Ill) and we
mounted on a mobile robot. Second, the additional degrepsesent our system in sections IV and V. We conclude with
of freedom of the vehicle prevents the direct use of welh set of experiments which illustrate the functionalities-c
known and efficient 2D algorithms for navigation. Third therently implemented in our navigation system in Section VI.



1. RELATED WORK trajectory, given the pose estimated by the localizativeyi
the measurements of the on-board sensors.

In the last decade, flying platforms received an increas- . :
: : . Several authors proposed effective control strategies to
ing attention from the research community. Many authors . . . :
ccurately steer ground vehicles with complex kinematics.

. al
focused on the modeling and on the control of these Vehlblost of these approaches rely on high frequency estimates
cles [14], [16], [17], [4], with & particular emphasis on dma of the relative movements of the vehicle obtained by inte-

helicopters. . o
Hoffmannet al. [13] present a model-based algorithm forgratmg the wheel encoders. The localization module does
' P 9 not need to run at high frequency due to the accuracy of

autonomous flying with their STARMAC-quadrotor. Thelrthe odometry within short time intervals. Unfortunately an

system flies outdoors and utilizes GPS and IMU MeaSUIS yometry estimate is often not available on flying vehicles
ments. Bouabdallatet al. [6], [7] developed a complete Y ying i

model of their quadrotor platform and a set of differen{)n principle, one could obtain a dead reckoning estimate

control strategies. Recently [5] they discussed the requir y mtegratmg the mgrtlal SENsars. However, the I|m|.ted
ments of a flying platform for indoor navigation. Ng andpayload typically requires designers to use only lightuieig

colleagues [8] have developed algorithms for learning co MEMS devices which are affected by a considerable drift.

trollers for autonomous helicopter navigation. Their agmh r%ﬁ?;g}iii tree?fse(ég\sléocnoen;ilecsjtsr;:gg:;esm localization upwates

allows helicopters to perform impressive maneuvres in out” ) i
In outdoor scenarios one can estimate the pose of the ve-

door environments. Tourniest al. [19] used monocular vi- . : ; o
: . - hicle from the integration of GPS and inertial measurements
sion to estimate and stabilize the current pose of a quadrot . . .
. nfortunately, indoors GPS is not available. Furthermtire,
Thrun et al. [18] used a remotely controlled helicopter to =" . )
position accuracy obtained by a GPS would in general not

learn large-scale outdoor 3D models. .- S
be sufficient for navigating indoors. In these contexts, the
There also has been some work that addressed the nav: ~ . . X .
. . . . . . fobot is required to localize with the on-board sensors.only
igation of flying vehicles in indoor environments and in

absence of GPS signal. Robeetsal. [15] used ultrasound To detect and avoid obstacles, these sensors should yeliabl

; ) e . reveal the surrounding obstacles.
sensors for controlling a flying vehicle in a structureditest Due to the increased risk of damaging the flving platform
environment, while Heet al. [12] presented a system for ging ying p

navigating a small-size quadrotor without GPS. The pos%uring tgsting, the deyelppgr should have the possibility o
of the vehicle is estimated by an unscented Kalman ﬁlter‘rterceptlng atany pointin time and take over the control of

Whenever the robot has to reach a given location, a pa lae platform.
which ensures a good observation density is computed from
a predefined map. These highly dense observations minimi

the risk of localization failures. . . ) .
bexample, on a helicopter an error in the pitch estimate of

In contrast to this approach, our system is suitable to . . .
PP . y - . 2% would cause an error in the estimate of the translational
used on less structured environments which can be effd;c'uvei

. X ust of approximatelyan(2°)-9.81 ~ 0.34%. Thus, such
represented by grid maps. We focus on adapting a set 0 ) 82
. ; . a relatively small error would force the helicopter to move
algorithms which have been validated on ground robots tk()) I . )
. . y 68 ¢cm within two seconds. Whereas in outdoor scenarios
indoor flying platforms. L o
such a positioning error can often be neglected, it is not
acceptable indoors, as the free-space around the robot is
much more confined.
. _ . ~In sum, a navigation system for an indoor flying vehicle
In this section, we first present the general problems ishould meet the following additional requirements: it sdou
robot navigation and discuss the additional issues intedu

by a flying platform. To autonomously reach a desired loca-
tion, a mobile robot should be able to determine a collision
free path connecting the starting and the goal locations Th
task is known agpath planning. To compute this path, a
map of the environment should be known, which often also .
has to be acquired by the robot by processing the sensor,
measurements obtained during an exploration mission. This
task is known assimultaneous localization and mapping IV. HARDWARE ARCHITECTURE

(SLAM). For most of the applications it is sufficient to

perform SLAM off-line on a recorded sequence of measure- Figure 2 shows a Mikrokopter [3] open source quadrotor
ments. Finally, to follow the path with a sufficient accuracy€duipped with sensors and computational devices. Our sys-
the robot needs to be aware of its position in the environmeM is similar to the one proposed by Heal. [12] and

at any point in time. This task is known &scalization. A~ consists of the following components:

further fundamental component of a navigation system is the « a Linux-based Gumstix embedded PC with USB inter-
control module which aims to move the vehicle along the faces and a WiFi network card,

Finally, the more complex dynamics of a flying platform
ses substantially higher requirements on the accuracy of
state estimates than for typical ground-based vehicleams

IIl. I NDOORNAVIGATION OF AN AUTONOMOUSFLYING
VEHICLE

« use sensors which can reliably detect obstacles in the
neighborhood of the robot,

« estimate the pose over time with high accuracy and at
high frequency,

- allow the user to take over control,

provide a set of off-the-shelf basic behaviors, and

use only lightweight on-board computers and sensors.



frame. We address the problems of controlling and stabdizi

the platform along different partitions of the state space
separately. From the projected laser beams, we estimate the
x — y position and the yaw) of the vehicle in a 2D map.

To compensate for the lack of odometry measurements we
estimate the incremental movements by 2D scan matching.
Finally, we control the altitude of the vehicle and estimate
the height of the underlying surface by fusing the IMU
accelerometers and the distance from the ground as measured
by the laser.

In the remainder of this section, we first discuss the projec-
tion of the laser data and the estimation of the relative omoti
between subsequent laser scans. Subsequently, we present
our localization, SLAM, and altitide estimation modulese W

conclude by discussing the user interaction and the control
Fig. 2. The quadrotor platform used to evaluate the nawgaglystem algorithms.

includes a Mikrokopter (1), Hokuyo laser range finder (2) X8ens IMU

(3), a Gumstix computer (4), and a laser mirror (5). A. Projection of the Laser Data

« an Hokuyo-URG miniature laser sensor for localization In this section, we explain how we project the laser
and obstacle avoidance, data in the global frame of the helicopter, given a set
« an XSens MTi-G MEMS inertial magnetic unit (IMU) Of known calibration parameters. The laser range finder
for estimating the attitude of the vehicle, and measures a set of distancgsalong thex — y plane, in
« amirror which is used to deflect some of the laser beanits own reference frame. Each of these distances can be
along thez direction to measure the distance from thdepresented by a homogeneous vediprin the 3D space
ground. b, = (bicosa; b;sina; 0 1)T, where a; is the angle
The Gumstix communicates with the microcontroller on th@' (€ individual beams. Lefiii; be the homogeneous
quad-rotor via an RS-232 interface and reads all the sensof&'sformation matrix from the IMU reference frame to the

Since the embedded PC runs Linux, we can develop 0m.ser frame, known from a calibration procedure and let

algorithms off-board on standard PCs and execute them 0711\52/[1}1{i be the time dependent transformation from the world

board. We use the laser range finder for both measuring iR fche IMU'_ Note thatT,;j; is computed only fro_”_‘ the
distances to the obstacles in the surrounding of the rolbt a stimated p_|tch/ an(_j ro_II. We can compute the_posmon of a
the distance from the ground. The IMU provides accurat ser .endpombi. which isnot defiected by the mirror by the
estimates of the roll and the pitch of the vehicle, whic ollowing equation:

are directly used for localization and mapping. All on-lmbar b} = TN - Tser - b, 1)
sensing and computation devices together weight about 300
grams and drain approximately 7.5 watts of power.

Conversely, if a beam is deflected by the mirror, we obtain
the pointh; in the world frame by the following chain of

V. NAVIGATION SYSTEM transformations:
In this section, we present the functionalities currently h) = Too - Tiu™ - by 2

implemented in our navigation system. It is based on ggre pmirror represents the transformation between the IMU

modular architecture in which the different componentg,q thevirtual laser position which accounts for the effect
communicate via the network using a publish-subscribgs the mirror.

mechanism. At the current state, all the device drivers and . o

some time-critical modules are executed on-board. The mofe Incremental Motion Estimation

computing-intensive algorithms for localization and miagp Some tasks, like pose stabilization, do not require to know

as well as the user interface are executed on a remote B@ absolute location of the vehicle in the environment.

that communicates over wireless network with the platformConversely, they rely on an accurate local pose estimate. \We
The roll ¢ and pitchd measured by the IMU are typi- can estimate the relative movement of the robot between two

cally accurate up td°, which is sufficient for localization subsequent scans by means of a scan matching procedure.

and mapping. In practice, we therefore calculate only fousince the attitude is known from the IMU, this procedure

of the six components of the vehicle pose vector=  can be carried on in 2D. In our implementation, we use an
(x y 2 ¢ 6 )T, namely the 3D positio{z y 2)7 and approach similar to [11]. This algorithm estimates the most
the yaw). likely pose of the vehicle; given the previous pose;_1,

The only sensor used for measuring the distances tiie current projected laser measuremérjtand the previous
nearby objects is the laser range finder. Based on knovemeb;_;, as follows
calibration pgrameters and on the attitude es_umated by the %, = argmax p(x; | Xe_1,b,_;, b)), 3)
IMU, we project the endpoints of the laser in the global xi=(x,y,0)



In our implementation we use a constant velocity model tthe robot in a region of the environment which has been
compute the initial guess for the search. visited long before. To resolve these errors, (i.e., tockhe
C. Localization loop), we apply our scan matching tephmque on our current
_ N ) ) ~ posex; and a former pose;, wherei < t. To detect a

We estimate the 2D position of the robot in a given gridpotential loop closure, we identify all former poses which
map by Monte-Carlo Localization [9]. The idea is to use &re within the ellipsoid of the pose uncertainty obtainedby
particle filter to track the positon of the robot. Whenevepijkstra projection of the node covariances starting frde t
the robot travels over certain distance, we sample the nexfirrent robot position. If a match is found, we augment the
generation of particles based from a proposal distributiograph by adding a new edge betwegnandx; labeled with
according to the relative transformation between the two poses computed
Xgﬂ - p(xtlxgﬂ,l,vt, Ax) (4) by matching their corresponding observations.
Wherex,[f] is the generated samplne,gﬂ_1 is the previous sam- E. Alt_|tude_ Esti matlor_1 o _ _
ple, v, are the velocities computed by integrating the IMU Estimating the altltud_e .of the vehicle in an indoor envi-
accelerations, and\x is the relative movement estimatedonment means determining the global height w.r.t. a fixed
by the scan matcher. Subsequently, we sample a new setd6pund %,. Directly considering thez component of the

particles proportional to likelihood beamsh; deflected by the mirror would result in a correct
] estimate only when the vehicle moves on a single floor
p(by|x;", m) (5) level. To relax this constraint, we simultaneously estanat

the altitude of the vehicle and the altitude of the undedyin
surface with respect to an initial ground level. We assume

map. Note that whenever we use a scan for computing trli@e altitude of the floor to be piecewise constant and we
odometry, the same scan is excluded from the evaluation Eﬁilize a Kalman filter for calculating the current altitudé
the IikeIih'ood This prevents us from reusing the same irfhe vehicle with respect to the current floor level. The state

formation, which ultimately would result in overly confiden s = (2,v;) used by th? filter co_nssts of the currgnt height
estimates. z and the corresponding velocity, along thez axis. The

prediction of the filter is given by the following linear sgst

of the measurement. Heilg, is the current projected laser
beam,xw is the pose of the particle, ant is the known

D. Smultaneous Localization and Mapping

Our mapping system addresses the SLAM problem by its
graph based formulation. A node of the graph representswéth
3DoF pose of the vehicle and an edge between two nodes < 1 At ) B < 0.5- At2 >

ét = ASt,1 + BCLZ, (6)

models a spatial constraint between them. These spatial 0 1 At ()
constraints arise either from overlapping observations or L

from odometry measurements. In our case the edges gre, a. denotes the accgleratlon mdirection measured
labeled with the relative motion between two nodes whicRY the IMU andAt is the time elapsed between the current
determine the best overlap between the scans acquired at @il the last iteration. If the current measurement falle int
locations of the nodes. a confidence region of the prediction, we assume no change

To compute the spatial configuration of the nodes whicl the floor level. Otherwise, the gap between the current
best satisfy the constraints encoded in the edges of théxgrafiStimateé and the measurement is assumed to be generated by
we use an online variant of a stochastic gradient optinizati a new floor level. Thls floor level is coqstantly re-estimated
approach [10]. Performing this optimization on the fly altow Whenever the vehicle enters or leaves it.
us to reduce the uncertainty in the pose estimate of the The measurement update for the Kalman filter is given by:
r%t()jotdwhenever constraints between non-sequential nodes a st=8+K-(h—C-8), (8)
added.

The graph is constructed as follows: Whenever a mgw With K Dbeing the Kalman gain(’ describing the trans-
observation is incorporated into the system, we create a nd@/mation from the state to the measurement, and=
node in the graph at the 2D position = (z,y,%). We Ny > % + hg. Here Nj = [{hi}| denotes the number of
then create a new edgg_, ; between the current position laser beams deflected by the mirror.

x; and the previous on&;_;. This edge is labeled with )

the transformation between the two posess x,_;. We F User Interaction

determine the position of the current node with respect to We control the flying vehicle by sending commands di-
the previous one by scan matching. rectly to the microcontroller which is in charge of the low

Whereas this procedure significantly improves the estimatevel control of the platform.
of the trajectory, the error of the current robot pose tends For safety reasons, the user can always control the vehicle
to increase due to the accumulation of small residual errorgia a remote control (RC) and our system mixes the user and
This effect becomes visible when the vehicle revisits alyea the program commands. During our experiments, we allow
known regions. To solve this problem, we need to re-localizéhe programs to perturb the user commands#20%. In



this way, if one of the control modules fail the user still has
the possibility of safely land the vehicle without loosing ¢
of pressing a button first.

G. Control

The altitude is controlled by a PID controller which
utilizes the current height estimate and the velocityv,
respectively. The height contr@l;, can be summarized as

Ch=K, (2= 2)+ K, e, + Ky v, 9)

with K, K; and K, being the constants for the P, I, and D
part respectively. Here* denotes the desired height and
denotes the integrated error.

The yaw is controlled by a proportional controller which
computes the yaw commard,, as

Cyp =Kp- (¢ —¢"). (10)
Herev andvy* are the measured and desired yaw.

VI. EXPERIMENTS

In this section we present experiments for each of our
modules described above, namely localization, SLAM, alti- :
tude and yaw control. During the experiments, altitude and [ ¢ & h oot Y W
yaw _Con_trOI were exeCUted'on'boarq’ Wh”e scan matChmgig. 3. Global localization of our quadrotor in a map, presly acquired
localization, SLAM, and altitude estimation were execute@y a ground-based platform. The blue circle highlights therent best

off-board on a standard laptop computer. estimate of the particle filter. The green circle marks the tpose of the
vehicle. All potential robot poses are visualized as smialtlh dots within
A. Localization the free (white) space of the environment. Top: initial &iion. Middle:

after aboutl m of flight. Bottom: after approximatelys m of flight the
Using 2D grid maps for localization enables our systerguadrotor is localized.

to operate with maps acquired by different kind of robots
and not necessarily built by the flying vehicle itself. In
this section we present an experiment in which we perform
global localization of the flying vehicle in a map acquired
with a ground-based robot. This robot was equipped with
a Sick Laser range scanner. The height of the Scannﬁ[:). 4. Map of our office environment built with our approaaidausing
was 80 ¢m. Throughout this experiment, the UAV kept athe quadrotor. There is a small mismatch in the very left ffave compare
height of 50 em + 10 em and the particle filter algorithm this map with the one depicted in I_:igure 3. This misma_ltchimilgas_ from
. . . . lass walls all around the robot which caused an error in tse pstimate.
employed 5,000 particles. Given this number of particle till the map is sufficient to reliably localize the quadroto
our current implementation requirésns on a Dual-Core
2 GHz laptop, while scan matching requiré8ms on by the quadrotor and the map generated from data gathered
average. Figure 3 shows three snapshots of the localizati##th ground-based robot consists in the very left part, wher
process at three different points in time. The top imagle pose estimation was inaccurate due to glass walls all
depicts the initial situation, in which the particles werearound the robot. Despite this error, the map is sufficient fo
Separated uniform|y over the free space. After approx"ﬁateperforming localization and we obtain similar results aghwi
1m of flight (middle image), the particles start to focusthe map learned by the ground-based vehicle.
around the true pose of the vehicle. After approximatel . N
5m the quadrotor was globally localized (bottom image)&' Altitude estirmation
The blue circle highlights the current best estimate by In the following we present an experiment which validates
the filter. A full video of a localization run is available our multi-level altitude estimation approach. We manually
on the Web undemww. sl awoni r. de/ publ i cations/  flew our vehicle in an environment with two different objects
grzonkaO9i cral/l ocal i zation_al ufr. avi. (a chair with a height oft6 cm and a table with a height of
) 77c¢m). During this flight the system flew four times over
B. Mapping each of the objects. When flying backwards over the objects
We also evaluated the mapping system by remotely steghe vehicle passed them in the reverse order respectively.
ing the quadrotor along the corridor of our office environfigure 5 shows the estimate of the altitude and the floor level
ment. The result of our SLAM algorithm is depicted induring one of the maneuvers. As can be seen from this figure,
Figure 4. The only mismatch between the map obtaineaur algorithm correctly detected the objects at correspand



Hei‘ght estimate——
Floor level estimate——
Raw measurement

z[m]

which allows to reduce the risk of collisions. Our system

adapts a set of techniques which have been validated with
ground robots, and it can also operate with data acquired by
such platforms. We furthermore implemented some control
strategies for yaw and altitude stabilization which can be
further improved by incorporating a vehicle-specific model

Our aim is to close the gap between systems for wheeled
robots and flying platforms. We want to provide a system

which allows the type of robot to be transparent to the user.
All modules described in this paper are made available as

15

10

time [s]
Estimation of the global height of the vehicle and timelerneath
floor level. Whenever the quadrotor moves over a new leveljrthovation
is used to determine a level transition. The estimate of #ighth of each
level is refined whenever the robot re-enters that partideleel.

20 25
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Fig. 6. Experiments for the autonomous stabilization of y@#eft) and 6]
height (right). During the yaw stabilization experimeriig tquadrotor was
required to rotate t®°. From time to time, the user manually changed the 7]
yaw . After the user released the remote control, the quadeattonomously
rotated back to the desired yaw angle. During the heightraxeet (right)
the quadrotor was required to maintain height66fcm. The resulting error

8
in height was+10 cm. (8]

levels. The estimated heights wet6.5cm + 2.1cm and (g
76.4 cm£2.4 em. The vehicle first passes over the table and

then over the chair. [10]

D. Altitude and Yaw Control

In this final experiment, we show the capabilities of
our yaw and altitude control modules. The yaw controller
receives as input the yaw estimate coming from the scan
matcher, while the altitude controller receives the feetba [12]
from the off-board altitude estimator. For testing the yaw
controller we set a desired yaw 6f and once in a while,
we turned the helicopter via the remote control. When thgs!
user released the rc, the vehicle always returned back to its
desired yaw with an error of-2°. Figure 6 (left) plots the
outcome of a typical run for yaw stabilization.

In a subsequent experiment, we tested the altitude stabi-
lization. The designated altitude wé&cm. In the beginning [15]
the vehicle was hovering over the ground. After enabling
the stabilization the vehicle started climbing to the dasir [16]
altitude. The desired height was kept by the vehicle up to an
error of =10 cm. The results are shown in Figure 6 (right). [17]

VII. CONCLUSIONS

In this paper, we proposed a navigation system for indoélrg]
flying vehicles. Our current system includes major relevant
state estimation modules for localization, attitude atitbale  [19]
estimation, and SLAM. We furthermore implemented a yaw
and altitude control and an effective user interaction agpin

] D. Hahnel, D. Schulz, and W. Burgard.

open source undemw. openquadr ot or . or g.
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