
Towards a Next Generation Data Center Architecture:
Scalability and Commoditization

Albert Greenberg, Parantap Lahiri, David A. Maltz, Parveen Patel, Sudipta Sengupta
Microsoft Research, Redmond, WA, USA

Abstract
Applications hosted in today’s data centers suffer from internal
fragmentation of resources, rigidity, and bandwidth constraints im-
posed by the architecture of the network connecting the data cen-
ter’s servers. Conventional architectures statically map web ser-
vices to Ethernet VLANs, each constrained in size to a few hun-
dred servers owing to control plane overheads. The IP routers used
to span traffic across VLANs and the load balancers used to spray
requests within a VLAN across servers are realized via expensive
customized hardware and proprietary software. Bisection bandwidth
is low, severly constraining distributed computation. Further, the
conventional architecture concentrates traffic in a few pieces of
hardware that must be frequently upgraded and replaced to keep
pace with demand - an approach that directly contradicts the pre-
vailing philosophy in the rest of the data center, which is to scale
out (adding more cheap components) rather than scale up (adding
more power and complexity to a small number of expensive com-
ponents).

Commodity switching hardware is now becoming available
with programmable control interfaces and with very high port speeds
at very low port cost, making this the right time to redesign the data
center networking infrastructure. In this paper, we describe Mon-
soon, a new network architecture, which scales and commoditizes
data center networking. Monsoon realizes a simple mesh-like ar-
chitecture using programmable commodity layer-2 switches and
servers. In order to scale to 100,000 servers or more, Monsoon
makes modifications to the control plane (e.g., source routing) and
to the data plane (e.g., hot-spot free multipath routing via Valiant
Load Balancing). It disaggregates the function of load balancing
into a group of regular servers, with the result that load balanc-
ing server hardware can be distributed amongst racks in the data
center leading to greater agility and less fragmentation. The archi-
tecture creates a huge, flexible switching domain, supporting any
server/any service and unfragmented server capacity at low cost.

Categories and Subject Descriptors: C.2.1 [Computer-Comm-
unication Network]: Network Architecture and Design

General Terms: Design, Performance, Reliability

Keywords: Data center network, commoditization

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PRESTO’08, August 22, 2008, Seattle, Washington, USA.
Copyright 2008 ACM 978-1-60558-181-1/08/08 ...$5.00.

1. INTRODUCTION
Data centers are comprised of both server and networking

infrastructure. The server portion of the infrastructure is now far
down the road of commoditization - high-end enterprise-class servers
have been replaced by large numbers of low-cost servers. Innova-
tion in distributed computing and systems management software
have enabled the unreliability of individual servers to be masked
by the aggregated reliability of the system as a whole. The run-
ning theme is “scaling out instead of scaling up,” driven by the
economics of PC commoditization.

The network portion of the data center infrastructure presents
the next frontier for commoditization. Data centers now being built
contain upwards of 100,000 servers, and the increase in the number
of servers that need to be interconnected has stretched the limits of
enterprise networking solutions so much that current architectures
resemble a spectrum of patches and workarounds for protocols that
were originally intended for use in enterprise networks orders of
magnitude smaller. In our analysis of budget requests from multiple
data centers owned by a large corporation, the networking gear was
consuming 10–20% of the data center’s equipment budget.

We believe that the confluence of two trends means that the
time is right to redesign the data center networking infrastructure.
The first trend is the availability of commodity switching hardware
with 1 Gbps ports below $100 and 10 Gbps ports falling below
$1,000 — these switches sometimes lack the sophisticated packet
processing and large buffers and TCAMs found in their more ex-
pensive couterparts, but they offer basic data-plane operations at
high speeds. The second trend is the ability to replace the con-
trol plane protocols used by these switches — this new program-
mability enables the switches’ data-plane features to be applied in
novel ways to the problems of flexibly interconnecting data center
servers.

This paper presents Monsoon, a blueprint for commoditizing
the networks of data centers used for “cloud” services where large
numbers of servers cooperatively handle huge workloads (e.g., in-
dexing the web). Monsoon design drives down the cost of the net-
work infrastructure while simultaneously increasing its ability to
support the bandwidth and functionality requirements of data cen-
ters. Our insights and contributions can be summarized as:

Traffic Engineering on Layer 2 Mesh: Data center networks
today suffer from sporadic congestion as workload inside the data
center changes frequently. The aggregate computational power of
the data center is significantly reduced due to network bottlenecks.
Monsoon uses Valiant Load Balancing (VLB) on a mesh of com-
modity Ethernet switches to realize a hot-spot free core fabric that
supports arbitrary traffic patterns in an oblivious manner (i.e., it
accommodates any traffic matrix permitted by the server interface
cards). We leverage the programmability of the switches and the

57

servers so that VLB can be implemented using only the data-plane
features available on commodity switches.

Scale to Huge Layer 2 Domain: Data centers today suffer
from internal fragmentation of resources, where network infrastruc-
ture and IP addressing hierarchies limit the ability to dynamically
reassign servers among the applications running in the data center.
Using a new combination of existing techniques, Monsoon creates
a single layer 2 domain that forwards frames using flat addresses
but still scales up to 100,000 servers.

Ubiquitous Load Spreading: The ability to spread requests
for a service across a pool of servers is a critical building block
in any scale-out data center. Today, this spreading is implemented
by a small number of specialized hardware load balancers that are
expensive, difficult to configure, and frequently responsible for out-
ages. Monsoon load balances traffic to any service across a pool of
servers of arbitrary size. We introduce MAC Rotation, the underly-
ing mechanism used for load spreading in Monsoon. This mecha-
nism also enables disaggregation of application-aware load balanc-
ing to regular servers placed anywhere in the data center.

2. CHALLENGES AND REQUIREMENTS
Multiple applications run inside a single data center, typically

with each application is hosted on its own set of (potentially vir-
tual) server machines. Each application is associated with one or
more publicly visible and routable IP addresses to which clients in
the Internet send their requests and from which they receive replies.
Inside the data center, requests are spread among a pool of front-
end servers that process the requests. This spreading is typically
performed by a specialized load balancer [9]. Using conventional
load-balancer terminology, the IP address to which requests are
sent is called a virtual IP address (VIP) and the IP addresses of
the servers over which the requests are spread are known as direct
IP addresses (DIPs).

Figure 1 shows the conventional architecture for a data center,
taken from a recommended source [2]. Requests arriving from the
Internet are IP (layer 3) routed through border and access routers
to a layer 2 domain based on the destination VIP address. The
VIP is configured onto the two load balancers connected to the top
switches, and complex mechanisms are used to ensure that if one
load balancer fails, the other picks up the traffic [13]. For each VIP,
the load balancers are configured with a list of DIPs, which are the
private and internal addresses of physical servers in the racks be-
low the load balancers. This list of DIPs defines the pool of servers
that can handle requests to that VIP, and the load balancer spreads
requests across the DIPs in the pool.

Figure 1: The conventional network architecture for data cen-
ters (adapted from figure by Cisco [2]).

As shown in the figure, all the servers that connect into a pair

of access routers comprise a single layer 2 domain. With conven-
tional network architectures and protocols, a single layer 2 domain
is limited in size to about 4,000 servers in practice, driven by the
need for rapid reconvergence upon failure. Since the overhead of
broadcast traffic (e.g., ARP) limits the size of an IP subnet to a few
hundred servers, the layer 2 domain is divided up into subnets using
VLANs configured on the Layer 2 switches, one subnet per VLAN.

The conventional approach has the following problems:
Fragmentation of resources: Popular load balancing tech-

niques, such as destination NAT (or half-NAT) and direct server
return, require that all DIPs in a VIP’s pool be in the same layer
2 domain [9]. This constraint means that if an application grows
and requires more servers, it cannot use available servers in other
layer 2 domains — ultimately resulting in fragmentation and under-
utilization of resources. Load balancing via Source NAT (or full-
NAT) does allow servers to be spread across layer 2 domains, but
then the servers never see the client IP, which is often unacceptable
because servers use the client IP for everything from data mining
and response customization to regulatory compliance.

Poor server to server connectivity: The hierarchical nature
of the network means that for servers in different layer 2 domains
to communicate, traffic must go through the layer 3 portion of the
network. Layer 3 ports are significantly more expensive than layer
2 ports, owing in part to the cost of supporting large buffers, and
in part to market place factors. As a result, these links are typi-
cally oversubscribed (i.e., the capacity of the links between access
routers and border routers is significantly less than the sum of the
output capacity of the servers connected to the access routers). The
result is that the bandwidth available between servers in different
parts of the data center can be quite limited. This creates a serious
global optimization problem as all servers belonging to all appli-
cations must be placed with great care to ensure the sum of their
traffic does not saturate any of the network links. Achieving this
level of coordination between applications is untenable in practice.

Proprietary hardware that scales up, not out: The load bal-
ancers in the conventional architecture are used in pairs in a 1+1
resiliency configuration. When the load becomes too great for the
load balancers, operators replace the existing load balancers with a
new pair having more capacity, which is an unscalable and expen-
sive strategy.

In contrast with the conventional architecture, we want an ar-
chitecture that meets the following challenges:

Placement anywhere: The architecture should allow any ser-
ver anywhere in the data center to be a part of the pool of servers
behind any VIP, so that server pools can be dynamically shrunk or
expanded.

Server to server bandwidth: In many data center applica-
tions, the amount of traffic between servers inside the data cen-
ter dwarfs the amount of traffic exchanged with clients outside the
data center (e.g,. many applications require extensive computation
spread over many servers in order to generate a response in a short
period of time). This implies the architecture should provide as
much bandwidth as possible between every pair of servers in the
data center, regardless of where they are located.

Commodity hardware that scales out: As more capacity is
needed, it should be easier to add more individual components than
replace existing components with newer, higher capacity models.
This requires that the architecture supports a n+1 resiliency model.

Support 100,000 servers: Large data centers today house
100,000 or more servers, though the network stands in the way
of harnessing these servers in arbitrary pools. Large data centers
of the future should support intensive internal communications be-
tween all servers.

58

As explained in the next section, the Monsoon design meets
these challenges by leveraging the programmability of servers, switch-
es with programmable control planes, and certain useful data-plane
primitives implemented in the switch hardware.

3. ARCHITECTURE
Figure 2 provides an overview of the Monsoon architecture.

The two key features are the large layer 2 network that connects
together all 100,000 servers inside the data center and the flexible
ways in which requests can be distributed over pools of servers.
We first summarize the architecture, and then the subsections that
follow go into more detail on each point.

Figure 2: Overview of the Monsoon architecture. All servers
connected by a layer 2 network with no oversubscribed links.

From a high-level architectural perspective, the differences
between layer 2 (Ethernet) and layer 3 (IP) are shrinking, especially
for a network contained inside a single building, like a data center.
However, there are a number of practical factors that drove Mon-
soon to connect all the servers via a single large domain at layer 2.
First is cost: we want to reduce network cost as much as possible.
Second is the need to eliminate fragmentation of servers: with hier-
archical addresses, the servers used to expand an application need
to be located in the same network hierarchy as the application. With
a huge flat address space, one pool of free servers can be shared by
all applications. Third is the principle of least disturbance: exist-
ing applications, management systems, and security policies make
extensive use of IP addresses (e.g., VIP/DIP mappings on load bal-
ancers and security policies on application servers). By implement-
ing Monsoon’s features underneath IP, these systems can continue
to operate largely unmodified. Combining these three factors makes
Ethernet the clear winner: it runs under IP, and it is already cost
and performance optimized for forwarding based on flat addresses.
An Ethernet port is roughly 10% to 50% the cost of a equivalent
speed layer-3 port, and data centers contain hundreds of thousands
of ports.

As shown in Figure 2, all servers connect to the layer 2 net-
work that is designed to have full reachability with no oversub-
scribed links, meaning that any server can communicate with any
other server at the full 1 Gbps rate of the servers’ network in-
terfaces. The layer 3 portion of the Monsoon network connects
the data center to the Internet, and it uses Equal Cost MultiPath
(ECMP) to spread the requests received from the Internet equally
over all access routers. As the requests enter the layer 2 domain, the
access routers use consistent hashing to spread the requests going to
each application’s public VIP equally over the set of servers acting
as load balancers for that application. Finally, the load balancers

spread the requests using an application-specific load distribution
function over the pool of servers, identified by their DIPs, that im-
plement the application functionality.

Monsoon’s ability to spread the packets destined to an IP ad-
dress over a set of servers means that load balancers can be disag-
gregated — that is, built from commodity servers instead of spe-
cialized high-throughput hardware. This both saves cost and adds
flexibility. Today, load balancers need hardware-assisted forward-
ing to keep up with the high-data rate. With the network provid-
ing the ability to spread requests across servers, the load on each
server can be kept at the level where forwarding can be done in
software. As the offered load begins to overwhelm the existing load
balancers, additional servers can be provisioned as load balancers
to dilute the load. This costs substantially less than the equivalent
hardware load balancer. Additionally, using commodity servers as
load balancers enables them to be fully programmable, with their
algorithms tunable to particular data center applications rather than
making do with the algorithms vendors provide in firmware.

As indicated in the figure, the architecture provides recovery
against failure of any access router, load balancer, or server in the
data center. A health service continually monitors the liveness of
each server, and when a problem is detected, that server is taken
out of the rotation pool and new requests are no longer sent to it.
(Both control and management plane realizations are possible; see,
for example, [6]).

3.1 Available Components
Layer 2 switches lack many of the packet handling features

of layer 3 routers. However, Monsoon shows how devices having
a layer 2 forwarding plane implemented in hardware, but program-
mable control plane software, are more than sufficient to implement
an elegant and performant design. We assume Ethernet switches
with the following hardware capabilities:

MAC-in-MAC tunneling: IEEE 802.1ah [5] defines a layer
2 analogue to IP-in-IP encapsulation. When a switch receives a
frame sent to its own MAC address, it removes the outermost MAC
header, and, if there is another MAC header inside, forwards the
frame towards the MAC destination address in the inner header. To-
day 802.1ah is implemented in “carrier Ethernet” switches, but we
expect it to become widely available. As shown in the sections that
follow, having switches that implement this primitive is tremen-
dously valuable, as it allows software on the end-servers to orches-
trate sophisticated network behavior.

16K MAC entries: While a few switches support over 100K
MAC entries in their forwarding tables, the vast majority of switches
support only 16,000. Since we target a data center with 100K servers,
it is clear that not every switch can hold a route to each server.

Node degree: We make use of two types of switches. First,
a top-of-rack (TOR) switch that aggregates the 20 1-Gbps links
coming from the 20 servers in each rack onto 2 10-Gbps uplinks.
Second, a “core” switch with 144 ports of 10-Gbps. Switches in
these classes are available from vendors such as Woven Systems,
Fulcrum Microsystems, Broadcom, and Nortel.

3.2 Server-to-Server Forwarding
The ability to forward frames between servers in the data cen-

ter is the most basic aspect of Monsoon, and other functions are
built on top of it. Forwarding in a scale-out data center must meet
three main requirements.

Forwarding scalability: Monsoon must connect 100,000 ser-
vers using a single layer 2 network built of switches that can store
only 16,000 MAC forwarding entries each. Clearly, Monsoon can-
not allow the switches to see the destination address of every server.

59

Monsoon’s solution is to have the sending server encapsulate
its frames in a MAC header addressed to the destination’s top-of-
rack switch, so that switches need only store forwarding entries for
other switches and their own directly connected servers.

Traffic engineering: Without knowing the traffic patterns of
the applications that will run over it, Monsoon must support any
traffic matrix in which no server is asked to send or receive more
traffic than the 1-Gbps its network interface allows (known as the
hose traffic model [3]).

Monsoon’s solution is to use Valiant Load Balancing (VLB),
an oblivious routing strategy known to handle arbitrary traffic vari-
ations that obey the hose model [8, 18]. VLB requires that every
frame sent across the network first “bounce” off a randomly cho-
sen intermediate switch before being forwarded to its destination.1

VLB has been shown to be capacity efficient for handling traffic
variation under the hose model [8]. Monsoon implements VLB
by adding an additional encapsulation header to frames that directs
them to a randomly chosen switch.

Load spreading: In building data center applications, it is fre-
quently useful to spread requests across a set of servers. Monsoon’s
solution is to support load spreading as a part of basic forwarding,
using a mechanism we call MAC Rotation.

In Monsoon, any IP address can be mapped to a pool of servers,
each server identified by its individual MAC address. A health ser-
vice keeps track of active servers in every pool with a common
IP address. When a server has a frame to send to an IP address,
the frame is sent to an active server in the pool. To avoid packet
reordering, the MAC address is chosen on a per-flow basis, e.g.,
using consistent hashing on IP 5–tuple.

Taken together, these solutions enable us to build a large layer
2 mesh with the traffic oblivious properties of VLB while using
switches with small, and hence cheap, MAC forwarding tables.

3.2.1 Obtaining Path Information From Directory
When the application running on server presents its network

stack with a packet to send to an IP address, the server needs two
pieces of information before it can create and send a layer 2 frame.
As explained above, it must have the list of MAC addresses for
the servers responsible for handling that IP address, and the MAC
address of the top-of-rack switch where each of those servers is
connected. It also needs a list of switch MAC addresses from which
it will randomly pick a switch to “bounce” the frame off of.

Servers obtain these pieces of information from a Directory
Service maintained by Monsoon. The means by which the directory
service is populated with data is explained in Section 3.6.

Figure 3: The networking stack of a host. The Monsoon Agent
looks up remote IPs in the central directory.

Figure 3 shows the networking stack of a server in Monsoon.
The traditional ARP functionality has been disabled and replaced
with a user-mode process (the Monsoon Agent), and a new virtual
MAC interface, called the encapsulator, has been added to encapsu-

1The intuition behind VLB is that by randomly selecting a node in
the network through which to forward traffic, the routing protocols
do not need to adjust to changes in offered traffic load.

late outgoing Ethernet frames. These changes are completely trans-
parent to applications.

When the encapsulator receives a packet from the IP network
stack, it computes a flow id for the packet and examines its cache
of active flows for a matching entry. If there is no entry, it queues
the packet and sends a request to the Monsoon Agent to look up the
remote IP using the directory service.

Once the directory service returns the MAC addresses to which
the IP address resolves and the set of VLB intermediate switches
to use, the encapsulator chooses a destination MAC address (and
its corresponding top-of-rack switch address) and a VLB interme-
diate node for the flow and caches this mapping. The server ran-
domly chooses an intermediate node for every IP flow, thus spread-
ing its load among all VLB intermediate nodes without causing
TCP packet reordering.2 If the directory service maps a remote IP
address to a list of MAC addresses, servers will choose a different
MAC address for each flow to the remote IP, thereby implementing
load spreading.

3.2.2 Encapsulation of Payload and Forwarding

Figure 4: Frame processing when packets go from one server
to another in the same data center.

With the information from the entry in the flow cache, encap-
sulating and forwarding a frame is straight forward. Figure 4 shows
how IP packets are transmitted with three MAC headers. The outer-
most header has the selected intermediate node as the destination,
the middle header has the target’s top-of-rack switch as the des-
tination, and the innermost header has the ultimate destination’s
MAC address. The sending server’s top-of-rack switch forwards
the frame towards the VLB intermediate node, which upon receiv-
ing the frame removes the outer header and forwards the frame to
the destination’s top-of-rack switch. The process repeats, with the
top-of-rack switch forwarding a normal Ethernet frame with a sin-
gle header towards the destination server.

3.3 External Connections
Figure 5 shows the network path for connections that originate

or terminate outside the data center. External traffic enters and exits
the data center through Border Routers. The Border Routers are
connected to a set of Access Routers through a layer-3 Equal Cost
Multi-Path (ECMP) routing configuration.

As described in Section 3.2, inside the data center traffic is
routed by address resolution using the Monsoon directory service
and the encapsulation of Ethernet frames at the source. It would be
ideal if Access Routers had the ability to spread packets across a set

2Since the network provides bisection bandwidth thousands of
times larger than the largest flow a server can source or sink, there
should not be problem with large flows violating the VLB traffic
split ratios. TCP flowlet switching [15] could be used if there is a
problem.

60

Figure 5: Network path for connections across the Internet.
ECMP provides resiliency at Layer 3 for Access Router fail-
ures. Traffic is routed to nodes inside the data center with the
help of Ingress Servers.

of MAC addresses. However, since routers today do not support the
Monsoon load spreading primitive or the encapsulation Monsoon
uses for VLB, we buddy a server, called an Ingress Server, with
each Access Router. We configure the Access Router to send all
the external traffic through the Ingress Server, which implements
the Monsoon functionality and acts as a gateway to the data center.

Each Ingress Server has two network interfaces — one is di-
rectly connected to an Access Router and the other is connected
to the data center network via a top-of-rack switch. For packets
from the Internet, the Ingress Server takes packets from the Access
Router, resolves internal IPs using the Monsoon directory service
and forwards traffic inside the data center using encapsulated Eth-
ernet frames like any other server. The directory service maps the
IP address of the layer 2 domain’s default gateway to the MAC ad-
dress of the ingress servers, so packets headed to the Internet flow
out through them to the access routers.

3.4 Load Balancing
Many data center applications require the ability to distribute

work over a pool of servers. In some cases, the work originates
from clients in the Internet, in others cases, from servers inside the
data center. Monsoon provides mechanisms that support the most
common types of work distribution.

Load spreading: When the objective is to have requests spread
evenly over a pool of servers and the servers must see the IP ad-
dress of the client as the source address of the request, the MAC
rotation primitive offered by Monsoon’s server-to-server forward-
ing is sufficient. All servers in the pool are configured with the VIP
associated with the pool. The directory service will then answer a
request to reach the VIP with a list of all MAC addresses in the
pool, and senders use consistent hashing on flows to pick the server
for each request.

Load balancing: When the objective is to place load bal-
ancers in front of the actual servers, Monsoon uses the approach
shown in Figure 2. The VIP is configured onto all the load bal-
ancers, causing the ingress servers to use consistent hashing and
the the load spreading method described above to spread requests
evenly across the load balancers. By spreading the load across mul-
tiple load balancers in this manner, Monsoon supports a N+1 failover
configuration, as opposed to the more expensive 1+1 failover con-
figuration used by the conventional architecture.

The load balancers are free to implement any function the ap-
plication desires. For example, the load balancer might implement
a function that rewrites the source and destination IP addresses to
spread requests over a second pool of servers using some workload-
or request-sensitive logic, or it might do deep packet inspection to
validate the request before sending it on to an application server.

As another example, the load balancer might terminate incom-

ing TCP connections and decrypt SSL connections contained in
them, thereby offloading work from the application servers. This
example also illustrates why load spreading must use consistent
hashing on flows — ECMP might direct packets that are part of
the same TCP connection to different access routers and ingress
servers. Yet, it is critical that all those packets are sent to the same
load balancer, and consistent hashing ensures that happens.

3.5 Switch Topology
There are many physical topologies by which the switches

making up the Monsoon layer 2 domain might be connected, but
this section provides one concrete example of a topology that in-
terconnects ≈100,000 servers and is particularly well suited for
Valiant Load Balancing.

Figure 6: Example topology for layer 2 switches connecting
103,680 servers. Uses Valiant Load Balancing to support any
feasible traffic matrix.

As shown in Figure 6, each top-of-rack switch has 2 10-Gbps
ports on the network side that connect to two different core ingress-
egress switches for fault-tolerance. There are n1 = 144 such ingress-
egress switches, shown in light gray. These ingress-egress switches
have no links between them, but each of them connects, through
a 10-Gbps port, to every intermediate switch, of which there are
n2 = 72, shown in dark gray. This topology is particularly well
suited for use in VLB, as every flow can choose its intermediate
switch to bounce off of from among the same set of switches – the
dark gray intermediate switches in Figure 6.

3.6 Control Plane
The Monsoon control plane has two main responsibilities: (1),

maintaining the forwarding tables in the switches; and (2), operat-
ing a directory service that tracks the port at which every server
is connected to the network, as well as the server’s IP and MAC
addresses.

Maintaining Forwarding Tables: As outlined in Section 3.2,
Monsoon requires that every switch have a forwarding table with
an entry for every other switch. Any technique that computes routes
among the ≈5K switches in the data center could be used.

Inspired by earlier proposals [11, 16, 12], we program the
top-of-rack (TOR) switches to track the IP and MAC addresses of
the servers directly connected to them, and announce this informa-
tion in a Link-State Advertisement (LSA). Unlike earlier proposals,
where the switches run a link-state routing protocol among them-
selves, we use logically-centralized routing based on the 4D archi-
tecture to compute the forwarding tables for the switches and re-
compute the tables as needed in response to failures. Tesseract [17]
demonstrates that centralized control implemented using decision
elements scales easily to manage 1000 switches, so computing routes

61

for the roughly 5,000 switches in a 100,000 server data center does
not appear difficult.

To eliminate the scaling problems caused by broadcast traffic,
we program the switches to forward any packet for which they do
not have a forwarding entry to the decision elements. This traps any
broadcast packet a server might send (e.g., DHCP requests), and
allows the decision element to decide how to handle it. To prevent
the transparent learning algorithms from altering the forwarding
tables created by the decision element, we disable.

Maintaining a Directory Service: There are many ways to
implement the directory service required by Monsoon. A simple
method is for the decision elements that run the control plane to
also offer the directory service that maps the IP address of a server
to a list of (server MAC address, top-of-rack switch MAC address)
tuples and a list of intermediate node MAC addresses. This design
is simple to implement as much of the information needed to pop-
ulate the directory service comes from the LSAs obtained from the
top-of-rack switches and is already available to the decision ele-
ments.

When a server crashes, however, it may take some time be-
fore the LSA updates and the server is removed from the directory
service. Luckily, most data center applications already provide a
health service that monitors the servers (e.g., AutoPilot [6]). Mon-
soon leverages this health service to remove failed servers from the
pools across which requests are load-balanced.

We are currently designing and evaluating a directory service
that is both scalable and quick to remove failed servers from the
pools of which they were part.

4. RELATED WORK
SEATTLE [7] and Monsoon are similar in several respects.

Both implement a large layer-2 network, and both bounce at least
some packets off an intermediate switch. SEATTLE stores the lo-
cation at which each server is connected to the network in a one-
hop DHT distributed across the switches. The first few packets to
a server are directed to the switch that knows where the server is
attached, and subsequent packets short-cut directly to the server’s
top-of-rack switch. SEATTLE is also completely backwards com-
patible with existing network stacks (e.g., hosts use ARP). Mon-
soon deliberately bounces all packets off a randomly chosen in-
termediate switch in order to implement Valiant Load Balancing.
Monsoon does make changes to the server network stack to turn
off ARP and implement other primitives, such a load spreading,
that are useful in data center applications. The Monsoon directory
service is simpler than SEATTLE, using replication for reliability
rather than a fully distributed DHT.

There is a significant body of work on implementing new net-
work functionality by programming switches [14] or remotely con-
trolling their forwarding tables [4, 10, 1]. Monsoon leverages these
ideas and applies them to data center networks, showing how com-
modity switches can be used in a scale-out infrastructure. In partic-
ular, Ethane [1] is optimized for rigorous security, while Monsoon
is optimized to create a network with high bandwidth between all
pairs of servers. In data centers, rigorous security is implemented
on the servers themselves via SSL or IPSEC.

5. SUMMARY
Given the scale, cost and importance of emerging cloud ser-

vice data centers, it is incumbent on the networking community
to rethink the components and overall architecture of their net-
works. Components of these data centers include: powerful multi-
core servers with Gigabit speed network ports at remarkably low

price points; distributed systems that automate the configuration
and management of hundreds of thousands of servers and switches;
and all of this under a single organization’s control. Together, these
factors open up the opportunity for fundamental change to servers
and switches internal to the data center, while still maintaining an
external IP interface. Unfortunately, the prevailing data center net-
work architecture falls short of realizing the full benefits of these
components. In particular, in today’s cloud services data centers,
network and server capacity is fragmented, and bisection band-
width is one to two orders of magnitude below aggregate server
bandwidth.

In Monsoon, we propose a network design that leverages the
power of emerging data center components. We use programmable
commodity switches to drive down the cost of the network while
simulataneously increasing performance through the use of Valiant
Load Balancing. We exploit the ability to put networking function-
ality into hosts to realize disaggregated scalable load balancing on
the commodity servers. With functionality thus refactored, we scale
the control plane and data plane to support a huge layer 2 switch-
ing domain providing full bandwidth between all servers in the data
center.

Acknowledgements
The many insightful comments provided by the anonymous review-
ers greatly improved the final version of this paper.

6. REFERENCES
[1] M. Casado, M. Freedman, J. Pettit, N. McKeown, and S. Shenker.

Ethane: Taking control of the enterprise. In SIGCOMM, 2007.
[2] Cisco systems: Data center: Load balancing data center services,

2004.
[3] N. G. Duffield, P. Goyal, A. G. Greenberg, P. P. Mishra, K. K.

Ramakrishnan, and J. E. van der Merwe. A flexible model for
resource management in virtual private network. In SIGCOMM,
1999.

[4] N. Feamster, H. Balakrishnan, J. Rexford, A. Shaikh, and J. van der
Merwe. The case for separating routing from routers. In FDNA
Workshop, 2004.

[5] IEEE 802.1ah standard.
http://www.ieee802.org/1/pages/802.1ah.html, 2008.

[6] M. Isard. Autopilot: Automatic data center management. Operating
Systems Review, 41(2), 2007.

[7] C. Kim, M. Caesar, and J. Rexford. Floodless in SEATTLE: a
scalable ethernet architecture for large enterprises. In SIGCOMM,
2008.

[8] M. Kodialam, T. V. Lakshman, J. B. Orlin, and S. Sengupta. A
Versatile Scheme for Routing Highly Variable Traffic in Service
Overlays and IP Backbones. In INFOCOM, 2006.

[9] C. Kopparapu. Load Balancing Servers, Firewalls, and Caches. John
Wisely & Sons Inc., 2002.

[10] T. V. Lakshman, T. Nandagopal, R. Ramjee, K. Sabnani, and T. Woo.
The SoftRouter architecture. In HotNets, Nov. 2004.

[11] A. Myers, T. S. E. Ng, and H. Zhang. Rethinking the service model:
Scaling Ethernet to a million nodes. In HotNets, Nov. 2004.

[12] R. Perlman. RBridges: transparent routing. In INFOCOM, 2004.
[13] E. R. Hinden. Virtual router redundancy protocol (VRRP). RFC

3768, 2004.
[14] S. Rooney, J. van der Merwe, S. Crosby, and I. Leslie. The Tempest:

a framework for safe, resource assured, programmable networks.
IEEE Trans on Comm, 36(10):42–53, Oct 1998.

[15] S. Sinha, S. Kandula, and D. Katabi. Harnessing TCP’s burstiness
with flowlet switching. In HotNets, 2004.

[16] IETF TRILL Working Group. http://tools.ietf.org/wg/trill/, 2008.
[17] H. Yan, D. A. Maltz, T. S. E. Ng, H. Gogineni, H. Zhang, and Z. Cai.

Tesseract: A 4D network control plane. In NSDI, Apr. 2007.
[18] R. Zhang-Shen and N. McKeown. Designing a Predictable Internet

Backbone Network. In HotNets, 2004.

62

