
Towards a noisy-channel model of dysarthria in speech recognition

Frank Rudzicz

University of Toronto, Department of Computer Science

Toronto, Ontario, Canada

frank@cs.toronto.edu

Abstract

Modern automatic speech recognition is inef-

fective at understanding relatively unintelligi-

ble speech caused by neuro-motor disabilities

collectively called dysarthria. Since dysarthria

is primarily an articulatory phenomenon, we

are collecting a database of vocal tract mea-

surements during speech of individuals with

cerebral palsy. In this paper, we demonstrate

that articulatory knowledge can remove am-

biguities in the acoustics of dysarthric speak-

ers by reducing entropy relatively by 18.3%,

on average. Furthermore, we demonstrate

that dysarthric speech is more precisely por-

trayed as a noisy-channel distortion of an

abstract representation of articulatory goals,

rather than as a distortion of non-dysarthric

speech. We discuss what implications these

results have for our ongoing development of

speech systems for dysarthric speakers.

1 Introduction

Dysarthria is a set of congenital and traumatic

neuro-motor disorders that impair the physical pro-

duction of speech and affects approximately 0.8% of

individuals in North America (Hosom et al., 2003).

Causes of dysarthria include cerebral palsy (CP),

multiple sclerosis, Parkinson’s disease, and amy-

otrophic lateral sclerosis (ALS). These impairments

reduce or remove normal control of the primary vo-

cal articulators but do not affect the abstract produc-

tion of meaningful, syntactically correct language.

The neurological origins of dysarthria involve

damage to the cranial nerves that control the speech

articulators (Moore and Dalley, 2005). Spastic

dysarthria, for instance, is partially caused by le-

sions in the facial and hypoglossal nerves, which

control the jaw and tongue respectively (Duffy,

2005), resulting in slurred speech and a less differ-

entiable vowel space (Kent and Rosen, 2004). Sim-

ilarly, damage to the glossopharyngeal nerve can re-

duce control over vocal fold vibration (i.e., phona-

tion), resulting in guttural or grating raspiness. In-

adequate control of the soft palate caused by disrup-

tion of the vagus nerve may lead to a disproportion-

ate amount of air released through the nose during

speech (i.e., hypernasality).

Unfortunately, traditional automatic speech

recognition (ASR) is incompatible with dysarthric

speech, often rendering such software inaccessible

to those whose neuro-motor disabilities might make

other forms of interaction (e.g., keyboards, touch

screens) laborious. Traditional representations in

ASR such as hidden Markov models (HMMs)

trained for speaker independence that achieve

84.8% word-level accuracy for non-dysarthric

speakers might achieve less than 4.5% accuracy

given severely dysarthric speech on short sentences

(Rudzicz, 2007). Our research group is currently

developing new ASR models that incorporate em-

pirical knowledge of dysarthric articulation for use

in assistive applications (Rudzicz, 2009). Although

these models have increased accuracy, the disparity

is still high. Our aim is to understand why ASR

fails for dysarthric speakers by understanding the

acoustic and articulatory nature of their speech.

In this paper, we cast the speech-motor interface

within the mathematical framework of the noisy-

channel model. This is motivated by the charac-



terization of dysarthria as a distortion of parallel

biological pathways that corrupt motor signals be-

fore execution (Kent and Rosen, 2004; Freund et

al., 2005), as in the examples cited above. Within

this information-theoretic framework, we aim to in-

fer the nature of the motor signal distortions given

appropriate measurements of the vocal tract. That is,

we ask the following question: Is dysarthric speech

a distortion of typical speech, or are they both distor-

tions of some common underlying representation?

2 Dysarthric articulation data

Since the underlying articulatory dynamics of

dysarthric speech are intrinsically responsible for

complex acoustic irregularities, we are collecting

a database of dysarthric articulation. Time-aligned

movement and acoustic data are measured using

two systems. The first infers 3D positions of sur-

face facial markers given stereo video images. The

second uses electromagnetic articulography (EMA),

in which the speaker is placed within a cube that

produces a low-amplitude electromagnetic field, as

shown in figure 1. Tiny sensors within this field al-

low the inference of articulator positions and veloci-

ties to within 1 mm of error (Yunusova et al., 2009).

Figure 1: Electromagnetic articulograph system.

We have so far recorded one male speaker with

ALS, five male speakers with CP, four female

speakers with CP, and age- and gender-matched

controls. Measurement coils are placed as in

other studies (e.g., the University of Edinburgh’s

MOCHA database (Wrench, 1999) and the Uni-

versity of Wisconsin-Madison’s x-ray microbeam

database (Yunusova et al., 2008)). Specifically, we

are interested in the positions of the upper and lower

lip (UL and LL), left and right mouth corners (LM

and RM), lower incisor (LI), and tongue tip, blade,

and dorsum (TT, TB, and TD). Unfortunately, a few

of our male CP subjects had a severe gag reflex, and

we found it impossible to place more than one coil

on the tongue for these few individuals. Therefore,

of the tongue positions, only TT is used in this study.

All articulatory data are smoothed with third-order

median filtering in order to minimize measurement

‘jitter’. Figure 2 shows the degree of lip aperture

(i.e., the distance between UL and LL) over time for

a control and a dysarthric speaker repeating the se-

quence /ah p iy/. Here, the dysarthric speech is no-

tably slower and has more excessive movement.
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Figure 2: Lip aperture over time for four iterations of /ah

p iy/ given a dysarthric and control speaker.

Our dysarthric speech data include random repeti-

tions of phonetically balanced short sentences origi-

nally used in the TIMIT database (Zue et al., 1989),

as well as pairs of monosyllabic words identified

by Kent et al. (1989) as having relevant articula-

tory contrasts (e.g., beat versus meat as a stop-

nasal contrast). All articulatory data are aligned

with associated acoustic data, which are transformed

to Mel-frequency cepstral coefficients (MFCCs).

Phoneme boundaries and pronunciation errors are

being transcribed by a speech-language pathologist

to the TIMIT phoneset. Table 1 shows pronuncia-

tion errors according to manner of articulation for

dysarthric speech. Plosives are mispronounced most

often, with substitution errors exclusively caused by

errant voicing (e.g. /d/ for /t/). By comparison, only



5% of corresponding plosives in total are mispro-

nounced in regular speech. Furthermore, the preva-

lence of deleted affricates in word-final positions, al-

most all of which are alveolar, does not occur in the

corresponding control data.

SUB (%) DEL (%)

i m f i m f

plosives 13.8 18.7 7.1 1.9 1.0 12.1

affricates 0.0 8.3 0.0 0.0 0.0 23.2

fricatives 8.5 3.1 5.3 22.0 5.5 13.2

nasals 0.0 0.0 1.5 0.0 0.0 1.5

glides 0.0 0.7 0.4 11.4 2.5 0.9

vowels 0.9 0.9 0.0 0.0 0.2 0.0

Table 1: Percentage of phoneme substitution (SUB) and

deletion (DEL) errors in word-initial (i), word-medial

(m), and word-final (f) positions across categories of

manner for dysarthric data.

Table 2 shows the relative durations of the five

most common vowels and sonorant consonants in

our database between dysarthric and control speech.

Here, dysarthric speakers are significantly slower

than their control counterparts at the 95% confidence

interval for /eh/ and at the 99.5% confidence interval

for all other phonemes.

Phoneme
duration (µ (σ2), in ms) Avg.

Dysarthric Control diff.

/ah/ 189.3 (19.2) 120.1 (4.0) 69.2

/ae/ 211.6 (16.4) 140.0 (4.4) 71.6

/eh/ 160.5 (7.4) 107.3 (2.6) 53.2

/iy/ 177.1 (86.7) 105.8 (93.1) 71.3

/er/ 220.5 (27.9) 148.6 (59.8) 71.9

/l/ 138.5 (8.0) 91.8 (2.4) 46.7

/m/ 173.5 (13.4) 94.7 (2.1) 78.8

/n/ 168.4 (14.4) 90.9 (2.3) 77.5

/r/ 138.8 (8.3) 95.3 (3.4) 43.5

/w/ 151.5 (12.0) 84.5 (1.3) 67.0

Table 2: Average lengths (and variances in parentheses)

in milliseconds for the five most common vowels and

sonorant consonants for dysarthric and control speakers.

The last column is the average difference in milliseconds

between dysarthric and control subjects.

Processing and annotation of further data from

additional dysarthric speakers is ongoing, including

measurements of all three tongue positions.

3 Entropy and the noisy-channel model

We wish to measure the degree of statistical disorder

in both acoustic and articulatory data for dysarthric

and non-dysarthric speakers, as well as the a posteri-

ori disorder of one type of data given the other. This

quantification will inform us as to the relative mer-

its of incorporating knowledge of articulatory be-

haviour into ASR systems for dysarthric speakers.

Entropy, H(X), is a measure of the degree of uncer-

tainty in a random variable X . When X is discrete,

this value is computed with the familiar

H(X) = −
n

∑
i=1

p(xi) logb p(xi),

where b is the logarithm base, xi is a value of X ,

of which there are n possible, and p(xi) is its prob-

ability. When our observations are continuous, as

they are in our acoustic and articulatory database,

we must use differential entropy defined by

H(X) = −
∫

X
f (X) log f (X)dX ,

where f (X) is the probability density function of X .

For a number of distributions f (X), the differential

entropy has known forms (Lazo and Rathie, 1978).

For example, if f (X) is a multivariate normal,

fX(x1, ...,xN) =
exp

(

−1
2
(x−µ)T Σ−1(x−µ)

)

(2π)N/2 |Σ|1/2

H(X) = 1
2

ln
(

(2πe)N |Σ|
)

,

(1)

where µ and Σ are the mean and covariances of the

data. However, since we observe that both acous-

tic and articulatory data follow non-Gaussian dis-

tributions, we choose to represent these spaces by

mixtures of Gaussians. Huber et al. (2008) have de-

veloped an accurate algorithm for estimating differ-

ential entropy of Gaussian mixtures based on itera-

tively merging Gaussians and the approximation

H̃(X) =
L

∑
i=1

ωi

(

− logωi +
1
2

log((2πe)N |Σi|
)

,

where ωi is the weight of the ith(1 ≤ i ≤ L) Gaussian

and Σi is that Gaussian’s covariance matrix. This

method is used to approximate entropies in the fol-

lowing study, with L = 32. Note that while differen-

tial entropies can be negative and not invariant under



change of variables, other properties of entropy are

retained (Huber et al., 2008), such as the chain rule

for conditional entropy

H(Y |X) = H(Y,X)−H(X),

which describes the uncertainty in Y given knowl-

edge of X , and the chain rule for mutual information

I(Y ;X) = H(X)+H(Y )−H(X ,Y ),

which describes the mutual dependence between X

and Y . Here, we quantize entropy with the nat,

which is the natural logarithmic unit, e (≈ 1.44 bits).

3.1 The noisy channel

The noisy-channel theorem states that information

passed through a channel with capacity C at a rate

R ≤ C can be reliably recovered with an arbitrarily

low probability of error given an appropriate coding.

Here, a message from a finite alphabet is encoded,

producing signal x ∈ X . That signal is then distorted

by a medium which transmits signal y ∈ Y accord-

ing to some distribution P(Y |X). Given that there is

some probability that the received signal, y, is cor-

rupted, the message produced by the decoder may

differ from the original (Shannon, 1949).

To what extent can we describe the effects of

dysarthria within an information-theoretic noisy

channel model? We pursue two competing hypothe-

ses within this general framework. The first hypoth-

esis models the assumption that dysarthric speech is

a distorted version of typical speech. Here, signal

X and Y represent the vocal characteristics of the

general and dysarthric populations, respectively, and

P(Y |X) models the distortion between them. The

second hypothesis models the assumption that both

dysarthric and typical speech are distorted versions

of some common abstraction. Here, Yd and Yc repre-

sent the vocal characteristics of dysarthric and con-

trol speakers, respectively, and X represents a com-

mon, underlying mechanism and that P(Yd |X) and

P(Yc |X) model distortions from that mechanism.

These two hypotheses are visualized in figure 3. In

each of these cases, signals can be acoustic, articu-

latory, or some combination thereof.

3.2 Common underlying abstractions

In order to test our hypothesis that both dysarthric

and control speakers share a common high-level ab-

P(Y | X)
Dysarthric speech

signal, Y
Typical speech

signal, X

(a) Dysarthric speech as a distortion of control speech

P(Yd 
| X)

Dysarthric speech
signal, Y

dAbstract speech
signal, X

P(Yc 
| X)

Control speech
signal, Y

c

(b) Dysarthric and control speech as distortions of a common

abstraction

Figure 3: Sections of noisy channel models that mimic

the neuro-motor interface.

straction of the vocal tract that is in both cases dis-

torted during articulation, we incorporate the the-

ory of task dynamics (Saltzman and Munhall, 1989).

This theory represents the interface between the lex-

ical intentions and vocal tract realizations of speech

as a sequence of overlapping gestures, which are

continuous dynamical systems that describe goal-

oriented reconfigurations of the vocal tract, such as

bilabial closure during /m/. Figure 4 shows an ex-

ample of overlapping gestures for the word pub.

TBCD

closed

open

GLO

open

closed

LA

open

closed

100 200 300 400

Time (ms)

Figure 4: Canonical example pub from Saltzman

and Munhall (1989) representing overlapping goals for

tongue blade constriction degree (TBCD), lip aperture

(LA), and glottis (GLO). Boxes represent the present of

discretized goals, such as lip closure. Black curves repre-

sent the output of the TADA system.

The open-source TADA system (Nam and Gold-

stein, 2006) estimates the positions of various artic-

ulators during speech according to parameters that

have been carefully tuned by the authors of TADA

according to a generic, speaker-independent repre-

sentation of the vocal tract (Saltzman and Munhall,

1989). Given a word sequence and a syllable-to-

gesture dictionary, TADA produces the continuous



tract variable paths that are necessary to produce that

sequence. This takes into account various physio-

logical aspects of human speech production, such as

interarticulator co-ordination and timing (Nam and

Saltzman, 2003).

In this study, we use TADA to produce estimates

of a global, high-level representation of speech com-

mon to both dysarthric and non-dysarthric speakers

alike. Given a word sequence uttered by both types

of speaker, we produce five continuous curves pre-

scribed by that word sequence in order to match our

available EMA data. Those curves are lip aperture

and protrusion (LA and LP), tongue tip constriction

location and degree (TTCL and TTCD, representing

front-back and top-down positions of the tongue tip,

respectively), and lower incisor height (LIH). These

curves are then compared against actually observed

EMA data, as described below.

4 Experiments

First, in section 4.1, we ask whether the incorpo-

ration of articulatory data is theoretically useful in

reducing uncertainty in dysarthric speech. Second,

in section 4.2, we ask which of the two noisy chan-

nel models in figure 3 best describe the observed be-

haviour of dysarthric speech.

Data for this study are collected as described as in

section 2. Here, we use data from three dysarthric

speakers with cerebral palsy (males M01 and M04,

and female F03), as well as their age- and gender-

matched counterparts from the general population

(males MC01 and MC03, and female FC02). For

this study we restrict our analysis to 100 phrases ut-

tered in common by all six speakers.

4.1 Entropy

We measure the differential entropy of acoustics

(H(Ac)), of articulation (H(Ar)), and of acoustics

given knowledge of the vocal tract (H(Ac |Ar)) in

order to obtain theoretical estimates as to the utility

of articulatory data. Table 3 shows these quantities

across the six speakers in this study. As expected,

the acoustics of dysarthric speakers are much more

disordered than for non-dysarthric speakers. One

unexpected finding is that there is very little differ-

ence between speakers in terms of their entropy of

articulation. Although dysarthric speakers clearly

lack articulatory dexterity, this implies that they

nonetheless articulate with a level of consistency

similar to their non-dysarthric counterparts1. How-

ever, the equivocation H(Ac |Ar) is an order of mag-

nitude lower for non-dysarthric speakers. This im-

plies that there is very little ambiguity left in the

acoustics of non-dysarthric speakers if we have si-

multaneous knowledge of the vocal tract, but that

quite a bit of ambiguity remains for our dysarthric

speakers, despite significant reductions.

Speaker H(Ac) H(Ar) H(Ac |Ar)

Dys.

M01 66.37 17.16 50.30

M04 33.36 11.31 26.25

F03 42.28 19.33 39.47

Average 47.34 15.93 38.68

Ctrl.

MC01 24.40 21.49 1.14

MC03 18.63 18.34 3.93

FC02 16.12 15.97 3.11

Average 19.72 18.60 2.73

Table 3: Differential entropy, in nats, across dysarthric

and control speakers for acoustic ac and articulatory ar

data.

Table 4 shows the average mutual information be-

tween acoustics and articulation for each type of

speaker, given knowledge of the phonological man-

ner of articulation. In table 1 we noted a prevalence

of pronunciation errors among dysarthric speakers

for plosives, but table 4 shows no particularly low

congruity between acoustics and articulation for this

manner of phoneme. Those pronunciation errors

tended to be voicing errors, which would involve the

glottis, which is not measured in this study.

Table 4 appears to imply that there is little mu-

tual information between acoustics and articulation

in vowels across all speakers. However, this is al-

most certainly the result of our exclusion of tongue

blade and tongue dorsum measurements in order to

standardize across speakers who could not manage

these sensors. Indeed, the configuration of the en-

tire tongue is known to be useful in discriminat-

ing among the vowels (O’Shaughnessy, 2000). An

ad hoc analysis including all three tongue sensors

for speakers F03, MC01, MC03, and FC02 revealed

mutual information between acoustics and articula-

1This is borne out in the literature (Kent and Rosen, 2004).



Manner
I(Ac;Ar)

Dys. Ctrl.

plosives 10.92 16.47

affricates 8.71 9.23

fricatives 9.30 10.94

nasals 13.29 15.10

glides 11.92 12.68

vowels 6.76 7.15

Table 4: Mutual information I(Ac;Ar) of acoustics and

articulation for dysarthric and control subjects, across

phonological manners of articulation.

tion of 16.81 nats for F03 and 18.73 nats for the

control speakers, for vowels. This is compared with

mutual information of 11.82 nats for F03 and 13.88

nats for the control speakers across all other man-

ners. The trend seems to be that acoustics are better

predicted given more tongue measurements.

In order to better understand these results, we

compare the distributions of the vowels in acoustic

space across dysarthric and non-dysarthric speech.

Vowels in acoustic space are characterized by the

steady-state positions of the first two formants (F1

and F2) as determined automatically by applying the

pre-emphasized Burg algorithm (Press et al., 1992).

We fit Gaussians to the first two formants for each

of the vowels in our data, as exemplified in fig-

ure 5 and compute the entropy within these distri-

butions. Surprisingly, the entropies of these distri-

butions were relatively consistent across dysarthric

(34.6 nats) and non-dysarthric (33.3 nats) speech,

with some exceptions (e.g., iy). However, vowel

spaces overlap considerably more in the dysarthric

case signifying that, while speakers with CP can be

nearly as acoustically consistent as non-dysarthric

speakers, their targets in that space are not as dis-

cernible. Some research has shown larger variance

among dysarthric vowels relative to our findings

(Kain et al., 2007). This may partially be due to our

use of natural connected speech as data, rather than

restrictive consonant-vowel-consonant non-words.

4.2 Noisy channel

Our task is to determine whether dysarthric speech

is best represented as a distorted version of typi-

cal speech, or if both dysarthric and typical speech

ought to be viewed as distortions of a common ab-
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Figure 5: Contours showing first standard deviation in

F1 versus F2 space for distributions of six representative

vowels in continuous speech for the dysarthric and non-

dysarthric male speakers.

stract representation. To explore this question, we

design a transformation system that produces the

most likely observation in one data space given its

counterpart in another and the statistical relationship

between the two spaces. This transformation in ef-

fect implements the noisy channel itself.

To accomplish this, we learn probability distri-

butions over our EMA data. First, we collect all

dysarthric data together and all non-dysarthric data

together. We then consider the acoustic (Ac) and

articulatory (Ar) subsets of these data. In each

case, we train Gaussian mixtures, each with 60 com-

ponents, over 90% of the data in both dysarthric

and non-dysarthric speech. Here, each of the 60

phonemes in the data is represented by one Gaussian

component, with the weight of that component de-

termined by the relative proportion of 10 ms frames

for that phoneme. Similarly, all training word se-

quences are passed to TADA, and we train a mixture

of Gaussians on its articulatory output.

Across all Gaussian mixtures, we end up with 5

Gaussians tuned to various aspects of each phoneme

p: its dysarthric acoustics and articulation (NAc
p (Yd)

and NAr
p (Yd)), its control acoustics and articula-

tion (NAc
p (Yd) and NAr

p (Yd)), and its prescribed ar-

ticulation from TADA (NAr
p (X)). Each Gaussian

NA
p(B) is represented by its mean µ

(A,B)
p and its



covariance, Σ
(A,B)
p . Furthermore, we compute the

cross-covariance matrix between Gaussians for a

given phoneme (e.g., Σ
(Ac,Yc)→(Ac,Yd)
p is the cross-

covariance matrix of the acoustics of the control (Yc)

and dysarthric (Yd) speech for phoneme p). Given

these parameters, we estimate the most likely frame

in one domain given its counterpart in another. For

example, if we are given a frame of acoustics from

a control speaker, we can synthesize the most likely

frame of acoustics for a dysarthric speaker, given an

application of the noisy channel proposed by Hosom

et al. (2003) used to transform dysarthric speech to

make it more intelligible. Namely, given a frame of

acoustics yc from a control speaker, we can estimate

the acoustics of a dysarthric speaker yd with:

fAc(yc) =E(yd |yc)

=
P

∑
i=1

hi(yc)
[

µ
(Ac,Yd)
i +

Σ
(Ac,Yc)→(Ac,Yd)
i ·

(

Σ
(Ac,Yc)
i

)−1

·
(

yc −µ
(Ac,Yc)
i

)]

,

(2)

where

hi(yc) =
αiN

(

yc; µ
(Ac,Yc)
i ,Σ

(Ac,Yc)
i

)

∑
P
j=1 α jN

(

yc; µ
(Ac,Yc)
j ,Σ

(Ac,Yc)
j

) ,

where αp is the proportion of the frames of phoneme

p in the data. Transforming between different types

and sources of data is accomplished merely by sub-

stituting in the appropriate Gaussians above.

We now measure how closely the transformed

data spaces match their true target spaces. In each

case, we transform test utterances (recorded, or syn-

thesized with TADA) according to functions learned

in training (i.e., we use the remaining 10% of the

data for each speaker type). These transformed

spaces are then compared against their target space

in our data. Table 5 shows the Gaussian mixture

phoneme-level Kullback-Leibler divergences given

various types of source and target data, weighted by

the relative proportions of the phonemes. Each pair

of N-dimensional Gaussians (Ni with mean µi and

covariance Σi) for a given phone and data type is

KL divergence

(10−2 nats)

Type 1 Type 2 Acous. Artic.

Ctrl. Dys. 25.36 3.23

Ctrl. → Dys. Dys. 17.78 2.11

TADA→ Ctrl. Ctrl. N/A 1.69

TADA→ Dys. Dys. N/A 1.84

Table 5: Average weighted phoneme-level Kullback-

Leibler divergences.

compared with

DKL(N0 ||N1) =
1

2

(

ln

(

|Σ1|

|Σ0|

)

+ trace(Σ−1
1 Σ0)

+(µ1 −µ0)
T Σ−1

1 (µ1 −µ0)−N
)

.

Our baseline shows that control and dysarthric

speakers differ far more in their acoustics than in

their articulation. When our control data (both

acoustic and articulatory) are transformed to match

the dysarthric data, the result is predictably more

similar to the latter than if the conversion had not

taken place. This corresponds to the noisy channel

model of figure 3(a), whereby dysarthric speech is

modelled as a distortion of non-dysarthric speech.

However, when we model dysarthric and control

speech as distortions of a common, abstract repre-

sentation (i.e., task dynamics) as in figure 3(b), the

resulting synthesized articulatory spaces are more

similar to their respective observed data than the

articulation predicted by the first noisy channel

model. Dysarthric articulation predicted by trans-

formations from task-dynamics space differ signifi-

cantly from those predicted by transformations from

control EMA data at the 95% confidence interval.

5 Discussion

This paper demonstrates a few acoustic and articu-

latory features in speakers with cerebral palsy. First,

these speakers are likely to mistakenly voice un-

voiced plosives, and to delete fricatives regardless of

their word position. We suggest that it might be pru-

dent to modify the vocabularies of ASR systems to

account for these expected mispronunciations. Sec-

ond, dysarthric speakers produce sonorants signifi-

cantly slower than their non-dysarthric counterparts.



This may present an increase in insertion errors in

ASR systems (Rosen and Yampolsky, 2000).

Although not quantified in this paper, we detect

that a lack of articulatory control can often lead

to observable acoustic consequences. For example,

our dysarthric data contain considerable involuntary

types of velopharyngeal or glottal noise (often as-

sociated with respiration), audible swallowing, and

stuttering. We intend to work towards methods of

explicitly identifying regions of non-speech noise in

our ASR systems for dysarthric speakers.

We have considered the amount of statistical dis-

order (i.e., entropy) in both acoustic and articula-

tory data in dysarthric and non-dysarthric speak-

ers. The use of articulatory knowledge reduces the

degree of this disorder significantly for dysarthric

speakers (18.3%, relatively), though far less than for

non-dysarthric speakers (86.2%, relatively). In real-

world applications we are not likely to have access to

measurements of the vocal tract; however, many ap-

proaches exist that estimate the configuration of the

vocal tract given only acoustic data (Richmond et al.,

2003; Toda et al., 2008), often to an average error of

less than 1 mm. The generalizability of such work

to new speakers (particularly those with dysarthria)

without training is an open research question.

We have argued for noisy channel models of

the neuro-motor interface assuming that the path-

way of motor command to motor activity is a lin-

ear sequence of dynamics. The biological reality

is much more complicated. In particular, the path-

way of verbal motor commands includes several

sources of sensory feedback (Seikel et al., 2005) that

modulate control parameters during speech (Gracco,

1995). These senses include exteroceptive stimuli

(auditory and tactile), and interoceptive stimuli (par-

ticularly proprioception and its kinesthetic sense)

(Seikel et al., 2005), the disruption of which can lead

to a number of production changes. For instance,

Abbs et al. (1976) showed that when conduction in

the mandibular branches of the trigeminal nerve is

blocked, the resulting speech has considerably more

pronunciation errors, although is generally intelligi-

ble. Barlow (1989) argues that the redundancy of

sensory messages provides the necessary input to the

motor planning stage, which relates abstract goals to

motor activity in the cerebellum. As we continue to

develop our articulatory ASR models for dysarthric

speakers, one potential avenue for future research in-

volves the incorporation of feedback from the cur-

rent state of the vocal tract to the motor planning

phase. This would be similar, in premise, to the

DIVA model (Guenther and Perkell, 2004).

In the past, we have shown that ASR systems that

adapt non-dysarthric acoustic models to dysarthric

data offer improved word-accuracy rates, but with

a clear upper bound approximately 75% below the

general population (Rudzicz, 2007). Incorporat-

ing articulatory knowledge into such adaptation im-

proved accuracy further, but with accuracy still

approximately 60% below the general population

(Rudzicz, 2009). In this paper, we have demon-

strated that dysarthric articulation can be more ac-

curately represented as a distortion of an underlying

model of abstract speech goals than as a distortion of

non-dysarthric articulation. These results will guide

our continued development of speech systems aug-

mented with articulatory knowledge, particularly the

incorporation of task dynamics.
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