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ABSTRACT
We propose a new type of database system coined OctopusDB. Our
approach suggests a unified, one size fits all data processing ar-
chitecture for OLTP, OLAP, streaming systems, and scan-oriented
database systems. OctopusDB radically departs from existing ar-
chitectures in the following way: it uses a logical event log as its
primary storage structure. To make this approach efficient we in-
troduce the concept of Storage Views (SV), i.e. secondary, alter-
native physical data representations covering all or subsets of the
primary log. OctopusDB (1) allows us to use different types of
SVs for different subsets of the data; and (2) eliminates the need to
use different types of database systems for different applications.
Thus, based on the workload, OctopusDB emulates different types
of systems (row stores, column stores, streaming systems, and more
importantly, any hybrid combination of these). This is a feature im-
possible to achieve with traditional DBMSs.

1. INTRODUCTION

1.1 Background and Motivation
In the past ten years we have seen considerable evidence that

there is no one size fits all database architecture. We are currently
witnessing a split of data management systems into several spe-
cialized solutions [20, 21]. For instance, for data warehousing
database engineers already understood in the mid-nineties [9] that
the DBMSs of that time were ill-equipped to cope with the size
of the datasets and complexity of OLAP-queries. Therefore a sepa-
rate type of system was forked from the one size fits all DBMS code
line [10]. That system is based on a column store and became one
of the most popular and successful approaches for OLAP; products
include SAP BI Accelerator, InfiniDB, Paraccel. At the same time
other types of systems were forked including DSMS (data stream
management systems) [23]; products include StreamBase.

1.2 Research Problem
As a consequence, today’s companies have to manage and in-

tegrate several types of data management systems. Data has to
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be copied from one database system to another. To achieve this,
complex, ETL-style data pipelines have to be glued together. The
different database systems may also use different query languages
or dialects. Obviously, all of this leads to extra costs in terms of
development costs, maintenance costs, and DBA costs.

So rather than making the world of data management easier, we
have created a zoo of systems that sometimes has the opposite ef-
fect: it makes life of a company harder and more costly. We agree
that for companies who invest a lot into connecting the different
species in their zoo, it will eventually lead to a well-integrated and
efficient overall system. Still, we believe that the zoo-keeping costs
are non-trivial, especially for small to medium-sized business. We
also believe that adapting such a zoo to new requirements, changing
workload, or new types of applications may be prohibitive. Thus,
the research challenge is to build a single efficient system covering
the different database use-cases.

2. OCTOPUSDB
In this paper we take a radically new approach: we propose a

single type of database system coined OctopusDB1 that is able to
mimic the behavior of the different species in the zoo.
Core Idea. The main idea of our system is to drop the assump-
tion that a database system is developed around a central store (be
it a row, column, or any hybrid store such as PAX [1] or fractured
mirrors [17]) along with an ARIES-style [15] recovery log. Octo-
pusDB does not have a fixed store. In OctopusDB all data is col-
lected in a central log, i.e., all insert and update-operations create
logical log-entries in that log. Based on that log we may then de-
fine several types of optional Storage Views. A Storage View (SV)
represents all or part of the log in a different (or the same) physical
layout. OctopusDB creates SVs transparently and solely based on
the workload — and not based on some static decision for a con-
crete database product and hence a concrete storage layout. This
single abstraction has another interesting consequence: the query
optimization, view maintenance, index selection, as well as the
store selection problems suddenly become a single problem: stor-
age view selection, which OctopusDB treats inside a single holistic
storage view optimizer.

The remainder of this section introduces OctopusDB’s data
model, primary log, and system interface. Section 3 introduces the
concept of Storage View (SV). Section 4 introduces OctopusDB’s
holistic SV optimizer, Section 5 describes log purging and check-
pointing, Section 6 discusses recovery and Section 7 explains con-

1An octopus may adapt to its surroundings using a camouflage un-
matched by any other species on earth: it may change both the color
and the texture of its skin. Additionally, some octopus species
may even mimic movements and shape thus impersonating other
species, e.g. http://marinebio.org/species.asp?id=260
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current transaction isolation in OctopusDB.

2.1 Data Model
The data items managed by OctopusDB are tuples ti =

(a1, .., an(i)), 0 ≤ i ≤ N where attributes a1, . . . , an(i) may
be of any type. The number of attributes for tuple i is given by
n(i). Each tuple is associated to a bag and a key. The bag is used
to define subsets of the tuples, e.g. tables, partitions, collections.
key identifies a tuple inside a bag. For simplicity, we assume a
relational model throughout this paper. Therefore all tuples having
the same bag share the same set of attributes (=schema).

2.2 The Primary Log Store
OctopusDB does not keep a row-, column- or any other store

by default. All calls to the system interface are simply recorded
in a sequential log, called primary log, creating appropriate logi-
cal log records. The primary log is itself an SV. OctopusDB stores
its log persistently on durable storage (hard disk or SSD) follow-
ing the write-ahead logging-protocol (WAL). For efficiency reasons
we may keep a copy of the log in main memory, however this is no
requirement. Each call to the system interface of OctopusDB inter-
nally creates a log record with an associated log sequence number
lsn. As in traditional DBMSs no two log records may have the
same lsn, therefore entries to the log are serialized. For the mo-
ment, all log records are logical and represent a new state defined
by an operation2. Therefore, in contrast to ARIES, our log records
do not represent changes that have been or should be applied to
the database store. Our log simply contains the event history of
operations without specifying how these events map to a particu-
lar store3. Thus, the format of our log record is (lsn, <method>,
<parameters>) where <method> denotes the method of the system
interface called and <parameters> denotes the parameters passed.

2.3 System Interface
Apart from traditional DBMS components (transaction manager,

query optimizer, etc.), OctopusDB has a primary log store (to store
the primary log) and a storage view store (to store additional storage
views). To operate these, OctopusDB has a simple yet powerful
interface containing the following methods:

registerSV(String svID, Type svType<, additionalPar>):
creates and registers an SV of type svType having a unique iden-
tifier svID. Additional parameters may be passed to the SV.
registerQuery(String queryID, Query Q<, callback>): reg-
isters a query having a unique identifier queryID. An additional
callback function may be passed.
snapshot(String outputSVID, String queryID): computes the
result of the query and materializes it into the output SV.
maintain(String ouputSVID, String queryID): Same as snap-
shot, however, future updates will be reflected in outputSVID.
drop(String ID): Drops a query or SV from the system.
query(Query Q)→ Iterator it: Queries and/or modifies data
in OctopusDB as specified in Q.
iterate(String ID)→ Iterator it: Returns an iterator over the
contents of the given query or SV.

Query definitions may be either a relational algebra expression as
suggested in [4], SQL, or Pig Latin [16]. We will assume a rela-
tional algebra expression throughout this paper.

2In addition, transitional log records may be used, e.g. a = a+42.
3The major performance advantage of ARIES is that it is using
physical logging for REDO, i.e. intertwining a particular store with
the log is a feature of ARIES. However, this feature may also be
implemented in OctopusDB without giving up the logical primary
log. See Section 6 for details.

3. STORAGE VIEW EXAMPLES
Storage Views (SVs) allow us to define arbitrary physical repre-

sentations on the log. The main idea is to store the entire or a subset
of the log or any other SV using a different physical layout. SVs
always materialize their data. In general we create a network of SV
dependencies with the goal to balance update and query processing
costs. The dependency graph between different SVs is called the
SV lattice. It is similar to the one used in materialized view main-
tenance (e.g. in data warehouses). However, the SV lattice is more
general as it is not restricted to queries only but also has to consider
the underlying storage layout. The interface to a SV contains the
following private methods:

iterate(String queryID)→ Iterator it: Returns the result of
the given query as an unordered iterator it. The query must be
restricted to data covered by this SV.
iterationCost(String queryID)→ Cost c: returns the esti-
mated cost c of the given query. In other words, it estimates
the cost of iterate(String queryID).
transformationCost(Type svType)→ Cost c: returns the esti-
mated cost c for transforming this SV into svType.

For the flight booking use-case having tickets and customers data,
presented in [25] and evaluated in the context of data layouts
in [13], we shall now incrementally show the self-adapting API
calls made by the system.
Log SV. Initially, the SV store does not contain any SVs; it only
contains a single registered join query over tickets and customer
data. It would be evaluated by scanning the primary log. However,
as the log becomes too big, the system splits it into two logs:

registerSV("ticketsLog",LogSV);
registerSV("customersLog",LogSV);
registerQuery("customersOnly",σbag=customers);
registerQuery("ticketsOnly",σbag=tickets);
maintain("ticketsLog","ticketsOnly");
maintain("customersLog","customersOnly");

Further, OctopusDB consolidates the different versions for the
same (bag,key)-pair to only keep the most recent one:

registerQuery("custRecent",γrecent(Γbag,key(customersOnly)));
registerQuery("tickRecent",γrecent(Γbag,key(ticketsOnly)));
maintain("ticketsLog","tickRecent");
maintain("customersLog","custRecent");

Row, Col SVs. The main idea of a Row SV, resp. Col SV, is to
create a row store, resp. column store (or both), for any given table.
Further, our system can create Row, Col SVs for any static or dy-
namic partition of the tables. For instance, OctopusDB creates hot
and cold SVs for 7 day query window as follows:

registerSV("ticketsCold", ColSV);
registerSV("ticketsHot", ColSV);
registerQuery("tickRecentHot",σtime≥now−7days(tickRecent));
registerQuery("tickRecentCold",σtime<now−7days(tickRecent));
maintain("ticketsCold", "tickRecentCold");
maintain("ticketsHot", "tickRecentHot");
drop("ticketsLog");

Index SV. Indexes like B+-trees, hash indexes, bitmaps, cache-
optimized-trees, R-trees, inverted indexes, and so forth are just an-
other type of SVs. The index may also be build on only parts of a
table thus mimicking partial indexing [19]. In our use-case, Octo-
pusDB build Index SVs over customers and hot tickets as follows:

registerSV("ticketsHotIndex",IndexSV,uncl,key=price);
registerSV("customersIndex",IndexSV,cl,key=id);
registerQuery("tickI1",πprice,rid(ticketRecentHot));
registerQuery("custI2",πID,rid(custRecent));
maintain("ticketsHotIndex","tickI1");
maintain("customersIndex","custI2");

In summary, the storage view concept allows us to model several
important data managing concepts using a single abstraction only:
both types of queries (point-in-time and continuous queries); differ-
ent database stores (row-, col-, hybrid, etc.); and also the traditional
query views (dynamic or materialized).
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4. HOLISTIC SV OPTIMIZER
In general, each class of SV may implement its own access algo-

rithms optimized for the particular storage structure. For instance, a
Row SV may use row-wise compression and row-oriented iteration,
e.g. [11]. In contrast, a Col SV may implement column-oriented
compression and vectorized iteration [2]. Outside those SVs Octo-
pusDB’s Holistic Storage View Optimizer then implements any ap-
propriate techniques for storage view selection, update propagation
and query processing. To perform these, OctopusDB has three cost
models for Log, Row, Col and Index SVs: (1) A query cost model,
which models the random and sequential I/O costs, (2) an update
cost model, which models the minimum of chunk/random update
costs, also considering the leaf/node split costs in Index SVs, and
(3) a transformation cost model, which models the costs to trans-
form one type of SV to another. Below, we briefly describe some
of the optimization features in Holistic SV Optimizer.
SV Rearrangement. The holistic SV optimizer can rearrange the
SV lattice in order to balance query and update costs. This implies
that the SV optimizer decides how to connect the tail of an arrow to
the existing SV lattice. One particular advantage of using a holistic
optimizer is that the query operators can be pushed down through
the entire SV store. — even beyond the primary log.
Operator Log-Pushdown. In certain situations, the optimizer may
decide to push down some of the selections and projections as fol-
lows: (1) we examine the projections of all registered queries and
compute the union set of attributes, (2) we push these projections
down the lattice until the primary log. Similarly, for selections we
(1) compute a conjunctive selection, and (2) push it even beyond
the primary log. This means that any incoming log record will be
checked even before putting it into the Log SV in the primary log.
Adaptive Partial SVs. The holistic SV optimizer can inject addi-
tional SVs to speed-up query processing. For instance, it does not
make sense to build an index for an entire relation if only parts of
that relation are queries. Techniques such as partial indexing [19]
can be extended to create dynamic partial SVs.
Stream Transformation. For applications having continuous
queries, we may only select a window of interest over the un-
bounded stream of log records i.e. the primary logical log in Oc-
topusDB. This means the “database store” simply consists of sev-
eral windows of interest. No other (older) data needs to be kept.
OctopusDB can mimic this as follows: (1) do not use a Log SV
for the Primary Log Store. (2) route all incoming log records to
all relevant queries, (3) push possible updates up the SV lattice. In
other words, we are reducing the stream processing problem to a
SV maintenance problem.
Other Use-Cases. By creating the right SVs OctopusDB can
mimic a variety of system e.g. OLTP, OLAP, Streaming Systems.
Furthermore, by combining different SVs OctopusDB can emulate
newer hybrid systems, for instance combinations of continuous and
store (=archival) queries which has been researched heavily in the
past years [6]. Table 1 lists several use-cases for OctopusDB.

5. PURGING AND CHECKPOINTING
The primary log may eventually grow too large, especially if the

update rate is too high or the database has been up for a while and
collected a long log of change operations. In this situation we need
to shrink the size of the log. There are several options:
Purge log records for data that is not of interest anymore,
e.g. changes older than two years are not needed for OLTP apps.
Compress the log, thus saving the storage space.
Checkpoint i.e. write a begin checkpoint log record to the log, cre-
ate a storage view for all log records older than the begin check-
point log record, and finally write an end checkpoint log record.

Use-Case Storage view definition
(traditional systems) type example query
row store Row SV any
column store Col SV any
PAX PAX SV any
fractured mirrors Row SV same query for bothand Col SV
column groups Row SV πa1,...,ak

and Col SV πak+1,...,am

index Index SV any
indexed row store Index SV(Row SV) any
indexed column store Index SV(Col SV) any
read-optimized indexed
column store

Index SV(Col SV) σt<now()−1day

+ differential write-
optimized row store

Row SV σt≥now()−1day

partial index Index SV σ420≤ak≤42000

projection index Col SV πak

partial projection index Index SV(Col SV) πak (σ420≤ak≤42000)
DSMS Index SV σt≥now()−5min
DSMS Index SV σt≥now()−5min
+ archive and Col SV σt<now()−5min
snapshot any any
replicated row store Row SV same query for bothRow SV
query any any
dynamic view any any
materialized view any any

Use-Case Storage view definition
(new system) type example query
OLTP Row SV σt≥now()−1day
+ OLAP Col SV σt<now()−1day
DSMS Index SV σt≥now()−5min
+ OLTP Row SV σt<now()−5min
DSMS Index SV σt≥now()−5min
+ archive OLTP Row SV σnow()−1day≤t<now()−5min
+ archive OLAP Col SV σt<now()−1day
other hybrid any combination any

of the above

Table 1: Use-Cases of OctopusDB

Then we purge all log records older than the begin checkpoint log
record. Depending on the storage view we use for a checkpoint, we
can (a) archive: Use a RowSV or ColSV, (b) aggregate: aggregate
part of the log, or (c) re-checkpoint: Replace an existing checkpoint
in the log with a derived checkpoint.

6. RECOVERY
Logical Recovery. Recovery depends on the purging strategy used.
For no purging or checkpointing, since OctopusDB keeps the pri-
mary log on durable storage, simply copy the log from durable stor-
age to main memory and OctopusDB is fully recovered. In the
background OctopusDB will then re-create all SVs that existed be-
fore the crash. Note that the recovery process does not have to put
any information on the progress information into the log, e.g. like
compensation log records in ARIES [15]. This substantially sim-
plifies the code base of our system. In case the log is purged or
checkpointed (i.e. incomplete), we read the log sequentially start-
ing from the oldest entry and collect begin checkpoint log records
into a checkpoint set. If we find an end checkpoint log record then
we remove the corresponding begin checkpoint from the set. If af-
ter reading the log checkpoint is empty, we proceed as if no log
purging or checkpointing ever happened. Otherwise we copy the
log to main memory, however ignore all checkpoints missing an
end checkpoint log record. After copying this partial log, Octo-
pusDB is recovered. After that, in the background we re-create all
checkpoints that did not have an end checkpoint log record.
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ARIES-style Physiological Recovery. One might argue that Octo-
pusDB’s recovery algorithm gives away some performance by not
using page-oriented (physiological) REDO as in ARIES4. How-
ever, OctopusDB could easily be extended to keep physiological
redo information as well. The trick is to write physiological REDO
information for each SV separately. UNDO may still be performed
using the global logical log. Conceptually, this algorithm then does
not differ from ARIES anymore.

7. TRANSACTIONS AND ISOLATION
To support concurrent execution of transactions we extend Octo-

pusDB’s system interface by three methods:
beginTA()→ taID: starts a transaction.
commitTA(taID)→ bool: commits transaction.
abortTA(taID)→ bool: aborts transaction.

Furthermore, we extend the methods of OctopusDB’s system inter-
face (Section 2.3) to receive an additional taID parameter. Thus,
we may define arbitrary transaction sequences. Now let’s discuss
how to achieve ACID in OctopusDB. As in DBMSs, Consistency
may be guaranteed by validating a set of integrity constraints at
commit time.The Isolation algorithm of OctopusDB is a variant
of optimistic concurrency control. Its core idea is to append all
changes (uncommitted or committed) to the primary log but only
to propagate committed data to any secondary SVs. Uncommitted
transactions can read committed data either from the log or any
secondary SV. They are allowed to write any data object they de-
sire by adding log records to the log, but: the latter modifications
are not yet propagated to the secondary SVs. Using this approach
Atomicity is trivial as only transactions having a commit log record
are reflected in a SV and need to be considered by other operations.
The same holds for Durability: as mentioned before, OctopusDB
follows WAL anyway. Since our log records are not condensed
into a store in the first place (as in current DBMSs), we do not need
undo, redo, before or after images of pages, nor compensation log
records to achieve idempotency. Finally, since SV update propa-
gation process is a possible synchronization bottleneck, it could be
interesting to improve this to enable eventual or timeline consis-
tency among storage views, i.e. trade consistency for performance.

8. RELATED WORK & CONCLUSION
Several authors have supported the idea of different types

of database systems for different markets/use-cases [9, 20, 21],
splitting the landscape into at least four different systems:
SearchEngines (read-only inverted index), OLTP (transactional row
store), OLAP (read-only column store) and DSMS (continuous
window queries on unbounded streams). OctopusDB is not re-
stricted to a particular store and workload and hence there is
no OLTP/OLAP boundary. OctopusDB extends this seamless-
ness further to DSMS. Due to the dramatic changes in hardware,
HStore [22, 14] as well as several scanning techniques [11, 18, 3]
propose stripped down or simplistic versions of traditional DBMSs.
The design of OctopusDB is simple by default and adds only as
much complexity as really needed. Rodent store [5] allows DBAs
to declare the database store using an algebra and GMAP [24]
presents a DDL for defining physical structures. However, in con-
trast to OctopusDB, these either still assume a fixed store or do not
handle unification with streaming systems, automatic store selec-
tion and workload adaption. Cracked databases, e.g. [12], similar
to partial indexing [19] and adaptive indexing [8], break database
tables into horizontal pieces by piggy-backing index-reorganization
requests to individual queries. However, in contrast to OctopusDB,
4Note that UNDO is logical in ARIES anyway.

cracked databases assume a fixed column store. Finally, MySQL
allows users to plugin application specific custom storage engines.
However, they are statically configured and offline installed by an
administrator. In contrast, OctopusDB not only creates storage
views adaptively over the application life cycle, but can also store
any subset of the data in any arbitrary physical representation.

Conclusion. This paper opened the book for one-size-fits-all
database architecture. We presented OctopusDB as a single sys-
tem for OLTP, OLAP, streaming databases, as well as several other
types of databases. With OctopusDB we are inverting the tradi-
tional DBMS development philosophy: a specific store, which is an
irrevocable design-decision, built-in into the DBMS and an ARIES-
style [15] log-based recovery implemented on top. Instead, in our
approach we start with the log (which is totally disconnected from
any store) in the first place and if necessary, we define optional SVs
on that log suited for a particular workload.
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