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Abstract. We consider the modelling of the behaviour of membrane sys-
tems using Petri nets. First, a systematic, structural, link is established
between a basic class of membrane systems and Petri nets. To capture
the compartmentisation of membrane systems, localities are proposed as
an extension of Petri nets. This leads to a locally maximal concurrency
semantics for Petri nets. We indicate how processes for these nets could
be defined which should be of use in order to describe what is actually
going on during a computation of a membrane system.
Keywords: membrane systems, P systems, Petri nets, localities, causal-
ity and concurrency, processes.

1 Introduction

In the past 7 years membrane systems, also known as P systems, have received
a lot of attention and in the process became a prominent new computational
model [17–19, 1]. They are inspired by the compartmentisation of living cells
and its effect on their functioning. A key structural notion is that of a mem-

brane by which a system is divided into compartments where chemical reactions
can take place. These reactions transform multisets of objects present in the
compartments into new objects, possibly transferring objects to neighbouring
compartments, including the environment. Consequently, the behavioural as-
pects of membrane systems are based on sets of reaction rules defined for each
compartment. A distinguishing feature of membrane systems is that the system
is assumed to evolve in a synchronous fashion, meaning that there is a global
clock common for all the compartments. Within each time unit, the system is
transformed by the rules which are applied in a maximally concurrent fashion
(this means that no further rules in any compartment could have been applied
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in the same time unit). These transformations are applied starting from an ini-
tial distribution of objects. Depending on the exact formalisation of the model,
the notion of a successful (or halting) computation is defined together with its
output, e.g., the number of objects sent to the environment.

The above describes the functionality of the basic membrane system model,
according to [17, 19]. In addition, many different extensions and modifications of
that basic model have been proposed and studied, such as priorities and cata-
lysts. Moreover, those studies have been mostly focussed on the computational
power of the models considered, including various aspects of complexity.

Given the existing body of results on the possible outcomes of computations
of membrane systems, we feel that we are now in a position to also investigate
and describe what is actually going on during a computation. The situation may
be compared to that in the field of the semantics of programming languages
based on input-output relations where the operational semantics was added to
deal with the correctness of potentially non-terminating and concurrent pro-
grams. In this paper we propose to undertake this endeavour using the Petri
net model (see, e.g., [21]). The reason is that they have local transformation
rules and support the modelling of causality and concurrency in a direct and
explicit way. In a nutshell, a Petri net is a bipartite directed graph consisting
of two kinds of nodes, called places and transitions. Places together with their
markings indicate the local availability of resources and thus can be used to rep-
resent objects in specific compartments, whereas transitions are actions which
can occur depending on local conditions related to the availability of resources
and thus can be used to represent reaction rules associated with specific com-
partments. When a transition occurs it consumes resources from its input places
and produces items in its output places thus mimicking the effect of a reaction
rule.
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Fig. 1. A membrane system (a), and the corresponding Petri net (b).
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The basic idea of modelling a membrane system using a Petri net can be
explained through an example shown in Figure 1(a). The system depicted there
consists of two nested membranes (the inner membrane m1 and the outer mem-
brane m2), two rules (rule r associated with the compartment c1 inside the inner
membrane, and rule r′ associated with the compartment c2 surrounded by m2,
i.e., in-between the two membranes), and three symbols denoting molecules (a,
b, and c). Initially, the compartment c1 contains two copies of both a and b,
and c2 contains two copies of b and a single copy of c. To model this membrane
system using a Petri net, we introduce a separate place (x, j) for each kind of
molecule x and compartment cj . As usual, places are drawn as circles with the
number of the currently associated resources represented as tokens (small black
dots). For each rule r associated with a compartment ci we introduce a sepa-
rate transition tri , drawn as a rectangle. Transitions are connected to places by
weighted directed arcs, and if no weight is shown it is by default equal to 1. If
the transformation described by a rule r of compartment ci consumes k copies of
molecule x from compartment cj , then we introduce a k weighted arc from place
(x, j) to transition tri , and similarly for molecules produced by transformations.
Finally, assuming that initially compartment cj contained n copies of molecule
x, we introduce n tokens into place (x, j). The resulting Petri net is depicted in
Figure 1(b). As argued later on, Petri nets derived in this way can be used to
describe issues related to concurrency in the behaviour of the original membrane
systems.

Applying Petri nets to model membrane systems is by no means an original
idea. Since multiset calculus is basic for membrane systems and also for comput-
ing the token distribution in Petri nets [3], some connections have already been
established. Some authors have in fact already proposed to interpret reaction
rules of membrane systems using Petri net transitions, e.g., [5, 20]. Our aim is
to demonstrate that a relationship between Petri nets and membrane systems
can be established at the system level. We achieve this by defining a class of
Petri nets suitable for the study of behavioural aspects of membrane systems
and other systems exhibiting a mix of synchronous and asynchronous execution
rules. This latter feature is motivated by the observation that the assumed strict
global synchronicity of the membrane systems is not always reasonable from
the biological point of view as already observed in [17]. In fact, [9] proposes to
drop this assumption completely and considers fully asynchronous and sequen-
tial membrane systems; also the membrane systems of [5] are sequential, whereas
[4] advocates that reactions are assigned their own execution times and uses a
form of local synchronicity.

We intend to demonstrate that Petri nets obtained from membrane systems
in the way described above provide a suitable model to capture and investi-
gate the behavioural properties of membrane systems. In this sense the paper
is more directed towards the computations taking place in membrane systems.
After recalling the definition of membrane systems, we introduce a general class
of Petri nets which can be used to define their formal concurrency semantics.
This concurrency semantics will be built upon a well established technique of
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unfolding Petri nets, leading to processes which formalise concurrent execution
histories. The paper deliberately avoids going into full technical details of the
formal presentation, aiming instead at conveying the basic ideas of our proposal.
Most of the formalities and proofs are delegated to the companion paper [14].

In this paper, a multiset (over a set X) is a function m : X → N. By N
X

we denote the set of multisets over X. For two multisets m and m
′ over X,

we denote m ≤ m
′ if m(x) ≤ m

′(x) for all x ∈ X. Moreover, a subset of X
may be viewed through its characteristic function as a multiset over X, and
for a multiset m we denote x ∈ m if m(x) ≥ 1. The sum of two multisets

m and m
′ over X is given by (m + m

′)(x)
df

= m(x) + m
′(x), the difference by

(m−m
′)(x)

df

= max{0,m(x)−m
′(x)}, as a total function extending set difference.

The multiplication of m by a natural number n is given by (n ·m)(x)
df

= n ·m(x).
Moreover, any finite sum m1 + · · · + mk will also be denoted as

∑
i∈{1,...,k} mi.

2 Basic membrane systems

For the purposes of this paper, it suffices to consider the most basic definition
of membrane systems [18, 19]. Throughout the paper a membrane system (of
degree m ≥ 1) is a construct

Π
df

= (V, µ,w0
1, . . . , w

0
m, R1, . . . , Rm)

where:

– V is a finite alphabet consisting of (names of) objects;
– µ is a membrane structure given by a rooted tree with m nodes, representing

the membranes, as illustrated in Figure 2 — without loss of generality, we
assume that the nodes are given as the integers 1, . . . ,m, and (i, j) ∈ µ will
mean that there is an edge from i (parent) to j (child) in the tree of µ;

– each w0
i is a multiset of objects initially associated with membrane i;

– each Ri is a finite set of evolution rules r associated with membrane i, of
the form:

lhsr → rhsr

where lhsr — the left hand side of r — is a non-empty multiset over V , and
rhsr — the right hand side of r — is a non-empty multiset over

V ∪ {aout | a ∈ V } ∪ {ainj
| a ∈ V and (i, j) ∈ µ} .

Symbols ainj
represent objects a that will be sent to a child node j and aout

stands for an a that will be sent out to the parent node. Without loss of gener-
ality,1 we additionally assume that no evolution rule r associated with the root
of the membrane structure uses any aout in rhsr.

1 Since the environment can always be modelled by adding a new root to the membrane
structure.
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Fig. 2. A membrane structure (a); and the corresponding compartments (b).

A membrane system Π as above evolves from configuration to configuration
as a consequence of the application of (multisets of) evolution rules in each

membrane. Formally, a configuration is a tuple C
df

= (w1, . . . , wm) where each
wi is a multiset of object names; we define a vector multi-rule R as an element
of N

R1 × · · · × N
Rm . Given a vector multi-rule R = (R̂1, . . . , R̂m), we use as

additional notation lhsi =
∑

r∈Ri
R̂i(r) · lhs

r for the multiset of all objects in

the left hand sides of the rules in R̂i and, similarly, rhsi =
∑

r∈Ri
R̂i(r) · rhs

r is
the multiset of all — possibly indexed — objects in the right hand sides.

Given two configurations, C = (w1, . . . , wm) and C ′ = (w′
1, . . . , w

′
m), C can

evolve into C ′ if there exists a vector multi-rule R = (R̂1, . . . , R̂m) such that for
every 1 ≤ i ≤ m, the following hold

(i) lhsi ≤ wi;
(ii) there is no rule r in Ri such that lhsr + lhsi ≤ wi; and
(iii) for each object a ∈ V ,

w′
i(a) = wi(a) − lhsi(a) + rhsi(a) + rhsparent(i)(aini

) +
∑

(i,j)∈µ

rhsj(aout) ,

where parent(i) is the father membrane of i unless i is the root in which
case parent(i) is undefined and rhsparent(i)(aini

) is omitted. Note that any
j in the last term must be a child membrane of i.

By (i), the configuration C has in each membrane i enough occurrences of objects

for the application of the multiset of evolution rules R̂i. Maximal concurrency
is captured by (ii) according to which in none of the membranes an additional

evolution rule can be applied. Observe that some of the R̂i’s in R may be empty
i.e., no evolution rules associated with the corresponding membranes i can be
used. Finally, (iii) describes the effect of the application of the rules in R.
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By C
R

=⇒ C ′ we denote that C evolves into C ′ due to the application of R.
Note that the evolution of C is non-deterministic in the sense that there may
be different vector multi-rules applicable to C as described above. A (finite)
computation of Π is now a (finite) sequence of evolutions starting from the

initial configuration C0
df

= (w0
1, . . . , w

0
m).

3 Petri nets

We first recall the key notions of the standard Petri net model. A PT-net is

a tuple N
df

= (P, T,W,M0) such that P and T are finite disjoint sets; W :
(T×P )∪(P×T ) → N is a multiset; and M0 is a multiset of places. The elements
of P and T are respectively the places and transitions, W is the weight function

of N , and M0 is the initial marking. In diagrams, places are drawn as circles,
and transitions as rectangles. If W (x, y) ≥ 1 for some (x, y) ∈ (T ×P )∪ (P ×T ),
then (x, y) is an arc leading from x to y. As usual, arcs are annotated with their
weight if this is 2 or more. We assume that, for every t ∈ T , there are places p
and q such that W (p, t) ≥ 1 and W (t, q) ≥ 1.

Places represent local states, while markings are global states of systems
represented by PT-nets. Transitions represent actions which may occur at a
given marking and then lead to a new marking (the weight function specifies
what resources are consumed and produced during the execution of such actions).

Figure 3 shows a PT-net model of a simple one-producer / two-consumers
concurrent system, where the producer is represented by the initial token in
place p and the consumers by the two tokens in place r. Using transition a,
the producer repeatedly produces new items (tokens) and adds them to place q
(intuitively, a buffer between the producer and the two consumers) from where
they can be taken by one of the two consumers, and then used by executing
transition u. Rather than producing a new item, the producer may at any time
cancel the production cycle by executing transition c.

v p
r

s

q

c a t u

Fig. 3. PT-net of the one-producer / two-consumers system.

The pre- and post-multiset of a transition t ∈ T are multisets of places given,
for all p ∈ P , by:

preN (t)(p)
df

= W (p, t) and postN (t)(p)
df

= W (t, p) .
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Both notations extend to multisets of transitions U :

preN (U)
df

=
∑

t∈U

U(t) · preN (t) and postN (U)
df

=
∑

t∈U

U(t) · postN (t) .

A step is a multiset of transitions, U : T → N. It is enabled at a marking M
if M ≥ preN (U). We denote this by M [U〉. Thus, in order for U to be enabled
at M , for each place p, the number of tokens in p under M should at least be
equal to the total number of tokens that are needed as an input to U , respecting
the weights of the input arcs. Moreover, U is a maximal step at M if M [U〉 and
there is no transition t such that M [U + {t}〉.

If U is enabled at M , then it can be executed leading to the marking M ′ df

=
M−preN (U)+postN (U). This means that the execution of U ‘consumes’ from
each place p exactly W (p, t) tokens for each occurrence of a transition t ∈ U that
has p as an input place, and ‘produces’ in each place p exactly W (t, p) tokens for
each occurrence of a transition t ∈ U with p as an output place. If the execution
of U leads from M to M ′ we write M [U〉M ′. Whenever U is a maximal step
at M , we will also write M [U〉maxM

′.
A finite sequence σ = U1 . . . Un of non-empty steps is a step sequence from the

initial marking M0 if there are markings M1 . . .Mn of N satisfying Mi−1[Ui〉Mi

for every i ≤ n. Such a σ is also called a step sequence from M0 to Mn, and Mn

itself is called a reachable marking.
In the same way, we can define step sequences consisting of maximal steps,

and markings reachable through such step sequences. Together, they define the
maximal concurrency semantics of the PT-net N as considered, for instance,
in [6].

The example PT-net in Figure 3 admits an infinite number of step sequences.
For example, σ = {a}{t, a}{u, t} models the following scenario: (i) the producer
produces an item which is then deposited into the buffer; (ii) the producer pro-
duces another item and, at the same time, one of the consumers takes the pre-
viously produced item from the buffer; and (iii) the consumer who retrieved the
first item produced uses it and, at the same time, the second consumer removes
the second item produced from the buffer. In Figure 4 we show how this scenario
changes the current marking (global state) of the PT-net. As far as the maximal
concurrency semantics is concerned, σ = {a}{t, a}{u, t} is not allowed: though
the first two steps executed are maximal, {u, t} is not since, for instance, the step
{a, u, t} is enabled after the execution of {a}{t, a}, and σ′ = {a}{t, a}{a, u, t}

rather than σ is part of the maximal concurrency semantics of the PT-net in
Figure 3.

3.1 Petri nets with localities

In order to represent the compartmentisation of membrane systems we now in-
troduce a novel extension of the basic net model of PT-nets, by adding the notion
of located transitions and locally maximally concurrent executions of co-located
transitions. In the proposed way of specifying locality for the transitions in a
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Fig. 4. Executing the PT-net according to {a}{t, a}{u, t}.

PT-net, each transition belongs to a fixed unique locality. The exact mechanism
for achieving this is to introduce a partition of the set of all transitions, using
a locality mapping L. Intuitively, two transitions for which L returns the same
value will be co-located.

A PT-net with localities (or PTL-net) is a tuple NL
df

= (P, T,W,M0,L), where

und(NL)
df

= (P, T,W,M0) is the underlying PT-net and L : T → N is a location

mapping for the transition set T . In the diagrams of PTL-nets, transitions are
shaded rectangles with the locality being shown in the middle. Note that L is
merely a labelling of transitions, it is not meant as a renaming (as used later for
occurrence nets).

The two execution semantics already defined for PT-nets carry over to PTL-
nets, after assuming that all the notations concerning the places and transitions
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of a PTL-net are as in the underlying PT-net, together with the notions of
marking, (maximal) step and the result of executing a step.

3.2 Membrane systems as Petri nets

In this section, we make our proposal on how membrane systems can be inter-
preted by Petri nets more precise. Given the definitions of membrane systems
and Petri nets with localities, the construction sketched in the introduction can
be implemented as follows.

Let Π = (V, µ,w0
1, . . . , w

0
m, R1, . . . , Rm) be a membrane system of degree m.

Then the corresponding PTL-net is NLΠ
df

= (P, T,W,M0,L) where the various
components are defined thus:

– P
df

= V × {1, . . . ,m};

– T
df

= T1 ∪ . . . ∪ Tm where each Ti contains a distinct transition tri for every
evolution rule r ∈ Ri;

– for every place p = (a, j) ∈ P and every transition t = tri ∈ T ,

W (p, t)
df

=

{
lhsr(a) if i = j

0 otherwise
and W (t, p)

df

=





rhsr(a) if i = j

rhsr(aout) if (j, i) ∈ µ

rhsr(ainj
) if (i, j) ∈ µ

0 otherwise

– for every place p = (a, j) ∈ P , its initial marking is M0(p)
df

= wj(a).

– for every transition t = tri ∈ T , its locality is L(t)
df

= i.

To capture the very tight correspondence between the membrane system
Π and the PTL-net NLΠ , we introduce a straightforward bijection between
configurations of Π and markings of NLΠ , based on the correspondence of object
locations and places.

Let C = (w1, . . . , wm) be a configuration of Π. Then the corresponding

marking φ(C) of NLΠ is given by φ(C)(a, i)
df

= wi(a), for every place (a, i) of

NLΠ . Similarly, for any vector multi-rule R = (R̂1, . . . , R̂m) of Π, we define

a multiset ψ(R) of transitions of NLΠ such that ψ(R)(tri )
df

= R̂i(r) for every
tri ∈ T . It is clear that φ is a bijection from the configurations of Π to the
markings of NLΠ , and that ψ is a bijection from vector multi-rules of Π to steps
of NLΠ .

It should be clear that not every PTL-net can be obtained from a membrane
system using the transformation described above. For example, in any net NLΠ ,
two transitions sharing an input place will always have the same locality assigned
by L.

We now can formulate a fundamental property concerning the relationship
between the dynamics of the membrane system Π and that of the corresponding
PTL-net:

C
R

=⇒ C ′ if and only if φ(C) [ψ(R)〉max φ(C ′) .
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Since the initial configuration of Π corresponds through φ to the initial marking
of NLΠ , the above immediately implies that the computations of Π coincide
with the maximal concurrency semantics of the PTL net NLΠ .

The reader might by now have observed that the membrane structure of Π
is used in the definitions of the static structure of the PTL-net NLΠ (i.e., in the
definitions of places, transitions and the weight function), but as far as maximal
concurrency semantics is concerned, the locality information for transitions in
the form of the mapping L of NLΠ is not relevant (the structure of Petri nets
explicitly supports the locality aspects of the resources consumed and produced
by transitions). However, it allows us to define local synchronicity presented
next.

3.3 Locally maximal concurrency semantics of PTL-nets

Consider the PTL-model of the producer/consumer example as depicted in Fig-
ure 5. It conveys, in particular, the information that transitions a and c are
assigned one locality, whereas transitions t and u are assigned another locality.
This reflects the view that the producer operates away from the two consumers.

v p
r

s

q

1

c
1a 2 t 2 u

Fig. 5. PTL-net of the one-producer / two-consumers system.

To define a right semantical model reflecting this distribution of computing
agents, we need to change the enabling condition for steps. Now, intuitively,
only those steps are allowed to occur which are maximally concurrent within the
localities given by L.

In a PTL-net NL = (P, T,W,M0,L), a step U : T → N is locally max-

enabled at a marking M if it is enabled at M in und(NL) and, in addition,
there is no transition t such that L(t) ∈ L(U) and U+{t} is still enabled at
M in und(NL). Thus a step which is locally max-enabled at a marking is not
necessarily a maximal step at that marking. The induced notions of a locally
maximal step sequence and marking reachability are then defined as usual using
the just defined notion of enabledness.

We now can look at the impact the various definitions of enabledness have on
the set of legal behaviours of a Petri net. Looking at the PT-net N in Figure 3
and PTL-net NL in Figure 5, we can observe the following. First of all, the
step sequence {a}{t, a}{u, t}, which was possible for N , is a legal behaviour of
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NL under the locally maximal concurrency semantics as are many others, like
{a}{a}{a} and {a}{a}{t, t}. (Recall here that {a}{t, a}{u, t} was disallowed by
the maximal concurrency semantics.) However, there are also step sequences of
N which are not part of the locally maximal concurrency semantics of NL; e.g.,
σ = {a}{t, a}{t} since after executing {a}{t, a} it is possible to execute step
{u, t} which is strictly greater than {t} and transitions t and u are co-located.

Coming back to the example shown in Figure 1(b), we have the follow-
ing step sequences in the maximal concurrency semantics: the empty sequence,
{tr1, t

r
1, t

r′

2 } and {tr1, t
r
1, t

r′

2 }{tr
′

2 }. The locally maximal concurrency semantics, on
the other hand, yields several additional step sequences, like {tr1, t

r
1}{t

r′

2 , t
r′

2 } and
{tr

′

2 }{tr1, t
r
1}{t

r′

2 }. Note further that it does not allow {tr1, t
r
1}{t

r′

2 } which, in turn,
is allowed by the standard step sequence semantics.

To summarise, PT-nets admit both standard and maximal concurrency se-
mantics, while for PTL-nets we have in addition locally maximal concurrency
semantics. In particular, this means that we cannot identify the exact semanti-
cal model just by looking at a net’s structure; we always need to specify which
execution semantics is being used.

4 Causality and concurrency

All three variants of step sequence semantics of a Petri net considered in this
paper provide important insights into the concurrency aspects of the underlying
systems. They are, however, still sequential in nature in the sense that steps occur
ordered thus obscuring the true causal relationships between the occurrences of
transitions. On the other hand, information on causal relationship is often of
high importance for system analysis and/or design. Petri nets can easily support
a formal approach where this information is readily available as was recognised a
long time ago, see [16] where it was proposed to unfold behaviours into structures
allowing an explicit representation of causality, conflict and concurrency. A well-
established way of developing such a semantics for the standard PT-nets is based
on a class of acyclic Petri nets, called occurrence nets [22]. What one essentially
tries to achieve is to trace the changes of markings due to transitions being
executed along some legal behaviour of the original PT-net, and in doing so
record which resources were consumed and produced.

In this section, we first explain the main ideas behind the causality semantics
based on standard step sequences of PT-nets. After that, we show how this ap-
proach could be adapted to work for the locally maximal concurrency semantics
of PTL-nets. Note that the maximal concurrency semantics of a PT-net coincides
with the locally maximal concurrency semantics of this PT-net after extending
it to a PTL-net with all transitions mapped to the same locality; hence we will
only consider explicitly the locally maximal concurrency semantics.

4.1 Causal behaviours of PT-nets

Looking at the sequence σ = {a}{t, a}{u, t} of executions in Figure 4, it is not
immediate that transition u could have occurred before the second occurrence
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of transition a or, in other words, that the former is not causally dependent on
the latter.
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Fig. 6. Constructing an occurrence net corresponding to {a}{t, a}{u, t}.

Figure 6 illustrates the idea in which we unfold the scenario represented
by σ. The initial stage shows just the initial marking which includes two separate
(labelled) conditions (this is how places are called in occurrence nets) to represent
the two initial tokens in place r. Executing step {a} consumes the p-condition,
creates an a-event (this is how transitions are called in occurrence nets), as well
as two new conditions: a p-condition and a q-condition. An important point is to
notice that we create a fresh p-condition rather than a loop back to the initial one
since we want to distinguish between different occurrences of the same token; as
a result the occurrence net being constructed will be an acyclic graph. Another
important point is that the environment of the generated a-event corresponds
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exactly to the environment of transition a; namely, it consumes a p-token and
creates a p-token and a q-token. After that, executing step {t, a} consists in
consuming three conditions and creating two events and three fresh conditions,
and similarly for the last step {u, t}. And, as a final result, we obtain an acyclic
net labelled with places and transitions of the original PT-net; it is called a
process of the original PT-net. The process net has a default initial marking
consisting of a token in each of the conditions without an incoming arc.

It is now possible to look both at the structure of the process net and the
executions which are possible from its default initial marking, making some
important observations relating to:

– Causality. The causality relationships among the executed transitions can
be read-off by following directed paths between the events; for example in
Figure 6, the lower t-event is caused by both a-events, while the upper one
is caused only by the leftmost a-event.

– Concurrency. Events for which there is no directed path from one to another
can be thought of as concurrent.

– Reachability. Any maximal set of conditions for which there is no directed
path from one condition to another corresponds to a reachable marking of
the original PT-net.

– Representation. The step sequence on the basis of which the process was
created can be executed from the initial default marking in the occurrence
net. So the original behaviour has been retained. In Figure 6, there are
13 different step sequences generated by the process net defined by σ =
{a}{t, a}{u, t}, including σ itself.

– Soundness. Any step sequence which can be executed from the default initial
marking to the default final marking (consisting of tokens placed in each of
the conditions without an outgoing arc) of the process net is also a legal
step sequence of the original PT-net. Processes provide a highly compressed
representation of step sequence behaviours of the original PT-net (this fea-
ture has been exploited to a significant degree in the development of efficient
model checking algorithms for PT-nets).

The above advantages of the process nets of the standard PT-nets lead us to
consider a similar treatment for the PTL-net model and their locally maximal
concurrency semantics.

4.2 Causal behaviours of PTL-nets

As a first attempt, we simply adopt the unfolding strategy as in the PT-net
case. We only ensure that the step sequence consists of (locally) maximal steps.
Moreover, we preserve the localities of the transitions in the events created while
constructing the occurrence net. Figure 7 shows the result for the PTL-net of
Figure 5 and the step sequence {a}{t, a} which is allowed in the maximal and
thus also in the locally maximal concurrency semantics (both the occurrence net
and its default initial marking are depicted). Although this is straightforward,
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we still need an argument that the resulting process is what one would want to
take for further analyses. In particular, one would want to retain the soundness
of the previous construction. In the case of our example, we can execute the
occurrence net and conclude that under the maximal rule it admits the original
sequence, whereas under the locally maximal rule it admits two more step se-
quences, {a}{a}{t} and {a}{t}{a}. And, clearly, both are legal step sequences
of the original PTL-net in the locally maximal concurrency semantics.
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Fig. 7. Process net corresponding to the step sequence {a}{t, a} (a); and its default
initial marking (b).

In general, however, it would be too hasty to accept the standard unfolding
routine as satisfactory. Consider, for example, the PTL-net in Figure 8(a) and its
step sequence {t, u, v}{w, z} consisting of locally maximal steps. Proceeding as
in the previous case, we obtain an occurrence net shown in Figure 8(b). And the
problem is that it has an execution from the default initial marking (using only
locally maximal steps) which corresponds to {u, v}{t, z}{w}. This step sequence,
however, is not a locally maximal step sequence of the original PTL-net as in the
second step it is possible to add transition x which is co-located with transition z.
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Fig. 8. PTL-net (a); an occurrence net constructed from step sequence {t, u, v}{w, z}
(b); and a barbed process (c).

An intuitive reason why the standard construction fails to work for the PTL-
net in Figure 8(a) is that such an unfolding ‘forgets’ that transition x was enabled
at a stage where transition w was selected. Then, delaying the execution of the
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w-event, creates a situation where the executed step (though locally maximal
within the occurrence net since the knowledge of the enabledness of x is lost)
does not correspond to a locally maximal step within the PTL-net.

Our approach to cope with this problem in [14] is to equip occurrence nets
generated by PTL-nets with additional barb-events, represented by darkly shaded
rectangles. Barb-events are not labelled with transition names and are not meant
to be executed; rather, they are used in the calculation of the enabled sets of
events. Such occurrence nets are called barbed processes. Rather than providing
a full formal definition of how barb-events are added during the unfolding pro-
cedure, which we give in the companion paper [14], we only mention here that
it is based on checking that transitions have not been included in the executed
scenario since another co-located transition was selected. Figure 8(c) illustrates
the modified construction for the net in Figure 8(a,b).

After executing {u, v}, it is now impossible to select {t, z} since there is a
record in the form of the barb-event that such a step would not be maximal in the
locality to which transition {z} belongs. The only way of continuing is to execute
{t} and after that {z, w}, generating a legal step sequence {u, v}{t}{z, w}.

5 Summary and conclusions

In this paper we have proposed an approach to the modelling of the behaviour
of membrane systems through a class of Petri nets with localities (PTL-nets).

We gave first a formal translation for a basic class of membrane systems, and
argued that the structure of the (maximally concurrent) computations of such
membrane systems is faithfully reflected by the maximal concurrency semantics
of the corresponding PTL-nets. This corresponds to the situation whereby all
the rules are governed by a single global clock which corresponds to the case of
maximally concurrent executions, as investigated in [6]. Hence the results on the
reachability of certain markings (or, equivalently, configurations in membrane
systems) developed there could form the basis of an investigation, e.g., whether
a particular combination of molecules in certain compartments can happen in
the legal evolutions of a membrane system.

After that we moved to a less centralised view of concurrent executions, as
already advocated e.g., in [9], and defined a locally maximal concurrency seman-
tics for PTL-nets. However, in case of individual localities for all transitions, we
are not exactly dealing with the asynchronous or sequential systems, proposed
by [9]. Since we maintain the requirement of locally maximal concurrency exe-
cutions, the resulting systems exhibit maximal autoconcurrency.

In the model of PTL-nets there are no additional requirements on the rela-
tionship between transitions and their localities; in particular, as already men-
tioned, transitions with shared input places do not have to be co-located. More-
over, the flow of resources among the localities does not necessarily follow a
tree-like structure. In fact, PTL-nets with their locally maximal concurrency se-
mantics constitute a very general framework in which membrane systems and
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even conglomerates of membrane systems (organisms) can be expressed and
studied.

An important feature characterising the proposed basic PTL-net model is
its robustness, in the sense of being easily extendable to handle salient features
of more sophisticated membrane systems. Examples of such features are: (i)
priorities among rules which can be dealt with using Petri nets with priorities,
e.g., as in [2]; (ii) catalysts governing the enabling of the reaction rules purely by
their presence which can be dealt with using Petri nets with read arcs, e.g., as
in [24]; (iii) substances forbidding certain reactions which can be dealt with using
Petri nets with inhibitor arcs, e.g., as in [13]; and (iv) dissolution of membranes
which can be dealt with using Petri nets with transfer arcs; e.g., as in [23, 7].
We could also consider membrane systems with rules having variable discrete
durations, by suitably exploiting the locally maximal concurrency semantics of
PTL-nets. Further investigation is also needed into the relationship between
various P systems and a wide variety of restricted/extended Petri nets, such
as [10, 11].

We finally outlined how a causality based semantics of PTL-nets could be
defined and used to analyse the intricate details of concurrent computations of
membrane systems. The proposed semantics is based on the unfolding of PTL-
nets with the novel feature of barb-events needed to reflect choices in the locally
maximal executions. Among the potential benefits of the proposed unfolding-
based semantics is the efficient model checking approach to the verification of
properties of concurrent systems modelled as Petri nets [8, 15, 12].

Summarising, we have developed a new systematic link between Petri nets
and membrane systems which (hopefully) is useful for both areas. We see this
formalization only as a beginning of the research into the representation of the
behaviour of membrane systems through concurrent processes.

Clearly, one could simply use the basic model of PT-nets and simulate by
‘brute force’ the behaviour of membrane systems. In general, however, a biolo-
gist’s interest will be in how a system functions and not just in what is delivered
at the end. From the modelling point of view it is therefore more convenient to
include localities as a direct interpretation of ‘where is what’. This also provides
the possibility to introduce a notion of local synchronicity as opposed to a global
clock governing the evolution of a system. The process semantics of PT-nets pro-
vides an additional formal tool to study how a system functions rather than what
it computes. Whereas step sequences can be viewed as ordered by a clock, pro-
cesses can be used to represent causalities. Moreover using (infinite) processes,
also ongoing (potentially infinite) system behaviour can be investigated, which
is also interesting from a biological point of view.

For PT-nets the notion of locality inspired by membrane systems is a new
interesting feature. The process semantics for PTL-nets working under the (lo-
cally) maximal concurrency semantics still has to be developed. In this paper we
have briefly indicated how the technical problems could be solved. In addition, a
proper notion of causality (order relation) based on processes (see the semantical
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scheme of [13]) and relevant for the biologically motivated membrane systems
has to be identified as well.
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