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Abstract— If robots are to cooperate with humans in an 

increasingly human-like manner, then significant progress 

must be made in their abilities to observe and learn to perform 

novel goal directed actions in a flexible and adaptive manner.   

The current research addresses this challenge. In CHRIS.I [1], 

we developed a platform-independent perceptual system that 

learns from observation to recognize human actions in a way 

which abstracted from the specifics of the robotic platform, 

learning actions including “put X on Y” and “take X”.   In the 

current research, we extend this system from action perception 

to execution, consistent with current developmental research in 

human understanding of goal directed action and teleological 

reasoning.  We demonstrate the platform independence with 

experiments on three different robots.  In Experiments 1 and 2 

we complete our previous study of perception of actions “put” 

and “take” demonstrating how the system learns to execute 

these same actions, along with new related actions “cover” and 

“uncover” based on the composition of action primitives “grasp 

X” and “release X at Y”.  Significantly, these compositional 

action execution specifications learned on one iCub robot are 

then executed on another, based on the abstraction layer of 

motor primitives.  Experiment 3 further validates the platform-

independence of the system, as a new action that is learned on 

the iCub in Lyon is then executed on the Jido robot in 

Toulouse.  In Experiment 4 we extended the definition of action 

perception to include the notion of agency, again inspired by 

developmental studies of agency attribution, exploiting the 

Kinect motion capture system for tracking human motion.  

Finally in Experiment 5 we demonstrate how the combined 

representation of action in terms of perception and execution 

provides the basis for imitation.  This provides the basis for an 

open ended cooperation capability where new actions can be 

learned and integrated into shared plans for cooperation.  Part 

of the novelty of this research is the robots’ use of spoken 

language understanding and visual perception to generate 

action representations in a platform independent manner based 
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on physical state changes.  This provides a flexible capability 

for goal-directed action imitation.   

I. INTRODUCTION 

For embodied agents that perceive and act in the world, 

there is a strong coupling or symmetry between perception 

and execution which is constructed around the notion of goal 

directed action.  Hommel et al [2] propose a philosophy for 

the cognitive mechanisms underlying perception and action 

– the Theory of Event Coding.  According to this theory, the 

stimulus representations underlying action perception, and 

the sensorimotor representations underlying action are not 

coded separately, but instead are encoded in a common 

representational format.  In this context it has now become 

clearly established that neurons in the parietal and the 

premotor cortices encode simple actions both for the 

execution of these actions as well as for the perception of 

these same actions when they performed by a second agent 

[3]. This research corroborates the emphasis from behavioral 

studies on the importance of the goal (rather than the details 

of the means) in action perception [4]. 

Within a sensorimotor architecture a number of benefits 

derive from such a format, including the direct relation 

between action perception and execution that can provide 

the basis for imitation.  This is consistent with our previous 

research in the domain of robot perception and action in the 

context of cooperation ([5, 6]).  The current research extends 

our previous work on the learning of composite actions by 

exploiting this proposed relation between action execution 

and perception.  Part of the novelty of the current research is 

that the action repertoire is open:  the robot can learn new 

actions in both dimensions of perception and execution. The 

learned actions take arguments including agent, object and 

recipient.  Maintaining this symmetry of action perception 

and execution lays the framework for imitation and the use 

of imitation in cooperation [5, 6]. 

We look to human development to extract requirements 

on how to implement such an action representation.  In this 

context, two important skills for infants are the ability to 

detect an action as being goal directed and to determine its 
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agency. Studies of infant action perception [4, 7] have led to 

the extraction of a core set of conditions which allows the 

infant to identify goal-directed actions. In the current 

research, we implement in our system the ability to address 

aspects of these human requirements both in terms of 

perception (detect and represent salient actions effects) and 

execution (ability to achieve a goal through an action using 

equifinal variations). We demonstrate how those capabilities 

can be used by the robot to imitate or mirror human actions 

(which involve both recognition and execution) in a way that 

should match the human requirements for goal attribution.  

Learning by imitation is a major area of research in robot 

cognition today [8-12]. Our novel contribution to this 

domain is the encoding of action in terms of perceptual state 

changes and composed motor primitives that can achieve 

these state changes, in a manner that allows the robot to 

learn new actions as perception – execution pairs, and then 

use this knowledge to perceive and imitate.  These actions 

can take several arguments, e.g. AGENT put the 
OBJECT on the RECIPIENT. This allows for the 

generalization of learned actions to entirely new contexts, 

with new objects and agents.  In our long-term research 

program, this provides the basis for learning to perform joint 

cooperative tasks purely through observation. 

 

II. CONTEXT: GOAL DIRECTED ACTIONS 

A. Goals attribution requirements 

Studies of human infants [4, 13-15] indicate that their 

ability to determine the goal of an action begins to develop 

between 6 and 9 months, demonstrated by the ability of 

infants to encode behaviors such as a hand grasping for an 

object as being directed at the goal-object rather than 

encoding the hand’s specific movement. An important issue 

that has been discussed within the field is the difference 

between actions that are familiar to the infant and more 

unfamiliar actions which may not include human features 

(like a robotic gripper grasping a toy). Woodward [14] 

initially argued that only observed actions that the infant is 

able to execute herself are represented as goal-directed. 

However later studies [4, 7] demonstrated that indeed infants 

are able to attribute goal directedness for novel actions early 

assuming two conditions: first the action has to produce a 

salient effect on the world state (like the motion from one 

place to another). The second condition is that the agent is 

able to achieve the same state change in different ways (such 

as avoiding an obstacle instead of using a straight 

trajectory), in other words the action is demonstrated to 

possess equifinal variations. 

 

 

B. Implementing those requirements 

Our implementation of action, both in the context of 

perception from CHRIS.I [1] and execution is based on 

actions as state changes. One of the strong implications of 

this is the equifinality of action. That is, the same action “put 

the box on the toy” may be realized in a variety of ways 

(with one hand, or the other) but with the equivalent final 

outcome, one of the key characteristics that allow action to 

be considered goal directed.  If the robot is able to 

demonstrate equifinal means of achieving his actions, then 

humans may be more likely to attribute a goal to them. This 

assumption has been shown to be true in infants [4, 16] and 

would need to be tested on adults, however assuming the 

fact that all our teleological system seems to be built on 

those core capabilities it is likely that a benefactor effect 

could be found also on adults. 

In our action recognition system [1] we exploited 

Mandler’s [17] suggestion that the infant begins to construct 

meaning from the scene based on the extraction of 

perceptual primitives.  From simple representations such as 

contact, support and attachment [18] the infant could 

construct progressively more elaborate representations of 

visuospatial meaning.  In this context, the physical event 

"collision" can be derived from the perceptual primitive 

"contact".  Kotovsky & Baillargeon [19] observed that at 6 

months, infants demonstrate sensitivity to the parameters of 

objects involved in a collision, and the resulting effect on the 

collision, suggesting indeed that infants can represent 

contact as an event predicate with agent and patient 

arguments.   

In this paper we describe an evolution of the action 

recognition system described in [1]. This new system is still 

based on sequences of perceptual event primitives (visibility, 

motion, contact), however those primitives are now 

represented in terms of the impact they have on the world 

state. Primitives can be queued and their effects added so 

that a sequence of them will be a way to reach an end state 

from an initial state. If a sequence produces no change in the 

world state, then it will not be taken into account by the 

system, which mimics the ability of children to emphasis 

actions that produce a salient effect on the world. This 

rejection of “useless” actions allow the system to be more 

stable: for example an object which appears and then 

disappears quickly may be only a false recognition of the 

perceptual system. 

These requirements are implemented on both the 

perceptual and executive components of the system.  In 

CHRIS.I [1] we presented a system architecture for 

cooperation.  Here we zoom in on the action related 

components which handle the complete link from perception 

to motor commands in term of actions. 

 



  

III. EXPERIMENTAL PLATFORMS 

A crucial aspect of our research is that the architecture 

should allow knowledge acquired on one robot to be used on 

physically distinct platforms.  In the current study this is 

demonstrated using two different version of the iCub 

platform in Lyon France, and Genoa Italy, respectively, and 

the Jido robot in Toulouse, France.   

The iCub [20] is an open-source robotic platform shaped 

as three and a half year-old child (about 104cm tall), with 53 

degrees of freedom distributed on the head, arms, hands and 

legs. The head has 6 degrees of freedom (roll, pan and tilt in 

the neck, tilt and independent pan in the eyes). Three 

degrees of freedom are allocated to the waist, and 6 to each 

leg (three, one and two respectively for the hip, knee and 

ankle). The arms have 7 degrees of freedom, three in the 

shoulder, one in the elbow and three in the wrist. The iCub 

has been specifically designed to study manipulation, for 

this reason the number of degrees of freedom of the hands 

has been maximized with respect to the constraint of the 

small size. The hands of the iCub have five fingers and 19 

joints. All the code and documentation is provided open 

source by the RobotCub Consortium, together with the 

hardware documentation and CAD drawings. The robot 

hardware is based on high-performance electric motors 

controlled by a DSP-based custom electronics. From the 

sensory point of view the robot is equipped with cameras, 

microphones, gyroscopes, position sensors in all joints, 

force/torque sensors in each limb. 

While both iCubs are instances of the iCub, they are 

distinct in the implementation of motor control as the 

iCubGenoa01 is equipped with force sensors that allow force 

control; the iCubLyon01 is only controlled in velocity and 

position modes.  Thus, the essential role of the motor 

primitive pool as the common abstraction layer across robots 

is maintained.  Jido, on the other hand is an entirely different 

robot, which allows us to truly explore the platform 

independence of our system. 

Jido is a fully-equipped mobile manipulator that has been 

constructed in the framework of Cogniron (IST FET project: 

www.cogniron.org). Jido, a MP-L655 platform from 

Neobotix, is a mobile robot designed to interact with human 

beings. It is presented on figure 3.  Jido is equipped with: (i) 

a 6-DOF arm, (ii) a pantilt unit system at the top of a mast 

(dedicated to human-robot interaction mechanisms), (iii) a 

3D swissranger camera and (iv) a stereo camera, both 

embedded on the pan tilt unit, (v) a second video system 

fixed on the arm wrist for object grasping, (vi) two laser 

scanners, (vii) one panel PC with tactile screen for 

interaction purpose, and (viii) one screen to provide 

feedback to the robot user. Jido has been endowed with 

functions enabling to act as robot companion and especially 

to exchange objects with human beings. So, it embeds robust 

and efficient basic navigation and object recognition 

abilities.    

 

IV. THE CHRIS ARCHITECTURE – FOCUS ON ACTION 

In order to be platform-independent, action representation is 

abstracted from platform-specificities at the lowest level 

possible.  An overview of the CHRIS architecture in this 

context is presented in Figure1.   

 

 
Figure 1: CHRIS Architecture. Arrows represent the flow of information 

(data, commands), which are transported  over the network via YARP.  

Perceptual information enters Scene Perception. Object positions from 

Egosphere are processed by Primitive Recognizer and Action Recognizer 

for learning and recognition, and enter SPARK  for inference of spatial 

relations which are stored in ORO.  Shared Plan Manager links perceputal 

and exectutive action representations and plans. Supervisor manages HRI, 

the learning of new action execution, and verificiation from ORO that 

execution preconditions hold. 

 

A. Abstraction of Action Perception and Execution 

Two layers of abstractions are required in order to have a 

platform independent architecture: perceptual and motor. 

Both of them rely on the Egosphere module. 

 

1) Scene Perception 

The first layer of abstraction between the sensory 

perception systems and the higher level cognitive 

architecture and motor control elements is formed at the 

level of the Egosphere which serves as a fast, dynamic, 

asynchronous storage of object positions and orientations. 

The object positions are stored in spherical coordinates 

(radius, azimuth and elevation) and the object orientation is 

stored as rotations of the object reference frame about the 

three axes (x,y,z) of a right-handed Cartesian world-frame 

system. The origin of the world frame can be chosen 

arbitrarily and, for our experimental work, we located it at 

the centre of the robot’s base-frame. Other stored object 

properties are a visibility flag and the objectID. The 

objectID is a unique identifier of an object which acts as a 

shared key across several databases (see [1] for details). The 

robot-specific 3D perception system adds objects to the 

Egosphere when they are first perceived, and maintains 

position, orientation or visibility of these objects over time. 

Modules requiring spatial information about objects in the 

scene can query the Egosphere. The Egosphere is 



  

implemented in C++ as a client-server system using the 

YARP infrastructure. Software modules requiring access to 

the Egosphere include a client class which provides methods 

like addObject(), setObject(), getObject() or 

getNumberOfObjects(), etc.  The Egosphere is thus a 

convenient abstraction layer. With increasing complexity of 

human-robot interaction tasks during the course of our 

research, we will add further complexity (human focus of 

attention, confidence, timeliness etc.) whilst preserving 

modularity.  This is exemplified by the spatial reasoning 

(e.g. visibility by line of sight) provided by Spark.  Within 

the Jido platform-independent component, the functionality 

of the EgoSphere is preserved within Spark. 

 

2) Perceptual Primitives, Events and State Changes 

The action recognition capability is based on the 

extraction of meaningful primitive events from the flow of 

object positions and visibilities represented in the Egosphere 

and Spark. Again we based our system findings from 

developmental psychology.  We implemented perceptual 

primitives similar to those described in [21-25]. We have 

previously used this primitives based approach in [26, 27] 

and we identified a core set of primitive events that are 

simple and provide a solid basis for action construction. 

There are six primitive event divided in three categories: 

•  Visibility (object appears or disappears) 

•  Motion (object starts or stops moving) 

•  Contact (contact made or broken between 2 objects) 

Each of these primitive event is coded in terms of the state 

change it effects on the world (e.g: if an object appears, 

visibility(object) will be added to the world state). The 

Primitive Recognizer extracts those 6 primitives by 

constantly monitoring the Egosphere.  It then broadcasts the 

detected events to the Action Recognizer.  

  

3) Motor Primitives 

The current research extends this notion of 

compositionality for action perception from CHRIS.I [1] to 

action execution. As for the perceptual system, the action 

execution system requires a suitable abstraction that 

provides a platform independent interface to the robot motor 

capabilities.  Motor primitives   rely on the idea that 

complex motor tasks may be achieved by the combination of 

simple parameterized controllers we call primitives. This 

framework is consistent  with studies of biological motion 

[28], which demonstrate that motion of biological beings is 

achieved by high level motor commands triggering a 

sequence of motor primitives leading finally to an effective 

motion of the muscles. Using hierarchies of primitives for 

control in robotics is becoming a widely used method [29-

36]. In our approach, what we call a Motor Primitive is 

already a symbolic action. The implementation of those 

actions is robot specific, what is important is that all robots 

share the same motor interface, as a pool of Motor 

Primitives. In the current system the primitives that are 

implemented on the robot are: 

 

•  Grasp (object) 

•  Release (location) 

•  Touch (object) 

•  Look-At (object) 

 

We do not claim the completeness of this pool for all 

possible interactions, but these primitives were sufficient in 

the context of robot and human interaction through 

manipulation of objects on a table. The arguments for these 

primitives are objects whose Cartesian coordinates are 

recovered from the Egosphere.   

B. Action Representation 

The concept of Action and its representation is at the center 

of our architecture. Inspired by the perception-execution 

symmetry [2] we impose the requirement that the same data 

structure shall accommodate both the perceptual and 

executive components of action. It also includes teleological 

information, that is, the state changes that are induced by 

that action. 

  

1) Action Representation for Perception 

Our representation of action started with a purely 

perceptual definition [1, 6, 37]. Specifically the Action 

Recognizer module is constantly monitoring the flow of 

perceptual primitives sent by the Primitive Recognizer 

module. We make the assumption that two actions will be 

separated by a temporal delay, so we can use this delay to 

segment meaningful sequences of primitives. When such an 

independent sequence is detected, it is tagged as being a 

potential action which is then evaluated by the recognition 

process. The action data structure is similar to that for events 

since actions are composed of primitive events, and both 

produce a salient change (or changes) in the world state. The 

Action Recognizer stores a list of all the known actions and 

compares them with the incoming potential actions. All the 

primitives contained in the received sequence are added so 

that the global world state change of this sequence is 

obtained, then if a known action creates the same change in 

the environment it is recognized as being the observed 

action. We have to stress the fact that this “world change” is 

argument independent: if the system has learnt an action 

cover(object A, object B) then it will recognize a 

cover(toy,box) as well as a cover(bowl, plate). 

Actions possess characteristics in addition to those of 

event primitives. The state change produced by an event 

primitive is called post-condition, because it is applied after 

the primitive occurred.  In addition to post-conditions an 

action has pre-conditions which can either allow or prevent 

it to occur (for example covering the bowl needs the bowl to 

be visible and uncover the bowl needs the bowl to be 

covered). Those pre/post conditions are a useful mechanism 

that allows forward/backward chaining and finally 

teleological reasoning (see [37] for more details about this 

aspect). Actions also contain a field describing the executing 



  

agent. Agency detection is based on motion primitives 

associated with human hands that are detected using the 

Kinect device which provides information about human 

hands to the Egosphere (see below).  

 

2) Action Representation for Execution 

In order to bridge the gap between perception and 

execution, the Shared Plan Manager module combines motor 

representations with perceptual representations of action.  

While we currently address the learning of single actions as 

the simplest motor plans, the system is designed to naturally 

extend to more complex shared plans, based on our earlier 

work [6].   

When the user asks the robot to perform an action the 

Shared Plan Manager searches for a plan with that name.   If 

no such plan is found, then the Shared Plan Manager asks 

the user to enumerate the motor primitives (described above) 

that constitute that action. 

The system can thus learn to perform complex actions 

such as put the box on the toy as a composite 

sequence of grasp box, release box on toy.   
We implement a form of argument binding so that this 

newly learned action can generalize across all objects.  That 

is the robot can then perform the action put the toy on 
the table.   

 

 
Figure 2: Experiments on iCubLyon01 and iCubGenoa01.  A. Experiments 

1 and 2 where human teaches robot new actions.  Note in right foreground 

the representation of the spatial environment in SPARK. B. Replication of 

actions learned in Lyon with iCubLyon01 transferred to iCubGenoa01 in 

Genoa. C.  Human demonstrates the “cover the toy with the box” action, 

and the iCubGenoa01 recognizes and imitates that action. 
 

C. Supervision 

Action perception and execution are coordinated by the HRI 

Supervisor. The Supervisor manages spoken language 

interaction with the CSLU Toolkit [38] Rapid Application 

Development (RAD) state-based dialog system which 

combines state-of-the-art speech synthesis (Festival) and 

recognition (Sphinx-II recognizer) in a GUI programming 

environment. Our system is thus state based, with the user 

indicating the nature of the current task (including whether 

he wants interact in the context of action recognition, 

execution or imitation tasks).  In each of these subdomains, 

the user can then indicate that he is ready to show the robot a 

new example and the robot will attempt to recognize, 

perform or learn what is shown.   

A principal function of the Supervisor is to verify that 

preconditions for action execution are met before the 

execution is initiated.  This primarily concerns the constraint 

that objects to be manipulated should be visible.  This 

information is computed by the SPARK (Spatial Reasoning 

and Knowledge) module and made available to the system in 

ORO (the Open Robot Ontology) which provides central 

component of the Knowledge base of the system.  See 

CHRIS.I [1] for details. 

 

V. EXPERIMENTS 

A. Experiment 1- Completing Perception with Execution 

In CHRIS.I we demonstrated a capability to learn to 

recognize actions including take and put.  Here we first 

demonstrate how these action definitions can be completed 

with the execution component.   

 

H: Put the toy on the left 

R: I don’t know how to put. 

H: Grasp the toy. 

R: Grasping the toy. 

H:  Release left 

R:  Releasing left 

H: Finish learning. 

 

Based on this learning we then demonstrated that the 

acquired execution knowledge could generalize to new 

instances of the action.  We demonstrated that the robot 

correctly performed the command to put the box in the 

middle.  This is illustrated in Fig 2A.  In order to 

demonstrate that this knowledge could be exploited on a 

different robot, the learned definitions were shared via the 

SVN repository.  Figure 2B illustrates the iCubGenoa01 

using action definitions acquired in Lyon in order to perform 

the take and put actions. 

 

B.  Experiment 2- Learning New Actions 

This experiment tests the ability of the system to learn 

new actions, both in terms of perception and execution.  

Here we focus on two actions which are cover X with 
Y, and uncover X with Y.  We chose these actions as 

they will provide the basis for future work in shared 

planning for cooperation. 

 

H: Cover the toy with the box. 

R:  I do not know how to cover. 



  

H: Grasp the box. 

R: Grasping the box. 

H: Release the box on the toy. 

R:  Releasing the box on the toy. 

H: Finish learning. 

 

This dialog fragment illustrates how the system can 

acquire new sequences of action primitives in order to learn 

new composite actions.  Here, “cover X with Y” is learned 

as the concatenation of grasp X and release X at Y. We 

demonstrated this same concatenative learning for the 

actions, put, take, cover and uncover.  Note that put and 

cover have similar definitions, with reversed ordering of the 

arguments, demonstrating the flexibility of the argument 

binding capability. 

 

 

 
Figure 3: Above - Experimental platform Jido.  The action of taking the box 

and putting it on the red-mat (cover X with Y) that was learned on  

iCubLyon01 was successfully executed in the Jido environment in 

Toulouse. A - B. Jido reaching for box and grasping. C – D. Jido puts box 

on red table mat. 
 

C. Experiment 3 – Cross platform generalization 

The Shared Plan Manager creates permanent definitions 

of these new actions, which can then be transferred via the 

SVN system for use on other robots at other sites.  We could 

thus test the definition of Cover X with Y that was 

learned on the iCub in Lyon on the Jido robot in Toulouse.   

Via the RAD Supervisor, the human asked Jido cover the 

red table-mat with the box (see Figure 3).  The Supervisor 

retrieved the composite action definition, communicated the 

corresponding motor primitives corresponding to grasp X 

and release X on Y to Jido.  Jido was thus able to 

produce the cover X with Y action, based on learning 

that had occurred on a morphologically distinct robot.  Thus, 

despite this morphological difference, because of the 

abstraction at both perceptual and execution levels, action 

knowledge acquired on one platform can be exploited on 

another. 

 

D. Experiment 4 - Agency assignment with Kinect 

In behavior that involves object manipulation, the human 

hand has a special status as an agent.  Indeed it has been 

shown that infants may prefer to assign agency to well 

known agents however they also rely on naïve physics and 

assign agency to objects that are moving on their own and in 

specific ways [4, 39]. In order to achieve accurate hand 

tracking we demonstrate here how the Kinect motion tracker 

can provide this capability. A module has been developed 

using the Kinect device in combination with OpenNI 

drivers
1
 in order to track the user hands and add them to the 

Egosphere as standard objects. Since this module is on the 

platform specific side of the Egosphere, then no change is 

required to use its information. We achieved the same result 

using our standard vision system and visual markers on the 

human hand; however the approach with the Kinect is much 

more natural and robust. In the experiment the user was 

teaching system how to recognize cover and uncover and the 

system recognized these actions, and which hand performed 

them so it could describe it in the following way: “I detected 

that the human hand covered the toy with the box”. 

 

E. Experiment 5 – Goal Directed Action Imitation 

This experiment, illustrated in detail in Figure 4, brings all 

of the functionality together.  To arrive at this point, the 

robot should be able to both recognize and execute a set of 

actions.  Here we demonstrate this with the cover the 
toy with the box action.  This is illustrated briefly in 

Figure 2C and 2D.  Figure 2C illustrates the human user 

showing the action to the robot.  Figure 2D illustrates the 

robot now performing the recognized action.  Full detail of 

 
1 Kinect is a hardware product by Microsoft (http://www.xbox.com/en-

US/kinect). OpenNI.org release open source drivers for the Kinect device 

(http://openni.org/).  



  

the experiment is provided in Figure 4.  A video 

demonstrating this experiment is attached with the paper. 

 

 

 
Figure 4: Experiment 5.  Imitation.  A. Calibration of hand recognition with 

Kinect. B-D. Human covers toy with box. E. Human repositions objects. F. 

Robot grasps box. G-I. Robot covers toy with box, completing the imitation. 

 

 

VI. DISCUSSION 

 Many of the mirroring skills demonstrated in the 

literature [40, 41] use the perceived motor state of the agent 

(i.e. its kinematic evolution over the action) to both 

recognize and execute actions. This has been combined with 

goal-based representations [10].  Our system is based on the 

fact that each action can be recognized by its perceptual 

consequences in changes in the world state (object states) 

and then performed by executing the associated motor 

commands. Those motor commands are not robot specific, 

but the primitives they call are, which implicitly solves the 

correspondence problem described in [8, 42]. Although we 

cannot argue that our system can cope with the same range 

of actions as a “trajectory based” systems, it is 

complimentary with such systems, and can be used at a 

higher level, for actions involving multiple arguments and 

symbolic goal achievement more than precise motor 

imitation. Indeed, this approach also emphasis the equifinal 

means of an action since the user can demonstrate an action 

and then the robot will achieve the same result with 

completely different trajectories. 

Aspects of this work can thus be considered in the context 

of learning by imitation or demonstration, which is a major 

area of research in robot cognition today [8, 10, 40-42].  Our 

novel contributions to this domain include (1) the encoding 

of action in terms of perceptual state changes and composed 

motor primitives that can achieve these state changes, in a 

manner that allows the robot to learn new actions as 

perception – execution pairs, and then use this knowledge to 

perceive and imitate. (2)  These actions can take several 

arguments, e.g. AGENT put the OBJECT on the 
RECIPIENT, which allows for the generalization of 

learned actions to entirely new contexts, with new objects 

and agents.  This yields the equifinal component of action 

where the same goal can be achieved by different means. (3) 

We use spoken language interaction and visual perception to 

provide learning input to the system.  In our long term 

research program, this provides that basis for learning to 

perform cooperative shared tasks purely through 

observation. 

In our system actions are encoded using the effect they 

produce on the state of the world, the latter being abstracted 

in terms of unspecific quantities like relative position and 

orientation of objects and their visibility. The particular type 

of encoding we adopt for actions is therefore completely 

independent of the robot platforms, and can therefore be 

transferred between robots with different embodiments or 

perceptual systems. In previous work we showed how motor 

skills could be transferred between robots; this paper extends 

this work to action recognition and mirroring. 

Our approach to action representation is consistent with 

and inspired by the 'teleological framework' [43, 44] that 

represents actions by relating three relevant aspects of reality 

(action, goal-state, and situational constraints) through the 

inferential 'principle of rational action', which assumes that: 

(a) the basic function of actions is to bring about future goal 

states; and that (b) agents will always perform the most 

efficient means action available to them within the 

constraints of the given situation.  This approach is 

complimentary to existing approaches that take the “means” 

(e.g; aspects of demonstrated trajectories) into account [29, 

36, 45].  Future research should consider how to combine 

these approaches. 
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