
Thesis for the degree of Doctor of Philosophy

Towards a practical programming
language based on dependent type

theory

Ulf Norell

Department of Computer Science and Engineering
Chalmers University of Technology and Göteborg University

Göteborg, Sweden, 2007

Towards a practical programming language based on dependent type theory
Ulf Norell

c© Ulf Norell, 2007

ISBN 978-91-7291-996-9
ISSN 0346-718X

Doktorsavhandlingar vid Chalmers tekniska högskola, Ny serie Nr 2677.

Technical report 33D
Department of Computer Science and Engineering
Research group: Programming Logic

Department of Computer Science and Engineering
Chalmers University of Technology and Göteborg University
SE-412 96 Göteborg
Sweden

Telephone +46 (0)31-772 1000

Printed at the Department of Computer Science and Engineering
Göteborg, 2007

3

Abstract

Dependent type theories [ML72] have a long history of being used for
theorem proving. One aspect of type theory which makes it very powerful
as a proof language is that it mixes deduction with computation. This also
makes type theory a good candidate for programming—the strength of the
type system allows properties of programs to be stated and established, and
the computational properties provide semantics for the programs.
This thesis is concerned with bridging the gap between the theoretical

presentations of type theory and the requirements on a practical program-
ming language. Although there are many challenging research problems left
to solve before we have an industrial scale programming language based on
type theory, this thesis takes us a good step along the way.
In functional programming languages pattern matching provides a concise

notation for defining functions. In dependent type theory, pattern matching
becomes even more powerful, in that inspecting the value of a particular term
can reveal information about the types and values of other terms. In this
thesis we give a type checking algorithm for definitions by pattern matching
in type theory, supporting overlapping patterns, and pattern matching on
intermediate results using the with rule [MM04a].
Traditional presentations of type theory suffers from rather verbose no-

tation, cluttering programs and proofs with, for instance, explicit type in-
formation. One solution to this problem is to allow terms that can be in-
ferred automatically to be omitted. This is usually implemented by inserting
metavariables in place of the omitted terms and using unification to solve
these metavariables during type checking. We present a type checking algo-
rithm for a theory with metavariables and prove its soundness independent
of whether the metavariables are solved or not.
In any programming language it is important to be able to structure large

programs into separate units or modules and limit the interaction between
these modules. In this thesis we present a simple, but powerful module sys-
tem for a dependently typed language. The main focus of the module system
is to manage the name space of a program, and an important characteristic is
a clear separation between the module system and the type checker, making
it largely independent of the underlying language.
As a side track, not directly related to the use of type theory for pro-

gramming, we present a connection between type theory and a first-order
logic theorem prover. This connection saves the user the burden of prov-
ing simple, but tedious first-order theorems by leaving them for the prover.
We use a transparent translation to first-order logic which makes the proofs
constructed by the theorem prover human readable. The soundness of the

4

connection is established by a general metatheorem.
Finally we put our work into practise in the implementation of a pro-

gramming language, Agda, based on type theory. As an illustrating example
we show how to program a simple certified prover for equations in a commu-
tative monoid, which can be used internally in Agda. Much more impressive
examples have been done by others, showing that the ideas developed in this
thesis are viable in practise.

5

Acknowledgements

I would like to thank all the people without whom this thesis would
not have been possible. My supervisor Patrik Jansson for supporting me
throughout my studies, my colleagues Andreas Abel, Catarina Coquand,
Thierry Coquand, Nils Anders Danielsson, Peter Dybjer, and many more for
excellent collaborations and many fruitful discussions about my work, Conor
McBride for providing invaluable feedback on the thesis, my fiancée Cecilia
for keeping me sane during the process of writing the thesis, and last but not
least, my mother for teaching me programming 20 some years ago.

6

Contents

1 Introduction 11
1.1 Overview of the thesis . 12
1.2 Context . 13
1.3 A basic dependent type theory 14
1.4 Type checking . 18
1.5 Extensions to the theory . 24
1.5.1 Inductive definitions 24
1.5.2 Uniqueness of identity proofs 25
1.5.3 Record types . 25
1.5.4 Implicit arguments . 26

2 Pattern Matching 27
2.1 Type checking pattern match equations 30
2.1.1 Context mappings . 30
2.1.2 Overview of the algorithm 31
2.1.3 Matching . 31
2.1.4 Unification . 32
2.1.5 Context splitting . 33
2.1.6 Type checking algorithm 36
2.1.7 Checking inaccessible patterns 37
2.1.8 Refuting elements of empty types 38
2.1.9 Checking the right hand side 39

2.2 Coverage checking . 40
2.2.1 Coverage algorithm . 42
2.2.2 Uniqueness of identity proofs 44

2.3 The with construct . 45
2.3.1 Examples . 46

3 Metavariables 49
3.1 Introduction . 49
3.2 The underlying logic MLF . 51

7

8 CONTENTS

3.3 The type checking algorithm 53
3.3.1 Operations on the signature 54
3.3.2 The algorithm . 55

3.4 Examples . 60
3.5 Proof of correctness . 62
3.5.1 Soundness without constraint solving 62
3.5.2 Soundness of constraint solving 65
3.5.3 Relating user expressions and checked terms 68
3.5.4 Main result . 68

3.6 Implicit arguments . 69
3.7 Extending the underlying theory 70
3.7.1 Sigma types and the unit type 71
3.7.2 Function types as terms 72
3.7.3 Universe hierarchy . 72
3.7.4 Pattern matching . 72

3.8 Summary . 73

4 Module System 75
4.1 Introduction . 75
4.2 Description . 76
4.2.1 Private definitions . 77
4.2.2 Name modifiers . 78
4.2.3 Re-exporting names . 79
4.2.4 Parameterised modules 79
4.2.5 Splitting a program over multiple files 81

4.3 Equipment for record types 82
4.4 An example . 83
4.4.1 A note on record subtyping 87

4.5 Implementation . 87
4.5.1 Scope checking state 88
4.5.2 Looking up and adding names 89
4.5.3 Pushing and popping 89
4.5.4 Scope modifiers . 90
4.5.5 Scope checking . 91
4.5.6 Type checking . 93

4.6 Summary . 95

5 The Agda Language 97
5.1 Language description . 97
5.1.1 Names . 97
5.1.2 Interaction points . 98

CONTENTS 9

5.1.3 Implicit syntax . 98
5.1.4 Functions . 98
5.1.5 Implicit arguments . 99
5.1.6 Datatypes and function definitions 100
5.1.7 Records . 102
5.1.8 Local definitions . 102
5.1.9 Module system . 103
5.1.10 Additional features . 104

5.2 A bigger example . 104
5.2.1 Logic . 105
5.2.2 Basic datatypes . 105
5.2.3 Equivalence relations 108
5.2.4 Chain reasoning . 112
5.2.5 Monoids . 114
5.2.6 Representing commutative monoid equations 115
5.2.7 Semantics . 118

6 First-order Logic 125
6.1 Introduction . 125
6.2 The Logical Framework MLFProp 127
6.3 Translation from MLFProp to FOL 132
6.3.1 Formal Description of the Translation 132
6.3.2 Resolution Calculus . 134
6.3.3 Proof of Correctness 135
6.3.4 Simple Examples . 138

6.4 Implementation . 139
6.4.1 Implicit Arguments . 140
6.4.2 The Plug-in Mechanism 141
6.4.3 The FOL Plug-in . 141

6.5 Examples . 142
6.5.1 Relational Algebra . 143
6.5.2 Category Theory . 144
6.5.3 Computer Algebra . 145

6.6 Related Work . 148
6.7 Future Work . 150

7 Conclusions 153

10 CONTENTS

Chapter 1

Introduction

Programming is the craft of giving instructions to machines. Being machines
they will follow these instructions regardless of whether they make sense or
not. The purpose of a programming language is to make it easier to express
the things that do make sense while making it harder or impossible to express
things that do not make sense.
The first step in this direction is to make programming languages readable

by human beings. That way the programmer can read her program and
convince herself that it makes sense, but since programmers are humans
they will make mistakes both writing programs and trying to make sense
of them. To help with this modern programming languages come equipped
with type systems, which allows the programmer to declare the purpose of
a program in the form of a type. The machine can then check that a given
program has the intended behaviour. Types can also be used to guide the
programmer in constructing the correct program.
In its simplest form a type system allows you to state, for instance, that

the purpose of a sorting program is to take a list as input and produce a
list as output. This is a very crude approximation of what it means to be
a sorting program but it does provide some guarantees. In more expressive
type systems, such as the ones discussed in this thesis, it is possible to express
that the sorting program takes a list of elements over which there is a total
order, and computes an ordered permutation of this list. This characterises
exactly what it means to be a sorting program and so once we have written
a program matching this specification we know that it is correct. There is
a trade-off here: the more precise we make the types the more we might
have to explain in order for the machine to see that the program matches
our intentions. But more precise types also means that we can get more help
from the machine when constructing a program.
This thesis deals with the problem of building a programming language

11

12 CHAPTER 1. INTRODUCTION

based on a dependent type theory in which very precise statements of the
purpose of a program can be made. The main contributions are:

• An algorithm for type checking pattern matching equations over induc-
tive families of datatypes,

• a type-safe treatment of metavariables, enabling a form of implicit syn-
tax,

• a simple but powerful module system,

• a way to connect the type checker to a first-order logic theorem prover
to allow simple proofs to be found automatically, and

• an implementation of a programming language, Agda, proving that
practical programming with dependent types is within our reach.

1.1 Overview of the thesis

The rest of this chapter sets the scene by introducing a dependent type theory
UTTΣ and a type checking algorithm for this theory.
The following three chapters deal with the task of turning this basic theory

into a programming language, adding pattern matching, metavariables, and
a module system.
Chapter 2 discusses how to extend the theory with inductive families and

functions defined by pattern matching over elements in these families. We
give a type checking algorithm and an algorithm for checking coverage of
pattern match definitions.
In Chapter 3 we describe and prove sound an algorithm for type checking

a type theory extended with metavariables. This allows us to extend our
language with a notion of implicit arguments.
Chapter 4 describes a simple but powerful module system for dependently

typed languages. By keeping the module system separate from the type
checker we obtain a clean module system which is largely independent of the
underlying language.
The results from the these chapters are put to good use in the implemen-

tation of the Agda language, which is described from a user’s perspective in
Chapter 5. A bigger example of an Agda program for proving equations in
a commutative monoid is given.
Chapter 6 digresses from the theme of using type theory for program-

ming, and shows how a first-order logic theorem prover can be connected
to a dependent type theory to provide automation of proofs of first-order
theorems.

1.2. CONTEXT 13

1.2 Context

Dependent type theories have been around since the early 1970’s, when
Martin-Löf introduced his intuitionistic theory of types [ML72]. The original
motivation for type theory was to serve as a basis for constructive math-
ematics, and as such it has been very successful. Proof assistants such as
Coq [BC04], NuPrl [CAB+86], Alf [MN94], Agda1 [CC99], and Lego [Pol94]
have made it possible to construct very impressive proofs in type theory and
have them formally checked by a computer.
It is only in the last ten years that the interest in using type theory

and dependent types for programming has grown stronger. This topic can
be approached from two sides: taking a type theory and turning it into a
programming language or starting with a programming language and adding
type theoretic features to it.
The former approach was taken in the Cayenne [Aug98] language, where

Martin-Löf type theory was combined with general recursion. This had the
unfortunate side-effect of making type checking in Cayenne undecidable, since
the type checker might have to evaluate arbitrary non-terminating expres-
sions.
In his thesis [McB99], McBride extended Lego with facilities for interac-

tive programming and pattern matching. These ideas were later refined by
McBride and McKinna [MM04a] and led to the development of the Epigram
language [McB07]. The programming model of Epigram is very similar to
what we present in this thesis and has been a great inspiration. Unfortu-
nately, the implementation of Epigram has not yet reached a level where it
can be used for writing bigger programs.
Another interesting recent development is the Delphin language by Pos-

wolsky and Schürmann [PS07]. Delphin is a dependently typed programming
language built on top of the LF logical framework [HHP93]. The main focus
of Delphin is on manipulating higher-order syntax, something which is made
easy by the introduction of a newness operator, allowing the quantification
over fresh constants. Delphin supports pattern matching over inductive fam-
ilies, but where we, in our work, get away with first order matching, Delphin
uses unification and higher-order matching at run-time.
Recently there has been some work on using Coq as a programming lan-

guage. Impressive certified programs have been written by, among others,
Chlipala [Chl06, Chl07], and Leroy [Ler06]. Furthermore, Sozeau has devel-
oped Russell [Soz07], a layer on top of Coq to make programming easier. The

1This refers to the predecessor of the language developed in this thesis, which is also
called Agda.

14 CHAPTER 1. INTRODUCTION

idea is that one writes dependently typed programs as if they were simply
typed. The proof obligations arising from the dependent types are recorded
by Russell and can be proved separately using the tactic language of Coq.
This approach is quite appealing in that it separates the program logic from
the proofs required to show well-typedness of the program.
There has also been a lot of work from the other direction—adding depen-

dent types to conventional programming languages. Dependent ML [Xi98]
extends ML with types dependent on integers, and Haskell has recently been
extended with generalised algebraic datatypes (GADT) [PVWW06], a re-
stricted form of inductive families. There has also been some new languages,
such as Applied Type Systems [Xi04] and Omega [She05]. Common for these
languages and extensions is that they only support a limited form of type
dependencies. For instance, there is no way of having a type depending on
the value of another dependent type.

1.3 A basic dependent type theory

What sets dependent type theory apart from other type theories is that
types can depend on terms. In a non-dependent theory types and terms
live in separate worlds and they only meet to decide what terms have which
types. In a dependent theory, on the other hand, types can talk about terms
and so it is possible to express things like the precise characterisation of the
sorting function mentioned above.
In this section we present a dependent type theory which can serve as basis

for the extensions discussed in later chapters. The particular choice of type
theory is not crucial and the theory we choose is roughly Luo’s UTT [Luo94]
extended with Σ-types and η-laws. In the following we will refer to this
theory as UTTΣ. The syntax of UTTΣ is presented in Figure 1.1.
A telescope [dB91b] ∆ = (x1 : A1) . . . (xn : An) is a sequence of types

where later types may depend on elements of previous types. When there
are consecutive occurrences of a type in a telescope we may combine them
and write, for instance, (x y : A)(z : B) for (x : A)(y : A)(z : B).
Dependent type theory generalises the simple function space A→ B to a

dependent function space (x : A)→ B where the result type B can depend on
the value of the argument. We sometimes refer to dependent function types
as Π-types for mathematical reasons. If B does not depend on x we allow
ourselves to write A → B and if we have a telescope ∆ = (x1 : A1) . . . (xn :
An) we write ∆ → B for (x1 : A1) → . . . → (xn : An) → B. Functions are
introduced by λ-terms λx. t and computes by β-reduction. To abstract over
a sequence of variables x̄ we write λx̄. t or λ∆. t rather than λx1 . . . λxn. t.

1.3. A BASIC DEPENDENT TYPE THEORY 15

s, t, A, B ::= x variable
| (x : A) → B dependent function type
| λx . t lambda abstraction
| s t function application
| (x : A) × B dependent pair type
| 〈s , t〉 dependent pairs
| π1 t | π2 t projection
| Seti universes (i ∈ {0..})
| 1 the unit type
| 〈〉 the element of the unit type

Γ , ∆ ::= ε
| (x : A)Γ telescopes

Figure 1.1: The syntax of UTTΣ

Function application is represented by juxtaposition and analogously with
λ-abstraction we write t x̄ or t ∆ for t x1 . . . xn.
Similarly to function types the product type A × B generalises to the

type of dependent pairs (x : A)×B where the type of the second component
depends on the value of the first component. We call a dependent pair type a
Σ-type. The elements are constructed and deconstructed as usual. We write
〈s, t〉 for the dependent pair of s and t, and π1 t and π2 t to project the first
and second components, respectively, from a pair t. The computation rules
are the expected ones. We also include a singleton type 1 with the single
element 〈〉.
Types inhabit a cumulative hierarchy of universes Seti each closed under

Π and Σ, and included in the next higher universe. Lower universes are also
embedded in higher universes by the subtyping relation. We omit the level
index for the smallest universe and write Set for Set0. There are many dif-
ferent ways of adding a hierarchy of universes [ML75, ML84] and the precise
way it is done is not crucial to this thesis.
We write t[x := s] for the usual, capture avoiding, substitution of s for

x in t. For the simultaneous substitution of a sequence of terms we write
t[x̄ := s̄] or t[∆ := s̄].
The typing rules are presented in Figure 1.2 and the conversion rules in

Figure 1.3. We ignore variable freshness conditions in the rules. In practise,
these can be handled by adopting a suitable discipline, such as de Bruijn
indices [Bru72]. The typing rules expresses the expected relation between a
term and its type. Of particular interest is the subtyping rule which states

16 CHAPTER 1. INTRODUCTION

Contexts: Γ ` valid

` valid

Γ ` valid Γ ` A : Seti

Γ, x : A ` valid

Types and terms: Γ ` t : A

Γ ` valid

Γ ` Seti : Seti+1

Γ ` A : Seti Γ, x : A ` B : Seti

Γ ` (x : A)×B : Seti

Γ ` A : Seti Γ, x : A ` B : Seti

Γ ` (x : A)→ B : Seti

Γ ` valid

Γ ` 1 : Set0

Γ ` valid x : A ∈ Γ
Γ ` x : A

Γ ` s : A Γ ` t : B[x := s]
Γ ` 〈s, t〉 : (x : A)×B

Γ ` t : (x : A)×B

Γ ` π1 t : A

Γ ` t : (x : A)×B

Γ ` π2 t : B[x := π1 t]

Γ, x : A ` t : B

Γ ` λx. t : (x : A)→ B

Γ ` s : (x : A)→ B Γ ` t : A

Γ ` s t : B[x := t]
Γ ` valid

Γ ` 〈〉 : 1

Γ ` t : A Γ ` A 6 B

Γ ` t : B

Figure 1.2: Typing rules for UTTΣ

1.3. A BASIC DEPENDENT TYPE THEORY 17

Subtyping: Γ ` A 6 B

Γ ` Seti 6 Seti+1

Γ ` A1 : Seti Γ ` A2 : Seti Γ ` A1 ' A2 : Seti Γ, x : A1 ` B1 6 B2

Γ ` (x : A1)→ B1 6 (x : A2)→ B2

Γ ` A1 : Seti Γ ` A2 : Seti Γ ` A1 ' A2 : Seti Γ, x : A1 ` B1 6 B2

Γ ` (x : A1)×B1 6 (x : A2)×B2

Γ ` A1 : Seti Γ ` A2 : Seti Γ ` A1 ' A2 : Seti

Γ ` A1 6 A2

Γ ` A1 6 A2 Γ ` A2 6 A3

Γ ` A1 6 A3

Reduction: s→β t

(λx.s) t→β s[x := t] π1 〈s, t〉 →β s π2 〈s, t〉 →β t

Conversion: Γ ` s ' t : A

Γ ` t ' λx. t x : (x : A)→ B Γ ` t ' 〈π1 t, π2 t〉 : (x : A)×B

Γ ` t ' 〈〉 : 1

s→β t

Γ ` s ' t : A Γ ` t ' t : A

Γ ` t ' s : A

Γ ` s ' t : A

Γ ` t1 ' t2 : A Γ ` t2 ' t3 : A

Γ ` t1 ' t3 : A
+ congruences

Figure 1.3: Conversion rules for UTTΣ

18 CHAPTER 1. INTRODUCTION

that if t has type A and A is a subtype of B then t has type B. The sub-
typing relation is the extension of the fact that Seti is a subtype of Setj if
i 6 j. We have chosen Σ and Π to be invariant in their first argument, but
it is also conceivable to make them covariant and contravariant, respectively.
The conversion rules implement βη-equality on terms. Worth noting is that
β-equality is represented by a reduction relation, whereas η-equality is judge-
mental. This presentation corresponds to how conversion is implemented in
the type checking rules in the next section.
In the current presentation we cannot write very many interesting pro-

grams since the only base type we have is the singleton type. Rather than
adding more interesting base types, however, we hold out until Chapter 2
where we show how to add inductively defined families of types [Dyb94]. For
now we make do with the examples of the polymorphic identity function and
a dependent function composition.

id : (A : Set) → A → A
id = λA x . x

comp : (A B : Set)(C : B → Set) →
((x : B) → C x) → (g : A → B)(x : A) → C (g x)

comp = λA B C f g x . f (g x)

This composition operator is not the most general possible—we could also
make g a dependent function—but it is sufficiently general for most common
applications. It also has the nice property that the type arguments A, B,
and C, can be inferred automatically (see Chapter 3).

1.4 Type checking

We now present a type checking algorithm for UTTΣ. We use a bidirec-
tional algorithm with mutually defined judgements for checking an expres-
sion against a type and inferring the type of an expression [Pau90, Coq96].
We also let the type checker produce a well-typed term from the input ex-
pression rather than just check that it is well-typed, thus separating the user
language from the core language of the type checker. These two languages
have distinctly different purposes—the user language should be friendly to
the user, whereas the core language should be friendly to the type checker.
For instance, the user language might use named variables whereas for the
core language we may want to handle names using de Bruijn indices or de
Bruijn levels, or a combination of both [MM04b]. Furthermore, when we

1.4. TYPE CHECKING 19

Type checking: Γ ` e ↑ A ; t

A→whnf (x : B)→ C Γ, x : B ` e ↑ C ; t

Γ ` λx. e ↑ A ; λx. t

A→whnf (x : B)× C Γ ` e1 ↑ B ; s Γ ` e2 ↑ C[x := s] ; t

Γ ` 〈e1, e2〉 ↑ A ; 〈s, t〉

Γ ` e ↓ B ; t Γ ` A 6 B

Γ ` e ↑ A ; t

Figure 1.4: Type checking rules.

add metavariables in Chapter 3 the well-typed term constructed by the type
checker will only be an approximation of the term given by the user.
We end up with the following two judgements for type checking and type

inference:

Γ ` e ↓ A ; t Inferring the type of e in the context Γ
Γ ` e ↑ A ; t Checking that e has type A in the context Γ

The intuition behind the up and down arrows is that when checking, the
type is pushed upwards in the derivation tree, whereas during inference the
type is computed from the leaves of the tree. In other words, when checking
the inputs are Γ, e and A, and the output is t. During inference the inputs
are Γ and e and the outputs A and t. The rules maintain the invariant that
Γ ` A : Seti for some i, which in turn implies Γ ` valid. Soundness of the
type checker (which we do not prove here) gives Γ ` t : A.
The syntax directed rules for type checking and inference are given in

Figure 1.4 and Figure 1.5. We require the type to be available when checking
λ-abstractions and pairs. In the case of a λ-abstraction we do not know the
type that is abstracted over and in the case of a dependent pair we cannot
infer how the type of the second component depends on the value of the first.
A consequence of this is that we cannot type check β-redexes. This is not a
severe limitation in practise, but it does mean that any completeness results
of the algorithm have to be stated relative to β-normal terms.
Types can be arbitrary terms which might not be in normal form. For

instance, when checking the type of a λ-function we cannot demand that

20 CHAPTER 1. INTRODUCTION

Type inference: Γ ` e ↓ A ; t

x : A ∈ Γ
Γ ` x ↓ A ; x Γ ` 〈〉 ↓ 1 ; 〈〉

Γ ` e1 ↓ A ; s A→whnf (x : B)→ C Γ ` e2 ↑ B ; t

Γ ` e1 e2 ↓ C[x := t] ; s t

Γ ` e ↓ A ; t A→whnf (x : B)× C

Γ ` π1 e ↓ B ; π1 t

Γ ` e ↓ A ; t A→whnf (x : B)× C

Γ ` π2 e ↓ C[x := π1 t] ; π2 t

Γ ` e1 ↓ C1 ; A Γ, x : A ` e1 ↓ C2 ; B
C1 →whnf Seti C2 →whnf Setj

Γ ` (x : e1)→ e2 ↓ Setitj ; (x : A)→ B

Γ ` e1 ↓ C1 ; A Γ, x : A ` e1 ↓ C2 ; B
C2 →whnf Seti C1 →whnf Setj

Γ ` (x : e1)× e2 ↓ Setitj ; (x : A)×B

Γ ` 1 ↓ Set0 ; 1 Γ ` Seti ↓ Seti+1 ; Seti

Figure 1.5: Type inference rules.

1.4. TYPE CHECKING 21

Subtyping: Γ ` A 6 B

A→whnf A′ B →whnf B′ Γ ` A′ 6′ B′

Γ ` A 6 B

Subtyping (weak head normal forms): Γ ` A 6′ B

Γ ` Seti 6′ Seti+1

Γ ` A1 ' A2 ↑ Setα Γ, x : A1 ` B1 6 B2

Γ ` (x : A1)→ B1 6′ (x : A2)→ B2

Γ ` A1 ' A2 ↑ Setα Γ, x : A1 ` B1 6 B2

Γ ` (x : A1)×B1 6′ (x : A2)×B2

Γ ` A '′ B ↑ Setα

Γ ` A 6′ B

Figure 1.6: Subtype checking.

the type is a Π-type, merely that is computes to a Π-type. We denote by
t →whnf nf the reduction of the term t to its weak head normal form nf
defined using the rules for β-reduction from Figure 1.3. Weak head normal
forms are described by the following grammar:

nf ::= ne | λx . t | 〈s , t〉 | 〈〉
| (x : A) → B | (x : A) × B | 1 | Seti

ne ::= ne s | π1 ne | π2 ne

We do not use special names for normal and neutral terms in the following,
but continue using s and t for all forms of terms.
If in checking mode, we encounter a term for which we can infer the type,

we do so and check that the inferred type is a subtype of the expected type.
The type inference rules are very similar to the typing rules from Figure 1.2.
Notable differences are the explicit computation of weak head normal forms
and the computation of the universe level of Σ and Π-types (we write i t j
for the maximum of i and j).
When checking subtyping (Figure 1.6) the two types are first (weak head)

normalised.

Γ ` A 6 B checking subtyping between arbitrary types
Γ ` A 6′ B checking subtyping between normal types

22 CHAPTER 1. INTRODUCTION

Conversion: Γ ` s ' t ↑ A

s→whnf s′ t→whnf t′ A→whnf A′ Γ ` s′ '′ t′ ↑ A′

Γ ` s ' t ↑ A

Conversion (weak head normal forms): Γ ` s '′ t ↑ A

Γ ` Seti '′ Seti ↑ Setα

Γ ` A1 ' A2 ↑ Setα Γ, x : A1 ` B1 ' B2 ↑ Setα

Γ ` (x : A1)→ B1 '′ (x : A2)→ B2 ↑ Setα

Γ ` A1 ' A2 ↑ Setα Γ, x : A1 ` B1 ' B2 ↑ Setα

Γ ` (x : A1)×B1 '′ (x : A2)×B2 ↑ Setα Γ ` s '′ t ↑ 1

Γ, x : A ` s x ' t x ↑ B

Γ ` s '′ t ↑ (x : A)→ B

Γ ` π1 s ' π1 t ↑ A Γ ` π2 s ' π2 t ↑ B[x := π1 s]
Γ ` s '′ t ↑ (x : A)×B

s, t neutral Γ ` s ≡ t ↓ A′

Γ ` s '′ t ↑ A

Figure 1.7: Type directed conversion checking

1.4. TYPE CHECKING 23

Equality of neutral terms: Γ ` s ≡ t ↓ A

x : A ∈ Γ
Γ ` x ≡ x ↓ A

Γ ` s1 ≡ s2 ↓ A A→whnf (x : B)→ C Γ ` t1 ' t2 ↑ B

Γ ` s1 t1 ≡ s2 t2 ↓ C[x := t1]

Γ ` s ≡ t ↓ A A→whnf (x : B)× C

Γ ` π1 s ≡ π1 t ↓ B

Γ ` s ≡ t ↓ A A→whnf (x : B)× C

Γ ` π2 s ≡ π2 t ↓ C[x := π1 s]

Figure 1.8: Conversion checking for neutral terms.

In these rules we assume the invariant that Γ ` A : Seti and Γ ` B : Setj for
some i and j.
The same is done for convertibility (Figure 1.7, but here we make a further

distinction between conversion checking neutral terms and terms in weak
head normal form:

Γ ` s ' t ↑ A checking conversion of arbitrary terms
Γ ` s '′ t ↑ A checking conversion of normal terms
Γ ` s ≡ t ↓ A checking conversion of neutral terms

Analogously to the rules for type checking and inference, we use a bidirec-
tional approach to conversion checking, inferring the type when comparing
neutral terms. The conversion checking of arbitrary terms uses the type to
guide η-expansion, thus, when switching from checking subtyping to check-
ing conversion we have to recover the types. When the type is a sort (Seti)
the particular level does not matter—it does not affect η-conversions—so we
write Setα for an arbitrary sort. In principle we could recover the level, but it
is not necessary. For Π and Σ, η-conversion can also be done in an untyped
way [AC05], but this approach breaks down once we have the η-law for 1.
The invariants for the conversion checking rules are Γ ` s : A and Γ ` t :

A 2. Note that when switching between neutral and normal terms there is
no need to check that the inferred type corresponds to the given type.

2In the case when A = Setα this means that there exists an i such that Γ ` s : Seti and
Γ ` t : Seti.

24 CHAPTER 1. INTRODUCTION

1.5 Extensions to the theory

In the coming chapters we will discuss various extensions to UTTΣ. To
prepare the reader we outline these extensions here.

1.5.1 Inductive definitions

In Chapter 2 we describe a type checking algorithm for definitions by pattern
matching over inductively defined families of datatypes. A datatype family
is introduced by a data declaration:

data D ∆ : Γ → Seti where
c1 : Θ1 → D ∆ t̄1
...
cn : Θn → D ∆ t̄n

This declaration introduces a datatype family D indexed over Γ and param-
eterised by ∆, inductively defined by the constructors c1 . . . cn with the given
types. The parameters ∆ scope over the types of the constructors and must
be unchanged in the targets of the constructors, whereas each constructor
can target a different index. For ordinary non-family datatypes Γ will be
empty. For instance, the datatype of natural numbers can be introduced by

data Nat : Set where
zero : Nat
suc : Nat → Nat

and the family of n-element finite sets is given by

data Fin : Nat → Set where
fzero : (n : Nat) → Fin (suc n)
fsuc : (n : Nat) → Fin n → Fin (suc n)

An example of a parameterised datatype is the type of lists over a set A.

data List (A : Set) : Set where
nil : List A
cons : A → List A → List A

If we index the lists by their length we get the family of vectors:

data Vec (A : Set) : Nat → Set where
vnil : Vec A zero
vcons : (n : Nat) → A → Vec A n → Vec A (suc n)

1.5. EXTENSIONS TO THE THEORY 25

1.5.2 Uniqueness of identity proofs

An inductive family which is particularly interesting is the identity type,
which can be defined by

data Id (A : Set)(x : A) : A → Set where
refl : Id A x x

For any (A : Set)(x : A) we have a family of datatypes indexed over A,
which is empty at all indices except x. The situation at index x is not entirely
straightforward. The axiom K introduced by Streicher [Str93] implies that
refl is the unique element of type Id A x x 3:

K : (A : Set)(x : A)(P : Id A x x → Set) →
P refl → (p : Id A x x) → P p

It has been shown by Hofmann and Streicher [HS94] that this axiom is not
derivable from the elimination rule for Id . However, in the presence of defini-
tions by pattern matching one would expect this axiom to hold. An entirely
plausible definition of K can be obtained by pattern matching on p:

K A x P pr refl = pr

In fact McBride [McB99, MM04a, GMM06] has shown that this is the only
axiom in addition to the standard elimination rules that is needed to represent
definitions by pattern matching in type theory.

1.5.3 Record types

It is straightforward to use Σ-types to encode labelled record types. We
declare a record in a similar way to datatypes, but instead of a sequence of
constructors we list the record fields and their types. For instance,

record R : Set where
x : A
y : B x
z : C x y

for some (A : Set)(B : A → Set)(C : (x : A) → B x → Set). We can
encode this type in UTTΣ as
3The original statement of the K axiom was for the identity where both elements

are indices [ML75]. The presentation given here is for the equivalent identity type, due to
Paulin-Mohring [PPM90], indexed only over the second element. Using the latter simplifies
the statement of the axiom somewhat.

26 CHAPTER 1. INTRODUCTION

R = (x : A) × (y : B x) × C x y

and field projection functions can be defined using the Σ-projections:

x : R → A
x r = π1 r
y : (r : R) → B (x r)
y r = π1 (π2 r)
z : (r : R) → C (x r) (y r)
z r = π2 (π2 r)

In practise, however, it is a good idea to let each record declaration introduce
a new type. This means that two record types declared to have the same
fields will be different, but they will have the same elements. One advantage
of this is that it significantly improves the efficiency of checking equality
between record types—instead of comparing the types of all the fields, it is
enough to compare the names. It is also good programming practise to keep
intentionally different types separate in the type system.

1.5.4 Implicit arguments

In Chapter 3 we give an algorithm for type checking in the presence of
metavariables. This will allow us to extend our theory with implicit ar-
guments. We introduce a new function space {x : A} → B , semantically
equivalent to (x : A) → B but where the argument can be omitted. For
instance, the polymorphic identity function can be given the type

id : {A : Set} → A → A

To apply the identity function to an element x of a type A, one simply writes
id x , omitting the first argument. We will not impose any restrictions on
where implicit function spaces are allowed, but rather report an error if the
implicit arguments cannot be inferred in a particular instance. The reason
for this is that it is not clear exactly what such restrictions would look like
and they would necessarily exclude many useful cases of implicit arguments.

Chapter 2

Pattern Matching

In a simply typed setting pattern matching is a convenient mechanism for
analysing the structure of values, and it is one of the strong points of popu-
lar functional languages such as ML and Haskell. In the presence of depen-
dent types the scrutinee of a pattern match may appear in the goal type.
Hence, pattern matching will instantiate the goal with the different pat-
terns. When we introduce inductively defined families of datatypes [Dyb94],
pattern matching becomes even more powerful. Consider, for instance, the
simple datatype of natural numbers Nat and its inductively defined ordering
relation 6 1:

data Nat : Set where
zero : Nat
suc : Nat → Nat

data 6 : Nat → Nat → Set where
leqZero : (n : Nat) → zero 6 n
leqSuc : (n m : Nat) → n 6 m → suc n 6 suc m

The major source of difficulty when moving from simply typed pattern match-
ing to pattern matching over inductive families is that pattern matching on
one value yields information about other values. This makes case-expressions
unsuitable for pattern matching. In the example of the types above, given an
element p : n 6 m for some n andm, when pattern matching on p, n andm
will be instantiated. In other words, when pattern matching on elements of a
family, not only the goal type is instantiated, but also the context. Consider
the problem of proving transitivity of 6:

trans : (k m n : Nat) → k 6 m → m 6 n → k 6 n

1Names containing underscores can be used as operators where the arguments go in
place of the underscores. Hence, x 6 y is equivalent to 6 x y.

27

28 CHAPTER 2. PATTERN MATCHING

trans k m n km mn = ?

If we decide to pattern match on the proof of k 6 m the problem is refined
to

trans zero m n (leqZero m) mn = ?
trans (suc k) (suc m) n (leqSuc k m km) mn = ?

We can close the first case with leqZero n and in the second case we proceed
with pattern matching onmn. Now, sincemn : suc m 6 n the only possible
case is leqSuc and we end up with

trans zero m n (leqZero m) mn = leqZero n
trans (suc k) (suc m) (suc n) (leqSuc k m km) (leqSuc m n mn) = ?

The remaining case is closed by an appeal to leqSuc and a recursive call.

trans zero m n (leqZero m) mn = leqZero n
trans (suc k) (suc m) (suc n) (leqSuc k m km) (leqSuc m n mn) =

leqSuc k n (trans k m n km mn)

There are a number of interesting things to note here. First of all, as men-
tioned previously, when pattern matching on elements of the 6 family the
indices are instantiated. In this case, the patterns for the natural number
arguments were refined even though we never explicitly pattern matched on
them. This has the effect that the patterns become (seemingly) non-linear.
In the last case above there are multiple occurrences of the variables k, m,
and n. It is important to point out, however, that the repeated variables are
exactly those that are necessary to make the left hand side well-typed.
The final thing to note is that we have a more refined notion of impossible

patterns than you have for simple datatypes. Above we concluded that the
constructor leqZero could not be used to build an element of suc m 6 n. This
is explained in detail in Section 2.1.8.
For now let us turn our attention to the non-linearity of patterns. The

important observation is that the non-linearity arises from the instantiation
of indices. In general we might not only get non-linear pattern but arbitrary
terms in patterns. Consider the datatype Imf representing the property of
being in the image of a function f : A → B (assuming some A, B : Set and
f : A→ B):

data Imf : B → Set where
imf : (x : A) → Imf (f x)

29

We can define the right inverse of f for a y : B by pattern matching on a
proof that y is in the image of f :

invf : (y : B) → Imf y → A
invf (f x) (imf x) = x

Here, pattern matching on the element of Imf y instantiates y to f x which
is not a pattern at all, and there is no hope at runtime to check that the first
argument matches f x . To solve this problem we distinguish between accessi-
ble patterns arising from explicit pattern matching, and inaccessible patterns
arising from index instantiation as introduced by Goguen et al. [GMM06].
We augment the syntax for patterns with inaccessible patterns btermc2:

pat ::= x | c pat∗ | btermc

Making the inaccessible patterns explicit in the examples above we get

trans : (k m n : Nat) → k 6 m → m 6 n → k 6 n
trans bzeroc bmc n (leqZero m) mn = leqZero n
trans bsuc kc bsuc mc bsuc nc (leqSuc k bmc km) (leqSuc m n mn) =

leqSuc k n (trans k m n km mn)

invf : (y : B) → Imf y → A
invf bf xc (imf x) = x

Now the accessible parts of a pattern forms a well-formed linear pattern built
by constructor applications and variables and the inaccessible patterns ref-
erence only variables bound in the accessible part. When computing the
pattern matching at runtime only the accessible patterns need to be consid-
ered, the inaccessible patterns are guaranteed to match simply by the fact
that the program is well-typed. Hence, the same compilation techniques
that work for pattern matching in simply typed languages can be applied to
pattern matching over inductive families.
In this chapter we give a detailed description of an algorithm for check-

ing the correctness of functions defined by pattern matching over inductive
families. There are two possible approaches to doing this: the external ap-
proach, taken by Coquand [Coq92] where correctness is verified by an exter-
nal checker, and the internal approach, taken by Goguen et al. [GMM06],
where correctness is verified by translation into a core theory. We choose the
external approach since it allows us the luxury of working in the metatheory

2The concrete syntax for the inaccessible pattern btc in Agda is .t (see Chapter 5 for
more information).

30 CHAPTER 2. PATTERN MATCHING

rather than in the theory itself when describing the type checking algorithm
which makes things a bit easier. Our work is based on Coquand’s algorithm,
but where he describes how to incrementally construct a well-typed program
we give a detailed algorithm for program recognition.

2.1 Type checking pattern match equations

In this section we present the type checking algorithm for systems of pattern
match equations. Contrary to previous work [Coq92, GMM06] we allow equa-
tions to overlap and prioritise the rules from top to bottom. Operationally,
however, we translate the system of equations to a case tree [Aug85]. This
means that all equations might not hold as definitional equalities. Consider,
for instance, the definition

t : Nat → Nat → Nat
x t zero = x
zero t y = y
suc x t suc y = suc (x t y)

Here, there is no way we could get both the first two equations to hold
definitionally.
The algorithm works by first type checking each equation individually,

and then checking that all cases are covered by translating the system into
one that can be represented by a case tree.
We use the following conventions: u, v, w stand for well-typed terms, e

for a potentially ill-typed term, p, q are patterns, σ, δ, γ are context mappings
(substitutions), and Greek capital letters (Γ, ∆, ..) are contexts (telescopes).

2.1.1 Context mappings

A context mapping σ : ∆ → Γ is a list of patterns with ∆ ` σ : Γ which
is linear in the variables of ∆. This means that each variable in ∆ occurs
exactly once in an accessible position in σ. There are no restrictions on the
inaccessible occurrences of a variable, however. If Γ ` v : A, then we can
substitute v and A by σ, obtaining ∆ ` vσ : Aσ. The identity mapping
id : Γ → Γ is the list of variables in Γ. The singleton context mapping
[x := p] : Γ|x:=p → Γ is the list of variables in Γ where x has been replaced
by p.
The context Γ|x:=p is defined by

∆ ∼ ∆p∆p Γ∆p ` p : A Γ∆p, x : A ` ∆p

(Γ, x : A, ∆)|x:=p = Γ∆p(∆p[x := p])

2.1. TYPE CHECKING PATTERN MATCH EQUATIONS 31

We write Γ ∼ ∆ when ∆ is a dependency preserving permutation of Γ. In
this case we split the context after x into the part needed to type p (∆p) and
the part depending on x (∆p).
We can lift a context mapping σ : Γ→ ∆ to act on an extended telescope.

We define σ↑Θ : Γ(Θσ)→ ∆Θ as the context mapping obtained by extending
σ with the variables in Θ.
Given two context mappings δ : Γ → ∆ and σ : Θ → Γ we can form the

composition δ ◦ σ : Θ→ ∆ by substituting δ by σ: δ ◦ σ = δσ.

2.1.2 Overview of the algorithm

The type checking algorithm takes a sequence of patterns p̄ given by the user
(the left hand side of one equation) and checks them against a telescope Γ
(the types of the arguments to the function). If successful it computes a
context ∆ and context mapping σ : ∆ → Γ, where ∆ is the context of the
variables bound in the left hand side, and σ is the type checked version of p̄.
This is done by successively refining configurations 〈q̄, δ : ∆→ Γ〉, start-

ing with 〈p̄, id : Γ→ Γ〉. The invariant is that q̄ is expected to have type ∆,
in other words q̄ are the user patterns corresponding to the variables in δ.
In each step we pick a constructor pattern in q̄ and instantiate the corre-
sponding variable in δ with the constructor applied to fresh variables. The
algorithm terminates when q̄ consists entirely of variables.
As seen in the beginning of the chapter, instantiating a variable with

a constructor pattern involves unifying the datatype indices of the variable
with those of the constructor pattern.
We continue by defining the three components of the type checking algo-

rithm: matching, unification, and context splitting.

2.1.3 Matching

First we define how to match a sequence of patterns against a context
mapping—remember that context mappings are simply lists of patterns. We
write Match(σ, p̄) =⇒ q̄ for the successful matching of p̄ against σ. If
Θ ` p̄ : Γ and σ : ∆→ Γ then q̄ : Θ→ ∆, that is q̄ instantiates the variables
in σ with patterns from p̄. Matching fails by throwing an exception which
we write Match(σ, p̄) ⇑. We write Match(σ, p̄)

?
=⇒ for a stuck matching,

i.e. when neither Match(σ, p̄) =⇒ q̄ nor Match(σ, p̄) ⇑. The rules are as

32 CHAPTER 2. PATTERN MATCHING

follows:

Match(x, p) =⇒ [x := p] Match(buc, p) =⇒ ε

Match(σ, p̄) =⇒ q̄

Match(c σ, c p̄) =⇒ q̄

c1 6= c2

Match(c1 σ, c2 p̄) ⇑ Match(ε, ε) =⇒ ε

Match(p1, p2) =⇒ q̄1 Match(σ, p̄) =⇒ q̄2

Match(p1; σ, p2; p̄) =⇒ q̄1; q̄2

Note that anything matches an inaccessible pattern. This is reasonable since
inaccessible patterns are guaranteed to match by the type system.

2.1.4 Unification

Unification is performed relative to a set of flexible variables, i.e. variables
that are open for unification. In our case the flexible variables are those
corresponding to inaccessible patterns in the input pattern, computed by
Flexible(p̄ : ∆)

Flexible(ε : ε) = ∅
Flexible(bec , p̄ : (x : A)∆) = {x} ∪ Flexible(p̄ : ∆)
Flexible(p; p̄ : (x : A)∆) = Flexible(p̄ : ∆)

The reason for keeping track of flexible variables is that we need to make
sure that the context mapping generated by the algorithm corresponds to
the patterns given by the user.
Upon successful unification a context mapping from a new context to the

original context is produced. We write

ζ, Γ ` Unify(u = v : A) =⇒ σ : ∆→ Γ

for the successful unification of u and v of type A in the context Γ with
flexible variables ζ, resulting in the context mapping σ from the new context
∆ to Γ. Intuitively ∆ will be the context obtained by applying the unifier
of u and v to Γ. As we shall see this might require reordering of Γ. A failed
unification is written

ζ, Γ ` Unify(u = v : A) ⇑

When faced with a problem which is too difficult unification will simply
give up. We represent this by a stuck unification problem. For instance, the

2.1. TYPE CHECKING PATTERN MATCH EQUATIONS 33

unification of x + y and z + w with respect to x, y, z, and w will get stuck,
since there is no unique solution. Note, however, that the problem can get
unstuck if some of the variables are solved at a later stage.
We use the same notation for unifying a sequence of terms matching a

telescope. The rules are presented in Figure 2.1. Three rules are of special
interest to point out.
The rule (U-Conv) states that if u and v are convertible then they unify

by the identity context mapping. This means that we can allow arbitrary
terms in the indices as long as no unification is necessary.
The rule (U-Occ) causes unification to fail on cyclic equations such as

x = suc x . The set of accessible variables Acc(p) in a pattern p is computed
by

Acc(x) = {x}
Acc(c p̄) = Acc(p̄)
Acc(bvc) = ∅

The rule containing most of the action is the (U-Var) rule. If x is a
flexible variable and v is a term not containing x we can instantiate x to v.

2.1.5 Context splitting

The notion of context splitting was introduced by Coquand [Coq92] as a
way to incrementally build a covering, i.e. a set of exhaustive patterns, for a
context. A context ∆ = ∆1(x : A)∆2 can be split along x if A is a datatype
and we can figure out exactly which constructors can legally be used to build
an element of A. This generates a set of new contexts where x has been
instantiated with an application of each of the legal constructors to fresh
variables.
If A is an ordinary inductive datatype all constructors are always legal,

but in the case of inductive families it is a bit more interesting. Consider, for
instance, the ordering relation on natural numbers given in the introduction
to the chapter:

data 6 : Nat → Nat → Set where
leqZero : (n : Nat) → zero 6 n
leqSuc : (n m : Nat) → n 6 m → suc n 6 suc m

If A = suc n 6 suc m then the leqZero constructor cannot be used to con-
struct an element of A, so splitting only generates a single new context where
x has been instantiated with an application of leqSuc. If, on the other hand,

34 CHAPTER 2. PATTERN MATCHING

x ∈ ζ x /∈ FV(v)
ζ, Γ ` Unify(x = v : A) =⇒ [x := bvc] : Γ|x:=v → Γ

(U-Var)

c1 6= c2

ζ, Γ ` Unify(c1 ū = c2 v̄ : A) ⇑
(U-Fail)

x ∈ Acc(p̄)
ζ, Γ ` Unify(x = c p̄ : A) ⇑

(U-Occ)

c : Θ→ D w̄ ζ, Γ ` Unify(ū = v̄ : Θ) =⇒ σ : Γ′ → Γ
ζ, Γ ` Unify(c ū = c v̄ : A) =⇒ σ : Γ′ → Γ

(U-Con)

ζ, Γ ` Unify(ε = ε : ε) =⇒ id : Γ→ Γ
(U-Empty)

ζ, Γ ` Unify(u = v : A) =⇒ σ1 : Γ1 → Γ
ζ, Γ1 ` Unify(ū[σ1] = v̄[σ1] : Θ[x := u][σ2]) =⇒ σ2 : Γ2 → Γ1

ζ, Γ ` Unify(u; ū = v; v̄ : (x : A)Θ) =⇒ σ2σ1 : Γ2 → Γ
(U-Tel)

Γ ` u ' v ↑ A

ζ, Γ ` Unify(u = v : A) =⇒ id : Γ→ Γ
(U-Conv)

Figure 2.1: Unification

2.1. TYPE CHECKING PATTERN MATCH EQUATIONS 35

A = f n 6 m for some defined function f we cannot tell which constructors
are legal and so splitting along x is not possible3.

Splitting a context ∆ along a variable x will, when successful, result in
a family of context mappings σj : Γj → ∆ forming a covering of ∆. We
will, however, define a more relaxed version of context splitting where we
only check that a particular constructor can legally be used to instantiate a
variable. Which variable to split along, and which constructor that should
be used is determined by a sequence of user patterns. For a user pattern p̄
supposedly of type ∆ we write

Split(p̄, ∆) =⇒ σ : Γ→ ∆

if there is a variable x in ∆ corresponding to a constructor pattern in p̄ that
can be instantiated to that constructor. The result is a context mapping σ
which performs the instantiation along with whatever further substitutions
are necessary to make the whole thing well-typed. If we can find an illegal
constructor in p̄ we write

Split(p̄, ∆) ⇑

The rules are given in Figure 2.2. Given a sequence of user patterns and a
context we choose a constructor pattern c q̄ corresponding to a variable x : A
in the current context mapping. If A reduces to a datatype D ū v̄, with ū
being the parameters of D and v̄ being the indices, we check that c is indeed
a constructor of D. If this is the case we lookup its type at the parameters
ū which gives us the type of the constructor arguments Θ and the indices w̄
of its target. We unify w̄ with v̄ to obtain a context mapping δ : ∆′ → ∆1Θ,
for some context ∆′. The final context mapping is the composition δ with
the instantiation of x to c Θδ, with liftings inserted at the right places.

The rule for failed splitting proceeds in the same way, but stops if uni-
fication fails. There is also a rule for failing when the constructor does not
have the right type which we omit.

Using this relaxed context splitting operation we can define the standard
splitting operation as introduced by Coquand which computes a covering set
of context mappings over a context as follows:

3In some cases it might be possible to tell, but rather than resorting to complicated
heuristics we chose the simpler approach of refusing to split.

36 CHAPTER 2. PATTERN MATCHING

A→whnf D ū v̄
D ū : Ξ→ Set cū : Θ→ D ū w̄ ζ = Flexible(p̄1; q̄ : ∆1Θ)

ζ, ∆1Θ ` Unify(v̄ = w̄ : Ξ) =⇒ δ : ∆′ → ∆1Θ

δ′ = δ↑(x:A) ◦ [x := c Θδ] : ∆′ → ∆1(x : A)

Split(p̄1; c q̄; p̄2, ∆1(x : A)∆2) =⇒ δ′↑∆2 : ∆′(∆2δ
′)→ ∆1(x : A)∆2

A→whnf D ū v̄ D ū : Ξ→ Set cū : Θ→ D ū w̄
ζ = Flexible(p̄1; q̄ : ∆1Θ) ζ, ∆1Θ ` Unify(v̄ = w̄ : Ξ) ⇑

Split(p̄1; c q̄; p̄2, ∆1(x : A)∆2) ⇑

Figure 2.2: Configuration refinement rules

A→whnf D ū v̄
∀cj ∈ Constrs(D).

cj ū : Θj → D ū w̄
p̄j = bΓ1c ; c bΘc ; bΓ2c

Φj =

{
{σj} if Split(p̄j, Γ1(x : A)Γ2) =⇒ σj : Γj → Γ
∅ if Split(p̄j, Γ1(x : A)Γ2) ⇑
Splitx(Γ1(x : A)Γ2) =⇒

⋃
j

Φj

If the context can be split along x then splitting returns the set of con-
text mappings obtained by splitting with respect to each constructor in the
datatype at x. We will use this splitting in Section 2.2 when we discuss the
reduction behaviour of functions defined by pattern matching.

2.1.6 Type checking algorithm

As described in Section 2.1.2, the type checking algorithm builds a well-typed
context mapping corresponding to the given user patterns by successively
refining configurations in the form 〈p̄, σ : ∆→ Γ〉, where Γ is the type of the
arguments to the function being checked, σ is the context mapping built so
far, and p̄ are the user patterns corresponding to the variables in σ. We write

〈p̄, σ : ∆→ Γ〉 =⇒ 〈q̄, δ : Θ→ Γ〉

2.1. TYPE CHECKING PATTERN MATCH EQUATIONS 37

for such a refinement. A configuration is refined by splitting the context as
follows:

Split(p̄, ∆) =⇒ δ : ∆′ → ∆ Match(δ, p̄) =⇒ p̄′

〈p̄, σ : ∆→ Γ〉 =⇒ 〈p̄′, σ ◦ δ : ∆′ → Γ〉

New user patterns are computed by matching the old user patterns against
the context mapping produced by splitting. This will extract the user pat-
terns corresponding to the variables in ∆′. To wrap up, we define

CheckPats(p̄ : Γ) =⇒ σ : ∆→ Γ

to apply refinement repeatedly to the configuration 〈p̄, id : Γ→ Γ〉 until only
variables are left in the user pattern.

〈p̄, id : Γ→ Γ〉 =⇒∗ 〈x̄, σ : ∆→ Γ〉
CheckPats(p̄ : Γ) =⇒ σ : ∆→ Γ

Here =⇒∗ is the reflexive transitive closure of =⇒. Note that finding the
right sequence of context splittings may require search. See Section 2.2 for
an example.

2.1.7 Checking inaccessible patterns

When checking a left hand side the inaccessible parts of the given patterns
are ignored. Instead we perform this check after the accessible part has been
deemed correct. The reason for this is that the inaccessible patterns should
be type correct in the context bound by the accessible patterns, and we do
not know what this context is until we have checked the accessible part.
So, given that CheckPats(p̄ : Γ) =⇒ σ : ∆→ Γ we check the judgement

38 CHAPTER 2. PATTERN MATCHING

∆ ` CheckInaccessible(p̄ = σ : Γ) defined by

∆ ` e ↑ A ; u ∆ ` u ' v ↑ A

∆ ` CheckInaccessible(bec = bvc : A)

∆ ` CheckInaccessible(x = x : A)

c : Θ→ D w̄ ∆ ` CheckInaccessible(p̄ = q̄ : Θ)

∆ ` CheckInaccessible(c p̄ = c q̄ : A)

∆ ` CheckInaccessible(p = q : A)
∆ ` CheckInaccessible(p̄ = q̄ : ∆[x := q])

∆ ` CheckInaccessible(p; p̄ = q; q̄ : (x : A)∆)

∆ ` CheckInaccessible(ε = ε : ε)

Note that since we have checked the accessible part of the patterns we know
that p̄ and σ agrees on constructors and variable names.
This is all we need to check a left hand side. We define

CheckPats(p̄ : Γ) =⇒ σ : ∆→ Γ
∆ ` CheckInaccessible(p̄ = σ : Γ)

CheckLhs(p̄ : Γ) =⇒ σ : ∆→ Γ

2.1.8 Refuting elements of empty types

In many previous presentations [Coq92, McB99, SP03] coverage checking is
undecidable. This is due to the fact that splitting on a caseless datatype does
not leave any evidence in the program—it simply makes the whole branch
disappear. To solve this problem we follow the same approach taken by
Goguen et al. [GMM06] and require programs to contain explicit dismissal
of elements in empty types.
First we make a distinction between empty types and caseless types. In-

formally we say that an empty type is a type with no closed inhabitants,
whereas a caseless datatype is a type with no constructor headed open in-
habitants. For instance, ⊥ is caseless, while ⊥′ is not:

data⊥ : Set where
data⊥′ : Set where

2.1. TYPE CHECKING PATTERN MATCH EQUATIONS 39

bot : ⊥ → ⊥′

Another example of an empty but not caseless datatype is Inf :

data Inf : Set where
inf : Inf → Inf

In the presence of inductive families the set of caseless datatypes are more
interesting. For instance, the type suc n 6 zero is caseless for the definition
of 6 given in the introduction to this chapter.

data 6 : Nat → Nat → Set where
leqZero : (n : Nat) → zero 6 n
leqSuc : (n m : Nat) → n 6 m → suc n 6 suc m

We only consider caselessness for (types convertible with) datatypes. To
see why consider the set-valued function F defined by

F : Nat → Set
F zero = ⊥
F (suc n) = F n

According to our informal definition F n is a caseless type, however, it is
unreasonable to expect a type checker to be able to see this—indeed it is
undecidable in general.
To check that a datatype is caseless we can use the context splitting

facilities already developed. We define Γ ` Caseless(A) by

Splitx(Γ(x : A)) =⇒ ∅
Γ ` Caseless(A)

That is, A is caseless in the context Γ if splitting Γ(x : A) along x results in
an empty covering.

2.1.9 Checking the right hand side

The syntax of right hand sides is

rhs ::= = term | ∩| x̄

If a left hand side binds variables x̄ of caseless types the right hand side
∩| x̄ refutes x̄. Note that it is always enough to refute a single variable, but
for documentation purposes it might be nice to be able to refute more than
one.

40 CHAPTER 2. PATTERN MATCHING

We can now give the rules for checking a clause in a function definition.
We write CheckClause(f p̄ rhs : Γ→ A) for the checking of f p̄ rhs against
the type Γ→ A.

CheckLhs(p̄ : Γ) =⇒ σ : ∆→ Γ ∆ ` e ↑ Aσ ; v

CheckClause(f p̄ = e : Γ→ A)

CheckLhs(p̄ : Γ) =⇒ σ : ∆→ Γ ∀i. ∆ ` Caseless(∆(xi))

CheckClause(f p̄ ∩| x̄ : Γ→ A)

To save the user from inventing names for refuted variables we extend
the syntax of patterns with a special pattern ∅, the meaning of which is an
anonymous variable that is implicitly refuted in the right hand side4. For
instance,

f : (n : Nat) → suc n 6 zero → (A : Set) → A
f n ∅ A

is the user syntax for

f : (n : Nat) → suc n 6 zero → (A : Set) → A
f n x A ∩| x

2.2 Coverage checking

In previous work [Coq92, GMM06] definitions have been restricted to non-
overlapping patterns corresponding to a covering of the argument context.
In this work we have relaxed this requirement and, so far, only required that
the clauses of a definition can be obtained by our relaxed form of context
splitting. This means that we allow overlapping clauses. For instance,

t : Nat → Nat → Nat
x t zero = x
zero t y = y
suc x t suc y = suc (x t y)

where the first two clauses overlap, or

== : Nat → Nat → Bool

4The concrete syntax for ∅ in Agda is ().

2.2. COVERAGE CHECKING 41

zero == zero = true
suc x == suc y = x == y
x == y = false

where we have a catch-all case at the end. Allowing this kind of overlap can
reduce the number of clauses a lot—in the case of the equality function, from
quadratic in the number of constructors to linear. The drawback of allowing
overlapping patterns is that the order of the clauses is significant—when
two clauses overlap, the top-most clause will take priority. In the presence of
overlapping patterns it is clear that we cannot expect the clauses of a function
to hold as definitional equalities. For instance, it is obviously not the case
that x == y = false for arbitrary x and y. Perhaps more surprisingly, the
same holds even when clauses are disjoint. The notorious example is the
majority function due to Gérard Berry defined as

maj : Bool → Bool → Bool → Bool
maj true true true = true
maj true false z = z
maj false y true = y
maj x true false = x
maj false false false = false

The clauses are clearly disjoint and exhaustive, yet there is no covering cor-
responding to this definition. In other words, there is no way we could get
all five equations as definitional equalities in our core type theory.
In order to guarantee conservativity with respect to the core theory we

need to show how to compute a single covering from a sequence of exhaustive
but possibly overlapping clauses. This also guarantees that we can compile
the pattern matching to an efficient case tree [Aug85]. The idea is to perform
the same context splittings as the individual clauses, giving priority to earlier
clauses over later clauses. In order to keep the algorithm predictable we make
it incomplete. Consider the following contrived example:

dbl : Nat → Nat
dbl zero = zero
dbl (suc n) = suc (suc (dbl n))

data =
?

(n : Nat) : Nat → Set where
eq : n =

?
n

neq : (m : Nat) → n =
?

m

data Even : Nat → Set where
even : (m : Nat) → D (dbl m)

f : (n m : Nat)(x : Even m)(p : m =
?

suc n) → Nat

42 CHAPTER 2. PATTERN MATCHING

f n m x (neq bsuc mc) = . . .
f bsuc (dbl m)c bsuc (suc (dbl m))c (even (suc m)) eq = . . .

In order to obtain the second clause it is necessary to first split on x, but since
the first clause only splits on p that is what our algorithm will start with. In
the eq case we will then have the context (n : Nat)(x : Even (suc n)) where
we would like to split on x. This is not possible since unification gives up on
dbl m = suc n.
Rather than report an error in this case, which is what we do, one could

imagine backtracking and trying to split in a different order. The drawback
with this approach is that it will be very hard for the user to predict what the
resulting covering will be. With our approach this is much easier. Another
option is of course to give up on overlapping patterns and use the algorithm
outlined by Coquand [Coq92], but as we have seen overlapping cases can be
quite handy at times.
Another observation is that with this algorithm it is not possible to recre-

ate all splittings. Consider the following version of the majority function:

maj x false false = false
maj x true false = x
maj false x true = x
maj true x true = true

This version corresponds exactly to the covering obtained by first splitting
on the third argument and then in the false case splitting on the second
argument and in the true case on the first argument. There is, however,
no way of reordering the clauses to have our algorithm start by splitting on
the third argument. On the other hand, it is easy to get this behaviour by
introducing two helper functions, so we have not lost any expressivity.

2.2.1 Coverage algorithm

IfMatch(p̄, v̄)
?

=⇒ then there is a non-empty sequence of neutral terms in v̄
which are being matched against constructor patterns, and hence cause the
matching to get stuck. We denote these terms by Blockers(p̄, v̄).
Now we define a clause C for a function f : Γ→ A to be a context ∆, a

context mapping σ : ∆ → Γ, and a right hand side ∆ ` rhs : Aσ. We leave
the context ∆ implicit, since it can be deduced from σ. Given the list of
clauses provided by the user (which have been deemed proper clauses by the
type checker) we compute a new set of clauses corresponding to a covering
of the argument context. We write Covering(C̄, δ : ∆→ Γ) =⇒ C̄ ′ where

2.2. COVERAGE CHECKING 43

C̄ are the user clauses, δ is the current neighbourhood (δ starts out as id :
Γ→ Γ), and C̄ ′ are the computed clauses. The rules are

Ci = 〈σi, rhsi〉 Match(σi, δ) =⇒ ρ
∀j < i. Cj = 〈σj, rhsj 〉 ∧ Match(σj, δ) ⇑
Covering(C̄, δ : ∆→ Γ) =⇒ 〈δ, rhs i[ρ]〉

(Match)

∀ i. Ci = 〈σi, rhsi〉 ∧Match(σi, δ) ⇑
Covering(C̄, δ : ∆→ Γ) ⇑

(Missed)

〈σ, rhs〉 ∈ C̄ Match(σ, δ)
?

=⇒
x ∈ Blockers(σ, δ) Splitx(∆) =⇒ {δj : ∆j → ∆ | j}

∀j. Covering(C̄, δδj : ∆j → Γ) =⇒ C̄j

Covering(C̄, δ : ∆→ Γ) =⇒
⋃
j

C̄j

(Split)

Basically the algorithm works by splitting the context until the current neigh-
bourhood matches one of the original clauses (Match). In order to get the
first match semantics we require that all earlier clauses result in a match
failure. If the current neighbourhood fails to match all the given clauses
they are not exhaustive and we terminate with coverage failure (Missed).
If matching is inconclusive we split along one of the blocking variables and
proceed recursively with the resulting neighbourhoods (Split). To improve
the readability of the rule we do not specify how to pick σ and x, but in
practice we pick the first σ and x which admit a split.
Let us look at the algorithm in action for the t function defined above.

The clauses are

〈 x t zero, x 〉
〈 zero t y , y 〉
〈 suc x t suc y , suc (x t y)〉

and we start out with the neighbourhood x ; y : (x y : Nat) → (x y : Nat).
Since we do not match any clause we apply the (Split) rule. Matching gets
stuck on all clauses and the only blocker of the first clause is y, so we split
on y. This yields the two neighbourhoods

δ1 = x ; zero : (x : Nat) → (x y : Nat)
δ2 = x ; (suc y) : (x y : Nat) → (x y : Nat)

In the first case we can apply the (Match) rule since δ1 matches the first
clause with the identity substitution. The resulting clause is 〈x zero, x 〉. In

44 CHAPTER 2. PATTERN MATCHING

the second case matching against the first clause fails, but matching against
the other two clauses is inconclusive. Hence we apply the (Split) rule split-
ting along x obtaining the neighbourhoods (after composition with δ2)

δ3 = zero; (suc y) : (y : Nat) → (x y : Nat)
δ4 = (suc x); (suc y) : (x y : Nat) → (x y : Nat)

Now δ3 matches the second clause with the substitution [y := suc y] and δ4

matches the third clause with the identity substitution so we produce the
clauses 〈zero (suc y), suc y〉 and 〈(suc x) (suc y), suc y〉. The result is the
following covering:

x t zero = x
zero t suc y = suc y
suc x t suc y = suc (x t y)

2.2.2 Uniqueness of identity proofs

As mentioned in Section 1.5.2 the pattern matching presented in this section
can be reduced to elimination rules provided we have uniqueness of identity
proofs (the K axiom [HS94]). This was shown by McBride [McB99, MM04a,
GMM06] and this is how pattern matching is treated in Epigram [McB07].
To see where the K axiom is used let us walk through the type checking

of its definition by pattern matching. Recall

data Id (A : Set)(x : A) : A → Set where
refl : Id A x x

To simplify matters we assume (A : Set)(x : A)(P : Id A x x → Set) and
define

K : (pr : P refl)(p : Id A x x) → P p
K pr refl = pr

Checking the left hand side of this definition will involve a single splitting of
the context (pr : P refl)(p : Id A x x) along p with the expected constructor
refl. The derivation is

Id A x : A→ Set reflA;x : Id A x x
∅, (pr : P refl) ` Unify(x = x : A) =⇒ id : (pr : P refl)→ (pr : P refl)

Split(pr; refl, (pr : P refl)(p : Id A x x)) =⇒
[p := refl] : (pr : P refl)→ (pr : P refl)(p : Id A x x)

2.3. THE WITH CONSTRUCT 45

The only thing happening in this derivation is that we unify x with itself.
This is exactly where K is needed when translating to elimination rules. In
order to be allowed to discard trivial equations, such as x = x, it is necessary
to know that the only possible proof is refl.

2.3 The with construct

The with construct, introduced by McBride and McKinna [MM04a], allows
analysis of intermediate results to be performed on the left hand side of
a function definition rather than on the right hand side. In the presence
of inductive families this is a very powerful tool which among other things
makes it possible to roll your own case analyses (see Section 2.3.1).
The syntax for with is similar to that of McBride and McKinna, their

unzip example look as follows:

unzip : {A B : Set}{n : Nat} →
Vec (A × B) n → Vec A n × Vec B n

unzip ε = 〈 ε, ε〉
unzip (〈 x , y 〉 :: xys) with unzip xys
unzip (〈 x , y 〉 :: xys) | 〈 xs , ys 〉 = 〈 x :: xs , y :: ys〉

A with in effect adds an extra argument to a function. This argument is
treated just as any previous argument and after the addition pattern match-
ing can proceed as normal. The extent of a with-clause is determined by
counting the number of additional arguments.
Behind the scenes, each with-clause is translated to an auxiliary function.

More precisely, given a definition

f : Γ → B
f p̄ with e
f p̄1 | q1 = e1
...
f p̄n | qn = en

where p̄ : ∆ → Γ and ∆ ` e : A, we first partition the context ∆ in ∆1 and
∆2 where ∆1 is the smallest part of ∆ necessary to type e. Next we abstract
all syntactic occurrences of e from ∆2 → B obtaining a type ∆′

2 → B′ with
∆2 = ∆′

2[x := e] and B = B′[x := e]. The patterns p̄i must be an instance
of p̄ so we check that Match(p̄, p̄i) =⇒ p̄′i. The definition of the auxiliary
function is

f ′ : ∆1 → (x : A) → ∆′
2 → B ′

46 CHAPTER 2. PATTERN MATCHING

f ′ p̄ ′
1 q1 = e1

. . .
f ′ p̄ ′

n qn = en

and we check that this constitutes a valid definition. It is important to check
that the abstracted type is well-formed, since this is not necessarily the case.
For instance, abstracting over the first projection of a dependent pair might
not be well-typed without also abstracting over the second projection, since
the first projection occurs in the type of the second projection. To abstract
more than one expression at once they are separated by bars, like so:

many : (x : (n : Nat) × (n 6 zero)) → Nat
many x with π1 x | π2 x
many x | bzeroc | leqZero = zero

2.3.1 Examples

Filtering lists

Abstracting syntactic occurrences of the analysed expression comes in very
handy when reasoning about functions defined by with. Consider the filter
function which removes all elements not satisfying a given predicate from a
list.

data List (A : Set) : Set where
ε : List A
:: : A → List A → List A

filter : {A : Set} → (A → Bool) → List A → List A
filter p ε = ε
filter p (x :: xs) with p x
filter p (x :: xs) | true = x :: filter p xs
filter p (x :: xs) | false = filter p xs

Suppose we want to prove that the filtered list is a sublist of the original
list, i.e. that all elements of the filtered list appears in the original list in the
same order. We might define

data ⊆ {A : Set} : List A → List A → Set where
stop : ε ⊆ ε
keep : {x : A}{xs ys : List A} → xs ⊆ ys → (x :: xs) ⊆ (x :: ys)
skip : {y : A}{xs ys : List A} → xs ⊆ ys → xs ⊆ (y :: ys)

sublist : {A : Set}(p : A → Bool)(xs : List A) → filter p xs ⊆ xs
sublist p ε = stop

2.3. THE WITH CONSTRUCT 47

sublist p (x :: xs) with p x
sublist p (x :: xs) | true = keep (sublist p xs)
sublist p (x :: xs) | false = skip (sublist p xs)

To see that this works let us look at the auxiliary functions generated for
our two with-clauses. For the filter function we get

filter ′ : {A : Set} →
(A → Bool) → A → List A → Bool → List A

filter ′ p x xs true = x :: filter p xs
filter ′ p x xs false = filter p xs

Nothing very exciting happens here, but in the proof things get more in-
teresting. In the ::-case the goal type is filter p (x :: xs) ⊆ (x :: xs) which
reduces to filter ′ p x xs (p x) ⊆ (x :: xs), so when constructing the type of
the auxiliary function there is an occurrence of p x to abstract over. The
generated function is

sublist ′ : {A : Set}(p : A → Bool)(x : A)(xs : List A)
(b : Bool) → filter ′ p x xs b ⊆ (x :: xs)

sublist ′ p x xs true = keep (sublist p xs)
sublist ′ p x xs false = skip (sublist p xs)

Since we abstracted over p x the call to filter ′ will reduce when we pattern
match on b. This is what makes the proof go through.

Rewriting using with

The with construct can be used as a rewriting tool. Recall the identity type
(here with the type A implicit):

data == {A : Set}(x : A) : A → Set where
refl : x == x

In general we cannot pattern match on an element eq : lhs == rhs , since
the unification algorithm might not be able to unify lhs and rhs . But, if we
abstract over one of the sides, turning it into a fresh variable, unification will
have no problems. For instance, to prove associativity of addition (defined
by recursion over the first argument) we can write:

assoc : (x y z : Nat) → x + (y + z) == (x + y) + z
assoc zero y z = refl
assoc (suc x) y z with x + (y + z) | assoc x y z
assoc (suc x) y z | b(x + y) + zc | refl = refl

48 CHAPTER 2. PATTERN MATCHING

The parity of a natural number

We mentioned above that the with construct can be used to emulate non-
standard pattern matching. Here is an example which lets you match on a
natural number being either 2 ∗ k or 2 ∗ k + 1 for some k.
We first define a view datatype Parity with one constructor for each of

our two cases.

data Parity : Nat → Set where
even : (k : Nat) → Parity (2 ∗ k)
odd : (k : Nat) → Parity (2 ∗ k + 1)

The next step is to show that any number supports the Parity view. Note
how we use the view in the recursive case.

parity : (n : Nat) → Parity n
parity zero = even zero
parity (suc n) with parity n
parity (suc b2 ∗ kc) | even k = odd k
parity (suc b2 ∗ k + 1c) | odd k = even (k + 1)

Now we can, for instance, define the function half very elegantly.

half : Nat → Nat
half n with parity n
half b2 ∗ kc | even k = k
half b2 ∗ k + 1c | odd k = k

The concept of views in this form was introduced by McBride and Mc-
Kinna [MM04a] and they take it one step further, allowing you to omit the
patterns for the view datatype.

Chapter 3

Metavariables

In this chapter we present a type checking algorithm for a dependently typed
logical framework extended with metavariables standing for as yet unknown
terms. The chapter is based on an unpublished paper written together with
Catarina Coquand [NC07].
It is common for frameworks supporting metavariables to accept that uni-

fication creates substitutions that are not well-typed [Dow01, Ell89, Pym90],
but we give a novel approach to the treatment of metavariables where well-
typedness of substitutions is guaranteed. To ensure type correctness the type
checker creates well-typed approximations of the terms being type checked.
We use a restricted form of pattern unification, but we believe that the re-
sults carry over to other unification algorithms. We prove that the algorithm
is sound and terminating.

3.1 Introduction

Systems based on proposition-as-types provide an elegant approach to in-
teractive proof assistants: the problem of proof checking is reduced to type
checking and these systems combine in a natural way deduction and com-
putation. A well understood formulation relies on lambda calculus with de-
pendent types, [NPS90, Bar92b, dB91a]. The main problem is then checking
the judgement s : A expressing that a given term (proof), s, is of type (is a
correct proof of the proposition) A.
A type checking algorithm can be naturally divided in two stages [dB91a].

In the first stage we go through the terms and whenever we type check a term
s of type A against a type B we collect the equality constraint A = B. In
the second phase we check these constraints by verifying that the terms are
convertible with each other. With dependent types it is important to check

49

50 CHAPTER 3. METAVARIABLES

the constraints in the right order, and to fail as soon as an equality is invalid,
since well typedness of a constraint may depend on previous constraints being
satisfied.
For representing proof search in these frameworks it is convenient to ex-

tend the notion of terms with metavariables that stands for yet undetermined
terms (proofs). Metavariables are also useful for structure editing, as place-
holders for information to be filled in by the user. In this paper we will
however focus on type reconstruction where metavariables are used for rep-
resenting omitted information that can be recovered from typing constraints
through unification.
When adding metavariables, equality checking gets more complicated,

since we cannot always decide the validity of an equality, and we may be
forced to keep it as a constraint. This is well-known in higher order unifica-
tion [Hue75]: the constraint ? 0 = 0 has two solutions ? = λx.x and ? = λx.0.
This appears also in type theory with constraints of the form F ? = Bool
where F is defined by computation rules. The fact that we type check modulo
yet unsolved constraints can lead to ill-typed terms. For instance, consider
the type-checking problem

λg . g 0 : ((x : F ?)→ F (¬ x))→ Nat
where

? : Bool
0 : Nat
F : Bool → Set
F false = Nat
F true = Bool

First we check that
((x : F ?)→ F (¬ x))→ Nat

is a well-formed type, which generates the constraint F ? = Bool , since the
term ¬ x forces x to be of type Bool . Checking

λg . g 0 : ((x : F ?)→ F (¬ x))→ Nat
then generates the constraints

F ? = Nat
F (¬ 0) = Nat

which contains an ill-typed term.
This problem has some negative consequence for the type checking al-

gorithm. With dependent types, verifying convertibility between two terms
relies on normalising these terms, which is only safe if these terms are well-
typed. But, as we have seen, in presence of metavariables, we may not be
sure that these terms are well typed, and thus, the type checker may loop.
It is still the case however that if all constraints can be solved we have a cor-
rect solution; so we have some form of partial correctness and this is indeed

3.2. THE UNDERLYING LOGIC MLF 51

the approach taken in Alf [MN94] and the previous version of Agda [CC99].
Elliot [Ell89] has a similar problem of generating ill-typed terms, but in his
context this is less problematic, since these terms can still be shown to be
normalisable in the logical framework he uses, which is more restricted than
the one we consider. Another problem is that when we get a constraint of
the form ? = s, we cannot be sure that s is a solution for ?, since we are
not sure that s is well-typed. In previous work [MN94, CC99, Muñ01] this
difficulty is avoided by re-type checking s at this point, which is costly.
Nanevski et al. describes a modal type theory [NPP07] which can support

metavariables. They do not discuss the issues of type checking in the presence
of unsolved constraints, but it is reasonable to believe that our work could
be carried over to their modal type theory.
In this chapter we present a type checking algorithm which produces only

well-typed constraints for a logical framework extended with metavariables.
The main idea is, for a type-checking problem t : C, to produce a well-typed
approximation t′ of t. Whenever we need to verify s : B, for a subterm s : A
of t, where we cannot yet solve the constraint A = B, we replace the subterm
s by a guarded constant p of type B. This constant p will compute to s only
when the constraint A = B has been solved. The approximated term t′ is
in a trivial way well-typed in the logical framework without metavariables.
In the example above the type (x : F ?) → F (¬ x) will be replaced by
(x : F ?) → F (p x) where p x : Bool will compute to ¬ x when the
metavariable is replaced with the term true.
The algorithm is greatly inspired by the treatment of metavariables in

Epigram [McB07], as described to us by McBride [McB06].
Our main application for this work is implicit syntax [Pol90] which al-

lows for a more compact and readable representation of terms. Necula and
Lee [NL98] show that terms where type information is omitted is more effi-
cient to validate than type checking the complete proof term. This results
rely on the fact that no type checking is required when instantiating metavari-
ables. Their work differs from ours in that they consider a weaker framework
where the constraint solving is guaranteed to succeed. The algorithm we
present has been implemented and we have made experiments with exam-
ples of several thousand of metavariables, which shows that our algorithm
scales up to at least medium sized problems.

3.2 The underlying logic MLF

In this chapter we do not consider the full UTTΣ type theory, but we use the
simpler theory of Martin-Löf’s logical framework [NPS00] as the underlying

52 CHAPTER 3. METAVARIABLES

logic. In Section 3.7 we discuss the issues involved in extending this work to
UTTΣ and definitions by pattern matching.

Syntax The syntax of MLF is given by the following grammar.

A,B ::= Set | s | (x : A)→ A types
s, t ::= x | c | s t | λx.M terms
Γ,∆ ::= ε | Γ, x : A contexts
Σ ::= ε | Σ, c : A | Σ, c : A = s signatures

We adopt the same syntactic conventions as for UTTΣ (see Section 1.3).
The signature contains axioms and non-recursive definitions.

Judgements The type system of MLF is presented in six mutually de-
pendent judgement forms.

`Σ Σ is a valid signature
Γ `Σ valid Γ is a valid context
Γ `Σ A type A is a valid type in Γ
Γ `Σ M : A s has type A in Γ
Γ `Σ A = B A and B are convertible types in Γ
Γ `Σ M = N : A s and t are convertible terms of type A in Γ

The typing rules follows standard presentations of type theory [NPS00]
and can be obtained by suitably restricting the typing rules for UTTΣ from
Section 1.3.

Properties When proving the properties of the type checking algorithm
in Section 3.3 we take the following properties of MLF for granted.

Lemma 3.2.1 (Uniqueness of types).

Γ ` c s̄ : A Γ ` c s̄ : B
Γ ` A = B

Lemma 3.2.2 (Constructor inversion).

Γ ` c : ∆→ B Γ ` c s̄ : B′

Γ ` s̄ : ∆

3.3. THE TYPE CHECKING ALGORITHM 53

Lemma 3.2.3 (Substitution lemma).

Γ ` s : B x : A ∈ Γ Γ ` t : A

Γ ` s[x := t] : B[x := t]

Γ ` B type x : A ∈ Γ Γ ` s : A

Γ ` B[x := s] type

Lemma 3.2.4 (Subject reduction).

Γ ` s : A s→whnf s′

Γ ` s′ : A

Lemma 3.2.5 (Strengthening).

Γ, x : A ` s : B x /∈ FV(s) ∪ FV(B)

Γ ` s : B

Γ, x : A ` B type x /∈ FV(B)

Γ ` B type

3.3 The type checking algorithm

In this section we present the type checking algorithm for MLF extended
with metavariables. We refer to this system asMLFC. Note that the syntax
of terms is the same inMLFC as inMLF. The only thing we change is the
syntax of signatures to include guarded constants. We also introduce a new
syntactic category for user expressions:

C ::= Γ ` A = B | Γ ` s = t : A | Γ ` s̄ = t̄ : ∆
Σ ::= . . . | Σ, p : A = s when C
e ::= x | c | | λx.e | e e | Set | (x : e)→ e

The input to the type checking algorithm is a user expression which could
represent either a type or a term. Apart from the usual constructions user
expressions can also contain , representing a metavariable. During type
checking user expressions are translated into MLF terms where metavari-
ables are represented as fresh constants.
A constraint C is an equation which has been postponed because not

enough information was available about the metavariables. Since our con-
version checking algorithm is typed the constraints must also be typed. The
constraints show up in the signature as guards to guarded constants. We

54 CHAPTER 3. METAVARIABLES

〈Σ〉 Lookup(c : A) =⇒ 〈Σ〉 if c : A ∈ Σ
〈Σ〉 AddMeta(α : A) =⇒ 〈Σ, α : A〉 if α /∈ Σ
〈Σ〉 α := s =⇒ 〈Σ1, α : A = s, Σ2〉 if Σ = Σ1, α : A, Σ2

〈Σ〉 AddConst(p : A = s when C) =⇒ 〈Σ, p : A = s when C〉
if p /∈ Σ

〈Σ〉 InScopeα(s) =⇒ 〈Σ〉 if Σ = Σ1, α : A, Σ2 and
c ∈ s implies c ∈ Σ1

Figure 3.1: Operations on the signature

write p : A = s when C for a guarded constant p of type A, with candidate
value s, and guard C. We have the computation rule that p computes to s
when C is the empty set.
We use the naming convention that lowercase greek letters α, β, . . . stand

for constants representing metavariables and p and q for guarded constants.

3.3.1 Operations on the signature

All rules work on a signature Σ, containing previously defined constants,
metavariables, and guarded constants. In other words, we can write all judge-
ments on the form 〈Σ〉 J =⇒ 〈Σ′〉. To make the rules easier to read we first
define a set of operations reading and modifying the signature and when
presenting the algorithm simply write J for the judgement above. In rules
with multiple premisses the signature is threaded top-down, left-to-right. For
instance,

P1

P2 P3

J

is short-hand for
〈Σ1〉 P1 =⇒ 〈Σ2〉
〈Σ2〉 P2 =⇒ 〈Σ3〉 〈Σ3〉 P3 =⇒ 〈Σ4〉

〈Σ1〉 J =⇒ 〈Σ4〉

We introduce an operation Lookup(c : A) to look up the type of a constant
in the signature. To manipulate metavariables we introduce: AddMeta(α : A)
which adds a new metavariable α of type A to the signature, and α :=
s which instantiates α to s. For guarded constants we add the operation
AddConst(p : A = s when C) to add a new guarded constant to the signature.
In Section 3.3.2 we explain the rules for solving the constraints of a guarded
constant. We also introduce an operation InScopeα(s) to check that s is in
scope at the definition site of α (to ensure that α can be instantiated to s).
Detailed definitions of the operations can be found in Figure 3.1.

3.3. THE TYPE CHECKING ALGORITHM 55

3.3.2 The algorithm

Next we present the type checking algorithm. We use a bidirectional algo-
rithm, consisting of the following main judgement forms.

Γ ` e type ; A well-formed types
Γ ` e ↑ A ; s type checking
Γ ` e ↓ A ; s type inference
Γ ` A ' B ; C type conversion
Γ ` s ' t ↑ A ; C term conversion

The rules for well-formed types and type checking and inference take a
user expression and produce a type or term which is a well-typed approxima-
tion of the user expression in MLF. Conversion checking produces a set of
unsolved constraints which needs to be solved for the judgement to be true
in MLF.
The algorithm maintains the following invariants: signatures and contexts

are always well-formed, when checking Γ ` e ↑ A ; s we have Γ ` A type
in MLF, and when checking Γ ` s ' t ↑ A ; C we have Γ ` s : A and
Γ ` t : A in MLF.
When checking conversion we also need the following judgement forms.

Γ ` s '′ t ↑ A ; C conversion of weak head normal forms
Γ ` s̄ ' t̄ ↑ ∆ ; C conversion of sequences of terms

Type checking with dependent types involves normalising arbitrary (type
correct) terms, so we need to know how to normalise terms in an MLFC

signature. We do this by translating the signature to MLF and performing
the normalisation in MLF.

Definition 3.3.1. Given an MLFC signature Σ we define its MLF re-
striction |Σ| by replacing guarded constants with normal constants, replacing
p : A = s when C by p : A = s if C is empty, and p : A otherwise.

The correctness of the type checking algorithm relies on the invariant that
when 〈Σ〉 Γ ` e ↑ A ; s =⇒ 〈Σ′〉, we have Γ `|Σ′| s : A (see Theorem 3.5.5).
We write 〈Σ〉 s→whnf s′ =⇒ 〈Σ〉 if s′ is the weak head normal form of s

in |Σ|. Similarly s→nf s′ means that s′ is the normal form of s.

Type checking rules

The rules for checking well-formedness of types are given in Figure 3.2 and
the rules for type inference are presented in Figure 3.3. The type checking

56 CHAPTER 3. METAVARIABLES

Γ ` e type ; A

Γ ` Set type ; Set

Γ ` e1 type ; A Γ, x : A ` e2 type ; B

Γ ` (x : e1)→ e2 type ; (x : A)→ B

Γ ` e ↑ Set ; s

Γ ` e type ; s

Figure 3.2: Checking for well-formed types

Γ ` e ↓ A ; s

x : A ∈ Γ

Γ ` x ↓ A ; x

Lookup(c : A)

Γ ` c ↓ A ; c

Γ ` e1 ↓ (x : A)→ B ; s Γ ` e2 ↑ A ; t

Γ ` e1 e2 ↓ B[x := N] ; s t

Figure 3.3: Type inference rules

Γ ` e ↑ A ; s

Γ, x : A ` e ↑ B ; s

Γ ` λx.e ↑ (x : A)→ B ; λx.M

AddMeta(α : Γ→ A)

Γ ` ↑ A ; α Γ

Γ ` e ↓ B ; s Γ ` A ' B ; ∅
Γ ` e ↑ A ; s

Γ ` e ↓ B ; s
Γ ` A ' B ; C 6= ∅ AddConst(p : Γ→ A = λΓ.s when C)

Γ ` e ↑ A ; p Γ

Figure 3.4: Type checking rules

3.3. THE TYPE CHECKING ALGORITHM 57

Γ ` A ' B ; C

Γ ` Set ' Set ; ∅
Γ ` s ' t ↑ Set ; C

Γ ` s ' t ; C

Γ ` A1 ' A2 ; ∅ Γ, x : A1 ` B1 ' B2 ; C
Γ ` (x : A1)→ B1 ' (x : A2)→ B2 ; C

Γ ` A1 ' A2 ; C, C 6= ∅
AddConst(p : Γ→ A1 → A2 = λΓ x.x when C)

Γ, x : A1 ` B1 ' B2[x := p Γ x] ; C ′

Γ ` (x : A1)→ B1 ' (x : A2)→ B2 ; C ∪ C ′

Figure 3.5: Type conversion rules

rules given in Figure 3.4 are more interesting, in particular the rules for
checking a metavariable and the two conversion rules.
When type checking a user metavariable we create a fresh metavariable,

add it to the signature and return it. Since metavariables are part of the
signature they have to be lifted to the top-level.
We have two versions of the conversion rule. The first corresponds to the

normal conversion rule and applies when no constraints are generated. The
interesting case is when we cannot safely conclude that A = B, in which case
we introduce a fresh guarded constant. As metavariables, guarded constants
are lifted to the top-level.

Conversion rules

The rules for checking conversion of types are given in Figure 3.5. When
checking conversion of two function types, an interesting question is what
to do when comparing the domains gives rise to constraints. To ensure the
correctness of the algorithm we need to maintain the invariant that when we
check ` A ' B ; C we have ` A type and ` B type. Thus if we do
not know whether A1 = A2 it is not correct to check x : A1 ` B1 ' B2 ; C ′
since B2 is not well-formed in the context x : A1. To solve the problem we
substitute a guarded constant p x for x in B2, where p x reduces to x when
A1 and A2 are convertible.

58 CHAPTER 3. METAVARIABLES

Γ ` s ' t ↑ A ; C

Γ, x : A ` s x ' t x ↑ B ; C
Γ ` s ' t ↑ (x : A)→ B ; C

s→whnf s′ t→whnf t′ Γ ` s′ '′ t′ ↑ A ; C
Γ ` s ' t ↑ A ; C

Figure 3.6: Term conversion rules

Γ ` s '′ t ↑ A ; C

h : ∆→ A Γ ` s̄ ' t̄ ↑ ∆ ; C
Γ ` h s̄ '′ h t̄ ↑ A[∆ := s̄] ; C Γ ` p s̄ '′ t ↑ A ; {Γ ` p s̄ = t : A}

x̄ distinct s→nf s′ FV(s′) ⊆ x̄ InScopeα(λx̄.s′) α := λx̄.s′

Γ ` α x̄ '′ s ↑ A ; ∅

Figure 3.7: Conversion rules for weak head normal forms.

Term conversion rules

Checking conversion of terms is done on weak head normal forms. The only
rule that is applied before weak head normalisation is the η-rule shown in
Figure 3.6. InMLF function types are not terms so a metavariable can never
be instantiated to a function type. When extending the algorithm to UTTΣ,
where this is the case, we have to check if the type is a metavariable, and if
so postpone the constraint, since we do not know whether or not the η-rule
should be applied (see Section 3.7.2).
The conversion rules for weak head normal forms are shown in Figure 3.7.

The weak head normal forms we compare will be of atomic type and so they
are of the form h s̄ where the head h is a variable, constant, metavariable,
or guarded constant. If both terms have the same variable or constant head
h : ∆ → A we compare the arguments in ∆. Note that it is not necessary
to check that the given type is indeed A[∆ := s̄]—this is guaranteed by the
fact that the constraint is well-typed.
If the heads are different constants or variables conversion checking fails.

3.3. THE TYPE CHECKING ALGORITHM 59

Γ ` s̄ ' t̄ ↑ ∆ ; C

Γ ` s ' t ↑ A ; ∅ Γ ` s̄ ' t̄ ↑ ∆[x := s] ; C
Γ ` s; s̄ ' t; t̄ ↑ (x : A)∆ ; C

Γ ` s ' t ↑ A ; C 6= ∅ x ∈ FV(∆)

Γ ` s; s̄ ' t; t̄ ↑ (x : A)∆ ; {Γ ` s; s̄ = t; t̄ : (x : A)∆}

Γ ` s ' t ↑ A ; C1 6= ∅ Γ ` s̄ ' t̄ ↑ ∆ ; C2 x /∈ FV(∆)

Γ ` s; s̄ ' t; t̄ ↑ (x : A)∆ ; C1 ∪ C2

Figure 3.8: Conversion checking sequences of terms

If one of the heads is a guarded constant we give up and return the problem
as a constraint.
If one of the heads is a metavariable we use a restricted form of pattern

unification, but we believe that our correctness proof can be extended to
more powerful unification algorithms, for example [Dow01, DHK95, Mil91,
Nip93, Pfe91]. The crucial step is to prove that metavariable instantiations
are well-typed. In the examples we have studied, using metavariables for
implicit arguments, this simpler form of unification seems to be sufficient.
Given the problem α x̄ = s we would like to instantiate α to λx̄.s. This is

only correct if x̄ are distinct variables, s does not contain any variables other
than x̄, and any constants referred to by s are in scope at the declaration site
of α1. Now s might refer to metavariables introduced after α but which have
been instantiated. For this reason we normalise s to s′ and try to instantiate α
to λx̄.s′. A possible optimisation might be to only normalise if s contains out-
of-scope constants or variables. A possible improvement might be to allow
consecutive metavariables in the signature to be permuted, and so allow a
metavariable to be instantiated with a term containing metavariables defined
later in the signature, but not after any proper constants. It is unclear how
much this would buy us, since in most cases we would expect to be able to
solve the later metavariables first.
If any of the premisses in this rule fail or α is not applied only to variables,

we return the constraint as it is.
When checking conversion of argument lists (Figure 3.8), the interest-

1Note that scope checking subsumes the usual occurs check, since constants are non-
recursive.

60 CHAPTER 3. METAVARIABLES

ing case is when comparing the first arguments results in some unsolved
constraints. If the value of the first argument is used in the types of later
arguments (x ∈ FV(∆)) we have to stop and produce a constraint since the
types of s̄ and t̄ differ. If on the other hand the types of later arguments are
independent of the value of the first argument, we can proceed and compare
them without knowing whether the first arguments are convertible.

Constraint Solving

So far, we have not looked at when or how the guards of a constant are sim-
plified or solved. In principle this can be done at any time, for instance as a
separate phase after type checking. In practice, however, it might be a bet-
ter idea to interleave constraint solving and type checking. In Section 3.5 we
prove that this can be done safely. Constraint solving amounts to rechecking
the guard of a constant and replacing it by the resulting constraints.

3.4 Examples

In this section we look at a few examples which illustrate the workings of the
type checker.

A simple example

First let us look at a very simple example. Consider the signature Σ given
by

Nat : Set
0 : Nat
id : (A : Set)→ A→ A

= λA x . x
α : Set

containing a set Nat with an element 0, a polymorphic identity function id ,
and a metavariable α of type Set. Now we want to compute s such that

` id 0 ↑ α ; s

To do this one of the conversion rules has to be applied, so the type checker
first infers the type of id 0.

` id ↓ (A : Set)→ A→ A ; id
` ↑ Set ; β

` 0 ↓ Nat ; 0 β := Nat

` 0 ↑ β ; 0

` id 0 ↓ β ; id β 0

3.4. EXAMPLES 61

The inferred type β is then compared against the expected type α, re-
sulting in the instantiation α := Nat . The final signature is

Nat : Set
0 : Nat
id : (A : Set)→ A→ A = λA x . x
α : Set = Nat
β : Set = Nat

and we have s = id β 0. Note that it is important to look up the values
of instantiated metavariables—it would not be correct to instantiate α to β,
since β is not in scope at the point where α is declared (α appears before β
in the signature).

An example with guarded constants

In the previous example all constraints could be solved immediately so no
guarded constants had to be introduced. Now let us look at an example with
guarded constants. Consider the signature of natural numbers with a case
principle:

Nat : Set
0 : Nat
suc : Nat → Nat ,
caseNat : (P : Nat → Set)→ P 0→

((n : Nat)→ P (suc n))→
(n : Nat)→ P n

In this signature we want to check that caseNat 0 (λn. n) has type
Nat → Nat . The first thing that happens is that the arguments to caseNat
are checked against their expected types. Checking against Nat → Set
introduces a fresh metavariable

α : Nat → Set

Next the inferred type of 0 is checked against the expected type α 0. This
produces an unsolved constraint α 0 = Nat , so a guarded constant is intro-
duced:

p : α 0 = 0 when α 0 = Nat

Similarly, the third argument introduces a guarded constant.
q : (n : Nat)→ α (suc n) = λn. n when (n : Nat) ` α (suc n) = Nat

The resulting type correct approximation is caseNat α p (λn. q n) of type
(n :Nat)→ α n. This type is compared against the expected type Nat → Nat
giving rise to the constraint α n = Nat which is solvable with α = λn. Nat .
Once α is instantiated we can solve the guards on p and q and subsequently
reduce caseNat α p (λn. q n) to caseNat (λn. Nat) 0 (λn. n) : Nat → Nat .

62 CHAPTER 3. METAVARIABLES

What could go wrong?

So far we have only looked at type correct examples, where nothing bad would
have happened if we had not introduced guarded constants when we did.
The following example shows how things can go wrong. Take the signature
Nat : Set, 0 : Nat . Now add the perfectly well-typed identity function coerce:

coerce : (F : Nat → Set)→ F 0→ F 0 = λF x . x
For any well-typed term t : B and type A, coerce t will successfully check
against A, resulting in the constraints α 0 = B and A = α 0, none of which
can be solved. If we did not introduce guarded constants coerce t would
reduce to t and hence we could use coerce to give an arbitrary type to a term.
For instance we can type2

ω : (Nat → Nat)→ Nat = λx . x (coerce x)
Ω : Nat = ω (coerce ω)

where, without guarded constants, Ω would reduce to the non-normalising
λ-term (λx . x x) (λx . x x). With our algorithm new guarded constants are
introduced for for the argument to coerce and for the application of coerce.
So the type correct approximation of Ω would be ω p where

p = coerce α q when α 0 = Nat → Nat
q = ω when (Nat → Nat)→ Nat = α 0

3.5 Proof of correctness

The correctness of the algorithm relies on the fact that we only compute with
well-typed terms. This guarantees the existence of normal forms and hence
ensures the termination of the type checking algorithm.
The proof will be done in two stages: first we prove soundness in the

absence of constraint solving, and then we prove that constraint solving is
sound.

3.5.1 Soundness without constraint solving

There are a number of things we need to prove: that type checking preserves
well-formed signatures, that it produces well-typed terms, that conversion
checking is sound, and that new signatures respect the old signatures. Un-
fortunately these properties are all interdependent, so we cannot prove them
separately.
2This only type checks if we allow metavariables to be instantiated to function types,

which is not the case in MLF. See Section 3.7.2 for a discussion on how to extend the
algorithm to handle this

3.5. PROOF OF CORRECTNESS 63

Definition 3.5.1 (Signature extension). We say that Σ′ extends Σ if for
any MLF judgement J , `Σ J implies `Σ′ J .

Note that this definition admits both simple extensions–adding a new
constant–and refinement, where we give a definition to a constant. This is
expressed by the following two lemmas.

Lemma 3.5.2 (Signature weakening). If `Σ, c:A then Σ, c : A extends Σ.

Lemma 3.5.3 (Signature refinement). Giving a definition to a constant in
a signature is an extension of the signature. More precisely, if

• `Σ1 s : A

• Σ = Σ1, c : A, Σ2

• Σ′ = Σ1, c : A = s, Σ2

then Σ′ extends Σ.

Proofs. In both lemmas any derivation using Σ is immediately valid also with
Σ′.

To express the soundness of conversion checking we need to define when
a constraint is well-formed. Note that this is not the same as being true. For
instance, Γ ` Nat = Bool is a well-formed constraint given Nat : Set and
Bool : Set in the signature.

Definition 3.5.4 (Well-formed constraint). A constraint C is well-formed
in an MLF signature Σ, written `Σ C ok, if the terms (or types) under
consideration are well-typed.

Γ `Σ A type
Γ `Σ B type

`Σ Γ ` A = B ok

Γ `Σ s : A
Γ `Σ t : A

`Σ Γ ` s = t : A ok

Now we are ready to state the soundness of the type checking algorithm
in the absence of constraint solving.

Theorem 3.5.5 (Soundness of type checking). Type checking produces well-
typed terms, conversion checking produces well-formed constraints and if no
constraints are produced, the conversion is valid in MLF. Also, all rules

64 CHAPTER 3. METAVARIABLES

produce well-formed extensions of the signature. More precisely, the following
rules are admissible:

〈Σ〉 Γ ` e type ; A =⇒ 〈Σ′〉 Γ `|Σ| valid

Σ′ extends Σ ∧ Γ `|Σ′| A type

〈Σ〉 Γ ` e ↑ A ; s =⇒ 〈Σ′〉 Γ `|Σ| A type

Σ′ extends Σ ∧ Γ `|Σ′| s : A

〈Σ〉 Γ ` e ↓ A ; s =⇒ 〈Σ′〉 Γ `|Σ| valid

Σ′ extends Σ ∧ Γ `|Σ′| s : A

〈Σ〉 Γ ` A ' B ; C =⇒ 〈Σ′〉 Γ `|Σ| A type Γ `|Σ| B type

Σ′ extends Σ ∧ `|Σ′| C ok ∧ (C = ∅ =⇒ Γ `|Σ′| A = B)

〈Σ〉 Γ ` s ' t ↑ A ; C =⇒ 〈Σ′〉 Γ `|Σ| s : A Γ `|Σ| t : A

Σ′ extends Σ ∧ `|Σ′| C ok ∧ (C = ∅ =⇒ Γ `|Σ′| s = t : A)

The statements for weak head normal form conversion (Γ ` s '′ t ↑ A ;
C) and term sequence conversion (Γ ` s̄ ' t̄ ↑ ∆ ; C) are equivalent to that
of term conversion.

Proof. By induction on the derivation. Some interesting cases:

• In the type conversion case for function spaces where the domains pro-
duce constraints, we have to use the substitution lemma (Lemma 3.2.3)
and strengthening (Lemma 3.2.5).

• In the term conversion case where the terms are weak head normalised
we need subject reduction for weak head normalisation (Lemma 3.2.4).

• When checking conversion of terms with the same head we need an
inversion principle for application (Lemma 3.2.2).

• The most interesting case is the metavariable instantiation case, so let
us spell that out in more detail.

The instantiation rule does not produce any constraints, so the only
thing we have to prove is that it constructs a valid extension of the sig-
nature. This follows from the signature refinement lemma (Lemma 3.5.3)
which can be applied if we prove that if Σ = Σ1, α : B′, Σ2 then
`|Σ1| λx̄.s : B′.

3.5. PROOF OF CORRECTNESS 65

We have Γ `|Σ| α x̄ : A so B′ must have the form (x̄ : ∆) → B. By
Lemma 3.2.2 we conclude that Γ `|Σ| x̄ : ∆ and thus Γ `|Σ| α x̄ : B.
Then by Lemma 3.2.1 Γ `|Σ| A = B.

From Γ `|Σ| s : A we get Γ `|Σ| s : B and using Lemma 3.2.3 Γ `|Σ|
λx̄.s : ∆→ B. We know that ∆ → B is a closed type, and since
FV(s) ⊆ x̄, λx̄.s is also closed. Thus by strengthening (Lemma 3.2.5)
`|Σ| λx̄.s : ∆→ B. We have `|Σ1| ∆ → B type and InScopeα(s) so
`|Σ1| λx̄.s : ∆→ B which is what we set out to prove.

Since well-typed terms inMLF have normal forms we get the existence of
normal forms for type checked terms and hence the type checking algorithm is
terminating (the only part of the algorithm which is not structurally recursive
is when we compute normal forms).

Corollary 3.5.6. The type checking algorithm is terminating.

Note that type checking terminates with one of three answers: yes it is
type correct, no it is not correct, or it might be correct if the metavariables are
instantiated properly. The algorithm is not complete, since finding correct
instantiations to the metavariables is undecidable in the general case.

3.5.2 Soundness of constraint solving

In the previous section we proved type checking sound and decidable in the
absence of constraint solving. We also mostly ignored the constraints, only
requiring them to be well-formed. In this section we prove that the terms
produced by the type checker stay well-typed under constraint solving. This
is done by showing that constraint solving is a signature extension operator
in the sense of Definition 3.5.1.
Previously we only ensured that theMLF restriction of the signature was

well-formed. Now, since we are going to update and remove the constraints
of guarded constants we have to strengthen the requirements and demand
consistent signatures. A signature is consistent if the solution of a guard is
a sufficient condition for the well-typedness of the definition it is guarding.

Definition 3.5.7 (Solved constraints). A set of constraints C is solved in a
signature Σ if `|Σ| C and all guards in Σ have been solved as far as possible,
i.e. for any non-empty guard C ′ in Σ it is not the case that `|Σ| C ′.

Definition 3.5.8 (Ensures). A set of constraints C ensures an MLF judge-
ment J in a signature Σ if, for any extension Σ′ of Σ in which C is solved it
is the case that `|Σ′| J .

66 CHAPTER 3. METAVARIABLES

Remark 3.5.9. If C ensures J in Σ and Σ′ extends Σ then C ensures J in
Σ′.

Note that in the case when Σ′ invalidates C the remark is vacuous—a
false constraint ensures anything.

Definition 3.5.10 (Consistent signature). A signature Σ is said to be con-
sistent if for any p with Σ equal to Σ1, p : A = s when C, Σ2 it is the case
that C ensures ` s : A in Σ1.

In order to prove that type checking preserves consistency, we first need
to know that the constraints we produce are sound.

Lemma 3.5.11 (Soundness of generated constraints). The constraints gen-
erated during conversion checking ensures that the checked terms are con-
vertible. For instance, if Γ ` A ' B ; C, then solving C guarantees that
Γ ` A = B in MLF. More precisely,

• Γ `Σ A type ∧ Γ `Σ B type ∧ 〈Σ〉 Γ ` A ' B ; C =⇒ 〈Σ′〉
=⇒ C ensures Γ ` A = B in Σ′

• Γ `Σ s : A ∧ Γ `Σ t : A ∧ 〈Σ〉 Γ ` s ' t ↑ A ; C =⇒ 〈Σ′〉
=⇒ C ensures Γ ` s = t : A in Σ′

Proof. Again we highlight some interesting cases.

• The only non-trivial case is the case of conversion for function types
where a new constant p is introduced. There we need to prove that for
a signature Σ′ which solves the constraints generated by comparing A1

with A2 and B1 with B2[x := p Γ x] it holds that Γ, x : A1 `|Σ′| B1 = B2

given that Γ, x : A1 `|Σ′| B1 = B2[x := p Γ x]

Since Σ2 solves A1 ' A2 it has an empty guard for p, so p Γ x reduces
to x and we are done.

• In the case where C is known (for instance, in the rule for blocked
terms), we can apply soundness of conversion checking (Theorem 3.5.5)
to get `|Σ′| C.

Lemma 3.5.12. Refinement preserves consistent signatures. More precisely,
if

• `Σ1 s : A

3.5. PROOF OF CORRECTNESS 67

• Σ = Σ1, c : A, Σ2

• Σ′ = Σ1, c : A = s, Σ2

• Σ is consistent

then Σ′ is consistent.

Proof. There are two cases to consider: refinement to the left and to the
right of a guard. In the latter case the proof is trivial, and in the former
case consistency follows from the fact that refinement extends a signature
(Lemma 3.5.3).

Lemma 3.5.13 (Type checking preserves consistency). Type checking and
conversion checking preserves consistent signatures. More precisely,

• 〈Σ〉 Γ ` e type ; A =⇒ 〈Σ′〉 ∧ Γ `|Σ| valid ∧ Σ is consistent
=⇒ Σ′ is consistent

• 〈Σ〉 Γ ` e ↑ A ; s =⇒ 〈Σ′〉 ∧ Γ `|Σ| A type ∧ Σ is consistent
=⇒ Σ′ is consistent

• 〈Σ〉 Γ ` e ↓ A ; s =⇒ 〈Σ′〉 ∧ Γ `|Σ| valid ∧ Σ is consistent
=⇒ Σ′ is consistent

• 〈Σ〉 Γ ` A ' B ; C =⇒ 〈Σ′〉 ∧ Γ `|Σ| A type ∧ Γ `|Σ| B type
∧ Σ is consistent
=⇒ Σ′ is consistent

• 〈Σ〉 Γ ` s ' t ↑ A ; C =⇒ 〈Σ′〉 ∧ Γ `|Σ| s : A ∧ Γ `|Σ| t : A
∧ Σ is consistent
=⇒ Σ′ is consistent

The statements for weak head normal form conversion (Γ ` s '′ t ↑ A ;
C) and term sequence conversion (Γ ` s̄ ' t̄ ↑ ∆ ; C) are equivalent to that
of term conversion.

Proof. By induction on the derivation. We only need to consider the cases
where the signature changes. Adding a (non-guarded) constant trivially
preserves consistency, instantiating a metavariable preserves consistency by
Lemma 3.5.12. What remains is to check that new guarded constants are
consistent. There are two cases: the conversion rule and conversion check-
ing of function types. In both cases consistency follows from soundness of
conversion checking (Lemma 3.5.11).

68 CHAPTER 3. METAVARIABLES

Lemma 3.5.14 (Constraint solving is sound). If Σ is consistent and solving
the constraints yields a signature Σ′, then Σ′ is consistent and Σ′ extends Σ.

Proof. Follows from Theorem 3.5.5, Lemma 3.5.11, and Lemma 3.5.13.

From this follows that we can mix type checking and constraint solving
freely, so we can add a constraint solving rule to the type checking algorithm.
In order to obtain optimal approximations we have to solve constraints ea-
gerly, i.e. as soon as a metavariable has been instantiated.

3.5.3 Relating user expressions and checked terms

An important property of the type checking algorithm is that the type correct
terms produced correspond to the expressions being type checked. The cor-
respondence is expressed by stating that the only operations the type checker
is allowed when constructing a term is replacing an by a term (refinement)
and replacing a term by a guarded constant with an appropriate candidate
value (approximation).

Definition 3.5.15 (Approximation). A term s approximates s′ if s can be
obtained by replacing subterms t of s′ by guarded constants p x̄ whose candi-
date values approximates t.

Definition 3.5.16 (Refinement). A term s is a refinement of a user expres-
sion e if s can be obtained by replacing the in e by concrete terms.

Lemma 3.5.17. If Γ ` e ↑ A ; s then s approximates a refinement of
e. This property is preserved when unfolding instantiated metavariables and
guarded constants in s.

Proof. By induction over the derivation.

3.5.4 Main result

We now prove the main soundness theorem stating that if all metavariables
are instantiated and all guards solved, then the term produced by the type
checker (extended with constraint solving) is valid in the original signature
after unfolding the definitions of the metavariables and guarded constants
introduced during type checking.

Theorem 3.5.18 (Soundness of type checking). If Σ is a well-formedMLF
signature and 〈Σ〉 Γ ` e ↑ A ; s =⇒ 〈Σ′〉, then if all metavariables have
been instantiated and all guards are empty in Σ′, then Γ `Σ sσ : A where σ is
the substitution unfolding the metavariables and constants in Σ′. Moreover,
sσ is a refinement of e.

3.6. IMPLICIT ARGUMENTS 69

Proof. From soundness of type checking (Theorem 3.5.5) follows that Γ `|Σ′|
s : A and Lemma 3.5.13 and Lemma 3.5.14 give that Σ′ is a consistent
extension of Σ. Thus σ is well-typed and we have Γ `|Σ′| sσ : A. Since
sσ only uses constants from Σ we can strengthen the signature to obtain
Γ `Σ sσ : A.

By Lemma 3.5.17 we have that sσ approximates a refinement of e. Since
sσ does not contain any guarded constants it is a refinement of e.

3.6 Implicit arguments

Once we have metavariables, adding implicit arguments to our logic is simply
a matter of inserting metavariables at the right places. One way of doing this
is described below.

We add an implicit function space {x : A} → B whose only purpose is
to guide the insertion of metavariables—semantically there is no difference
between the implicit function space and the ordinary function space. This
is in contrast to, for instance, the implicit calculus of constructions [Miq01]
where implicit function spaces are intersections rather than products. To see
the difference consider the function downFrom which constructs the vector
of the numbers n− 1, . . . , 0:

data Vec (A : Set) : Nat → Set where
ε : Vec A zero
:: : {n : Nat} → A → Vec A n → Vec A (suc n)

downFrom : {n : Nat} → Vec Nat n
downFrom {zero} = ε
downFrom {suc n} = n :: downFrom n

Here it is safe to leave n implicit, since it can be inferred from the goal type,
but it is clearly not the case that n is computationally irrelevant.

We also add corresponding abstractions and applications: λ{x}. s, and
s {t}. These, however, are optional and are inserted by the type checker if
not given explicitly.

70 CHAPTER 3. METAVARIABLES

The new type checking and inference rules are the following.

Γ, x : A ` e ↑ B ; s

Γ ` λ{x}. e ↑ {x : A} → B ; λ{x}. s

Γ, x : A ` e ↑ B ; s

Γ ` e ↑ {x : A} → B ; λ{x}. s
e 6= λ{x}. e′

x : A ∈ Γ Γ ` A @ ē ↓ B ; s̄

Γ ` x ē ↓ B ; x s̄

Lookup(x : A) Γ ` A @ ē ↓ B ; s̄

Γ ` c ē ↓ B ; c s̄

As can be seen, when checking an expression against an implicit function
type an implicit lambda is inserted if needed. To check a function application
we introduce a new judgement form Γ ` A @ ē ↓ B ; s̄ with the meaning
that a function of type A can be applied to the arguments ē resulting in
a term of type B. The terms s̄ are the type correct approximations of the
arguments. The rules basically inserts metavariables into ē whenever nec-
essary, and otherwise checks that the expressions have the expected types.
One thing to note is that is there are implicit function spaces left over at the
end they are instantiated with metavariables. The rules are

Γ ` A @ ē ↓ B ; s̄

Γ ` e ↑ A ; s Γ ` B[x := s] @ ē ↓ B′ ; s̄

Γ ` (x : A)→ B @ e; ē ↓ B′ ; s; s̄

Γ ` e ↑ A ; s Γ ` B[x := s] @ ē ↓ B′ ; s̄

Γ ` {x : A} → B @ {e}; ē ↓ B′ ; s; s̄

Γ ` {x : A} → B @ { }; e; ē ↓ B′ ; s̄

Γ ` {x : A} → B @ e; ē ↓ B′ ; s̄

Γ ` {x : A} → B @ { } ↓ B′ ; s̄

Γ ` {x : A} → B @ ε ↓ B′ ; s̄

Γ ` A @ ε ↓ A ; ε
A 6= {x : A1} → A2

3.7 Extending the underlying theory

The algorithm presented in this chapter works on the logical frameworkMLF
extended with metavariables. This framework lacks a number of features

3.7. EXTENDING THE UNDERLYING THEORY 71

present in UTTΣ and the Agda language. This section briefly discusses how
to extend the algorithm to cope with the additional features. The implemen-
tation of Agda uses this extended algorithm.

3.7.1 Sigma types and the unit type

Adding Σ and 1 presents no great difficulties. An interesting aspect, however,
is that it provides us with the possibility of solving metavariables by η-
expansion. Given

α : Γ → (x : A) × B

we can solve α with

α := λΓ . 〈β Γ , γ Γ 〉

for fresh metavariables β and γ of type

β : Γ → A
γ : Γ → B [x := β Γ]

Similarly if α : Γ→ 1 we can solve it with

α := λΓ . 〈〉

This means that any arguments of type 1 can safely be left implicit, since
they can always be inferred. This might not sound very useful, but in the
presence of computed types it becomes interesting. Consider the following
safe division function where the proof that the denominator is non-zero is
left implicit.

div : (n m : Nat){p : NonZero m} → Nat

Now if we define

NonZero : Nat → Set
NonZero zero = 0
NonZero (suc n) = 1

where 0 is the empty type. The proof that any number starting with suc is
non-zero will be inferred automatically. For instance, we have

div n (suc (suc zero)) : Nat

where the proof that two is non-zero has been instantiated automatically. In
the case that NonZero m does not reduce to 1 the proof will have to be given
explicitly.

72 CHAPTER 3. METAVARIABLES

3.7.2 Function types as terms

Allowing function types as terms poses a bigger challenge. This means that
metavariables can be instantiated with function types, and so every time we
expect a function type we have to consider the possibility that we encounter
a metavariable. This happens when type checking a λ and inferring the
type of an application. In these cases we know that the type has to be a
function type, so it is safe to instantiate the metavariable thusly. In case the
metavariable is not applied to distinct variables the type checking problem
has to be postponed, awaiting an instantiation of the metavariable. This
means that we have to extend the signature with constants that are waiting
to be type checked.
We also have to take into account that metavariable types might appear

when conversion checking terms. In this case conversion checking has to be
postponed, since we do not know what η-rules to apply.

3.7.3 Universe hierarchy

In the presence of a universe hierarchy the logic has to be extended by level
metavariables. This is because when we instantiate a metavariable with
a function type as described above, we do not know what levels the new
metavariables should live at. It is unclear at this point how to handle the in-
teraction between universe subtyping and level metavariables, since this will
introduce inequality constraints between the variables, rather than equal-
ity constraints. The current implementation turns unsolved inequalities into
equality constraints, which will necessarily exclude valid solutions. The al-
ternative of keeping the inequality constraints and attempting to solve them
globally after type checking is potentially very costly.

3.7.4 Pattern matching

If we have definitions by pattern matching, reduction to weak head normal
form might be blocked by an uninstantiated metavariable. For instance ¬ α
cannot be reduced to weak head normal for

¬ : Bool → Bool
¬ true = false
¬ false = true

Since conversion checking is done on weak head normal forms we generate a
constraint when encountering a blocked term.

3.8. SUMMARY 73

3.8 Summary

In this chapter we have described an algorithm for type checking for a depen-
dently typed logic extended with metavariables based on McBride’s imple-
mentation of metavariables in Epigram [McB07]. To maintain the important
invariant that terms being evaluated are type correct we work with well-
typed approximations of terms, where potentially ill-typed subterms have
been replaced by constants. We showed that type checking is decidable and
that the algorithm is sound.
We present the type checking algorithm for a simple dependently typed

logical framework MLF, but it can be extended to more advanced logics.
This is evidenced by the fact that we have implemented the algorithm for
the Agda language, supporting for instance, definitions by pattern matching,
a hierarchy of universes and constants with variable arity. The algorithm has
proven to work well with examples of several thousand metavariables.

74 CHAPTER 3. METAVARIABLES

Chapter 4

Module System

An important feature in any programming language is the possibility of struc-
turing large programs into separate units or modules, and limit the interac-
tion between these modules. This chapter presents a simple, but powerful
module system for a dependently typed language. The main focus of the
module system is to manage the name space of a program—separating scope
checking (name manipulation) from type checking (data manipulation). Data
manipulation such as the modeling of algebraic structures is instead done
with record types. This separation between the module system and the type
checker makes the module system largely independent of the underlying lan-
guage.

4.1 Introduction

The module system described here has drawn inspiration from a number of
sources. First, and perhaps foremost, from the module system of Haskell
[PHe+99] which has a similar view on modules as rather passive entities
that does not move around much. However, the module system presented
here supports many more features than the Haskell module system, such
as nested and parameterised modules. Another source of inspiration was
Cayenne [Aug98], whose module system also aspired to separate itself from
the type checker, but whereas Cayenne modules were split into an interface
(type) and an implementation (value), we choose to let modules be defined
solely by their implementations.
Another noteworthy module system is the module system of Coq [Chr03]

which is based on the ML module system [MTH90]. Similarly to Cayenne,
Coq modules are split between interfaces and implementations, and in Coq
this is taken one step further allowing, for instance, higher order modules

75

76 CHAPTER 4. MODULE SYSTEM

decl ::= [private] module M ∆ where decls
| [private] module M1 ∆ = M2 terms mods
| open M [public] mods
| import M1 [as M2] mods
| [private] defn

mod ::= using (atom; . . .) | hiding (atom; . . .)
| renaming (atom to name; . . .)

atom ::= name | module name

Figure 4.1: Module system syntax

(functors) mapping modules implementing a particular interface to a module
implementing a different interface. Although the module system of Coq
is much more powerful than the module system presented here, it is also
significantly more complex.
Harper and Pfenning [HP98] presents a module system for LF in the same

spirit as the module system of Coq, and Courant [Cou07] gives a theoretical
foundation for this kind of module systems in the context of Pure Type
Systems [Bar92a].
While we are trying our best to decouple modules from record types,

Pollack takes the opposite approach [Pol00, CPT] and extends record types
with more module system like features, such as manifest fields.

4.2 Description

The syntax of the module system is given in Figure 4.1. We leave the syntax
of definitions open, since it is not important for the module system. The
examples use some suitable made-up syntax, or in the case of the example
in Section 4.4, Agda syntax (see Chapter 5).
First let us introduce some terminology. A definition is a syntactic con-

struction defining an entity such as a function or a datatype. A name is a
string used to identify definitions. The same definition can have many names
and at different points in the program it will have different names. It may
also be the case that two definitions have the same name. In this case there
will be an error if the name is used.
The main purpose of the module system is to structure the way names are

used in a program. This is done by organising the program in an hierarchical
structure of modules where each module contains a number of definitions and

4.2. DESCRIPTION 77

submodules. For instance,

module Main where
Nat : Set
module B where

f : Nat → Nat
g : Nat → Nat → Nat

Note that we use indentation to indicate which definitions are part of a
module. In the example f is in the module Main.B and g is in Main. How
to refer to a particular definition is determined by where it is located in the
module hierarchy. Definitions from an enclosing module are referred to by
their given names as seen in the type of f above. To access a definition from
outside its defining module a qualified name has to be used.

module Main where
Nat : Set
module B where f : Nat → Nat
ff x = B .f (B .f x)

To be able to use the short names for definitions in a module the module
has to be opened.

module Main where
Nat : Set
module B where f : Nat → Nat
open B
ff x = f (f x)

If A.qname refers to a definition d then after open A, qname will also refer
to d. Note that qname can itself be a qualified name. Opening a module only
introduces new names for a definition, it never removes the old names. The
policy is to allow the introduction of ambiguous names, but give an error if
an ambiguous name is used.

4.2.1 Private definitions

To make a definition inaccessible outside its defining module it can be de-
clared private. A private definition is treated as a normal definition inside
the module that defines it, but outside the module the definition has no
name. In a dependently type setting there are some problems with private
definitions—since the type checker performs computations, private names

78 CHAPTER 4. MODULE SYSTEM

might show up in goals and error messages. Consider the following (con-
trived) example

module Main where
module A where

private IsZero ′ : Nat → Set
IsZero ′ zero = >
IsZero ′ (suc n) = ⊥

IsZero : Nat → Set
IsZero n = IsZero ′ n

open A
prf : (n : Nat) → IsZero n
prf n = ?0

The type of the goal ?0 is IsZero n which normalises to IsZero ′ n. The ques-
tion is how to display this normal form to the user. At the point of ?0 there
is no name for IsZero ′. One option could be try to fold the term and print
IsZero n. This is a very hard problem in general, so rather than trying to
do this we make it clear to the user that IsZero ′ is something that is not
in scope and print the goal as .Main.A.IsZero ′ n. The leading dot indicates
that the entity is not in scope. The same technique is used for definitions
that only have ambiguous names.
In effect using private definitions means that from the user’s perspective

we do not have subject reduction. This is just an illusion, however—the type
checker has full access to all definitions.

4.2.2 Name modifiers

An alternative to making definitions private is to exert finer control over what
names are introduced when opening a module. This is done by qualifying
an open statement with one or more of the modifiers using, hiding, or
renaming. You can combine both using and hiding with renaming, but
not with each other. The effect of

open A using (x̄) renaming (ȳ to z̄)

is to introduce the names x̄ and z̄ where xi refers to the same definition as
A.xi and zi refers to A.yi. Note that if x̄ and ȳ overlap there will be two
names introduced for the same definition. We do not permit x̄ and z̄ to
overlap. The other forms of opening are defined in terms of this one. Let A
denote all the (public) names in A. Then

open A renaming (ȳ to z̄)

4.2. DESCRIPTION 79

≡ open A hiding () renaming (ȳ to z̄)

open A hiding (x̄) renaming (ȳ to z̄)
≡ open A using (A − x̄ − ȳ) renaming (ȳ to z̄)

An omitted renaming modifier is equivalent to an empty renaming.

4.2.3 Re-exporting names

A useful feature is the ability to re-export names from another module. For
instance, one may want to create a module to collect the definitions from
several other modules. This is achieved by qualifying the open statement
with the public keyword:

module Nat where
Nat : Set

module Bool where
Bool : Set

module Prelude where
open Nat public
open Bool public
isZero : Nat → Bool

This will introduce definitions Prelude.Nat and Prelude.Bool which are vis-
ible from outside the Prelude module.

4.2.4 Parameterised modules

So far, the module system features discussed have dealt solely with scope
manipulation. We now turn our attention to some more advanced features.
It is sometimes useful to be able to work temporarily in a given signature.

For instance, when defining functions for sorting lists it is convenient to
assume a set of list elements A and an ordering over A. In Coq [BC04] this
can be done in two ways: using a functor, which is essentially a function
between modules, or using a section. A section allows you to abstract some
arguments from several definitions at once. We introduce parameterised
modules analogous to sections in Coq. When declaring a module you can give
a telescope of module parameters which are abstracted from all the definitions
in the module1 . For instance, a simple implementation of a sorting function
looks like this:
1Now we assume some basic properties of our definitions, namely that we can abstract

from them. For function definitions this means adding extra arguments, and for datatypes
adding more parameters.

80 CHAPTER 4. MODULE SYSTEM

module Sort (A : Set)(6 : A → A → Bool) where
insert : A → List A → List A
insert x ε = x :: ε
insert x (y :: ys) with x 6 y
insert x (y :: ys) | true = x :: y :: ys
insert x (y :: ys) | false = y :: insert x ys

sort : List A → List A
sort ε = ε
sort (x :: xs) = insert x (sort xs)

As mentioned parametrising a module has the effect of abstracting the pa-
rameters over the definitions in the module, so outside the Sort module we
have

Sort .insert : (A : Set)(6 : A → A → Bool) →
A → List A → List A

Sort .sort : (A : Set)(6 : A → A → Bool) →
List A → List A

For function definitions, explicit module parameter become explicit argu-
ments to the abstracted function, and implicit parameters become implicit
arguments. For constructors, however, the parameters are always implicit
arguments. This is a consequence of the fact that module parameters are
turned into datatype parameters, and the datatype parameters are implicit
arguments to the constructors. It also happens to be the reasonable thing to
do.
Something which you cannot do in Coq is to apply a section to its ar-

guments. We allow this through the module application statement. In our
example:

module SortNat = Sort Nat leqNat

This will define a new module SortNat as follows

module SortNat where
insert : Nat → List Nat → List Nat
insert = Sort .insert Nat leqNat

sort : List Nat → List Nat
sort = Sort .sort Nat leqNat

The new module can also be parameterised, and you can use name modi-
fiers to control what definitions from the original module are applied and

4.2. DESCRIPTION 81

what names they have in the new module. The general form of a module
application is

module M1 ∆ = M2 terms modifiers

A common pattern is to apply a module to its arguments and then open
the resulting module. To simplify this we introduce the short-hand

open module M1 ∆ = M2 terms [public] mods

for

module M1 ∆ = M2 terms mods
open M1 [public]

We claim that this form of parameterised modules can in many cases
replace more advanced module system features such as first class modules
and functors. In Section 4.4 we give an example to back up this claim.

4.2.5 Splitting a program over multiple files

When building large programs it is crucial to be able to split the program
over multiple files and to not have to type check and compile all the files for
every change. The module system offers a structured way to do this. We
define a program to be a collection of modules, each module being defined in
a separate file. To gain access to a module defined in a different file you can
import the module:

import M

In order to implement this we must be able to find the file in which a module
is defined. To do this we require that the top-level module A.B .C is defined
in the file C.agda in the directory A/B/. One could imagine instead to give
a file name to the import statement, but this would mean cluttering the
program with details about the file system which is not very nice.
When importing a moduleM the module and its contents is brought into

scope as if the module had been defined in the current file. In order to get
access to the unqualified names of the module contents it has to be opened.
Similarly to module application we introduce the short-hand

open import M

for

82 CHAPTER 4. MODULE SYSTEM

import M
open M

Sometimes the name of an imported module clashes with a local module. In
this case it is possible to import the module under a different name.

import M as M ′

It is also possible to attach modifiers to import statements, limiting or chang-
ing what names are visible from inside the module.

4.3 Equipment for record types

A record is essentially a nested Σ-type2, but in order to use them conveniently
we need some basic tools. Two things that one might want are suitably named
projection functions and some way of opening a record to bring the fields into
scope. It turns out that using the module system we can get both things for
the price of one. For a record type

record R ∆ : Set where
x1 : A1

x2 : A2[x1]
...
xn : An [x1 . . . xn−1]

we generate a parameterised module R

module R {∆}(r : R ∆) where
x1 : A1

x1 = π1 r
x2 : A2[x1]
x2 = π1 (π2 r)
...
xn : An [x1 . . . xn−1]
xn = π2 (. . . (π2 r))

The functions in R are exactly the projection functions for the record type
R. For instance, we have R.x2 : {∆}(r : R ∆) → A2[R.x1 r]3. Here it is
clear that we want the parameters to the record to be implicit regardless of

2But with name equality.
3So, what in some languages is written r.x2 for r : R, we write as R.x2 r.

4.4. AN EXAMPLE 83

whether they are implicit arguments to the record or not. Now the nice thing
is that we can apply the module to a given record, effectively projecting all
fields from the record at once, which is exactly what we are looking for in a
record open feature. So to open a record r : R we simply say

open module M = R r

In the next section we give a bigger example of how to use the module system
and the record types together. From now on we will be a bit sloppy with
the distinction between a record type and a record (i.e. an element of a
record type), and use record for both when it is clear from the context which
interpretation is the intended one.

4.4 An example

As an example we will develop some simple lattice theory. We start by defin-
ing a record for partial orders. We assume definitions for basic propositional
logic.

record PartialOrder (A : Set) : Set1 where
== : A → A → Set
6 : A → A → Set

==−def : {x y : A} → (x == y) ⇐⇒ (x 6 y) ∧ (y 6 x)
6−refl : {x : A} → x 6 x
6−trans : {x y z : A} → x 6 y → y 6 z → x 6 z

The reason for including the equality in the record and requiring a proof
that it is compatible with the ordering is that most sets already have an
equality defined and this way all the theorems about partial orders will use
this equality rather than the awkward equality induced by the ordering.

We get a module with projection functions for PartialOrder but we would
like to also include some derived functions to the projections so we define a
new module:

module PartialOrderOps {A : Set}(po : PartialOrder A) where

84 CHAPTER 4. MODULE SYSTEM

— We want the projection functions to be part of this module
private open module PO = PartialOrder po public
— We can define some derived functions

> : A → A → Set
x > y = y 6 x
— and prove some auxiliary lemmas. Proofs omitted.

6−antisym : {x y : A} → x 6 y → x > y → x == y
==−refl : {x : A} → x == x
==−sym : {x y : A} → x == y → y == x
==−trans : {x y z : A} → x == y → y == z → x == z
— We also define the dual partial order

dualOrder : PartialOrder A
dualOrder = record { == = ==

; 6 = >
; . . .
}

A common idiom when re-exporting the contents of a module M applied
to some arguments t̄ is

private open module M ′ = M t̄ public

which is equivalent to

private module M ′ = M t̄
open M ′ public

That is, we declare a private module M ′ as the application of M to t̄ and
then we export the contents of this module. It makes sense to make the
intermediate module private, since we export its contents from the current
module.
Given a partial order over A and an operation u : A → A → A we

can define what it means for this to be a semilattice. Since you cannot, in
the current presentation, apply or open modules inside the declaration of a
record type we put the declaration in a parameterised module. This allows
us to apply the PartialOrderOps module to our partial order po and thus
write x 6 y rather than PartialOrderOps . 6 po x y .

private

4.4. AN EXAMPLE 85

module IsSemiLatticeDef
{A : Set}(po : PartialOrder A)(u : A → A → A)
where

private open module PO = PartialOrderOps po
record IsSemiLattice : Set where
u−lbL : {x y : A} → (x u y) 6 x
u−lbR : {x y : A} → (x u y) 6 y
u−glb : {x y z : A} → z 6 x → z 6 y → z 6 (x u y)

open IsSemiLatticeDef public

Now a SemiLattice just packs up the partial order and the meet operation
with the proofs that they form a semilattice.

record SemiLattice (A : Set) : Set1 where
po : PartialOrder A
u : A → A → A

prf : IsSemiLattice po u

When defining record types like these an interesting question is what should
be a parameter to the record and what should be a field in the record. For
instance, in this case we could have made the carrier set A be part of the
record instead of a parameter. We could also have skipped the IsSemiLattice
record and put the laws directly in the SemiLattice record. Something to
keep in mind when faced with this kind of decision is that it is easier to turn
a parameter into a field than the other way around. This is exactly what we
did with IsSemiLattice in the SemiLattice record. The reverse operation can
be handled by Pollack’s manifest fields [Pol00].
Just as for the partial orders we want to extend the projection module

with some derived operations. We also include the partial order operations
in this module.

module SemiLatticeOps {A : Set}(L : SemiLattice A) where
private

open module SL = SemiLattice L public
open module SLPO = PartialOrderOps po public
open module IsSL = IsSemiLattice po u prf public

u−commute : {x y : A} → (x u y) == (y u x)
u−assoc : {x y z : A} → (x u (y u z)) == ((x u y) u z)
u−idem : {x : A} → (x u x) == x

The real benefit from the module system comes when we define what it means
to be a lattice over a set A:

86 CHAPTER 4. MODULE SYSTEM

open SemiLatticeOps using (dualOrder)
record Lattice (A : Set) : Set1 where

sl : SemiLattice A
t : A → A → A

prf : IsSemiLattice (dualOrder sl) t

A lattice over A is a semilattice over A together with a join operation which
forms a semilattice with the dual partial order. To get the laws for join we
can simply rename the semilattice laws:

module LatticeOps {A : Set}(L : Lattice A) where
private

module LL = Lattice L
open module SLL = SemiLatticeOps LL.sl public

hiding (dualOrder)

sl ′ : SemiLattice A
sl ′ = record { po = dualOrder LL.sl ;

u = LL. t ;
prf = LL.prf

}

open module SLL′ = SemiLatticeOps sl ′ public
using ()
renaming (6−refl to >−refl

; 6−trans to >−trans
; 6−antisym to >−antisym
; u to t
; u−lbL to t−ubL
; u−lbR to t−ubR
; u−glb to t−lub
; u−commute to t−commute
; u−assoc to t−assoc
; u−idem to t−idem
)

dualLattice : Lattice A
dualLattice = record { sl = sl ′; t = u

; prf = SemiLattice.prf LL.sl }

We can play the same trick we did with the dual partial order for lattices.
For instance if we prove the left absorption law x u (x t y) == x we get
the dual law x t (x u y) == x simply by instantiating the absorption law
to the dual lattice.

4.5. IMPLEMENTATION 87

This example shows how we can use parameterised modules to exploit
symmetries in a program, in this case giving us the join operation and its
associated laws for free from the definition of the meet operation.

4.4.1 A note on record subtyping

When using records to model algebraic structures it is sometimes desirable
to have a subtyping relation on record types. For instance, a field is a ring
with some additional properties, so it would be natural to be able to use a
field anytime a ring is required. One way to achieve this is to have the type
checker insert coercion functions between fields and rings whenever necessary,
which is the way this is done in Coq. A problem with this approach is that
it interacts with metavariables in a non-trivial way. Consider the following
(contrived) example:

record Plus (A : Set) : Set where
plus : A → A → A

record Zero (A : Set) : Set where
zero : A
hasPlus : Plus A

where Zero A is a subtype of Plus A. Now assume that x : α where α is a
metavariable, and consider the term

z : Nat
z = Plus .plus x (Zero.zero x) (Zero.zero x)

From the first occurrence of x we get the constraint x : Plus Nat . Normally,
this would allow us to instantiate α with Plus Nat , but in this case this would
not be correct since the other uses of x require x : Zero Nat . One way around
this problem would be to introduce some form of row polymorphism [Ré93],
but that would require structure equality on record types rather than name
equality. Another solution could be to defer instantiation of metavariables
until all constraints are known. This is potentially very inefficient.

4.5 Implementation

We now give the details of the scope checking algorithm translating the lan-
guage in Figure 4.1 to the following much simpler language which can then
be type checked.

decl ::= section M ∆ where decls

88 CHAPTER 4. MODULE SYSTEM

| apply M1 ∆ = M2 terms
| defn

As before we leave the syntax of definitions abstract. The only parts of the
module system which remain are the parameterised modules and the module
applications. These could also be translated away by performing the cor-
responding abstractions and applications syntactically. This would however
mean that the abstracted telescopes, the module arguments, and the types of
the definition would be type checked once for each module application and
definition in the applied module, so for performance reasons we choose to
leave them for the type checker.

4.5.1 Scope checking state

The scope checking algorithm is presented in a monadic style, working on
a state consisting of a stack of scopes, where each scope corresponds to
a module enclosing the declarations being scope checked. A scope has a
name which is the name of the corresponding module and a private and
a public name space. A name space maps names of definitions and mod-
ules to unique fully qualified names. We distinguish between the names
the user has for definitions and modules (UDefName, UModuleName) and
the unique qualified names used internally by the implementation (DefName,
ModuleName). We use x and y for UDefNames,M for UModuleNames, z for
when both UName = UDefName ∪ UModuleName, q for DefNames, and Q
for ModuleNames. For the union of Name = DefName ∪ ModuleName we
use w.
We define

S ::= ε | S � σ scope stack
σ ::= 〈M , nspub , nspri〉 scopes
ns ::= 〈ρx , ρM 〉 name spaces
ρx ∈ UDefName → Set DefName
ρM ∈ UModuleName → Set ModuleName

The same name might at some point refer to several different definitions so
a name space maps names to sets of unique names.
The name of a scope is not fully qualified so to get the fully qualified

name of an entity z defined in the state S we define FullName z S by

FullName : UName → State → Name
FullName z (ε � 〈M1, , 〉 � . . . � 〈Mn , , 〉) = M1.Mn .z

4.5. IMPLEMENTATION 89

4.5.2 Looking up and adding names

To look up the set of names corresponding to a UDefName or UModuleName
in the state or in a name space we define

− (−) : State → UName → Set Name
S (z) = (Smash S)(z)
− (−) : NameSpace → UName → Set Name
〈ρx , ρM 〉(x) = ρx (x)
〈ρx , ρM 〉(M) = ρM (M)

where Smash S takes the union of all name spaces in S.

Smash : State → NameSpace
Smash S =

⋃
〈 , nspub , nspri 〉 ∈ S nspub ∪ nspri

We also define a version which is more suited for a monadic presentation.

Lookup : UName → State → Set Name
Lookup z S = S (z)

To bind a name z to a fully qualified name w we simply add the name
to the appropriate name space of the top scope. Let α ∈ {pub, pri} indicate
whether a name is added to the public or private name space.

bindα(− 7→ −) : UName → Name → State → State
bindpub(z 7→ w) (S � 〈M , nspub , nspri〉) =

S � 〈M , nspub ∪ {z 7→ w}, nspri〉
bindpri(z 7→ w) (S � 〈M , nspub , nspri〉) =

S � 〈M , nspub , nspri ∪ {z 7→ w}〉

4.5.3 Pushing and popping

When entering a module we push an empty scope onto the stack.

push : UModuleName → State → State
push M S = S � 〈M , ε, ε〉

When popping a scope from the stack, which is done for instance when exiting
a module, the public contents of the popped scope becomes available under
qualified names. We will want to add the contents to either the public or
private name space of the next scope on the stack.

90 CHAPTER 4. MODULE SYSTEM

popα : State → State
popα (S � σ2 � 〈M , nspub , 〉) =

S � (extendα (qualifyM nspub) σ2)

In a name space qualified by M all names start with M .

qualify− : UModuleName → NameSpace → NameSpace
(qualifyM ns)(M .z) = ns(z)
(qualifyM ns)(z) = ∅, if z is not of the form M .w

To define a name space, we specify how to look up names in it. Since name
spaces are essentially functions this constitutes a valid definition.
To add name space ns to a scope σ we write extendα ns σ. Depending

on α the name space is added to either the public or private part of σ. To
add a scope σ to a scope stack both parts of σ are added to the top scope
name space indicated by the argument α.

extendα : NameSpace → Scope → Scope
extendpub ns 〈M , nspub , nspri〉 = 〈M , nspub ∪ ns , nspri〉
extendpri ns 〈M , nspub , nspri〉 = 〈M , nspub , nspri ∪ ns〉

extendα : Scope → State → State
extendα 〈 , nspub , nspri〉 (S � σ) =

S � extendα (nspub ∪ nspri) σ

Remember that the top-level is always a module, so the scope stack will never
be empty.

4.5.4 Scope modifiers

We first define the effect of the three scope modifiers on a name space sepa-
rately. Note that modifying a module name affects all names in that module.

(Using x̄ ns)(z) = ns(z), if z ∈ x̄
(Using x̄ ns)(M .z) = ns(M .z), if module M ∈ x̄
(Using x̄ ns)(z) = ∅, otherwise
(Hiding x̄ ns)(z) = ns(z), if z /∈ x̄
(Hiding x̄ ns)(M .z) = ns(M .z), if module M /∈ x̄
(Hiding x̄ ns)(z) = ∅, otherwise
(Renaming (x̄ to ȳ) ns)(yi) = ns(xi)
(Renaming (x̄ to ȳ) ns)(yi .z) = ns(M .z), if xi = module M
(Renaming (x̄ to ȳ) ns)(z) = ∅, otherwise

4.5. IMPLEMENTATION 91

Remember (from Section 4.2.2) that we want the source of renamings to be
hidden when not explicitly exposed by a using clause, so when combining
hiding and renaming we add the renamed names to the hidden ones.

ApplyMods (using x̄ renaming (ȳ to z̄))
= Using (x̄) ∪ Renaming (ȳ to z̄)

ApplyMods (hiding x̄ renaming (ȳ to z̄))
= Hiding (x̄ ∪ ȳ) ∪ Renaming (ȳ to z̄)

4.5.5 Scope checking

To make the scope checking algorithm easier to read we make the threading
of the scope stack implicit and present the algorithm in a monadic style:

x1 ← m1 let 〈x1, S1〉 = m1 S0 in
. . . ≡ . . .
xn ← mn let 〈xn , Sn〉 = mn Sn−1 in
return y 〈y , Sn〉

where mi : State → A × State. We omit the variable binding when we do
not care about the result or when there is no result (i.e. m : State→ State).
For m : State→ A we write x← m rather than x ← (λS . 〈m S , S 〉).
The scope stack manages the defined names currently in scope, but we

also need to take care of lambda bound names. Thus, scope checking is
performed relative to a context Γ of bound names. For A ranging over the
sets of things that can be scope checked (such as declarations or terms), and
a ∈ A we define Γ ` ScopeCheck(a) : State → A × State.
A module declaration is scope checked as follows.

Γ ` ScopeCheck(α module M ∆ where decls) =
push M
∆′ ← Γ ` ScopeCheck(∆)
decls ′ ← Γ∆′ ` ScopeCheck(decls)
popα
Q ← FullNameM
bindα M Q
return (section Q ∆′ decls ′)

If the module was declared private, α will be pri otherwise it will be pub.
The declarations in a module are scope checked with an empty scope pushed
onto the stack. When we have finished checking the declarations we pop the

92 CHAPTER 4. MODULE SYSTEM

scope, which now contains all the names defined in the module, and add it
to the next scope on the stack. We also have to bind the name of the defined
module. The output is a section.
Scope checking a module application is a little more involved. Basically

to define a moduleM1 as the application ofM2 we openM2 into a new scope
namedM1. However, since module applications introduce new definitions we
have to change the qualified names pointing into M2 so that they point to
M1 instead.

Γ ` ScopeCheck(α module M1 ∆ = M2 terms mods) =
Q1 ← FullNameM1

Q2 ← Lookup(M2)
∆′ ← Γ ` ScopeCheck(∆)
terms ′ ← Γ∆′ ` ScopeCheck(terms)
push M1

OpenM2 pub mods
Redirect (Q2 7→ Q1)
popα
bindα M1 Q1

return (apply Q1 ∆′ = M2 terms ′)

Opening a module M is done by adding all names M.z to the current scope
as z, possibly hiding or renaming some names.

OpenM α mods (S � σ) = S � extendα ns σ
where ns = ApplyModsmods (MatchM (Smash (S � σ)))

where (MatchM ns)(x) = ns(M .x).
The redirection of the names from the applied module is defined by

Redirect (Q2 7→ Q1) (S � σ) = Redirect (Q2 7→ Q1) σ
(Redirect (Q2 7→ Q1) σ)(z) = {Q1.q | Q2.q ∈ σ(z) }

For this to be correct it is important that the public names in M2 all refer to
definitions in M2. That is, we have to make sure that every time we add a
name to the public name space of a module it refers to a definition from that
module. In particular we have to take care when opening modules publicly.
Ideally we would like to define the scope checking of an open statement

simply as a call to Open but as just observed this would not be correct in
the case of a public open. In this case we create a dummy module which we
then open.

Γ ` ScopeCheck(open M mods) =

4.5. IMPLEMENTATION 93

Q ← Lookup(M)
OpenQ pri mods
return ε

Γ ` ScopeCheck(open M public mods) =
M ′ ← DummyName
decls ← Γ ` ScopeCheck(private module M ′ = M mods)
Q ← Lookup(M ′)
OpenQ pub
return decls

The last part of the module system we have to deal with is importing
modules from other files. We assume a function FetchModule which finds
the file corresponding to a module, scope checks it, and returns the resulting
scope.

Γ ` ScopeCheck(import M1 as M2 mods)
σ ← FetchModuleM1

push M2

extendpri σ
OpenM1 pub mods
poppri

4.5.6 Type checking

The only part of the module system left to the type checker is to take care
of the parameterised modules and module applications.
To do this we need to keep track of which section we are currently process-

ing as well as the parameters of previously defined sections. We extend the
signature with section mappings Q(∆) associating the parameters ∆ with
a section Q. Here ∆ contains all parameters to Q including those bound
by sections enclosing Q. We also annotate the context with sections. So
the context will have the form M1(∆1) . . . Mn(∆n)Γ, where Γ contains the
variables bound in a left hand side or in a term. We may combine several
sections into one and write this as Q(∆1 . . . ∆n)Γ, if Q = M1...Mn.
For definitions inside a section the type checker should generate definitions

with the section parameters abstracted. For instance,

section M (X : Set) where
M .id : X → X
M .id x = x

will be translated to

94 CHAPTER 4. MODULE SYSTEM

M .id : (X : Set) → X → X
M .id X x = x

The judgement form for checking declarations is

Q(Γ) `Σ decl ; Σ ′

and the rules for modules and definitions are

Q(Γ) `Σ ∆ ctx ; ∆′ Q(Γ) M(∆′) `Σ decls ; Σ′

Q(Γ) `Σ section Q.M ∆ where decls ; Σ′, Q.M(Γ∆′)

Q(Γ) `Σ e1 ↓ Seti ; A Σ′ = Σ, Q.f : Γ→ A Q(Γ) `Σ′ e2 ↑ A ; t

Q(Γ) `Σ Q.f : e1 = e2 ; Σ, Q.x : Γ→ A = λΓ.t

To ease the presentation the definition rule is for a simplified form of defi-
nition Q.f : A = t. The principle is the same for more advanced forms of
definitions, however.
For module applications we generate new definitions applying the defini-

tions from the applied module:

apply M ′ = M Nat

turns into

M ′.id : Nat → Nat
M ′.id = M .id Nat

Here we are making the further assumption on the underlying language that
it supports definitions of the form x : A = t. The rule is

Q1(Γ1) Q2(Γ2) `Σ ∆ ctx ; ∆′

Q1.Q4(Γ1Γ4) ∈ Σ Q1(Γ1) Q2(Γ2) ∆′ `Σ ē : Γ4 ; t̄
for each Q1.Q4.fi : Γ1Γ4 → Ai ∈ Σ
let δi = Q1.Q2.Q3.fi : Γ1Γ2∆

′ → Ai[Γ4 := t̄] = λΓ1Γ2∆
′. Q1.Q4.fi Γ1 t̄

Q1(Γ1) Q2(Γ2) `Σ apply Q1.Q2.Q3 ∆ = Q1.Q4 ē ; Σ, δ̄

To better understand what is going on in this rule it helps to look at what
the program looks like at the time this rule is applied:

module Q1 Γ1 where
module Q4 Γ4 where

Q1.Q4.fi : Ai

module Q2 Γ2 where
apply Q1.Q2.Q3 ∆ = Q1.Q4 ē

4.6. SUMMARY 95

Note that we get one new definition for each definition of the applied module,
regardless of whether it was private or hidden when applying the module.
These extra definition are unnecessary but harmless and a side effect of our
efforts to keep the scope checking and type checking separate.
Inside a parameterised module the parameters have not yet been ab-

stracted over the definitions in the module. In the example below, the type
of f depends on from which module it is accessed:

section A (X : Set) where
section A.B (Y : Set) where

A.B .f : X → Y → X

— Inside A.B we have A.B .f : X → Y → X
— Outside A.B we have A.B .f : (Y : Set)→ X → Y → X
— Outside A we have A.B .f : (X : Set)(Y : Set)→ X → Y → X

Since the type checker removes all sections it will have to add the missing
arguments to uses of A.B .f inside A and A.B . The rule for inferring the type
of a defined constant is

Q1.q : ∆1 → A ∈ Σ

Q1(∆1)Q2(∆2)Γ `Σ Q1.q ↓ A ; Q1.q ∆1

That is inside the module Q1 parameterised by ∆1 functions defined in Q1

are automatically applied to the parameters ∆1.

4.6 Summary

We have presented a reasonable simple and easy to implement module system
which is still expressive enough to allow large programs to be structured in
a nice way. A key design decision was to keep the module system and the
type system as separate as possible. The result is that only parameterised
modules survive into the type checking phase and they can be handled with
relatively small modifications to the type checking algorithm. In short, the
module system consists of name space management and λ-lifting [Joh85]. The
module system also supports separate compilation, to the extent possible in
a dependently typed language. Previously defined modules do not need to
be re-type checked, but we do need access to their defined functions in order
to perform the necessary computations during type checking.
To demonstrate the module system we gave an example of a library of

lattice theory where the module system was used in a crucial way to get dual
properties for free.

96 CHAPTER 4. MODULE SYSTEM

Chapter 5

The Agda Language

The ideas described in the previous chapters have all been incorporated into
a language Agda which is readily available for download on the web [Nor07].
The language is a redesign and reimplementation of the Agda language by
Coquand and Coquand [CC99]. The version described in this chapter is 2.1.0,
and consists of around 30,000 lines of Haskell code in 150 modules.
Agda has gathered a few users and some quite impressive work has been

done using it [AC07, AMS07, BD07, Dan06, Dan07, SA07]. There was also
a course on Agda in the TYPES summer school 2007 [ACT07].
Where the previous chapters give the technical details of the features

in Agda, this chapter provides a description of the language from a user’s
perspective.

5.1 Language description

5.1.1 Names

A name part is a non-empty sequence of printable Unicode characters not
containing any of the following reserved characters.

Reserved characters : @.(){};_

Furthermore there is a set of reserved words given in Figure 5.1 that cannot
be used as name parts. This means that strings like x:A and A->B are valid
names. To write the type signature and the function type, white space have
to be inserted: x : A, and A -> B.
A name is a non-empty sequence of alternating name parts and _ (ex-

cluding the singleton _). A name containing _ can be used as an operator
where the arguments go in place of the _. For instance, an application of

97

98 CHAPTER 5. THE AGDA LANGUAGE

[0-9]+ -> : = ? \ | Prop Set[0-9]∗ abstract

data forall hiding import in infix infixl

infixr let module mutual open postulate primitive

private public record renaming using where with

Figure 5.1: Reserved words

the name if_then_else_ to arguments x, y, and z can be written either
as a normal application if_then_else_ x y z or as an operator application
if x then y else z .
A qualified name is a non-empty sequence of names separated by . (dot).

Qualified names are used to refer to entities in other modules.

5.1.2 Interaction points

Interaction points are holes in a program where an expression should be
filled in. These are written ? or {!. . . !}. In an interactive environment the
user can interact with the type checker through these interaction points, for
instance, asking for the type of the expression to be filled in or the local
context.
Internally the type checker treats interaction points as metavariables

which will not be solved automatically.

5.1.3 Implicit syntax

It is possible to omit terms that the type checker can figure out for itself,
replacing them by _. If the type checker cannot infer the value of an _
it will report an error. For instance, for the polymorphic identity function
id : (A : Set) → A → A, the first argument can be inferred from the type
of the second argument, so we might write id _ zero for the application of
the identity function to zero. The implicit syntax is implemented using the
metavariables described in Chapter 3.

5.1.4 Functions

Function types are written (x : A) -> B or A -> B for non-dependent func-
tions. Function types can range over arbitrary telescopes, for instance, the

5.1. LANGUAGE DESCRIPTION 99

type of the substitutivity law for a polymorphic equality Eq : (A : Set)
-> A -> A -> Set can be stated as

(A : Set)(C : A -> Set)(x y : A) -> Eq A x y -> C x -> C y

Functions are constructed by lambda abstractions, which can be either
typed or untyped. For instance, both expressions below have type (A : Set)
-> A -> A (the second expression checks against other types as well):

\ (A : Set)(x : A) -> x
\ A x -> x

5.1.5 Implicit arguments
Implicit function spaces are written with curly braces instead of parenthesis.
We can restate our polymorphic equality and substitution principle as

== : {A : Set} -> A -> A -> Set
subst : {A : Set}(C : A -> Set){x y : A} -> x == y -> C x -> C y

Note how the first argument to _==_ is left implicit. Similarly we may
leave out the implicit arguments A, x, and y in an application of subst. To
give an implicit argument explicitly, enclose in curly braces. The following
two expressions are equivalent:

subst C eq cx
subst {_} C {_} {_} eq cx

Implicit arguments can also be referred to by name, so if we want to give the
expression e explicitly for y without giving a value for x we can write

subst C {y = e} eq cx

When constructing implicit function spaces the implicit argument can be
omitted, so both expressions below are valid expressions of type {A : Set}
-> A -> A:

\ {A} x -> x
\ x -> x

There are no restrictions on when a function space can be implicit. Inter-
nally, explicit and implicit function spaces are treated in the same way. This
means that there are no guarantees that implicit arguments will be solved.
When there are unsolved implicit arguments the type checker will give an
error message indicating which application contains the unsolved arguments.

100 CHAPTER 5. THE AGDA LANGUAGE

The reason for this liberal approach to implicit arguments is that limiting
the use of implicit argument to the cases where we guarantee that they are
solved rules out many useful cases in practice.
See Section 3.6 for the details on how metavariables are inserted for im-

plicit arguments during type checking.

5.1.6 Datatypes and function definitions

Functions can be introduced by giving a type and a definition. For instance,
the polymorphic identity function can be defined by

id : {A : Set} -> A -> A
id x = x

Note that the implicit argument is left out in the left hand side. As in a
lambda abstraction it can be given explicitly by enclosing it in curly braces:

id : {A : Set} -> A -> A
id {A} x = x

Datatypes are introduced by data declarations. For instance, the natural
numbers can be defined by

data Nat : Set where
zero : Nat
suc : Nat -> Nat

To ensure normalisation, inductive occurrences must appear in strictly posi-
tive positions. For instance, the following datatype is not allowed:

data Bad : Set where
bad : (Bad -> Bad) -> Bad

since there is a negative occurrence of Bad in the argument to the constructor.
Functions over elements of a datatype can be defined using pattern match-

ing and structural recursion. The addition function on natural numbers is
defined by

+ : Nat -> Nat -> Nat
zero + m = m
suc n + m = suc (n + m)

The operator form can be used both in left hand sides and right hand sides
as seen here.
Datatypes can be parameterised over a telescope of parameters. These

are written after the name of the datatype and scope over the constructors.

5.1. LANGUAGE DESCRIPTION 101

data List (A : Set) : Set where
[] : List A
:: : A -> List A -> List A

This will introduce the constructors

[] : {A : Set} -> List A
:: : {A : Set} -> A -> List A -> List A

We can also define inductive families of sets [Dyb94]. For instance, the
family over natural numbers n of proofs that n is even.

data IsEven : Nat -> Set where
evenZ : IsEven zero
evenSS : (n : Nat) -> IsEven n -> IsEven (suc (suc n))

Note the difference between the left and the right side of the first :. Types
appearing on the left are parameters and scope over the constructors. These
have to be unchanged in the return types of the constructors. Types appear-
ing on the right are indices which are not in scope in the constructors, and
which take on arbitrary values in the constructor return types.
When pattern matching on an element of an inductive family we get

information about the index (see Chapter 2 for the details). To distinguish
parts of a pattern which are determined by pattern matching (the inaccessible
patterns) and the parts which constitutes the actual pattern matching, the
inaccessible patterns are prefixed with a dot. In Chapter 2 these were written
btc. For instance, we can prove that the sum of two even numbers is also
even.

even+ : (n m : Nat) -> IsEven n -> IsEven m -> IsEven (n + m)
even+ .zero m evenZ em = em
even+ .(suc (suc n)) m (evenSS n en) em =
evenSS (n + m) (even+ n m en em)

The proof is by recursion on the proof that n is even. Pattern matching
on this proof will force the value of n and hence the patterns for n are prefixed
with a dot to indicate that they are not part of the pattern matching. In
this case we can make n and m implicit and write the proof as

even+ : {n m : Nat} -> IsEven n -> IsEven m -> IsEven (n + m)
even+ evenZ em = em
even+ (evenSS n en) em = evenSS _ (even+ en em)

102 CHAPTER 5. THE AGDA LANGUAGE

5.1.7 Records

Record types are declared in much the same way as datatypes, but instead of
giving the types of the constructors you give the types of the record fields. For
instance, we can define the type of even numbers as a record type containing
a number and a proof that it is even.

record Even : Set where
val : Nat
prf : IsEven val

Note that later fields may refer to earlier field values by name. Record types
are compared by name, so this introduces a new type Even, different from
all other record types. To build an element of a record type you write

record { val = suc (suc zero); prf = evenSS _ evenZ }

The fields can be given in any order. For each record type a module of the
same name is defined, containing projection functions. In the case of Even
we have

Even.val : Even -> Nat
Even.prf : (e : Even) -> IsEven (Even.val e)

The module Even containing the projection functions is parameterised over
the record and so it can be applied and opened (see Section 4.3 for the
details). In case the record is parameterised the generated module have the
record parameters as implicit parameters. For instance,

record Step (A : Set) : Set where
next : A -> A

will introduce a module

module Step {A : Set}(s : Step A) where
next : A -> A

5.1.8 Local definitions

Each clause in a function definition can have a block of local declarations.
These can be any declarations that can appear on the top-level, including
modules, datatype declarations, and recursive functions. For instance, the
reverse function can be defined using a local recursive function:

5.1. LANGUAGE DESCRIPTION 103

reverse : {A : Set} -> List A -> List A
reverse {A} xs = rev xs []
where
rev : List A -> List A -> List A
rev [] ys = ys
rev (x :: xs) ys = rev xs (x :: ys)

As seen, the variables bound in the left hand side of the clause are in scope
in the local declarations.
A problem with local declarations is that they are just that—local. In

the example above we cannot prove any interesting properties about the
reverse function, since we do not have access to rev. For this reason it is
often preferable to use a private definition:

private
rev : {A : Set} -> List A -> List A -> List A
rev [] ys = ys
rev (x :: xs) ys = rev xs (y :: ys)

reverse : {A : Set} -> List A -> List A
reverse {A} xs = rev xs []

This way properties of the helper function can be proven in the module
defining it, but it still will not be accessible outside the module.

5.1.9 Module system

The purpose of the module system is to manage the name space of Agda
programs. A program is structured in a number of files, each file containing a
single top-level module which in turn may contain any number of submodules.
To refer to entities defined in another module its name is qualified by the
name of the module. For instance, to refer to Nat from outside the Numbers
module you write Numbers.Nat:

module Example where
module Numbers where
data Nat : Set where
zero : Nat
suc : Nat -> Nat

one : Numbers.Nat
one = Numbers.suc Numbers.zero

104 CHAPTER 5. THE AGDA LANGUAGE

Remember that the extent of a module is determined by indentation. To use
the names from a module available without qualification, one uses an open
statement:

open Numbers
two : Nat
two = suc one

The full description of the module system can be found in Chapter 4,
including parameterised modules, and more fine-grained control over open
statements.

5.1.10 Additional features

In addition to the features described here, Agda has experimental support for
mutual induction-recursive definitions [DS06]. Mutual definitions are given
inside a mutual block:

mutual
even : Nat -> Bool
even zero = true
even (suc n) = odd n

odd : Nat -> Bool
odd zero = false
odd (suc n) = even n

A detailed discussion of mutual inductive-recursive definitions is beyond the
scope of this thesis.

5.2 A bigger example

Dependent types not only gives you the possibility to prove properties about
programs, you can also write programs to compute proofs. To illustrate this
we develop an internal solver for equations in a commutative monoid, such
as the natural numbers with addition and zero. The basic idea is to model
such equations by a datatype and define a normalisation function for this
datatype. To check if an equation holds we can then simply check that both
sides reduces to the same normal form. We prove this strategy sound which
enables us to use the solver to prove equations in arbitrary commutative
monoids.
This section consists of a number of literate Agda files which can be

processed both by LATEX and the Agda type checker.

5.2. A BIGGER EXAMPLE 105

5.2.1 Logic

We start out by defining some basic logical connectives in a module Logic.

module Logic where

The false proposition is defined as the empty datatype and the true propo-
sition is the record with no fields.

data False : Set where
record True : Set where

tt : True
tt = record {}

Note that the η-equality for records implies that all elements of True are
equal.
Disjunction and conjunction are simple datatypes. Note that comma (,)

is a valid name character. Negation is defined in the usual way as implication
of falsity.

data _∨_ (A B : Set) : Set where
inl : A -> A ∨ B
inr : B -> A ∨ B

data _∧_ (A B : Set) : Set where
, : A -> B -> A ∧ B

¬_ : Set -> Set
¬ A = A -> False

The identity type x ≡ y is only inhabited if x and y are definitionally equal,
in which case the unique1 element is ref.

data _≡_ {A : Set}(x : A) : A -> Set where
ref : x ≡ x

5.2.2 Basic datatypes

We also need a set of basic datatypes, such as booleans, natural numbers
and lists. We define these in a module Basics.

module Basics where

open import Logic

1This is not without controversy. See Section 1.5.2 and Section 2.2.2 for the details.

106 CHAPTER 5. THE AGDA LANGUAGE

The identity function and function composition are always useful so let us
define them.

id : {A : Set} -> A -> A
id x = x

◦ : {A B : Set}{C : B -> Set} ->
((x : B) -> C x) -> (g : A -> B)(x : A) -> C (g x)

(f ◦ g) x = f (g x)

The given generalisation of the non-dependent composition function is some-
times useful, and enjoys the property that we can still infer the type argu-
ments. We define the booleans with the constructors false, and true.

data Bool : Set where
false : Bool
true : Bool

infix 5 if_then_else_
if_then_else_ : {A : Set} -> Bool -> A -> A -> A
if true then x else y = x
if false then x else y = y

The fixity of the if_then_else_ dictates whether or not parenthesis are
needed for the else branch. We would like to avoid parentheses so we set it
to a low value. A high fixity means that the operator binds tightly and a low
fixity that it binds loosely. For instance, given

infixl 20 _+_
infixl 30 _*_

the expression x + y * z parses as x + (y * z) rather than (x + y) * z.
Natural numbers are defined with two constructors zero and suc. The

BUILTIN pragmas tells the type checker about our definition of natural num-
bers and allows them to be represented more efficiently internally. It also
lets us use numeric literals to construct natural numbers.

data Nat : Set where
zero : Nat
suc : Nat -> Nat

{-# BUILTIN NATURAL Nat #-}
{-# BUILTIN ZERO zero #-}
{-# BUILTIN SUC suc #-}

5.2. A BIGGER EXAMPLE 107

A very handy type is the family of finite sets. Fin n is the n-element set
whose elements are fzero, fsuc fzero, ..., fsucn−1 fzero.

data Fin : Nat -> Set where
fzero : {n : Nat} -> Fin (suc n)
fsuc : {n : Nat} -> Fin n -> Fin (suc n)

We are going to need to compare elements of finite sets, so we define a boolean
less than or equals operation.

6Fin6 : {n : Nat} -> Fin n -> Fin n -> Bool
fzero 6Fin6 x = true
fsuc n 6Fin6 fzero = false
fsuc n 6Fin6 fsuc m = n 6Fin6 m

Lists are defined as one would expect. We make the cons operation _::_
right associative.

data List (A : Set) : Set where
[] : List A
:: : A -> List A -> List A

infixr 50 _::_

If we index lists by length we get vectors:

data Vec (A : Set) : Nat -> Set where
ε : Vec A zero
� : {n : Nat} -> A -> Vec A n -> Vec A (suc n)

infixr 50 _�_

Vectors and finite sets have an interesting relationship: Fin n is the type
of positions in Vec A n. Hence, we have an isomorphism between Vec A n
and Fin n → A as witnessed by the functions _!_ and tabulate. Both of
these functions will come in handy later on.

infixl 80 _!_

! : {A : Set}{n : Nat} -> Vec A n -> Fin n -> A
ε ! ()
(x � xs) ! fzero = x
(x � xs) ! fsuc i = xs ! i

tabulate : {A : Set}{n : Nat} -> (Fin n -> A) -> Vec A n
tabulate {n = zero } f = ε
tabulate {n = suc n} f = f fzero � tabulate (f ◦ fsuc)

108 CHAPTER 5. THE AGDA LANGUAGE

The natural number argument n to tabulate can be inferred by the type
checker when we use the function, but defining tabulate we need to recurse
over n. Rather than also binding A explicitly in the left hand side we refer
to n by name. The name to be used is taken from the type.

5.2.3 Equivalence relations

Next we define a small library for equivalence relations and give instances
for lists and finite sets which are the ones we need for our solver.

module Equivalence where

open import Logic

We split the definition of what an equivalence relation is into two parts.
First we define what it means for a relation to be an equivalence and then
we define an equivalence relation to be a relation and a proof that it is an
equivalence. The advantage of this approach as opposed to just having a
single record is that we can talk about what it means to be an equivalence.
This makes defining more refined equivalence relations, such as decidable
equivalence relations, easier.

record IsEquivalence {A : Set}(_==_ : A -> A -> Set) : Set
where
refl : (x : A) -> x == x
sym : (x y : A) -> x == y -> y == x
trans : (x y z : A) -> x == y -> y == z -> x == z

record Equivalence (A : Set) : Set1 where
== : A -> A -> Set
isEquiv : IsEquivalence _==_

Now the disadvantage of the two stage approach is that the module generated
for the equivalence record does not contain projections for the axioms refl,
sym, and trans. For this reason we define a new module EquivalenceOps
which simply re-exports the projection functions from the two records.

module EquivalenceOps {A : Set}(Eq : Equivalence A) where
private open module Eq = Equivalence Eq public
private open module IsEq = IsEquivalence isEquiv public

We now define a type of decidable equivalence relations. The definition is
the same as the definition of equivalence relation except we have an extra

5.2. A BIGGER EXAMPLE 109

axiom. Note that record types are compared by name and there is no subtyp-
ing between records, so Equivalence and DecidableEquivalence are two
completely separate types.

record DecidableEquivalence (A : Set) : Set1 where
== : A -> A -> Set
isEquiv : IsEquivalence _==_
decide : (x y : A) -> (x == y) ∨ ¬ (x == y)

Just as before, we define a new module with projection functions. This
module also provides a function to extract an Equivalence from a decidable
equivalence relation.

module DecidableEquivalenceOps
{A : Set}(DEq : DecidableEquivalence A)
where
private module DEq = DecidableEquivalence DEq
open DEq public using (decide)

Eq : Equivalence A
Eq = record { _==_ = DEq._==_; isEquiv = DEq.isEquiv }

private open module Eq = EquivalenceOps Eq public

Next we give some examples of equivalence relations that we will need
later on. First of all we prove that the identity type _≡_ is an equivalence.

open import Basics

identityEquivalence : (A : Set) -> Equivalence A
identityEquivalence A = record
{ _==_ = _≡_
; isEquiv = record
{ refl = \x -> ref
; sym = sym
; trans = trans
}
}
where
sym : (x y : A) -> x ≡ y -> y ≡ x
sym x .x ref = ref

trans : (x y z : A) -> x ≡ y -> y ≡ z -> x ≡ z
trans x .x z ref xz = xz

110 CHAPTER 5. THE AGDA LANGUAGE

In the proofs of symmetry and transitivity we can see the pattern matching
on identity proofs in action.
We define a decidable equivalence relation on finite sets by proving that

the identity relation is decidable.

finDecEquivalence : {n : Nat} -> DecidableEquivalence (Fin n)
finDecEquivalence {n} = record
{ _==_ = _==_
; isEquiv = isEquiv
; decide = decide
}
where
open module E {n : Nat} =
EquivalenceOps (identityEquivalence (Fin n))

decide : {n : Nat}(i j : Fin n) -> (i == j) ∨ ¬ (i == j)
decide fzero fzero = inl ref
decide fzero (fsuc j) = inr dismiss
where
dismiss : fzero == fsuc j -> False
dismiss ()

decide (fsuc i) fzero = inr dismiss
where
dismiss : fsuc i == fzero -> False
dismiss ()

decide (fsuc i) (fsuc j) with decide i j
decide (fsuc i) (fsuc .i) | inl ref = inl ref
decide (fsuc i) (fsuc j) | inr neq = inr (dismiss i j neq)
where
dismiss : (i j : Fin _) ->

¬ (i == j) -> ¬ (fsuc i == fsuc j)
dismiss i .i neq ref = neq ref

Note that when we instantiate the EquivalenceOps module to the identity
relation on finite sets we abstract over the size of the set. This keeps the
operations polymorphic in the size, which we need in the proof. To dismiss
the off-diagonal cases we use the syntax for pattern matching on caseless
types.
Given an equivalence relation on a type A we can define an equivalence

relation on lists over A, relating lists of equal length when the elements are
pointwise related. The proofs are simple but somewhat tedious.

listEquivalence : {A : Set} ->
Equivalence A -> Equivalence (List A)

5.2. A BIGGER EXAMPLE 111

listEquivalence {A} eqA = record
{ _==_ = _=List=_
; isEquiv = record
{ refl = reflList
; sym = symList
; trans = transList
}
}
where
open module EqA = EquivalenceOps eqA
=List= : List A -> List A -> Set
[] =List= [] = True
[] =List= (y :: ys) = False
(x :: xs) =List= [] = False
(x :: xs) =List= (y :: ys) = (x == y) ∧ (xs =List= ys)

reflList : (xs : List A) -> xs =List= xs
reflList [] = tt
reflList (x :: xs) = (refl x , reflList xs)

symList : (xs ys : List A) -> xs =List= ys -> ys =List= xs
symList [] [] eq = eq
symList [] (_ :: _) ()
symList (_ :: _) [] ()
symList (x :: xs) (y :: ys) (xy , xsys) =
(sym x y xy , symList xs ys xsys)

transList : (xs ys zs : List A) ->
xs =List= ys -> ys =List= zs -> xs =List= zs

transList [] [] zs _ eq = eq
transList [] (_ :: _) _ () _
transList (_ :: _) [] _ () _
transList (_ :: _) (_ :: _) [] _ ()
transList (x :: xs) (y :: ys) (z :: zs)

(xy , xsys) (yz , yszs) =
(trans x y z xy yz , transList xs ys zs xsys yszs)

If the equivalence on the elements is decidable then so is the induced list
equivalence.

listDecEquivalence : {A : Set} -> DecidableEquivalence A ->
DecidableEquivalence (List A)

listDecEquivalence {A} deqA = record
{ _==_ = _==_

112 CHAPTER 5. THE AGDA LANGUAGE

; isEquiv = isEquiv
; decide = decide
}
where
module DEqA = DecidableEquivalenceOps deqA
open module EqList =
EquivalenceOps (listEquivalence DEqA.Eq)

decide : (xs ys : List A) -> (xs == ys) ∨ ¬ (xs == ys)
decide [] [] = inl _
decide [] (y :: ys) = inr \w -> w
decide (x :: xs) [] = inr \w -> w
decide (x :: xs) (y :: ys)
with DEqA.decide x y | decide xs ys
decide (x :: xs) (y :: ys)

| inl xy | inl xsys = inl (xy , xsys)
decide (x :: xs) (y :: ys)

| inr nxy | _ = inr dismiss
where
dismiss : (x :: xs) == (y :: ys) -> False
dismiss (xy , _) = nxy xy

decide (x :: xs) (y :: ys)
| _ | inr nxsys = inr dismiss

where
dismiss : (x :: xs) == (y :: ys) -> False
dismiss (_ , xsys) = nxsys xsys

In the case where both lists are non-empty we use a with clause to pattern
match on the results of comparing the heads and the tails.

5.2.4 Chain reasoning

Constructing equivalence proofs using transitivity directly results in very
unreadable proofs. Fortunately we can use a little implicit argument and
infix operator magic to solve this problem.
We define a module Chain parameterised over a reflexive and transitive

relation.

module Chain
{A : Set}(_==_ : A -> A -> Set)
(refl : (x : A) -> x == x)
(trans : (x y z : A) -> x == y -> y == z -> x == z)
where

5.2. A BIGGER EXAMPLE 113

This module exports the following three operators:

infix 2 chain>_
infixl 2 _===_by_
infix 1 _qed

where chain>_ starts a proof, _===_by_ performs one step of the proof, and
_qed concludes. For instance, given

commute : (n m : Nat) → n + m == m + n
pluszero : (n : Nat) → n + 0 == n

we can prove that 0 + n == n by

chain〉 0 + n
===n + 0 by commute 0 n
===n by pluszero n

qed

Compare this to the same proof using trans :

trans (0 + n) (n + 0) n (commute 0 n) (pluszero n)

which is a lot less readable even though in this case we only needed a single
appeal to transitivity.
To make sure that the implicit arguments can be solved regardless of the

definition of _==_ we create a wrapper datatype _'_. There will be no need
to refer to this type from the outside so we make it private.

private
data _'_ (x y : A) : Set where
prf : x == y -> x ' y

Now chain> is simply reflexivity for the wrapper datatype, and _==_by_ is
transitivity with carefully chosen implicit arguments.

chain>_ : (x : A) -> x ' x
chain> x = prf (refl x)

_===_by_ : {x y : A} -> x ' y -> (z : A) -> y == z -> x ' z
prf p === z by q = prf (trans _ _ _ p q)

The _qed function simply unwraps the constructed proof.

_qed : {x y : A} -> x ' y -> x == y
prf p qed = p

114 CHAPTER 5. THE AGDA LANGUAGE

5.2.5 Monoids

So far we have mostly been developing general libraries with no apparent
connection to the problem we are trying to solve—that of automatically
proving equations in a commutative monoid. We start the problem specific
part by defining what a commutative monoid is. This is done relative to a
set A equipped with an equivalence relation.

open import Equivalence
module Monoid {A : Set}(Eq : Equivalence A) where

We want to have access to the operations on equivalence relations so we apply
and open the EquivalenceOps module.

private open module Eq = EquivalenceOps Eq

We use the same two stage approach as we did for equivalence relations
and first define what it means for an element ∅ and an operation _+_ to form
a monoid. The definition of a monoid is then simply a ∅, a _+_, and a proof
that they form a monoid.

record IsMonoid (∅ : A)(_+_ : A -> A -> A) : Set where
idL : (x : A) -> (∅ + x) == x
idR : (x : A) -> (x + ∅) == x
assoc : (x y z : A) -> (x + (y + z)) == ((x + y) + z)
cong : (x1 x2 y1 y2 : A) ->

x1 == x2 -> y1 == y2 -> (x1 + y1) == (x2 + y2)

record Monoid : Set where
∅ : A
+ : A -> A -> A
isMonoid : IsMonoid ∅ _+_

Again we define a new module with the projection functions from both
records as well as a couple of derived ones.

module MonoidOps (M : Monoid) where
private open module M = Monoid M public
private open module IsM = IsMonoid isMonoid public

congL : (x y1 y2 : A) -> y1 == y2 -> (x + y1) == (x + y2)
congL _ _ _ eq = cong _ _ _ _ (refl _) eq

congR : (x1 x2 y : A) -> x1 == x2 -> (x1 + y) == (x2 + y)
congR _ _ _ eq = cong _ _ _ _ eq (refl _)

5.2. A BIGGER EXAMPLE 115

Note that the element arguments to cong above can all be inferred. This
is possible since _==_ is abstract, but it will not necessarily be the case for
concrete values of _==_.
A commutative monoid is simply a monoid where addition is commuta-

tive. Here we use a different strategy than when we extended equivalence
relations to decidable equivalence relations. Instead of repeating the monoid
fields we simply add a field which is a monoid. The price we have to pay is
that it becomes more cumbersome to refer to the _+_ operation. One could
imagine allowing module application and opening inside record declarations
to solve this problem.

record CommutativeMonoid : Set where
monoid : Monoid
commute : (x y : A) ->
MonoidOps._+_ monoid x y == MonoidOps._+_ monoid y x

module CommutativeMonoidOps (M : CommutativeMonoid) where
private open module C = CommutativeMonoid M public
private open module M = MonoidOps monoid public

In a general monoid library there would of course be a lot more operations
and properties, but for our purposes this is enough.

5.2.6 Representing commutative monoid equations

The previous section defined the notion of a commutative monoid but it does
not give us any way of analysing expressions in a monoid. In this section we
define a datatype of commutative monoid expressions.

module Expr where

open import Logic
open import Basics
open import Equivalence

The representation of monoid expressions are parameterised by the number
of free variables. There are constructors for ∅ and addition and a construc-
tor for variables. We represent variables by elements in a finite set. The
representation of an equation is just a pair of terms.

data Expr (n : Nat) : Set where
|∅| : Expr n
|+| : Expr n -> Expr n -> Expr n
var : Fin n -> Expr n

116 CHAPTER 5. THE AGDA LANGUAGE

data Equation (n : Nat) : Set where
_

.=_ : Expr n -> Expr n -> Equation n

In order to decide whether or not an equation holds we will normalise both
sides and compare the normal forms. We chose normal forms to be ordered
lists of variables. We do not enforce that the lists are ordered. This is
not necessary for soundness, but if we were to prove completeness it might
simplify matters.

NF : Nat -> Set
NF n = List (Fin n)

An alternative, perhaps nicer, representation of normal forms would be as a
vector of variable counts: NF n = Vec Nat n.
The empty list is the zero of the normal forms and the addition is the

merge function of two ordered lists:

⊕ : {n : Nat} -> NF n -> NF n -> NF n
[] ⊕ ys = ys
(x :: xs) ⊕ [] = x :: xs
(x :: xs) ⊕ (y :: ys) = if x 6Fin6 y

then x :: (xs ⊕ (y :: ys))
else y :: ((x :: xs) ⊕ ys)

To normalise an expression we simply replace |∅| with the empty list and
|+| with _⊕_. Variables become singleton lists.

normalise : {n : Nat} -> Expr n -> NF n
normalise |∅| = []
normalise (e1 |+| e2) = normalise e1 ⊕ normalise e2
normalise (var i) = i :: []

We also define a function reify to come back from a normal form to an
expression.

reify : {n : Nat} -> NF n -> Expr n
reify [] = |∅|
reify (i :: nf) = var i |+| reify nf

We need decidable equality on normal forms, but since normal forms are
justs lists of elements from a finite set we have already defined it.

nfDecEquiv : {n : Nat} -> DecidableEquivalence (NF n)
nfDecEquiv = listDecEquivalence finDecEquivalence

5.2. A BIGGER EXAMPLE 117

open module NfEq {n : Nat} =
DecidableEquivalenceOps (nfDecEquiv {n})
public
using ()
renaming (Eq to nfEquiv

; _==_ to _=NF=_
)

We define equality on expressions to be equality on the corresponding normal
forms.

exprDecEquiv : {n : Nat} -> DecidableEquivalence (Expr n)
exprDecEquiv = record
{ _==_ = \e1 e2 -> normalise e1 == normalise e2
; isEquiv = record
{ refl = \e -> refl (normalise e)
; sym = \e1 e2 -> sym (normalise e1)(normalise e2)
; trans = \e1 e2 e3 ->
trans (normalise e1)(normalise e2)(normalise e3)

}
; decide = \e1 e2 -> decide (normalise e1)(normalise e2)
}
where
open module NfEq = DecidableEquivalenceOps nfDecEquiv

open module EqExpr {n : Nat} =
DecidableEquivalenceOps (exprDecEquiv {n})
using ()
renaming (_==_ to _=Expr=_

; decide to decideExprEq
; Eq to exprEquiv
)

This gives us a decidable equality on expressions and so we can decide
whether or not an equation is provable simply by deciding the equality be-
tween the two sides. We create a datatype IsProvable recording provability.
This is essentially the same type as returned by decideExprEq but with nicer
names for the constructors.

data IsProvable {n : Nat} : Equation n -> Set where
can-prove : {e1 e2 : Expr n} ->

e1 =Expr= e2 -> IsProvable (e1
.= e2)

can’t-prove : {e1 e2 : Expr n} ->
¬ (e1 =Expr= e2) -> IsProvable (e1

.= e2)

118 CHAPTER 5. THE AGDA LANGUAGE

provable : {n : Nat}(thm : Equation n) -> IsProvable thm
provable (e1

.= e2) with decideExprEq e1 e2
provable (e1

.= e2) | inl p = can-prove p
provable (e1

.= e2) | inr p = can’t-prove p

Note that we have not yet proved that our notion of provability is correct.
That is the topic of the next module.

5.2.7 Semantics

Up until now we have not really done anything that could not be done in a
simply typed language. We have defined a function to decide equality in a
commutative monoid by flattening and sorting the expressions. What cannot
be done in a simply typed setting is constructing the actual proof that the
equation holds in any commutative monoid.
We define a module Semantics parameterised by an arbitrary commuta-

tive monoid.

open import Equivalence
open import Monoid

module Semantics {A : Set}{Eq : Equivalence A}
(M : CommutativeMonoid Eq)

where

import Chain
open import Logic
open import Basics
open import Expr

private
open module E = EquivalenceOps Eq
open module M = CommutativeMonoidOps Eq M
open module C = Chain _==_ refl trans

First, we have to define the semantics of an expression, i.e. how to trans-
late it into an element of the monoid. To do this we need an environment
containing values for the free variables of the expression.

Env : Nat -> Set
Env n = Vec A n

5.2. A BIGGER EXAMPLE 119

The semantic function replaces |∅| with ∅ and |_+_| with _+_. Variables
are looked up in the environment (remember that _!_ is the lookup function
for vectors).

expr[_] : {n : Nat} -> Expr n -> Env n -> A
expr[|∅|] ρ = ∅
expr[e1 |+| e2] ρ = expr[e1] ρ + expr[e2] ρ
expr[var i] ρ = ρ ! i

The semantics of a normal form is the semantics of the corresponding expres-
sion, and the semantics of an equation is the equivalence of the semantics of
the expressions.

nf[_] : {n : Nat} -> NF n -> Env n -> A
nf[xs] ρ = expr[reify xs] ρ

eq[_] : {n : Nat} -> Equation n -> Env n -> Set
eq[e1

.= e2] ρ = expr[e1] ρ == expr[e2] ρ

Now we can define what constitutes a proof of an equation. If the equation
is provable a proof is a proof of the semantics of the equation for an arbitrary
environment. If the equation is not provable no evidence is required and we
simply demand an element of the singleton type NoProof. One could imagine
providing a counter example in this case, but that would likely be more work
than it is worth.

data NoProof : Set where
no-proof : NoProof

Proof : {n : Nat} -> Equation n -> Set
Proof eq with provable eq
Proof (e1

.= e2) | can-prove p = (ρ : Env _) -> eq[e1
.= e2] ρ

Proof (e1
.= e2) | can’t-prove p = NoProof

In order to construct the proof of an equation we need to prove that
our normalisation function is sound, i.e. that it preserves equality on the
semantic side. First we prove that the merge function _⊕_ is sound. The
proof is straightforward and the equality reasoning parts are largely equations
that could be proven using our algorithm.

⊕-sound : {n : Nat}(xs ys : NF n)(ρ : Env n) ->
(nf[xs] ρ + nf[ys] ρ) == nf[xs ⊕ ys] ρ

⊕-sound [] ys ρ = idL _
⊕-sound (x :: xs) [] ρ = idR _

120 CHAPTER 5. THE AGDA LANGUAGE

⊕-sound (x :: xs) (y :: ys) ρ with x 6Fin6 y
⊕-sound (x :: xs) (y :: ys) ρ | true =
chain> nf[x :: xs] ρ + nf[y :: ys] ρ
=== (ρ ! x + [xs]) + (ρ ! y + [ys])
by refl _

=== ρ ! x + ([xs] + (ρ ! y + [ys]))
by sym _ _ (assoc _ _ _)

=== ρ ! x + nf[xs ⊕ (y :: ys)] ρ
by congL _ _ _ (⊕-sound xs (y :: ys) ρ)

=== nf[x :: (xs ⊕ (y :: ys))] ρ
by refl _

qed
where
[xs] = nf[xs] ρ
[ys] = nf[ys] ρ

⊕-sound (x :: xs) (y :: ys) ρ | false =
chain> nf[x :: xs] ρ + nf[y :: ys] ρ
=== (ρ ! x + [xs]) + (ρ ! y + [ys])
by refl _

=== (ρ ! y + [ys]) + (ρ ! x + [xs])
by commute _ _

=== ρ ! y + ([ys] + (ρ ! x + [xs]))
by sym _ _ (assoc _ _ _)

=== ρ ! y + ((ρ ! x + [xs]) + [ys])
by congL _ _ _ (commute _ _)

=== ρ ! y + nf[(x :: xs) ⊕ ys] ρ
by congL _ _ _ (⊕-sound (x :: xs) ys ρ)

=== nf[y :: ((x :: xs) ⊕ ys)] ρ
by refl _

qed
where
[xs] = nf[xs] ρ
[ys] = nf[ys] ρ

It is worth pointing out that when we pattern match on x 6Fin6 y this
expression is abstracted from the goal type, which makes the if_then_else_
from _⊕_ reduce.
Now proving that normalisation is sound is easy. In the variable case we

add an extra ∅ so we have to use the axiom that x + ∅ = x. The |∅| case is
trivial and in the _|+|_ case we use the fact that _⊕_ is sound.

normalise-sound : {n : Nat}(e : Expr n)(ρ : Env n) ->
expr[e] ρ == nf[normalise e] ρ

normalise-sound (var i) ρ = sym _ _ (idR _)

5.2. A BIGGER EXAMPLE 121

normalise-sound |∅| ρ = refl _
normalise-sound (e1 |+| e2) ρ =
chain> expr[e1] ρ + expr[e2] ρ
=== nf[normalise e1] ρ + nf[normalise e2] ρ

by cong _ _ _ _ (normalise-sound e1 ρ)
(normalise-sound e2 ρ)

=== nf[normalise e1 ⊕ normalise e2] ρ
by ⊕-sound (normalise e1) (normalise e2) ρ

qed

We also need a lemma stating that the equality on normal forms is sound.

nfEq-sound : {n : Nat}(xs ys : NF n)(ρ : Env n) ->
xs =NF= ys -> nf[xs] ρ == nf[ys] ρ

nfEq-sound [] [] ρ eq = refl ∅
nfEq-sound [] (_ :: _) ρ ()
nfEq-sound (_ :: _) [] ρ ()
nfEq-sound (x :: xs) (.x :: ys) ρ (ref , xsys) =
congL _ _ _ (nfEq-sound xs ys ρ xsys)

Using our soundness lemmas we are now ready to define the function
prove which takes an equation and computes a proof of it.

prove : {n : Nat}(eq : Equation n) -> Proof eq
prove eq with provable eq
prove (e1

.= e2) | can’t-prove _ = no-proof
prove (e1

.= e2) | can-prove p = \ ρ ->
chain> expr[e1] ρ
=== nf[n1] ρ by normalise-sound e1 ρ
=== nf[n2] ρ by nfEq-sound n1 n2 ρ p
=== expr[e2] ρ by sym _ _ (normalise-sound e2 ρ)

qed
where
n1 = normalise e1
n2 = normalise e2

Before giving any examples we define some functions to make our prover
a little easier to use. The proof of a valid equation abstracts over an arbitrary
environment, but a more natural result would be a curried version abstracting
over the each element of the vector separately. We can define a curry function
to translate into this form.

Curried : {A : Set}(n : Nat) -> (Vec A n -> Set) -> Set
Curried zero P = P ε
Curried (suc n) P = (x : _) -> Curried n (\xs -> P (x � xs))

122 CHAPTER 5. THE AGDA LANGUAGE

curry : {A : Set}{n : Nat}{P : Vec A n -> Set} ->
((xs : Vec A n) -> P xs) -> Curried n P

curry {n = zero } f = f ε
curry {n = suc n} f = \x -> curry (\xs -> f (x � xs))

For instance, given P : Vec A 3 → Set and f : (xs : Vec A 3) → P xs we
have

Curried 3 P = (x y z : A) → P (x � y � z � ε)
curry f = λ x y z → f (x � y � z � ε)

Another thing which is tedious with the current presentation is to write down
the equation to be proven. Since there is no way to reflect a goal type into an
expression in our representation the equation has to be given explicitly. In
order to save us the tedium of writing down the names of the free variables
of an expression we can do a similar trick, only backwards. We define a type
^→_ of curried functions of the form A → . . . → A → B :

^→_ : Set -> Nat -> Set -> Set
A ^ zero → B = B
A ^ suc n → B = A -> A ^ n → B

The uncurry function turns a curried function into an uncurried function.

uncurry : {A B : Set}{n : Nat} ->
(A ^ n → B) -> (Vec A n -> B)

uncurry f ε = f
uncurry f (x � xs) = uncurry (f x) xs

Now we can define a function equation which given a function from n expres-
sions to an equation over n variables applies the function to these variables.
To get a vector of all free variables we simply tabulate the var function whose
type is Fin n → Expr n.

equation : (n : Nat) ->
(Expr n ^ n → Equation n) -> Equation n

equation n eq = uncurry {n = n} eq (tabulate var)

Finally we are ready to put our prover to the test. As an example we
prove part of the second case in the ⊕-sound proof. We use curry to get
the result into the right form, and equation to make stating the equation
easier.

5.2. A BIGGER EXAMPLE 123

test : (x xs y ys : A) ->
((x + xs) + (y + ys)) == (y + ((x + xs) + ys))

test = curry (prove eq)
where
eq = equation 4 \x xs y ys ->

((x |+| xs) |+| (y |+| ys))
.=

(y |+| ((x |+| xs) |+| ys))

It is still a bit inconvenient that the equation has to be stated twice, once in
the monoid and once as an expression, but disregarding that it looks quite
nice. A nice feature of this prover is that the proof does not have to be
constructed. The only computation that needs to happen is deciding that
the equation is provable, once that is done we know that prove gives us a
valid proof, so it does not have to be built explicitly.
To avoid having to state the equation twice, we would need reflection,

allowing us to inspect the structure of the goal type. This, however, is way
beyond the scope of this thesis.

124 CHAPTER 5. THE AGDA LANGUAGE

Chapter 6

First-order Logic

This chapter is based on the paper Connecting a Logical Framework to a
First-Order Logic Prover [ACN05] written together with Andreas Abel and
Thierry Coquand.
We present one way of combining a logical framework and first-order logic.

The logical framework is used as an interface to a first-order theorem prover.
The main purpose of the framework is to keep track of the structure of the
proof and to deal with the high level steps, for instance, induction. The steps
that involve purely propositional or simple first-order reasoning are left to
a first-order resolution prover (the system Gandalf in our prototype). The
correctness of this interaction is based on a general metatheoretic result. One
feature is the simplicity of our translation between the logical framework and
first-order logic. Implementation and case studies are described.

6.1 Introduction

We work towards human-readable and machine-verifiable proof documents
for mathematics and computer science. As argued by de Bruijn [dB80], de-
pendent type theory offers an ideal formal system for representing reasoning
steps, such as introducing parameters or hypotheses, naming constants or
lemmas, using a lemma or a hypothesis. Type theory provides explicit no-
tations for these proof steps, with good logical properties. Using tools like
Coq [BC04], Epigram [AMM05], or Agda [CC99] these steps can be per-
formed interactively. But low level reasoning steps, such as simple propo-
sitional reasoning, or equality reasoning, substituting equals for equals, are
tedious if performed in a purely interactive way. Furthermore, propositional
provers, and even first-order logic (FOL) provers are now very efficient. It is
thus natural to create interfaces between logical frameworks and automatic

125

126 CHAPTER 6. FIRST-ORDER LOGIC

propositional or first-order provers [BHdN02, ST95, MP04]. But, in order to
arrive at proof documents which are still readable, only trivial proof steps
should be handled by the automatic prover. Since different readers might
have different notions of trivial, the automatic prover should not be a black
box. With some effort by the human, the output of the prover should be
understandable.
In this paper, we are exploring connections between a logical framework

MLFProp based on type theory and resolution-based theorem provers. One
problem in such an interaction is that resolution proofs are hard to read and
understand in general. Indeed, resolution proof systems work with formulæ
in clause normal form, where clauses are (the universal closures of) disjunc-
tions of literals, a literal being an atom or a negated atom. The system
translates the negation of the statement to be proved to clause form, using
skolemisation and disjunctive normal form. It then generates new clauses
using resolution and paramodulation, trying to derive a contradiction. If
successful, the system does pruning on the (typically high number of) gen-
erated clauses and outputs only the relevant ones.1

We lose the structure of the initial problem when doing skolemisation and
clausification. Typically, a problem such as

∀x.∃y.∀z.R(x, y)⇒ R(x, z) (1)

is negated and translated into the two contradictory unit clauses

∀y. R(a, y), ∀y.¬R(a, f(y)), (2)

but the connection between the statement (1) and the refutation of (2) is not
so intuitive.
We do not solve this problem here, but we point out that, if we restrict

ourselves to implicitly universally quantified propositional formulæ, in the
following called open formulæ, this problem does not arise. Furthermore,
when we restrict to this fragment, we can use the idea of implicit typing
[Bee07, WM89]. In this way, the translation from framework types to FOL
formulæ is particularly simple. Technically, this is reflected by a general
metatheorem which ensures that we can lift a first-order resolution proof
to a framework derivation. If we restrict the class of formulæ further to
so-called geometrical open formulæ [CLR01, BC03], then the translation to
clausal form is transparent. Indeed, any resolution proof for this fragment
is intuitionistically valid and can be interpreted as it is in type theory. This
1If the search is not successful, it is quite hard to get any relevant information from

the clauses that are generated. We have not yet analyzed the problem of getting useful
feedback in this case.

6.2. THE LOGICAL FRAMEWORK MLFPROP 127

metatheorem is also the theoretical justification for our interface between
MLFProp and a resolution-based proof system.
We have implemented a prototype version of a type system in Haskell,

with a connection to the resolution prover Gandalf [Tam97]. By restricting
ourselves to open formulæ we sacrifice proof strength, but preliminary ex-
periments show that the restriction is less severe than it may seem at first
since the steps involving quantification are well handled at the framework
level. Also, the proof traces produced by Gandalf are often readable (and
surprisingly clever in some cases).
We think that we can represent Leslie Lamport proof style [Lam93] rather

faithfully in this system. The high level steps such as introduction of hypothe-
ses, case analysis, induction steps are handled at the framework level, and
only the trivial steps are sent to the FOL automatic prover.
One can think of connecting the framework to other systems, e.g., rewrit-

ing systems and computer algebra systems. We have experimented with a
connection to QuickCheck [CH00], that allows random testing of some propo-
sitions. In general, each connection extension of our logical framework should
be justified in the same way as the one we present in this paper: we prove a
conservativity result which ensures that the results from the external system
can be, if desired, replaced by a direct proof in the framework. This way
of combining various systems works in practice, as suggested by preliminary
experiments, and it is theoretically well-founded.
This paper is organized as follows. We first describe the logical frame-

work MLFProp. We then present the translation from some LF types to FOL
formulæ. The main technical result is then a theorem that shows that any
resolution and paramodulation step, with one restriction, can be lifted to the
framework level. Finally, we present some examples and extensions, and a
discussion of related work.

6.2 The Logical Framework MLFProp

This section presents an extension of Martin-Löf’s logical framework [NPS00]
by propositions and local definitions. This work was carried out in a different
context than the work in previous chapters, and so uses a different logical
framework. We believe, however, that the results carries over without great
difficulty to UTTΣ extended with propositions.

Expressions (terms and types). We assume countable sets of variables
and constants. Furthermore, we have a finite number of built-in constants to
construct the primitives of our type language. A priori, we do not distinguish

128 CHAPTER 6. FIRST-ORDER LOGIC

between terms and types. The syntactic entities of MLFProp are given by the
following grammar.

x, y, z variables
c, f, p constants
ĉ ::= Fun | El | Set | () | Prf | Prop built-in constants
r, s, P,Q ::= ĉ | c | x | λx.r | r s | let x :T =r in s expressions
T,U ::= Set | El s | Prop | Prf P | Fun T (λx.U) types
Γ ::= � | Γ, x : T typing contexts
Σ ::= � | Σ, c : T | Σ, c : T =r signatures

We identify terms and types up to α-conversion and adopt the convention
that in contexts Γ, all variables must be distinct; hence, the context extension
Γ, x : T presupposes x : U /∈ Γ for any U . Similarly, a constant c may not
be declared in a signature twice. We use the same syntactic conventions for
UTTΣ (see Section 1.3) and write (x : T)→ U for Fun T (λx.U).
The inhabitants of Set are type codes; El maps type codes to types. E. g.,

(a : Set) → El a → El a is the type of the polymorphic identity λa.λx.x.
Similarly Prop contains formal propositions P and Prf P proofs of P .
Types of the shape Γ→ Prf P are called proof types. A context Γ = (x1 :

T1) . . . (xn : Tn) is a set context if and only if all Ti are of the form ∆→ El S.
In particular, if P : Prop, then the proof type Γ → Prf P corresponds to a
universal first-order formula ∀x1 . . . ∀xnP with quantifier-free kernel P .

Judgements. The type theory MLFProp is presented via five judgements,
which are all relative to a (user-defined) signature Σ.

Γ `Σ Γ is a well-formed context
Γ `Σ T T is a well-formed type
Γ `Σ r : T r has type T
Γ `Σ T = T ′ T and T ′ are equal types
Γ `Σ r = r′ : T r and r′ are equal terms of type T

All five judgements are defined simultaneously. Since the signature remains
fixed in all judgements we will omit it.
Judgmental type and term equality are generated from expansion of sig-

nature definitions as well as from β-, η-, and let-equality, the latter of which
is given by (let x : T = r in s) = s[x := r]. The rules for equality are similar
to the ones of MLFΣ [AC05], and type-checking of normal terms with local
definitions is decidable.
Figure 6.1 shows the typing rules. The rules fun-f and fun-i carry a

side condition (∗) that ensures that no type can depend on a proof, which is
needed for the conservativity theorem.

6.2. THE LOGICAL FRAMEWORK MLFPROP 129

Wellformed contexts Γ `.

cxt-empty
� `

cxt-ext
Γ ` T

Γ, x : T `

Wellformed types Γ ` T .

set-f
Γ `

Γ ` Set
prop-f

Γ `
Γ ` Prop

fun-f
Γ ` T Γ, x : T ` U

Γ ` (x : T)→ U
(∗)

set-e
Γ ` r : Set

Γ ` El r
prop-e

Γ ` P : Prop

Γ ` Prf P

Typing Γ ` r : T .

cst
Γ ` (c : T) ∈ Σ

Γ ` c : T
hyp

Γ ` (x : T) ∈ Γ

Γ ` x : T

conv
Γ ` r : T Γ ` T = U

Γ ` r : U
fun-i

Γ, x : T ` r : U

Γ ` λx.r : (x : T)→ U
(∗)

fun-e
Γ ` r : (x : T)→ U Γ ` s : T

Γ ` r s : U [x := s]

let
Γ ` r : T Γ ` s[x := r] : U

Γ ` let x :T =r in s : U

Side condition (∗): If T is a proof type, then also U .

Figure 6.1: MLFProp rules for contexts and typing.

130 CHAPTER 6. FIRST-ORDER LOGIC

Natural deduction. We assume a signature Σnd given in Figure 6.2, which
assumes the infix logical connectives op ::= ∧,∨,⇒, plus the defined ones,
¬ and ⇔. Furthermore, it contains a set PredSym of basic predicate sym-
bols p of type Γ → Prop where Γ is a (possibly empty) set context. Cur-
rently we only assume truth >, absurdity ⊥, and typed equality Id , but
user defined signatures can extend PredSym by their own symbols. For
each logical constructs, there are appropriate proof rules, e. g., a constant
impI : (P, Q : Prop)→ (Prf P → Prf Q)→ Prf (P ⇒ Q).
First-order logic assumes that every set is non-empty, and our use of a

first-order prover is only sound under this assumption. Hence, we add a
special constant ε : (D : Set)→ El D to Σnd which enforces this fact. Notice
that this implies that all set contexts are inhabited2.
Classical reasoning can be performed in the signature Σclass, which we

define as the extension of Σnd by EM : (P : Prop) → Prf (P ∨ ¬P), the law
of the excluded middle.

The fol rule. This article investigates conditions under which the addition
of the following rule is conservative over MLFProp + Σnd and MLFProp + Σclass,
respectively.

fol
Γ ` T

Γ ` () : T
Γ `FOL T

The side condition Γ `FOL T expresses that T is a proof type and that the
first-order prover can deduce the truth of the corresponding first-order for-
mula from the assumptions in Γ. It ensures that only tautologies have proofs
in MLFProp, but it is not considered part of the type checking. Metatheoreti-
cal properties of MLFProp like decidability of equality and type-checking hold
independently of this side condition.
Conservativity fails if we have to compare proof objects during type-

checking. This is because the rule fol produces a single proof object for all
(true) propositions, whereas upon removal of fol the hole has to be filled
with specific proof object. Hence two equal objects which each depend on a
proof generated by fol could become unequal after replacing fol. To avoid
this, it is sufficient to restrict function spaces (x : T) → U : if T is a proof
type, then also U . While this restriction is clearly sufficient, it is rather sever.
For instance, it is not possible to define a function computing an element of
a set under some propositional preconditions. What we really need here is
proof irrelevant propositions.
In the remainder of the paper, we use LF as a synonym for MLFProp.

2Semantically, it may be fruitful to think of terms of type Set as inhabited Partial
Equivalence Relations, while terms of type Prop are PERs with at most one inhabitant.

6.2. THE LOGICAL FRAMEWORK MLFPROP 131

Predicate symbols and logical connectives.

PredSym 3 p ::= >,⊥, Id predicate symbols
LogOp 3 op ::= ∧,∨,⇒ binary logical connectives

Formation rules for propositional logic.

>,⊥ : Prop truth, absurdity
∧,∨,⇒ : Prop→ Prop→ Prop conj., disj., impl.
¬ : Prop→ Prop = λP. P ⇒ ⊥ negation
⇔ : Prop→ Prop→ Prop

= λPλQ. (P ⇒ Q) ∧ (Q⇒ P) equivalence

Proof rules for propositional logic.

trueI : Prf >
falseE : (P :Prop)→ Prf ⊥ → Prf P

andI : (P1, P2 :Prop)→ Prf P1 → Prf P2 → Prf (P1 ∧ P2)
andEi : (P1, P2 :Prop)→ Prf (P1 ∧ P2)→ Prf Pi for i ∈ {1, 2}

orIi : (P1, P2 :Prop)→ Prf Pi → Prf (P1 ∨ P2) for i ∈ {1, 2}
orE : (P1, P2, Q :Prop)→ Prf (P1 ∨ P2)→

(Prf P1 → Prf Q)→ (Prf P2 → Prf Q)→ Prf Q

impI : (P, Q :Prop)→ (Prf P → Prf Q)→ Prf (P ⇒ Q)
impE : (P, Q :Prop)→ Prf (P ⇒ Q)→ Prf P → Prf Q

Equality.

Id : (D :Set)→ El D → El D → Prop typed equality
refl : (D :Set, x :El D)→ Prf (Id D x x) reflexivity
subst : (D :Set, P :El D → Prop, x, y :El D)→

Prf (Id D x y)→ Prf (P x)→ Prf (P y) substitutivity

Figure 6.2: The signature Σnd for natural deduction.

132 CHAPTER 6. FIRST-ORDER LOGIC

6.3 Translation from MLFProp to FOL

We shall define a partial translation from some LF types to FOL propositions.
We translate only types of the form

(x1 : T1) . . . (xk : Tk)→ Prf (P (x1, . . . , xk)),

and these are translated to open formulæ [P (x1, . . . , xk)] of first-order logic.
All the variables x1, . . . , xk are considered universally quantified. For in-
stance,

(x : El Nat)→ Prf (Id Nat x x ∧ Id Nat x (add zero x))

will be translated to x = x ∧ x = add zero x. If we have a theory of lattices,
that is, we have added

D : Set
sup : El D → El D → El D
6 : El D → El D → Prop

to the current signature, then (x, y : El D) → Prf (sup x y 6 x⇔ y 6 x)
would be translated to sup x y 6 y ⇔ y 6 x.
The translation is done at a syntactical level, without using types. We

demonstrate that we can lift a resolution proof of a translated formula to an
LF derivation in the signature Σclass (or in Σnd, in some cases).

6.3.1 Formal Description of the Translation

We translate normal expressions, which means that all definitions have been
unfolded and all redexes reduced. Three classes of normalMLFProp-expressions
are introduced: (formal) first-order terms and (formal) first-order formulæ,
which are quantifier free formulæ over atoms possibly containing free term
variables, and translatable formulæ, which are first-order formulæ prefixed
by quantification over set elements.

t, u ::= x | f ~t first-order terms
A, B ::= p~t | Id S t1 t2 atoms
W ::= A | W op W ′ first-order formulæ
φ ::= ∆→ Prf W translatable formulæ (∆ set context)

Proper terms are those which are not just variables. For the conservativity
result the following fact about proper terms will be important: In a well-
typed proper term, the types of its variables are uniquely determined. For

6.3. TRANSLATION FROM MLFPROP TO FOL 133

this reason, a formal first-order term t may neither contain a binder (λ or
let) nor a variable which is applied to something, for instance, x u.
An example of a first-order formula is

Wex := Id D x (f y)⇒ (Less x (f y)⇒ ⊥)

which is well-typed in the extension

D : Set
f : El D → El D
Less : El D → El D → Prop

of the signature Σnd.
On the FOL side, we consider a language with equality (=), one binary

function symbol app and one constant for each constant introduced in the
logical framework. Having an explicit “app” allows partial application of
function symbols.
Let ∆ = (x1 : T1) . . . (xn : Tn) be a set context. A type of the form

φ := ∆→ Prf W

is translated into a universal formula [φ] = ∀x1 . . . ∀xn[W]. The translation
[W] of first-order formulæ and the translation 〈t〉 of first-order terms depends
on ∆ and is defined recursively as follows:

[W1 op W2] := [W1] op [W2] logical connectives
[Id S t1 t2] := 〈t1〉 = 〈t2〉 equality
[p t1 . . . tn] := p(〈t1〉, . . . , 〈tn〉) predicates, including >,⊥
〈xi〉 := xi xi ∈ ∆
〈x〉 := cx x /∈ ∆
〈c〉 := c constants
〈f t1 . . . tn〉 := f(〈t1〉, . . . , 〈tn〉) n-ary functions

where we write f(t1, . . . , tn) for app(. . . app(app(f, t1), t2), . . . , tn). Note that
the translation is purely syntactical, and does not use type information. It is
even homomorphic with two exceptions: (a) the typed equality of MLFProp is
translated into the untyped equality of FOL, and (b) variables bound outside
φ have to be translated as constants.
For instance, the formula

(y : El D)→ Id D x (f y)⇒ (Less x (f y)⇒ ⊥)

is translated to

∀y. cx = f(y)⇒ (Less(cx, f(y))⇒ ⊥)

134 CHAPTER 6. FIRST-ORDER LOGIC

Examples of types that cannot be translated are

(x : Prop)→ Prf x (x : Prop) is not a set context
Prf (F (λx.x)) λx.x is not a first-order term
(y : El D → El D)→ Prf (P (y x)) y x is not a first-order term

We shall also use the class of geometrical formulæ, given by the following
grammar:

G ::= H | H → G | G ∧G geometrical formula
H ::= A | H ∧H | H ∨H positive formula

The above example Wex is geometrical. As we will show, (classical) first-
order proofs of geometrical formulæ can be mapped to intuitionistic proofs
in the logical framework with Σnd.

6.3.2 Resolution Calculus

It will be convenient to use the following non-standard presentation of the
resolution calculus [Rob65]. A clause C is an open first-order formula of the
form

A1 ∧ · · · ∧ An ⇒ B1 ∨ · · · ∨Bm

where we can have n = 0 or m = 0 and Ai and Bj are atomic formulæ.
Following Gentzen [Gen35], we write such a clause on the form

A1, . . . , An ⇒ B1, . . . , Bm,

that is, X ⇒ Y , where X and Y are finite sets of atomic formulæ. An empty
X is interpreted as truth, an empty Y as absurdity.
Resolution is forward reasoning. Figure 6.3 lists the rules for extending

the current set of derived clauses: if all clauses mentioned in the premise of
a rule are present, this rule can fire and the clause of the conclusion is added
to the clause set.
In our formulation, all rules are intuitionistically valid3, and can be jus-

tified in MLFProp + Σnd. It can be shown, classically, that these rules are
complete in the following sense: if a clause is a semantical consequence of
other clauses then it is possible to derive it using the resolution calculus.
Hence, any proof in FOL can be performed with resolution4.
It can be pointed out that the sub rule is only necessary at the very

end—any resolution proof can be normalized to a proof that only uses sub
in the final step.
3In the standard formulation, the ax rule would read ¬A ∨A—the excluded middle.
4To deal with existential quantification we also need skolemisation.

6.3. TRANSLATION FROM MLFPROP TO FOL 135

ax
A⇒ A

sub
X ′ ⊇ X X ⇒ Y Y ⊆ Y ′

X ′ ⇒ Y ′

res
X1 ⇒ Z1, Y1 X2, Z2 ⇒ Y2

(X1, X2 ⇒ Y1, Y2)σ
σ = mgu(Z1, Z2)

refl
· ⇒ x = x

para
X1 ⇒ t = u, Y1 X2[t

′]⇒ Y2[t
′]

(X1, X2[u]⇒ Y1, Y2[u])σ
σ = mgu(t, t′)

Figure 6.3: Resolution calculus.

Let the restricted paramodulation rule denote the version of para where
both t and t′ are proper terms (not variables). The restricted rule is needed
to preserve well-typedness.

6.3.3 Proof of Correctness

In this section, we show that every FOL proof of a translated formula [φ] can
be lifted to a proof in MLFProp +Σclass, provided the resolution proof confines
to restricted paramodulation. This is not trivial because FOL is untyped and
MLFProp is typed, and our translation forgets the types. The crucial insight
is that every resolution step preserves well-typedness.
Fix a signature Σ. A first-order term t is well-typed if and only if there

exists a context ∆, giving types to the variables x1, . . . , xn of t, such that in
the given signature, ∆ ` t : T for some type T . For example, in the signature

D : Set f : El D → El D
F : El D → Prop g : (x : El D)→ Prf (F x)

the proper first-order terms f x, F y, and g z are well-typed, but F x y is
not. Notice that if a proper FOL term is well-typed, then there is only one
way to assign types to its variables.
We say that the terms t1, . . . , tn fit a context ∆ = (x1 : T1) . . . (xn : Tn)

in Γ if and only if Γ ` ti : Ti[t1, . . . , ti−1] for all 1 6 i 6 n.

Lemma 6.3.1. If two proper first-order terms t1, t2 over disjoint variables
are well-typed and unifiable, then the most general unifier mgu(t1, t2) is well-
typed.

136 CHAPTER 6. FIRST-ORDER LOGIC

Proof. The lemma is a consequence of the following stronger proposition: If
t1, . . . , tn and u1, . . . , un are lists of terms that fit the same context ∆ in Γ
and σ is the most general substitution such that tiσ = uiσ for 1 6 i 6 n,
then Γ ` σ(x) : A for all (x : A) ∈ Γ.
Let Γ ` t : A and Γ′ ` u : B. Since t and u are proper terms and

unifiable, t = f(~t) and u = f(~u) for some constant f : ∆→ C. Hence, ~t and
~u fit ∆ in ΓΓ′, which is a valid context since Γ and Γ′ are disjoint. Now the
proposition implies that mgu(t, u) is well-typed.
To prove the stronger proposition, we follow the steps of a simple unifi-

cation algorithm and consider the unification problem

t1 = u1, . . . , tn = un

If both t1 and u1 are proper terms, they are of the form f(a1, . . . , ak) and
f(b1, . . . , bk) and we get a simpler unification problem

a1 = b1, . . . , ak = bk, t2 = u2, . . . , tn = un

If, for instance, t1 is a variable x, and x does not appear in u1, we claim that
all variables in u1 have a type which is independent of x. This holds if u1

is a variable, since the type of u1 is the same as the one of x, but it also
holds if u1 is a proper term, since the type of the variables in u1 are then
determined by u1 alone, and x does not appear in u1. We can hence assume
that all these variables appear before x in Γ = Γ1, x : T, Γ2. We then get the
simpler unification problem in Γ1, Γ2[x := u1]

t2[x := u1] = u2[x := u1], . . . , tn[x := u1] = un[x := u1]

We proceed in this way until we get an empty list in the context in which
the most general unifier of the two terms is well-typed.

For instance, add x zero and add (suc y) z are unifiable and well-typed
and the most general unifier {x 7→suc y, z 7→zero} is well-typed.
Using this lemma, we can lift any FOL resolution step to an LF resolution

step. The same holds for any restricted paramodulation step, which justifies
the translation of Id S t u as 〈t〉 = 〈u〉 in FOL, Indeed, in the paramodulation
step between X1 ⇒ t = u, Y1 and X2[t

′] ⇒ Y2[t
′] we unify t and t′ and for

Lemma 6.3.1 to be applicable both t and t′ have to be proper terms. Similar
arguments have been put forth by Beeson [Bee07] and Wick and McCune
[WM89].
A clausal type is a formula which translates to a clause.

6.3. TRANSLATION FROM MLFPROP TO FOL 137

Lemma 6.3.2. If two FOL clausal types Γ1 → Prf (W1) and Γ2 → Prf (W2)
are derivable, and C is a resolution of [W1] and [W2] then there exists a
context Γ and a derivable (Γ)→ Prf W such that C = [W]. The same holds
if C is derived from [W1] and [W2] by restricted paramodulation. Furthermore
in both cases, Γ is a set context if both Γ1 and Γ2 are set contexts.

Proof. Using Lemma 6.3.1 in the cases where unification is performed.

In the next theorems, φ, φ1, . . . , φk are translatable formulæ of the form
Γ→ Prf W where Γ is a set context.
The following theorem is a consequence of Lemma 6.3.2, since an open

formula is (classically) equivalent to a conjunction of clauses.

Theorem 6.3.3. If we can derive [φ] from [φ1], . . . , [φk] by resolution and
restricted paramodulation then φ is derivable from φ1, . . . , φk in any extension
of the signature Σclass.

Proof. By induction on the derivation, using Lemma 6.3.2 in each step.

A resolution proof, as we have presented it, is intuitionistically valid.
The only step which may not be intuitionistically valid is when we express
the equivalence between an open formula and a conjunction of clauses. For
instance the open formula ¬P ∨Q is not intuitionistically equivalent to the
clause P ⇒ Q in general. This problem does not occur if we start with
geometrical formulæ [BC03].

Theorem 6.3.4. If we can derive [φ] from [φ1], . . . , [φk] by resolution and
restricted paramodulation and φ, φ1, . . . , φk are geometric formulæ, then φ is
derivable from φ1, . . . , φk in any extension of the signature Σnd.

Proof. Follows from the fact that clausification is intuitionistically valid for
geometric formulæ.

It is important for the theorem that all set contexts are inhabited: if
D : Set and P : Prop (with x not free in P), then both

φ1 = (x : El D)→ Prf P and φ2 = Prf P

are translated to the same FOL proposition [φ1] = [φ2] = P but we can
derive φ2 from φ1 in Σnd, D : Set, P : Prop only because El D is inhabited.
As noticed above, if we allow paramodulation from a variable, we could

derive clauses that are not well-typed. For instance, in the signature

Nat : Set
zero : El Nat
h : (x : El Nat)→ Prf (Id Nat x zero)
A : Set
a : El A

138 CHAPTER 6. FIRST-ORDER LOGIC

the type of h becomes x = zero in FOL and from this we could derive, by
paramodulation from the variable x, a = zero which is not well-typed. This
problem is also discussed in [Bee07, WM89] and the solution is simply to
forbid the FOL prover to use paramodulation from a variable5.
We can now state the conservativity theorem.

Theorem 6.3.5. If a type is inhabited in the system MLFProp + fol+ Σclass

then it is inhabited in MLFProp + Σclass.

Proof. By induction on the typing derivation, using Theorem 6.3.3 for fol
derivations.

6.3.4 Simple Examples

Figure 6.4 shows an extension of Σnd by natural numbers, induction and
an addition function defined by recursion on the second argument. Now

Nat : Set natural numbers

zero : ElNat zero
suc : ElNat → ElNat successor

indNat : (P : ElNat → Prop)→ P zero→
((x : ElNat)→ P x⇒ P (suc x))→
(n : ElNat)→ P n induction

add : ElNat → ElNat → ElNat addition

addZero : (x : ElNat)→ Id Nat (add x zero) x axiom 1 of add
addSuc : (x, y : ElNat)→

Id Nat (add x (suc y)) (suc (add x y)) axiom 2 of add

Figure 6.4: A signature of natural numbers and addition.

consider the goal (x : ElNat)→ Id Nat (add zero x) x. Using the induction

5This is possible in Otter. In Gandalf, this could be checked from the trace. Paramodu-
lation from a variable is highly non-deterministic. For efficiency reasons, it was not present
in some version of Gandalf, but it was added later for completeness. In the examples we
have tried, this restriction is not a problem.

6.4. IMPLEMENTATION 139

schema and the propositional proof rules, we can give the proof term

indNat (λx. Id Nat (add zero x) x) () (λa. impI (λih ()))

in the logical framework, which contains these two FOL goals:

`FOL Id Nat (add zero zero) zero
(a : ElNat)(ih : Id Nat (add zero a) a) `FOL

Id Nat (add zero (suc a)) (suc a)

Both goals can be handled by the FOL prover. The first goal becomes
add zero zero = zero and is proved from add x zero = x, the translation of
axiom addZero. The second goal becomes add zero (suc a) = suc a. This is a
first-order consequence of the translated induction hypothesis add zero a = a
and add x (suc y) = suc (add x y), the translation of axiom addSuc.
This example, though very simple, is a good illustration of the interaction

between LF and FOL: the framework is used to handle the induction step
and in the second goal, the introduction of the parameter a and the induction
hypothesis.
Here is another simple example which illustrates that we can call the FOL

prover even in a context involving non first-order operations. This example
comes from a correctness proof of Warshall’s algorithm. Let D : Set.

F : El D → (El D → El D → Prop)→ El D → El D → Prop
F aR x y = R x y ∨ (R x a ∧R a y)

swap : (abxy : El D)→ Prf (F a (F bR) x y ⇔ F b (F aR) x y)

The operation F is a higher-order operation. However, in the context R :
El D → El D → Prop, the goal swap can be handled by the FOL prover. The
normal form of F a (F bR) x y ⇔ F b (F aR) x y, where all defined constants
(here only F) have been unfolded, is a translatable formula.

6.4 Implementation

To try out the ideas described in this paper we have implemented a prototype
type checker [Nor06] in Haskell. In addition to the logical framework, the
type checker supports implicit arguments and the extensions described in
Section 6.7: sigma types, datatypes and definitions by pattern matching.
Note that this implementation is not the same as the Agda language from
Chapter 5.

140 CHAPTER 6. FIRST-ORDER LOGIC

6.4.1 Implicit Arguments

A problem with LF as presented here is its rather heavy notation. For in-
stance, to state that function composition is associative one would give the
signature in Figure 6.5. This is very close to being completely illegible

comp : (A B C : Set)→ (El B → El C)→ (El A→ El B)→ (El A→ El C)
comp A B C f g = λx. f (g x)

assoc : (A B C D : Set)→
(f : El C → El D, g : El B → El C, h : El A→ El B)→
Prf (Id (El A→ El D) (comp A C D f (comp A B C g h))

(comp A B D (comp B C D f g) h))

Figure 6.5: Associativity without Implicit Arguments.

due to the fact that we have to be explicit about the type arguments to the
composition function. To solve the problem, we have implemented a mech-
anism for implicit arguments which allows the omission of arguments that
can be inferred automatically (see Chapter 3). Using this mechanism the
associativity example can be written as follows:

(◦)(A B C : Set) : (El B → El C)→ (El A→ El B)→ (El A→ El C)
f ◦ g = λx. f (g x)

assoc (A B C D : Set) :
(f : El C → El D, g : El B → El C, h : El A→ El B)→
Prf (f ◦ (g ◦ h) == (f ◦ g) ◦ h)

In general, we write x ∆ : T to say that x has type ∆ → T with ∆
implicit. Note that this is a more restricted form of implicit arguments
than the one presented in Section 3.6. For every use of x we require that the
instantiation of∆ can be inferred using pattern unification [Mil92]. Note that
when we have implicit arguments we can replace Id with an infix operator
(==) (D : Set) : El D → El D → Prop
We conjecture that the conservativity result can be extended to allow the

omission of implicit arguments when translating to first-order logic if they

6.4. IMPLEMENTATION 141

can be inferred from the resulting first-order term. In this case we preserve
the property that for a well-typed FOL term there exists a unique typing,
which is an important lemma in the conservativity theorem. The kind of
implicit arguments we work with can most often be inferred in this way. It is
doubtful, however, that it would work for other kinds of implicit arguments
such as implicit dictionaries used for overloading.
Omitting the implicit arguments, the formula f ◦(g◦h) = (f ◦g)◦h in the

context (A B C D : Set)(f : El C → El D)(g : El B → El C)(h : El A→ El B)
is translated to

f ◦ (g ◦ h) = (f ◦ g) ◦ h

With this translation, the first-order proofs are human readable and, in many
cases, correspond closely to a pen and paper proof.

6.4.2 The Plug-in Mechanism

The type checker is equipped with a general plug-in interface that makes
it easy to experiment with connections to external tools. A plug-in should
implement two functions: a type checking function which can be called on
particular goals in the program, and a finalization function which is called
after type checking. A typical usage of these functions is to collect constraints
during type checking, and solving the constraints using the external tool at
finalization.
To control where the type checking function of a plug-in is invoked we

introduce a new form of expressions:

Exp ::= . . . | name−plugin(s1, . . . , sn) invoking a plug-in

where name is the name of a plug-in. It is possible to pass arguments
(s1, . . . , sn) to the plug-in. These arguments can be arbitrary expressions
which are ignored by the type checker. Hence it is possible to pass ill-typed
terms as arguments to a plug-in; it is the responsibility of the plug-in to
interpret the arguments. Most plug-ins, of course, expect well-typed argu-
ments and in this case, the plug-in has to invoke the type checker explicitly
on its arguments.

6.4.3 The FOL Plug-in

The connection between LF and FOL has been implemented as a plug-in
using the mechanism described above. With this implementation we replace
the built-in constant () by a call to the plug-in. The idea is that the plug-in

142 CHAPTER 6. FIRST-ORDER LOGIC

should be responsible for checking the side condition Γ `FOL P in the fol
rule.
An important observation is that decidability of type checking and equal-

ity do not depend on the validity of the propositions being checked by the
FOL plug-in—nothing will break if the type checker is led to believe that
there is an s : Prf⊥. This allows us to delay all first-order reasoning until
after type checking. The rationale for doing this is that type checking is
cheap and first-order proving is expensive.
Another observation is that it is not feasible to pass the entire context to

the prover. Typically, the context contains many things that are not needed
for the proof, but would rather overwhelm the prover. To solve this problem,
we require that any axioms or lemmas needed to prove a particular goal are
passed as arguments to the plug-in. This might seem a severe requirement,
but bear in mind that the plug-in is intended for simple goals where you
already have an idea of the proof.
More formally, the typing rule for calls to the FOL plug-in is

Γ ` φ Γ ` s1 : φ1 . . . Γ ` sn : φn

Γ ` fol−plugin(s1, . . . , sn) : φ
φ1, . . . , φn `FOL φ.

When faced with a call to a plug-in the type checker calls the type checking
function of the plug-in. In this case, the type checking function of the FOL
plug-in will verify that the goal is a translatable formula and that the ar-
guments are well-typed proofs of translatable formulæ. If this is the case it
will report success to the type checker and store away the side condition in
its internal state. After type checking the finalization function of the FOL
plug-in is called. For each constraint φ1, . . . , φn `FOL φ, this function verifies
that [φ] is derivable from [φ1], . . . , [φn] in the resolution calculus by trans-
lating the formulæ to clause normal form and feeding them to an external
first-order prover (Gandalf, at the moment). If the prover does not manage
to find a proof within the given time limit, the plug-in reports an error.

6.5 Examples

The code in this section has been type checked successfully by our prototype
type checker. In fact, the typeset version is automatically generated from
the actual code. The type checker can infer which types are Sets and which
are Props, so we omit El and Prf in the types.

6.5. EXAMPLES 143

6.5.1 Relational Algebra

Natural numbers can be added to the framework by three new constants
Nat , zero, suc plus an axiom for mathematical induction.

Nat : Set
zero : Nat
suc : Nat → Nat
indNat (P : Nat → Prop) : P zero → ((n : Nat)→ P n → P (suc n))→

(m : Nat)→ P m

Now we fix a set A and consider relations over A. We want to prove that
the transitive closure of a symmetric relation is symmetric as well. We define
the notion of symmetry and introduce a symbol for relation composition. We
could define R ◦R′ = λxλz∃z. x R y ∧ y R′ z, but here we only assume that
a symmetric relation composed with itself is also symmetric.

A : Set
sym : (A→ A→ Prop)→ Prop
sym R = (x , y : A)→ R x y =⇒ R y x

(◦) : (A→ A→ Prop)→ (A→ A→ Prop)→ (A→ A→ Prop)
axSymO : (R : A→ A→ Prop)→ sym R → sym (R ◦ R)

We define a monotone chain of approximations R(n) (in the source: R ˆ
n) of the transitive closure, such that two elements will be related in the
transitive closure if they are related in some approximation. The main lemma
states that all approximations are symmetric, if R is symmetric.

(ˆ) : (A→ A→ Prop)→ Nat → (A→ A→ Prop)
axTc : (R : A→ A→ Prop)→ (x , y : A)→ (n : Nat)→

((R ˆ suc n) x y ⇔ (R ˆ n) x y ∨ ((R ˆ n) ◦ (R ˆ n)) x y)
∧ ((R ˆ zero) x y ⇔ R x y)

main : (R : A→ A→ Prop)→ sym R → (n : Nat)→ sym (R ˆ n)
main R h = indNat

fol−plugin (h, axTc R)
(λ n ih → fol−plugin (h, axSymO (R ˆ n) ih, axTc R, ih))

Induction is performed at the framework level, base and step case are
filled by Gandalf. Pretty printed, Gandalf produces the following proof of

144 CHAPTER 6. FIRST-ORDER LOGIC

the step case:

(1) ∀xy. (R(n) ◦R(n)) x y =⇒ (R(n) ◦R(n)) y x
(2) ∀mxy. R(suc m) x y =⇒ (R(m) ◦R(m)) x y ∨R(m) x y
(3) ∀mxy. (R(m) ◦R(m)) x y =⇒ R(suc m) x y
(4) ∀mxy. R(m) x y =⇒ R(suc m) x y
(5) ∀xy. R(n) x y =⇒ R(n) y x
(6) R(suc n) a b
(7) R(suc n) b a =⇒ ⊥
(8) (R(n) ◦R(n)) a b ∨R(n) a b (2), (6)
(9) (R(n) ◦R(n)) b a ∨R(n) a b (1), (8)

(10) R(n) a b (3), (7), (9)
(11) R(n) b a (5), (10)
(12) ⊥ (4), (7), (11)

The transitive closure is now defined as TC R x y = ∃n. R(n)xy. To for-
malize this, we add existential quantification and its proof rules. The final
theorem demostrates how existential quantification can be handled in the
framework.

Exists (X : Set) : (X → Prop)→ Prop
existsI (X : Set)(P : X → Prop) : (x : X)→ P x → Exists P
existsE (X : Set)(P : X → Prop)(C : Prop) :

Exists P → ((x : X)→ P x → C)→ C

TC : (A→ A→ Prop)→ A→ A→ Prop
TC R x y = Exists (λ n → (R ˆ n) x y)

thm : (R : A→ A→ Prop)→ sym R → sym (TC R)
thm R h x y = impI (λ p →

existsE p (λ n q → existsI n fol−plugin(q , main R h n)))

6.5.2 Category Theory

One application of the FOL plug-in is to category theory. Typically, proofs in
category theory contain a fair amount of symbolic manipulation, something
which we can leave to the plug-in.
To reason about category theory we introduce the appropriate constants

together with their axioms.

Obj : Set

6.5. EXAMPLES 145

Hom : Obj → Obj → Set

id (a : Obj) : Hom a a
(◦) (a, b, c : Obj) : Hom b c → Hom a b → Hom a c

axId1 (a, b : Obj) : (f : Hom a b)→ f == id ◦ f
axId2 (a, b : Obj) : (f : Hom a b)→ f == f ◦ id

assoc (a, b, c, d : Obj) :
(f : Hom c d)→ (g : Hom b c)→ (h : Hom a b)→
(f ◦ g) ◦ h == f ◦ (g ◦ h)

Now we can define what it means for a morphism to be epi and prove
that if the composition of two morphisms is epi then the first morphism must
also be epi.

isEpi (a, b : Obj) : Hom a b → Prop
isEpi { } {b} f = (c : Obj)→ (g , h : Hom b c)→

g ◦ f == h ◦ f =⇒ g == h

prop (a, b, c : Obj) : (f : Hom b c)→ (k : Hom a b)→
isEpi (f ◦ k) =⇒ isEpi f

prop f k = impI (λepi kf → fol−plugin(assoc, epi kf))

Gandalf has no problem proving this (very simple) proposition and, more
importantly, the proof that Gandalf produces is very close to the proof we
would write by hand. Pretty printed, the proof we get looks as follows.

(1) ∀X Y Z. (X ◦ Y) ◦ Z = X ◦ (Y ◦ Z)
(2) ∀X Y. X ◦ (f ◦ k) = Y ◦ (f ◦ k) =⇒ X = Y
(3) g ◦ f == h ◦ f
(4) g == h =⇒ ⊥
(5) ∀X. g ◦ (f ◦X) == h ◦ (f ◦X) {(1), (3)}
(6) ⊥ {(2), (4), (5)}

6.5.3 Computer Algebra

An example from M. Beeson [Bee07]. This example illustrates how we can
combine the interactive style of the logical framework, for instance for the
induction steps, with the first-order logic plugin.
In this example we want to reason about existentially quantified propo-

sitions so we add some new constants to the signature.

146 CHAPTER 6. FIRST-ORDER LOGIC

Exists (A : Set) : (A→ Prop)→ Prop
existsI (A : Set) : (P : A→ Prop)→ (x : A)→ P x → Exists P
existsE (A : Set) :(P : A→ Prop)→ Exists P →

(C : Prop)→ ((x : A)→ P x =⇒ C)→ C

We also need natural numbers. For this use the datatype extensions
which allows us to define recursive functions over the natural numbers. For
instance, we can write a recursive proof of the induction principle.

dataNat : Setwhere
zero : Nat
suc : Nat → Nat

indNat : (P : Nat → Prop)→ P zero→
((n : Nat)→ P n =⇒ P (suc n))→
(x : Nat)→ P x

indNat P a g zero = a
indNat P a g (suc n) = impE (g n) (indNat P a g n)

The goal of the example is to prove that in an integral ring, the only
nilpotent element is zero. We start by defining what it means to be an
integral ring.

isRing : (R : Set)→ (R → R → R)→ (R → R → R)→
(R → R)→ R → R → Prop

isRing R (+) (∗)minus Zero One =
(x : R)→ (y : R)→ (z : R)→
((x + y) == (y + x)
∧ (x + Zero) == x
∧ (x + (minus x)) == Zero
∧ (x + (y + z)) == ((x + y) + z)
∧ (x ∗ (y + z)) == ((x ∗ y) + (x ∗ z))
∧ ((y + z) ∗ x) == ((y ∗ x) + (z ∗ x))
∧ (x ∗ One) == x
∧ (One ∗ x) == x
∧ (x ∗ (y ∗ z)) == ((x ∗ y) ∗ z)

)

isIntegral : (R : Set)→ (R → R → R)→ R → Prop
isIntegral R (∗)Zero =

(x : R)→ (y : R)→ x ∗ y == Zero =⇒

6.5. EXAMPLES 147

x == Zero ∨ y == Zero

In the following we work on a particular (but abstract) integral ring.

R : Set
(+) : R → R → R
(∗) : R → R → R
minus : R → R
Zero : R
One : R

axR : isRing R (+) (∗)minus Zero One
axI : isIntegral R (∗)Zero

power : Nat → R → R
power zero x = One
power (suc n) x = (power n x) ∗ x

isZero : R → Prop
isZero x = x == Zero

isNilpotent : R → Prop
isNilpotent x = Exists (λ n → isZero (power n x))

This is all we need to start the proof. First we prove some lemmas.

lemCancel : (x : R)→ (y : R)→ x + y == y =⇒ isZero x
lemCancel x y =

impI (λh →
let rem : isZero (x + (y + minus y))

rem = fol−plugin(h, axR)
in

fol−plugin(rem, axR)
)

The proof of Zero ∗ x == Zero is not trivial (but can be done purely
automatically if desired) so we give the main steps of one possible proof
explicitly.

lemZero : (x : R)→ isZero (Zero ∗ x)
lemZero x =

148 CHAPTER 6. FIRST-ORDER LOGIC

let rem1 : Zero + One == One
rem1 = fol−plugin(axR)
rem2 : (Zero + One) ∗ x == Zero ∗ x + One ∗ x
rem2 = fol−plugin(axR)
rem3 : Zero ∗ x + One ∗ x == One ∗ x
rem3 = fol−plugin(axR, rem1 , rem2)

in
fol−plugin(rem3 , lemCancel)

lemOneZero : (x : R)→ One == Zero =⇒ isZero x
lemOneZero x = fol−plugin(axR, lemZero)

The main lemma is proved by induction explicitly at the framework level.

prop : R → Nat → Prop
prop x n = isZero (power n x) =⇒ isZero x

lemMain : (x : R)→ (n : Nat)→ prop x n
lemMain x =

let base : prop x zero
base = fol−plugin(lemOneZero)
step : (n : Nat)→ prop x n =⇒ prop x (suc n)
step n = fol−plugin(axR, axI)

in
indNat (prop x) base step

thm : (x : R)→ isNilpotent x → isZero x
thm x h = existsE (λn → isZero (power n x)) h (isZero x) (lemMain x)

6.6 Related Work

Smith and Tammet [ST95] also combine Martin-Löf type theory and first-
order logic, which was the original motivation for creating the system Gan-
dalf. The main difference to their work is that we use implicit typing and
restrict to quantifier-free formulæ. An advantage is that we have a simple
translation, and hence get a quite direct connection to resolution theorem
provers. Hence, we can hope, and this has been tested positively in sev-
eral examples, that the proof traces we get from the prover are readable as
such and therefore can been used as a proof certificate or as feedback for
the user. For instance, the user can formulate new lemmas suggested by this

6.6. RELATED WORK 149

proof trace. We think that this aspect of readability is more important than
creating an explicit proof term in type theory (which would actually be less
readable). It should be stressed that our conservativity result contains, since
it is constructive, an algorithm that can transform the resolution proof to a
proof in type theory, if this is needed.
Huang et. al. [HKK+94] present the design of Ω-MKRP6, a tool for the

working mathematician based on higher-order classical logic, with a facility
of proof planning, access to a mathematical database of theorems and proof
tactics (called methods), and a connection to first-order automated provers.
Their article is a well-written motivation for the integration of human and
machine reasoning, where they envision a similar division of labor as we have
implemented. We have, however, not addressed the problem of mathematical
knowledge management and proof tactics.
Wick and McCune [WM89] list three options for connecting type systems

and FOL: include type literals, put type functions around terms, or use
implicit typing. We rediscovered the technique of implicit typing and found
out later that it is present already in the work of Beeson [Bee07]. Our work
shows that this can also be used with dependent types, which is not obvious
a priori. Our formulation of the correctness properties, as a conservativity
statement, requires some care (with the role of the sort Prop), and is an
original contribution.
Bezem, Hendriks, and de Nivelle [BHdN02] describe how to transform a

resolution proof to a proof term for any first-order formula. However, the
resulting proof terms are hard to read for a human because of the use of
skolemisation and reduction to clausal forms. Furthermore, they restrict to
a fixed first-order domain.
Hurd’s work on a Gandalf-tactic for HOL [Hur99] is along the same lines.

He translates untyped first-order HOL goals to clause form, sends them to
Gandalf and constructs an LCF proof from the Gandalf output. In later
work [Hur02, Hur03] he handles types by having two translations: the un-
typed translation, and a translation with explicit types. The typed transla-
tion is only used when the untyped translation results in an ill-typed proof.
JProver [SLKN01] is a connection-based intuitionistic theorem prover

which produces proof objects. It has been integrated into NuPrl and Coq.
The translation from type theory to first-order logic involves some heuristics
when to include or discard type information. Unfortunately, the description
[SLKN01] does not contain formal systems or correctness arguments, but
focuses on the connection technology.
Jia Meng and Paulson [MP04] have carried out substantial experiments

6Markgraf Karl Refutation Procedure.

150 CHAPTER 6. FIRST-ORDER LOGIC

on how to integrate the resolution theorem prover Vampire into the interac-
tive proof tool Isabelle. Their translation from higher-order logic (HOL) to
first-order logic keeps type information, since HOL supports overloading via
axiomatic type classes and discarding type information for overloaded sym-
bols would lead to unsound reasoning. They claim to cut down the search
space via type information, but this is also connected to overloading. The aim
of their work is different to ours: while they use first-order provers to do as
much automatic proofs and proof search as possible, we employ automation
only to liberate the user from seemingly trivial proof steps.
In Coq, NuPrl, and Isabelle, the user constructs a proof via tactics. We

provide type theory as a proof language in which the user writes down a proof
skeleton, consisting of lemmas, scoped hypotheses, invocation of induction,
and major proof steps. The first-order prover is invoked to solve (easy)
subgoals. This way, we hope to obtain human-readable proof documents
(see our examples).

6.7 Future Work

The logical framework used in this chapter does not support Σ-types. How-
ever, the extension of the translation to FOL is straightforward, we simply
add a new binary function symbols for representing pairs. A more substan-
tial extension is the addition of datatypes and functions defined by pattern
matching. With this extension, it is possible to represent each connective
as a parameterized data type. Each introduction rule is represented by a
constructor, and the elimination rules are represented by functions defined
by cases. This gives a computational justification of each of the axioms of
the signature Σnat. The extension of the translation to FOL is also straight-
forward: each defined equations for functions becomes a FOL equality. One
needs also to express that each constructor is one-to-one and that terms with
distinct constructors are distinct.
Another direction of further work is to extend the conservativity theorem

to handle implicit arguments. We also think that it is possible to extend our
class of translatable formulæ, for instance, to include some cases of existential
quantification.
One could think of adding more plug-ins, with the same principle that

they are justified by a general metatheorem. For instance, one could add a
plug-in to a model checker, or a plug-in to a system with a decision procedure
for Presburger arithmetic.
A different approach, which is some ways is more appealing, is to imple-

ment certified provers internally in the language, in the way that was done for

6.7. FUTURE WORK 151

equations in commutative monoids in Section 5.2. However, implementing
an efficient FOL prover in a dependently type language is no small challenge.

Acknowledgments. We thank the members of the Cover project, espe-
cially Koen Claessen for discussions on implicit typing and the clausification
tool Santa for a uniform connection to FOL provers, and Grégoire Hamon
for programming the clausifier of the FOL plug-in in a previous version.

152 CHAPTER 6. FIRST-ORDER LOGIC

Chapter 7

Conclusions

The main goal of this thesis has been to pave the way for practical pro-
gramming languages with dependent types. In pursuing this goal we have
looked at a number of topics: pattern matching (Chapter 2), metavariables
(Chapter 3), module systems (Chapter 4), and automation (Chapter 6). Fur-
thermore we have designed and implemented a programming language, Agda,
show-casing our results (Chapter 5).

Pattern matching

Dependent types and in particular inductive families of types brings new di-
mensions to pattern matching not present in the simply typed case. This was
observed by Coquand who outlined an algorithm for incrementally construct-
ing functions defined by pattern matching [Coq92], which was consequentially
implemented in ALF [MN94]. Later McBride [McB99, MM04a, GMM06]
showed how pattern match definitions can be reduced to definitions by elim-
ination rules given uniqueness of identity proofs. In this thesis we have given
a direct type checking algorithm for pattern match equations supporting the
with rule [MM04a]. Our algorithm is more liberal than previous approaches
in that it allows overlapping pattern equations.

Metavariables and implicit syntax

When working in a monomorphic type theory, the ability to omit the parts
of the program that can be inferred automatically becomes an important
feature. This not only makes programs easier to read, but also improves
the performance of the type checker [NL98]. To do this one typically inserts
metavariables for the omitted terms. The type checker will then attempt to
infer the values of these metavariables.

153

154 CHAPTER 7. CONCLUSIONS

We have given a type checking algorithm for a dependently typed logic ex-
tended with metavariables. To maintain the important invariant that terms
being evaluated are type correct we work with well-typed approximations of
terms, where potentially ill-typed subterms have been replaced by constants.
We showed that type checking is decidable and that the algorithm is sound.
We presented the type checking algorithm for a simple dependently typed

logical frameworkMLF, but outlined how it can be extended to more feature-
rich logics. The implementation handles the full logic of Agda, and has proven
to work well with examples of several thousand metavariables.

Module system

In larger developments it is crucial to be able to split a program into separate
units, and to manage the scope of these units so that definitions from one
unit is not automatically visible in all others. For this purpose, we have
presented a reasonable simple and easy to implement module system which
is still expressive enough to allow large programs to be structured in a nice
way. A key design decision was to keep the module system and the type
system as separate as possible. As a result the module system is largely
independent of the underlying language.

Automation

When working with the more precise types that a dependently typed language
enables, it is sometimes necessary or desirable to prove properties of your
programs. While these can be constructed directly in the type theory, this is
sometimes tedious work. To alleviate proving simple first-order properties,
we described the implementation of a logical framework with proof-irrele-
vant propositions and its connection to the automatic first-order logic prover
Gandalf. Soundness and conservativity of the connection was established by
general metatheorems. By restricting the set of formulas under consideration
to that of geometric formulas we obtained a simple, transparent translation
between the framework and first-order logic. Moreover the proofs constructed
by the prover are intuitionistically valid.

Agda

We have collected the features described in this thesis1 in a language Agda.
While it is still far from being a fully fledged programming language, it

1With the exception of the first-order logic connection, which has been implemented in
the AgdaLight language [Nor06]

155

has still managed to gather a handful of users who have written some quite
impressive programs [AC07, AMS07, BD07, Dan06, Dan07, SA07].

Future work

Though the work in this thesis has taken us closer to our goal of a practical
dependently typed programming language, there are many areas we have
left unexplored. Some of these have been explored by others whereas some
remain open problems.
One topic which we have not touched upon, but which is crucial for a

programming language, is program compilation. Dependent types offer some
exciting possibilities for type directed optimizations not available in a simply
typed language. This was explored by Brady [Bra05] with promising results.
Another topic of interest is effectful programming. In a dependently

typed language where computation happens at compile time it is important
to distinguish pure computations and effectful computations—we do not want
any effects to happen during type checking. On the other hand we would like
to be able to reason about effectful computations at compile time. One way
of achieving this is to build a model of the effects inside the language which
is used for type checking, but switch to the real thing when executing. How
to build such a model has been studied [HS00, SA07], but there is a lot work
still to be done.
An interesting, but perhaps not crucial, topic is that of multi-staged pro-

gramming and reflection. We touched upon this in Section 5.2 where we
observed that reflection would enable us to create nicer interfaces to internal
tactics, such as the presented prover for equations in a commutative monoid.
Some interesting work has been done in this direction by Brady and Ham-
mond [BH06].
Perhaps the most important challenge we are now facing is that of learning

to program with dependent types. This topic was pioneered by McBride
and McKinna [MM04a], but unfortunately there has been no programming
language in which to put their ideas to the test on a larger scale. Agda might
not be that language just yet, but it is a good step along the way.

156 CHAPTER 7. CONCLUSIONS

Bibliography

[AC05] Andreas Abel and Thierry Coquand. Untyped algorithmic
equality for Martin-Löf’s logical framework with surjective pairs.
In Paweł Urzyczyn, editor, TLCA’05, volume 3461 of LNCS,
pages 23–38. Springer, April 2005.

[AC07] Thorsten Altenkirch and James Chapman. Big step normalisa-
tion. In submission, 2007.

[ACN05] Andreas Abel, Thierry Coquand, and Ulf Norell. Connecting a
logical framework to a first-order logic prover. In B. Gramlich,
editor, Proceedings of 5th International Workshop on Frontiers
of Combining Systems, Lecture Notes in Artificial Intelligence,
volume 3717, pages 285–301. Springer-Verlag, September 2005.

[ACT07] Andrea Asperti, Claudio Sacerdoti Coen, and
Enrico Tassi. Types summer school, 2007.
http://typessummerschool07.cs.unibo.it/.

[AMM05] Thorsten Altenkirch, Conor McBride, and James McKinna.
Why dependent types matter. Manuscript, available online,
April 2005.

[AMS07] Thorsten Altenkirch, Conor McBride, and Wouter Swierstra.
Observational equality, now! In PLPV’07: Proceedings of the
Programming Languages meets Program Verification Workshop,
2007.

[Aug85] L. Augustsson. Compiling Pattern Matching. In Proceedings
1985 Conference on Functional Programming Languages and
Computer Architecture, pages 368–381, Nancy, France, 1985.

[Aug98] Lennart Augustsson. Cayenne — a language with dependent
types. In Proc. of the International Conference on Functional
Programming (ICFP’98). ACM Press, September 1998.

157

158 BIBLIOGRAPHY

[Bar92a] H. P. Barendregt. Typed lambda calculi. In S. Abramsky et al.,
editor, Handbook of Logic in Computer Science, pages 117–309.
Oxford University Press, 1992.

[Bar92b] Henk Barendregt. Lambda calculi with types. In Handbook of
Logic in Computer Science, Volumes 1 (Background: Mathemat-
ical Structures) and 2 (Background: Computational Structures),
Abramsky & Gabbay & Maibaum (Eds.), Clarendon, volume 2.
1992.

[BC03] M. Bezem and T. Coquand. Newman’s lemma—a case study in
proof automation and geometric logic. Bull. Eur. Assoc. Theor.
Comput. Sci. EATCS No. 79, pages 86–100, 2003.

[BC04] Yves Bertot and Pierre Castéran. Interactive Theorem Proving
and Program Development. Coq’Art: The Calculus of Inductive
Constructions. Texts in Theoretical Computer Science. Springer
Verlag, 2004.

[BD07] Alexandre Buisse and Peter Dybjer. Towards formalizing cate-
gorical models of type theory in type theory. In Brigite Pientka
and Carsten Schurmann, editors, Second International Work-
shop on Logical Frameworks and Metalanguages: Theory and
Practice (LFMTP’07), Electronic Notes in Theoretical Com-
puter Science, pages 72–85. Elsevier, 2007.

[Bee07] Michael Beeson. Otter-λ home page, 2007.
http://michaelbeeson.com/research/otter-lambda.

[BH06] Edwin Brady and Kevin Hammond. A verified staged interpreter
is a verified compiler: Multi-stage programming with dependent
types. In Proc. Conf. Generative Programming and Component
Engineering (GPCE ’06), Portland, Oregon, Lecture Notes in
Computer Science. Springer, 2006. To appear.

[BHdN02] Marc Bezem, Dimitri Hendriks, and Hans de Nivelle. Automated
proof construction in type theory using resolution. JAR, 29(3–
4):253–275, 2002. Special Issue Mechanizing and Automating
Mathematics: In honour of N.G. de Bruijn.

[Bra05] Edwin Brady. Practical Implementation of a Dependently Typed
Functional Programming Language. PhD thesis, Durham Uni-
versity, 2005.

BIBLIOGRAPHY 159

[Bru72] N. de Bruijn. Lambda calculus notation with nameless dummies,
a tool for automatic formula manipulation, with application to
the Church-Rosser Theorem. Indag. Math., 34(5):381–392, 1972.

[CAB+86] Robert L. Constable, Stuart F. Allen, H. M. Bromley, W. R.
Cleaveland, J. F. Cremer, R. W. Harper, Douglas J. Howe, T. B.
Knoblock, N. P. Mendler, P. Panangaden, James T. Sasaki, and
Scott F. Smith. Implementing Mathematics with the Nuprl De-
velopment System. Prentice-Hall, NJ, 1986.

[CC99] Catarina Coquand and Thierry Coquand. Structured type the-
ory. In Workshop on Logical Frameworks and Meta-languages
(LFM’99), Paris, France, Sep 1999.

[CH00] Koen Claessen and John Hughes. QuickCheck: a lightweight
tool for random testing of haskell programs. In International
Conference on Functional Programming, pages 268–279. ACM,
2000.

[Chl06] Adam Chlipala. Modular development of certified program ver-
ifiers with a proof assistant. In Proceedings of 11th ACM SIG-
PLAN International Conference on Functional Programming
(ICFP’06), September 2006.

[Chl07] Adam Chlipala. A certified type-preserving compiler from
lambda calculus to assembly language. In Proceedings of ACM
SIGPLAN 2007 Conference on Programming Language Design
and Implementation (PLDI’07), June 2007.

[Chr03] Jacek Chrząszcz. Implementation of modules in the Coq sys-
tem. In David Basin and Burkhart Wolff, editors, Proceedings
of the Theorem Proving in Higher Order Logics 16th Interna-
tional Conference, volume 2758 of LNCS, pages 270–286, Rome,
Italy, September 2003. Springer.

[CLR01] Michel Coste, Henri Lombardi, and Marie-Françoise Roy. Dy-
namical methods in algebra: Effective Nullstellensätze. APAL,
111(3):203–256, 2001.

[Coq92] T. Coquand. Pattern matching with dependent types. In Pro-
ceeding from the logical framework workshop at B̊astad, June
1992.

160 BIBLIOGRAPHY

[Coq96] T. Coquand. An algorithm for type-checking dependent types.
Comput. Programming 26, pages 167–177, January 1996.

[Cou07] Judicaël Courant. MC2 A module calculus for Pure Type Sys-
tems. Journal of Functional Programming, 17:287–352, 2007.

[CPT] T. Coquand, R. Pollack, and M. Takeyama. A logical framework
with dependently typed records. In Typed lambda calculi and
applications (2003), Lecture Notes in Comput. Sci., 2701, pages
22–28.

[Dan06] Nils Anders Danielsson. A formalisation of a dependently typed
language as an inductive-recursive family. In TYPES 2006.
Springer-Verlag, 2006.

[Dan07] Nils Anders Danielsson. Lightweight semiformal time complex-
ity analysis for purely functional data structures. Draft, 2007.

[dB80] Niklas G. de Bruijn. A survey of the project Automath. In J. P.
Seldin and J. R. Hindley, editors, To H. B. Curry: Essays in
combinatory logic, lambda calculus and formalism, pages 579–
606, London-New York, 1980. Academic Press.

[dB91a] N. G. de Bruijn. A plea for weaker frameworks. pages 40–67,
1991.

[dB91b] N. G. de Bruijn. Telescopic mappings in typed lambda calculus.
Information and Computation, 91(2):189–204, 1991.

[DHK95] Gilles Dowek, Therese Hardin, and Claude Kirchner. Higher-
order unification via explicit substitutions. In Dexter Kozen,
editor, Proceedings of the Tenth Annual IEEE Symp. on Logic in
Computer Science, LICS 1995, pages 366–374. IEEE Computer
Society Press, June 1995.

[Dow01] Gilles Dowek. Higher-order unification and matching. Handbook
of automated reasoning, pages 1009–1062, 2001.

[DS06] Peter Dybjer and Anton Setzer. Indexed induction-recursion.
The Journal of Logic and Algebraic Programming, 66(1):1–49,
January 2006.

[Dyb94] P. Dybjer. Inductive families. Formal Aspects of Computing,
pages 440–465, 1994.

BIBLIOGRAPHY 161

[Ell89] C. M. Elliot. Higher-order unification with dependent function
types. In N. Derikowitz, editor, Proceedings of the 3rd Inter-
national Conference on Rewriting Techniques and Applications,
pages 121–136, April 1989.

[Gen35] Gerhard Gentzen. Untersuchungen über das logische Schließen.
Mathematische Zeitschrift, 39:176–210, 405–431, 1935.

[GMM06] Healfdene Goguen, Conor McBride, and James McKinna. Elim-
inating dependent pattern matching. In Goguen Festschrift, vol-
ume 4060 of LNCS. Springer Verlag, 2006.

[HHP93] R. Harper, F. Honsell, and G. Plotkin. A Framework for Defin-
ing Logics. JACM, 40(1):143–184, 1993.

[HKK+94] Xiaorong Huang, Manfred Kerber, Michael Kohlhase, Erica
Melis, Dan Nesmith, Jörn Richts, and Jörg H. Siekmann.
Omega-MKRP: A proof development environment. In Alan
Bundy, editor, CADE’94, volume 814 of LNCS, pages 788–792.
Springer, 1994.

[HP98] Robert Harper and Frank Pfenning. A module system for a pro-
gramming language based on the lf logical framework. Journal
of Logic and Computation, 8(1):5–31, 1998.

[HS94] Martin Hofmann and Thomas Streicher. A groupoid model re-
futes uniqueness of identity proofs. In LICS 1994, pages 208–
212. IEEE Press, 1994.

[HS00] Peter Hancock and Anton Setzer. Interactive programs in de-
pendent type theory. In P. Clote and H. Schwichtenberg, edi-
tors, Computer Science Logic, 14th international workshop, vol-
ume 1862 of Springer Lecture Notes in Computer Science, pages
317–331. Springer-Verlag, 2000.

[Hue75] G. Huet. A unification algorithm for typed λ-calculus. Theoret-
ical Computer Science, 1(1):27–57, 1975.

[Hur99] Joe Hurd. Integrating Gandalf and HOL. In Yves Bertot,
Gilles Dowek, André Hirschowitz, Christine Paulin, and Lau-
rent Théry, editors, TPHOLS’99, volume 1690 of LNCS, pages
311–321. Springer, September 1999.

162 BIBLIOGRAPHY

[Hur02] Joe Hurd. An LCF-style interface between HOL and first-order
logic. In Andrei Voronkov, editor, CADE’02, volume 2392 of
LNAI, pages 134–138. Springer, 2002.

[Hur03] Joe Hurd. First-order proof tactics in higher-order logic theorem
provers. In Myla Archer, Ben Di Vito, and César Muñoz, edi-
tors, STRATA’03, number CP-2003-212448 in NASA Technical
Reports, pages 56–68, September 2003.

[Joh85] Thomas Johnsson. Lambda lifting: Transforming programs to
recursive equations. In FPCA, pages 190–203, 1985.

[Lam93] Leslie Lamport. How to write a proof. In Global Analysis in
Modern Mathematics, pages 311–321. Publish or Perish, Hous-
ton, Texas, U.S.A., February 1993. Also appeared as SRC Re-
search Report 94.

[Ler06] Xavier Leroy. Formal certification of a compiler back-end, or:
programming a compiler with a proof assistant. In 33rd sympo-
sium Principles of Programming Languages, pages 42–54. ACM
Press, 2006.

[Luo94] Zhaohui Luo. Computation and reasoning: a type theory for
computer science. Oxford University Press, Inc., New York,
NY, USA, 1994.

[McB99] Conor McBride. Dependently Typed Functional Programs and
their Proofs. PhD thesis, University of Edinburgh, 1999.

[McB06] Conor McBride, 2006. Personal communication.

[McB07] Conor McBride. Epigram, 2007. http://www.e-pig.org.

[Mil91] D. Miller. Unification of simply typed lambda-terms as logic pro-
gramming. In K. Furukawa, editor, Logic Programming: Proc. of
the Eighth International Conference, pages 255–269. MIT Press,
Cambridge, MA, 1991.

[Mil92] Dale Miller. Unification under a mixed prefix. J. Symb. Com-
put., 14(4):321–358, 1992.

[Miq01] Alexandre Miquel. The implicit calculus of constructions: Ex-
tending pure type systems with an intersection type binder and
subtyping. In S. Abramsky, editor, Proc. of 5th Int. Conf.

BIBLIOGRAPHY 163

on Typed Lambda Calculi and Applications, TLCA’01, Krakow,
Poland, 2–5 May 2001, volume 2044, pages 344–359. Springer-
Verlag, Berlin, 2001.

[ML72] P. Martin-Löf. An Intuitionistic Theory of Types. Technical
report, University of Stockholm, 1972.

[ML75] P. Martin-Löf. An Intuitionistic Theory of Types: Predicative
Part. In H. E. Rose and J. C. Shepherdson, editors, Logic Col-
loquium 1973, pages 73–118, Amsterdam, 1975. North-Holland
Publishing Company.

[ML84] P. Martin-Löf. Intuitionistic Type Theory. Bibliopolis, Napoli,
1984.

[MM04a] C. McBride and J. McKinna. The view from the left. Journal
of Functional Programming, 14(1):69–111, January 2004.

[MM04b] Conor McBride and James McKinna. I am not a number; I
am a free variable. In Proceedings of the 2004 ACM SIGPLAN
Haskell Workshop. ACM Press, 2004.

[MN94] L. Magnusson and B. Nordström. The ALF proof editor and its
proof engine. In Types for Proofs and Programs, volume 806 of
LNCS, pages 213–237, Nijmegen, 1994. Springer-Verlag.

[MP04] Jia Meng and Lawrence C. Paulson. Experiments on support-
ing interactive proof using resolution. In David A. Basin and
Michaël Rusinowitch, editors, IJCAR’04, volume 3097 of LNCS,
pages 372–384. Springer, 2004.

[MTH90] R. Milner, M. Tofte, and R. Harper. The Definition of Standard
ML. MIT Press, 1990.

[Muñ01] César Muñoz. Proof-term synthesis on dependent-type systems
via explicit substitutions. Theor. Comput. Sci., 266(1-2):407–
440, 2001.

[NC07] Ulf Norell and Catarina Coquand. Type checking in the presence
of metavariables. Unpublished, 2007.

[Nip93] Tobias Nipkow. Functional unification of higher-order patterns.
In Proc. 8th IEEE Symp. Logic in Computer Science, pages 64–
74, 1993.

164 BIBLIOGRAPHY

[NL98] G. Necula and P. Lee. Efficient representation and validation of
proofs. In LICS’98, pages 93–104. IEEE, June 1998.

[Nor06] Ulf Norell. Agda light, 2006.
http://www.cs.chalmers.se/~ulfn/agdaLight.

[Nor07] Ulf Norell. Agda 2, 2007.
http://www.cs.chalmers.se/~ulfn/Agda.

[NPP07] Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka.
Contextual modal type theory. Transactions on Computational
Logic, 2007. To appear.

[NPS90] B. Nordström, K. Petersson, and J. M. Smith. Programming in
Martin-Löf ’s Type Theory. An Introduction. Oxford University
Press, 1990.

[NPS00] Bengt Nordström, Kent Petersson, and Jan Smith. Martin-Löf’s
type theory. In Handbook of Logic in Computer Science, vol-
ume 5. OUP, October 2000.

[Pau90] L. C. Paulson. Isabelle: The next 700 theorem provers. In
P. Odifreddi, editor, Logic and Computer Science, pages 361 –
386. Academic Press, 1990.

[Pfe91] Frank Pfenning. Unification and anti-unification in the Calculus
of Constructions. In Sixth Annual IEEE Symposium on Logic in
Computer Science, pages 74–85, Amsterdam, The Netherlands,
1991.

[PHe+99] S. Peyton Jones, J. Hughes, (editors), L. Augustsson, D. Barton,
B. Boutel, W. Burton, J. Fasel, K. Hammond, R. Hinze, P. Hu-
dak, T. Johnsson, M. Jones, J. Launchbury, E. Meijer, J. Pe-
terson, A. Reid, C. Runciman, and P. Wadler. Report on the
Programming Language Haskell 98, a Non-strict, Purely Func-
tional Language. Available from http://haskell.org, Febru-
ary 1999.

[Pol90] R. Pollack. Implicit syntax. In the preliminary Proceedings of
the 1st Workshop on Logical Frameworks, 1990.

[Pol94] R. Pollack. The Theory of LEGO: A Proof Checker for the
Extended Calculus of Constructions. PhD thesis, University of
Edinburgh, 1994.

BIBLIOGRAPHY 165

[Pol00] Robert Pollack. Dependently typed records
for representing mathematical structure.
www.dcs.ed.ac.uk/~rap/export/records.ps, 2000.

[PPM90] Frank Pfenning and Christine Paulin-Mohring. Inductively de-
fined types in the Calculus of Constructions. In Mathematical
Foundations of Programming Semantics, volume 442 of Lecture
Notes in Computer Science, pages 209–228. Springer-Verlag,
1990.

[PS07] Adam Poswolsky and Carsten Schürmann. Delphin: A func-
tional programming language with higher-order encodings and
dependent types. In submission, 2007.

[PVWW06] Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich,
and Geoffrey Washburn. Simple unification-based type inference
for GADTs. In Proceedings of the Eleventh ACM SIGPLAN In-
ternational Conference on Functional Programming, Portland,
Oregon, September 2006. ACM SIGPLAN.

[Pym90] D. Pym. Proof, search and computation in general logic. PhD
thesis, University of Edinburgh, 1990.

[Rob65] John Alan Robinson. A machine-oriented logic based on the
resolution principle. JACM, 12(1):23–41, January 1965.

[Ré93] Didier Rémy. Syntactic theories and the algebra of record terms,
1993.

[SA07] Wouter Swierstra and Thorsten Altenkirch. Beauty in the beast:
A functional semantics of the awkward squad. In Haskell ’07:
Proceedings of the ACM SIGPLAN workshop on Haskell, 2007.

[She05] Tim Sheard. Putting curry-howard to work. In Haskell ’05:
Proceedings of the 2005 ACM SIGPLAN workshop on Haskell,
pages 74–85, New York, NY, USA, 2005. ACM Press.

[SLKN01] Stephan Schmitt, Lori Lorigo, Christoph Kreitz, and Aleksey
Nogin. JProver: Integrating connection-based theorem proving
into interactive proof assistants. In R. Gore, A. Leitsch, and
T. Nipkow, editors, IJCAR’01, volume 2083 of LNAI, pages
421–426. Springer, 2001.

166 BIBLIOGRAPHY

[Soz07] Matthieu Sozeau. Subset coercions in Coq. In TYPES’06, vol-
ume 4502 of Lecture Notes in Computer Science, pages 237–252.
Springer, 2007.

[SP03] C. Schürmann and F. Pfenning. A coverage checking algorithm
for lf. In Proceedings of the 16th International Conference on
Theorem Proving in Higher Order Logics, TPHOLs, 2003.

[ST95] Jan M. Smith and Tanel Tammet. Optimized encodings of frag-
ments of type theory in first-order logic. In Stefano Berardi and
Mario Coppo, editors, TYPES’95, volume 1158 of LNCS, pages
265–287. Springer, 1995.

[Str93] Thomas Streicher. Investigations into intensional type theory.
Habilitation Thesis, Ludwig Maximilian Universität, 1993.

[Tam97] Tanel Tammet. Gandalf. JAR, 18(2):199–204, 1997.

[WM89] C. A. Wick and W. McCune. Automated reasoning about ele-
mentary point-set topology. Journal of Automated Reasoning,
5(2):239–255, 1989.

[Xi98] Hongwei Xi. Dependent Types in Practical Programming. PhD
thesis, Carnegie Mellon University, 1998.

[Xi04] Hongwei Xi. Applied Type System (extended abstract). In post-
workshop Proceedings of TYPES 2003, pages 394–408. Springer-
Verlag LNCS 3085, 2004.

